CN100354868C - Layout planing method for positioning unit of precise clamp - Google Patents
Layout planing method for positioning unit of precise clamp Download PDFInfo
- Publication number
- CN100354868C CN100354868C CNB2005100250760A CN200510025076A CN100354868C CN 100354868 C CN100354868 C CN 100354868C CN B2005100250760 A CNB2005100250760 A CN B2005100250760A CN 200510025076 A CN200510025076 A CN 200510025076A CN 100354868 C CN100354868 C CN 100354868C
- Authority
- CN
- China
- Prior art keywords
- positioning error
- location
- positioning
- point
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 9
- 238000012217 deletion Methods 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 230000003190 augmentative effect Effects 0.000 claims 4
- 239000012141 concentrate Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 11
- 238000013461 design Methods 0.000 abstract description 5
- 238000007667 floating Methods 0.000 abstract description 2
- 238000005457 optimization Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 230000001502 supplementing effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Landscapes
- Automatic Control Of Machine Tools (AREA)
- Feedback Control In General (AREA)
Abstract
一种精密夹具定位元布局规划方法,根据制造任务选择工件上的特征点和方向矢量定义定位误差度量指标,并据此推导出定位误差控制指标作为优化设计的目标函数,将离散化工件基准面得到的密集数据点云作为夹具定位元候选集,并令初始时定位元解集为空集,应用浮动搜索方法逐次从定位元候选集中选择一点增补进定位元解集中,同时有条件地删除已选入的劣点,如此循环直至筛选出六个定位元点,由此规划出最佳的定位元布局。本发明中的定位误差度量指标具有与制造任务相关的几何意义,其以及由其诱导出的定位误差控制指标均与参考坐标系的选取无关,本发明可在满足工件制造精度要求的前提下降低对夹具定位元和工件基准面的精度要求,从而节约了制造成本。A precision fixture positioning element layout planning method, according to the manufacturing task to select the feature points and direction vectors on the workpiece to define the positioning error measurement index, and deduce the positioning error control index as the objective function of the optimal design, the discretized workpiece reference plane The obtained dense data point cloud is used as the fixture location element candidate set, and the initial location element solution set is an empty set, and the floating search method is used to select a point from the location element candidate set to add to the location element solution set, and conditionally delete the existing The selected disadvantages are circulated in this way until six positioning element points are screened out, so as to plan the best positioning element layout. The positioning error measurement index in the present invention has a geometric meaning related to the manufacturing task, and it and the positioning error control index induced by it have nothing to do with the selection of the reference coordinate system. The present invention can reduce the Accuracy requirements for fixture positioning elements and workpiece reference planes, thus saving manufacturing costs.
Description
技术领域technical field
本发明涉及一种精密夹具定位元布局规划方法,可用于制造工程中的精密夹具设计,属于机械制造技术领域。The invention relates to a precision fixture positioning element layout planning method, which can be used for precision fixture design in manufacturing engineering and belongs to the technical field of mechanical manufacturing.
背景技术Background technique
在制造过程中,夹具起着对工件定位和支撑的作用,按照工件精度要求正确设计夹具是保证产品质量的关键因素之一。夹具由定位元和夹紧元两部分组成,夹具的定位精度是由定位元的制造和装配精度、工件基准面的制造精度、以及定位元的空间布局所共同决定的,其中前两者与制造工艺和设备相关,提高制造精度往往导致制造成本的急剧增长,而通过合理规划定位元的空间布局同样能有效地提高定位精度,因此这一工作在近几年引起了工业界的广泛关注。定位元优化布局涉及三方面的工作:(1)定位误差度量,(2)优化目标函数,(3)优化算法,其中优化目标函数是根据定位误差度量推导出的。目前定位误差度量指标通常取为运动旋量的欧氏范数,并由此发展出了一系列优化目标函数,但这种定义存在以下缺点:(1)涉及不同量纲的数值之间的加法运算,欠严谨;(2)与制造任务不相关,不具有物理意义;(3)与特定的机床坐标系和工件坐标系相关,不具有坐标变换不变性。已有的优化方案可以分为两大类,一类是用连续曲面描述基准面,将定位元优化布局问题表述为一约束最优化问题,然后应用常规非线性规划方法求解;另一类是用数据点云描述基准面,将定位元优化布局问题表述为一组合优化问题,然后应用启发式算法求解。前者的计算量较大,且不易处理附加的几何约束以及曲面之间的过渡;后者中的置换式算法计算量太大,而增量式算法不具有回溯能力。