CN100354004C - Tubercle bacillus chimeric gene vaccine and preparation process thereof - Google Patents
Tubercle bacillus chimeric gene vaccine and preparation process thereof Download PDFInfo
- Publication number
- CN100354004C CN100354004C CNB2004100843761A CN200410084376A CN100354004C CN 100354004 C CN100354004 C CN 100354004C CN B2004100843761 A CNB2004100843761 A CN B2004100843761A CN 200410084376 A CN200410084376 A CN 200410084376A CN 100354004 C CN100354004 C CN 100354004C
- Authority
- CN
- China
- Prior art keywords
- gene
- sequence
- vaccine
- primer
- esat6
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/35—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/04—Mycobacterium, e.g. Mycobacterium tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Pharmacology & Pharmacy (AREA)
- Communicable Diseases (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
提供一种嵌合型结核杆菌基因疫苗,该疫苗包含序列1所示编码结核杆菌结构蛋白85a基因和序列2所示编码结核杆菌ESAT6基因,其中所述ESAT6基因嵌合在85a基因的序列中,所述85a基因连接于真核表达载体pVAX1中。还提供该嵌合型结核杆菌基因疫苗(质粒)的制备方法,包括Ag85a基因的PCR扩增;基因疫苗HG85(质粒)的构建;ESAT6基因的PCR扩增和ESAT6基因在质粒HG85中的插入。本发明的嵌合型结核杆菌基因疫苗的免疫原性得到增强,免疫效果优于单基因疫苗。
A chimeric tubercle bacillus gene vaccine is provided, which comprises the gene encoding tuberculosis structural protein 85a shown in sequence 1 and the gene encoding tuberculosis ESAT6 shown in sequence 2, wherein the ESAT6 gene is chimeric in the sequence of the 85a gene, The 85a gene is connected to the eukaryotic expression vector pVAX1. Also provided is a preparation method of the chimeric Mycobacterium tuberculosis gene vaccine (plasmid), including PCR amplification of the Ag85a gene; construction of the gene vaccine HG85 (plasmid); PCR amplification of the ESAT6 gene and insertion of the ESAT6 gene into the plasmid HG85. The immunogenicity of the chimeric Mycobacterium tuberculosis gene vaccine of the invention is enhanced, and the immune effect is better than that of the single gene vaccine.
Description
技术领域technical field
本发明涉及生物医药范畴的新型疫苗技术,具体涉及采用基因嵌合技术研制的代表第三次疫苗革命的结核杆菌嵌合型基因疫苗。The invention relates to a novel vaccine technology in the field of biomedicine, in particular to a tubercle bacillus chimeric gene vaccine representing the third vaccine revolution developed by using gene chimeric technology.
背景技术Background technique
由于卡介苗对成人肺结核没有免疫保护作用,加上耐多种抗菌素结核菌菌株分离率的日趋增高,以及艾滋病并发结核杆菌感染病例的增多,结核病已经成为威胁人类生命和健康的最危险的传染病之一。寻找一种比卡介苗免疫保护效果更好的新型疫苗,已经成为当今世界研究和开发能预防成人结核病新疫苗的热点和当务之急。只具有10年历史的DNA疫苗(也称为基因疫苗)技术,由于其众多的优点,引发了第三次疫苗革命,为长期以来一些无法预防或者预防效果不佳的传染病,例如艾滋病,流感,疟疾和结核病等的预防带来了希望的曙光。Because BCG vaccine has no immune protection effect on adult pulmonary tuberculosis, and the isolation rate of multi-antibiotic-resistant tuberculosis strains is increasing day by day, as well as the number of cases of AIDS complicated with tuberculosis infection, tuberculosis has become one of the most dangerous infectious diseases that threaten human life and health one. Finding a new type of vaccine with better immune protection effect than BCG has become a hot spot and urgent task in the research and development of new vaccines that can prevent tuberculosis in adults in today's world. The DNA vaccine (also known as gene vaccine) technology with a history of only 10 years has triggered the third vaccine revolution due to its many advantages. , the prevention of malaria and tuberculosis, among others, brings glimmers of hope.