In the manufacturing process, the fixture plays the role of positioning and supporting the workpiece. Correctly designing the fixture according to the precision requirements of the workpiece is one of the key factors to ensure product quality. The fixture is composed of two parts, the positioning element and the clamping element. The positioning accuracy of the fixture is determined by the manufacturing and assembly accuracy of the positioning element, the manufacturing accuracy of the workpiece reference surface, and the spatial layout of the positioning element. The first two are related to the manufacturing Technology and equipment are related, and improving manufacturing accuracy often leads to a sharp increase in manufacturing costs, and the positioning accuracy can also be effectively improved by rationally planning the spatial layout of positioning elements, so this work has attracted widespread attention in the industry in recent years. The optimal placement of localization elements involves three aspects of work: (1) localization error metric, (2) optimization objective function, and (3) optimization algorithm, where the optimization objective function is derived from the localization error metric. At present, the positioning error measurement index is usually taken as the Euclidean norm of the motion screw, and a series of optimization objective functions have been developed, but this definition has the following disadvantages: (1) It involves the addition of values of different dimensions (2) It is not related to the manufacturing task and has no physical meaning; (3) It is related to the specific machine tool coordinate system and workpiece coordinate system, and has no coordinate transformation invariance. The existing optimization schemes can be divided into two categories, one is to use continuous surfaces to describe the datum plane, express the optimal layout problem of positioning elements as a constrained optimization problem, and then apply conventional nonlinear programming methods to solve it; the other is to use The datum plane is described by the data point cloud, and the optimal layout problem of positioning elements is expressed as a combinatorial optimization problem, and then heuristic algorithm is applied to solve it. The former has a large amount of calculation, and it is not easy to deal with additional geometric constraints and the transition between surfaces; the displacement algorithm in the latter has too much calculation, and the incremental algorithm does not have the ability to backtrack.
发明内容Contents of the invention
本发明的目的在于针对现有技术的不足,提出一种夹具定位元布局规划新方法,以减小定位元制造和装配误差,以及工件基准面制造误差对后续制造任务的影响,在满足工件制造精度要求的前提下降低对夹具定位元和工件基准面的精度要求,从而节约制造成本。The purpose of the present invention is to address the deficiencies of the prior art, and propose a new method for layout planning of fixture positioning elements to reduce the manufacturing and assembly errors of positioning elements, and the influence of manufacturing errors on workpiece reference planes on subsequent manufacturing tasks. Under the premise of reducing the precision requirements, the precision requirements for the fixture positioning element and the workpiece datum surface are reduced, thereby saving manufacturing costs.
本发明的技术方案:首先根据制造任务选择工件上的一组特征点和一组方向矢量定义定位误差度量指标,并据此推导出定位误差控制指标作为优化设计的目标函数。将离散化工件基准面得到的密集数据点云作为夹具定位元候选集,并令初始时定位元解集为空集,然后应用浮动搜索方法逐次从定位元候选集中选择一点增补进定位元解集中,同时有条件地删除已选入的劣点,如此循环直至筛选出六个定位元点,使得优化设计目标函数值达到极小,由此规划出最佳的定位元布局。The technical solution of the present invention: first, according to the manufacturing task, select a group of feature points and a group of direction vectors on the workpiece to define the positioning error measurement index, and deduce the positioning error control index as the objective function of the optimal design. The dense data point cloud obtained by discretizing the workpiece reference plane is used as the candidate set of fixture positioning elements, and the initial positioning element solution set is an empty set, and then the floating search method is used to select one point from the positioning element candidate set to add to the positioning element solution set , and conditionally delete the selected disadvantages, and so on until six positioning element points are selected, so that the optimal design objective function value reaches a minimum, and thus the best positioning element layout is planned.
本发明方法主要包含以下两个步骤:The inventive method mainly comprises following two steps:
1、定义定位误差度量指标并导出定位误差控制指标:首先根据制造任务选择工件上的一组特征点和一组方向矢量,定义两个定位误差度量指标e1和e2。e1表示由于定位误差引起的工件上的关键点偏离理想位置的偏差的平方和,e2表示由于定位误差引起的工件上的关键点偏离理想位置的偏差在给定方向上的投影的平方和。然后根据定位误差度量指标推导出定位误差控制指标ec,作为夹具定位元优化布局的目标函数。1. Define the positioning error measurement index and derive the positioning error control index: first, select a set of feature points and a set of direction vectors on the workpiece according to the manufacturing task, and define two positioning error measurement indexes e 1 and e 2 . e 1 represents the sum of the squares of the deviation of the key point on the workpiece from the ideal position due to the positioning error, and e 2 represents the sum of the squares of the projection of the deviation of the key point on the workpiece from the ideal position due to the positioning error in a given direction . Then the positioning error control index e c is deduced according to the positioning error measurement index, which is used as the objective function of the optimal layout of the fixture positioning element.
2、定位元优化布局:将离散化工件基准面得到的密集数据点云作为夹具定位元候选集,并令初始时定位元解集为空集,然后采用夹具定位元优化布局算法寻找六个最优的定位元。夹具定位元优化布局算法由“增补定位元点”和“有条件删减定位元点”两个部分组成。在“增补定位元点”过程中,每次从定位元候选集中选择一点增补进定位元解集中,使得增加该点后定位误差控制目标函数值下降得最快;在“有条件删减定位元点”过程中,每次从定位元解集中选择一点,使之满足删除该点后定位误差控制目标函数值上升得最慢,如果此时定位误差控制目标函数值小于之前得到的基数相同的定位元解集所对应的目标函数值,则将该点从定位元解集中删除,并继续执行“有条件删减定位元点”,否则执行“增补定位元点”。重复上述“增补”与“删减”两个步骤,直至定位元解集中包含六个元素为止,即筛选出六个定位元点,使得定位误差控制目标函数值达到极小,由此规划出最佳的定位元布局。2. Positioning element optimization layout: use the dense data point cloud obtained from the discretized workpiece reference plane as the fixture positioning element candidate set, and make the initial positioning element solution set an empty set, and then use the fixture positioning element optimal layout algorithm to find the six most Excellent positioning element. The optimal layout algorithm of fixture positioning elements is composed of two parts: "supplementing positioning elements" and "conditionally deleting positioning elements". In the process of "supplementing positioning element points", a point is selected from the positioning element candidate set to be added into the positioning element solution set each time, so that the value of the positioning error control objective function decreases the fastest after adding this point; in the "conditional deletion of positioning element In the process of "point", select a point from the solution set of positioning elements each time, so that the value of the positioning error control objective function rises the slowest after deleting the point. If the value of the positioning error control objective function is smaller than the previously obtained If the target function value corresponding to the meta-solution set is found, delete the point from the positioning meta-solution set, and continue to execute "conditionally delete positioning meta-points", otherwise execute "additional positioning meta-points". Repeat the above two steps of "supplementation" and "deletion" until the positioning element solution set contains six elements, that is, six positioning element points are screened out, so that the value of the positioning error control objective function is minimized, and the optimal Good positioning meta layout.
本发明中的定位误差度量指标e1和e2具有与制造任务相关的几何意义,且与参考坐标系的选取无关,由其诱导出的定位误差控制指标ec亦与参考坐标系的选取无关,基于指标ec构造的定位元布局规划算法具有形式简单,计算效率高等优点。采用本发明方法得到的最佳定位元布局,可以减小定位元制造和装配误差,减小工件基准面制造误差对后续制造任务的影响,可以在满足工件制造精度要求的前提下降低对夹具定位元和工件基准面的精度要求,从而节约了制造成本。本发明特别适用于精密加工、装配与测量中的夹具设计。The positioning error measurement indexes e1 and e2 in the present invention have geometric meanings related to the manufacturing task, and have nothing to do with the selection of the reference coordinate system, and the positioning error control index e induced by them has nothing to do with the selection of the reference coordinate system , the positioning element layout planning algorithm based on index e c has the advantages of simple form and high calculation efficiency. The optimal positioning element layout obtained by the method of the present invention can reduce the manufacturing and assembly errors of the positioning element, reduce the influence of the manufacturing error of the workpiece reference plane on the subsequent manufacturing tasks, and reduce the positioning of the fixture on the premise of meeting the manufacturing accuracy requirements of the workpiece. The accuracy requirements of the element and workpiece reference plane, thus saving manufacturing costs. The invention is especially suitable for fixture design in precision machining, assembly and measurement.
具体实施方式Detailed ways
为了更好地理解本发明的技术方案,下面详细描述精密夹具定位元布局规划方法的实施步骤。In order to better understand the technical solution of the present invention, the implementation steps of the precision fixture positioning element layout planning method are described in detail below.
(1)定义定位误差度量指标并导出定位误差控制目标函数:由于制造误差的影响,由夹具固定的工件实际位姿将偏离理想位姿,该偏差可以用相对于工件坐标系的微分运动矢量ξ=[vT,ωT]T∈R6表示,其中v∈R3和ω∈R3分别为微分平动和微分转动矢量。根据制造任务选择工件上的一组特征点
e1=ξTM1ξe 1 =ξ T M 1 ξ
e2=ξTM2ξe 2 =ξ T M 2 ξ
其中
e1表示由于定位误差引起的工件上的关键点偏离理想位置的偏差的平方和,e2表示由于定位误差引起的工件上的关键点偏离理想位置的偏差在给定方向上的投影的平方和,它们均与参考坐标系的选取无关。e 1 represents the sum of the squares of the deviation of the key point on the workpiece from the ideal position due to the positioning error, and e 2 represents the sum of the squares of the projection of the deviation of the key point on the workpiece from the ideal position due to the positioning error in a given direction , which have nothing to do with the selection of the reference coordinate system.
假定理想情况下夹具的第i个定位元与工件表面qi点接触,记nqi为qi点处工件表面的单位外法矢,令
其中λX i表示矩阵X的第i个特征值。ec定量刻画了夹具定位元的制造和装配误差,以及工件基准面的制造误差对定位误差度量指标e1或e2(取决于M取为M1还是M2)的影响,其值越小越好,它同样也与参考坐标系的选取无关。where λXi represents the ith eigenvalue of matrix X. e c quantitatively describes the manufacturing and assembly errors of the fixture positioning element, and the influence of the manufacturing error of the workpiece reference surface on the positioning error measurement index e 1 or e 2 (depending on whether M is taken as M 1 or M 2 ), the smaller the value The better, it also has nothing to do with the choice of reference coordinate system.
(2)定位元优化布局:以密集离散数据点云H={hi∈R3,1≤i≤N}表示工件基准面,将夹具定位元布局规划问题归结为由H中筛选出六点使得相应的ec值达到极小的组合优化问题,应用如下夹具定位元优化布局算法确定出六个定位元的最佳位置:(2) Optimal layout of positioning elements: use dense discrete data point cloud H={h i ∈ R 3 , 1≤i≤N} to represent the workpiece reference plane, and reduce the layout planning problem of fixture positioning elements to six points selected from H For the combinatorial optimization problem that makes the corresponding e c value extremely small, the optimal position of the six positioning elements is determined by applying the following fixture positioning element optimization layout algorithm:
输入:定位元候选集H={hiR3,1≤i≤N}、定位误差控制目标函数ec Input: positioning element candidate set H={h i R 3 , 1≤i≤N}, positioning error control objective function e c
输出:定位元解集Pk={pi∈H,1≤i≤k},k=1,…,6Output: positioning element solution set P k = {p i ∈ H, 1≤i≤k}, k=1,...,6
初始化:P0=_,k=0Initialization: P 0 =_, k = 0
终止条件:k=6Termination condition: k=6
步骤1(增补定位元点):Step 1 (Supplementary positioning element):
Pk+1=Pk∪{p+},k=k+1P k+1 = P k ∪{p + }, k=k+1
步骤2(有条件删减定位元点):Step 2 (Conditionally delete the positioning element point):
如果ec(Pk\{p-})<ec(Pk-1)那么If e c (P k \{p - })<e c (P k-1 )then
Pk-1=Pk\{p-},k=k-1P k-1 =P k \{p - },k=k-1
转到步骤2go to step 2
否则otherwise
转到步骤1go to step 1
注:在计算ec值时以LTL+εI替代LTL,ε是个很小的正实数,通常可取为10-6。Note: When calculating e c value, replace L T L with L T L + εI, ε is a very small positive real number, usually 10 -6 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100250760A CN100354868C (en) | 2005-04-14 | 2005-04-14 | Layout planing method for positioning unit of precise clamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100250760A CN100354868C (en) | 2005-04-14 | 2005-04-14 | Layout planing method for positioning unit of precise clamp |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1687936A CN1687936A (en) | 2005-10-26 |
CN100354868C true CN100354868C (en) | 2007-12-12 |
Family
ID=35305977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100250760A Expired - Fee Related CN100354868C (en) | 2005-04-14 | 2005-04-14 | Layout planing method for positioning unit of precise clamp |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100354868C (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106200554B (en) * | 2016-08-29 | 2018-09-04 | 广东工业大学 | A kind of part processing pose optimization method and system |
CN113806891B (en) * | 2021-09-23 | 2023-08-04 | 山东大学深圳研究院 | Quick design method of clamp suitable for workpiece change |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6314543B1 (en) * | 1998-01-30 | 2001-11-06 | Kabushiki Kaisha Toshiba | Method of placing marks for alignment accuracy measurement |
JP2003215607A (en) * | 2002-01-28 | 2003-07-30 | Seiko Epson Corp | Liquid crystal display device and electronic equipment |
CN1523662A (en) * | 2003-09-12 | 2004-08-25 | 清华大学 | A Fast Method for Noise Optimization of IC Power Supply Network Using Decoupling Capacitors |
CN1545049A (en) * | 2003-11-14 | 2004-11-10 | 清华大学 | Large-Scale Mixed-Mode Layout Method Based on Virtual Modules |
-
2005
- 2005-04-14 CN CNB2005100250760A patent/CN100354868C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6314543B1 (en) * | 1998-01-30 | 2001-11-06 | Kabushiki Kaisha Toshiba | Method of placing marks for alignment accuracy measurement |
JP2003215607A (en) * | 2002-01-28 | 2003-07-30 | Seiko Epson Corp | Liquid crystal display device and electronic equipment |
CN1523662A (en) * | 2003-09-12 | 2004-08-25 | 清华大学 | A Fast Method for Noise Optimization of IC Power Supply Network Using Decoupling Capacitors |
CN1545049A (en) * | 2003-11-14 | 2004-11-10 | 清华大学 | Large-Scale Mixed-Mode Layout Method Based on Virtual Modules |
Also Published As
Publication number | Publication date |
---|---|
CN1687936A (en) | 2005-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111061213B (en) | Processing method based on Bezier curve corner smooth transition algorithm | |
WO2022174658A1 (en) | Rapid optimization and compensation method for rotation shaft spatial localization error of five-axis numerically controlled machine tool | |
CN110119566B (en) | Cutting depth prediction method and device suitable for abrasive belt grinding and polishing of complex curved surface robot | |
CN100517143C (en) | Method of Realizing Interpolation Control of Toolpath in NC Machine Tool System | |
CN109033730A (en) | A kind of tool wear prediction technique based on improved particle swarm optimization algorithm | |
CN109976259A (en) | A kind of robot free curve surface work pieces polishing off-line programing method based on VTK | |
CN102608952B (en) | Method of smoothening five-axis-linkage machine tool machining path by using ball-end cutter | |
CN105676779B (en) | A kind of Free-Form Surface Machining method for tracing that locally interference zone boundary determines | |
WO2012058959A1 (en) | Computer-aided numerical control method and system | |
Vishnupriyan et al. | Optimal fixture parameters considering locator errors | |
CN105425727A (en) | Five-axis side milling machining cutter path smoothing method | |
CN106125674B (en) | A kind of high-precision real time profile error estimation | |
CN103544343A (en) | Serialized and parameterized modeling method of power chuck | |
CN111679629B (en) | A non-interference trajectory planning method for idle travel in multi-spindle head machining | |
CN109002639A (en) | A kind of torsion and tilt boundary method for automatic modeling based on coincidence site lattice search | |
CN104063746B (en) | A kind of curved surface finishing cutter track generation method based on traveling salesman problem solver | |
CN114839921A (en) | Five-axis contour control method based on data driving | |
CN109822576A (en) | A method for generating virtual fixtures for robot processing | |
CN104537172A (en) | Method for controlling hole group composite position degree error through optimizing clamp layout | |
Min et al. | An improved B-spline fitting method with arc-length parameterization, G2-continuous blending, and quality refinement | |
Mickaël et al. | 3D ISO manufacturing specifications with vectorial representation of tolerance zones | |
CN108629453B (en) | A prediction method for on-site assembly accuracy of aircraft based on measured data | |
CN100354868C (en) | Layout planing method for positioning unit of precise clamp | |
CN112883505A (en) | Ultra-precise end face turning surface modeling method considering relative vibration of cutter workpiece | |
CN108481328B (en) | Flexible iterative learning control method for joint space trajectory tracking of six-joint industrial robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071212 Termination date: 20100414 |