DNA疫苗采用大肠杆菌产生的“裸工程质粒”进行免疫接种。质粒,也称为载体或质粒载体或载体质粒,是大肠杆菌细胞内能独立于染色体进行复制和表达的环形超螺旋DNA。DNA疫苗是将大肠杆菌质粒经基因工程改造,在其中插入了编码病原体的优选抗原蛋白质的基因、优选的免疫增强细胞因子,如编码白细胞介素12(IL-12)、细胞集落刺激因子(GM-CSF)的基因或CpG佐剂基序,以及适合于人类细胞的启动子等元件,和适当的抗菌素抗性基因等构建的基因重组(工程)质粒。将纯化的工程质粒DNA注射入人体肌肉等部位进入细胞后,此质粒能在有关的细胞,特别是抗原加工处理细胞(Antigen Present Cell,APC)中表达所编码的抗原,诱导机体产生体液和细胞免疫应答反应来抵御病原体的感染。目前研制的针对不同类病原体的精心制备的质粒DNA,可采用真核表达载体JW4303,或pcDNA3.1,或pVAX1系列等质粒,但主要采用美国FDA推荐的可用于人体的卡那霉素抗性大肠杆菌质粒pVAX1改造而成。将真核表达载体质粒转化入大肠杆菌中(此时称作工程菌),在优化的条件下,培养工程菌,使细菌增殖,菌中的质粒复制成多个拷贝.适当时离心沉淀收集细菌,在适当的条件下裂解细菌释放出质粒;收集后去除杂质,纯化质粒,即可作为DNA疫苗或基因疫苗用于接种。DNA vaccines use "naked engineered plasmids" produced by Escherichia coli for immunization. Plasmids, also known as vectors or plasmid vectors or vector plasmids, are circular supercoiled DNA that can replicate and express independently of chromosomes in E. coli cells. DNA vaccine is the Escherichia coli plasmid through genetic engineering, in which the gene encoding the preferred antigen protein of the pathogen, the preferred immune enhancing cytokine, such as encoding interleukin 12 (IL-12), cell colony-stimulating factor (GM -CSF) genes or CpG adjuvant motifs, elements such as promoters suitable for human cells, and appropriate antibiotic resistance genes to construct gene recombination (engineering) plasmids. After the purified engineered plasmid DNA is injected into human muscle and other parts into the cells, the plasmid can express the encoded antigen in the relevant cells, especially the antigen processing cells (Antigen Present Cell, APC), and induce the body to produce body fluids and cells. The immune response responds to defend against infection by pathogens. Eukaryotic expression vector JW4303, or pcDNA3.1, or pVAX1 series of plasmids can be used to prepare carefully prepared plasmid DNA for different types of pathogens, but mainly use the kanamycin resistance recommended by the US FDA and can be used in humans Escherichia coli plasmid pVAX1 was transformed. Transform the eukaryotic expression vector plasmid into Escherichia coli (referred to as engineering bacteria at this time), and cultivate the engineering bacteria under optimized conditions to make the bacteria proliferate, and the plasmid in the bacteria will be copied into multiple copies. When appropriate, the bacteria will be collected by centrifugation , Under proper conditions, the bacteria are lysed to release the plasmid; after collection, impurities are removed, and the plasmid is purified, which can be used as a DNA vaccine or gene vaccine for vaccination.
目前认为单基因的结核病DNA疫苗在大动物实验中的免疫效果不够理想(Gregorialdis,“Genetic vaccines:strategies for optimization”,Pharmaceutical Research,15:661-670,1998);采用将两个抗原编码基因融合的方法构建的双基因疫苗,虽然优于单基因疫苗,能够达到用一种载体表达两种不同抗原的目的,但是两者之间没有协同的增效作用,也即融合基因疫苗诱导的免疫应答并不比单基因疫苗的效果好(Stevenson,“DNA fusion gene vaccines against cancer:from laboratory to the clinic”,Immunology Research,199:156-180,2004)。近几年的研究发现,在细胞水平上将两种病毒嵌合在一起,有时能产生一种副作用小,而免疫原性更强的嵌合性病毒疫苗(Mathenge,“Fusion PCR generated Japaneseencephalitis virus/dengue 4 virus chimera exhibits lack of neuroinvasivensess,attenuated neurovirulence,and a dual-flavi immune response in mice”,Journal of General Virology,85:2503-2513,2004)。基于类似的原理,有的科学家在分子水平上将来源于同一病原微生物的基因嵌合在一起产生嵌合性基因疫苗,获得了较好的效果(Domingo,“Immunological propertiesof a DNA plasmid encoding a chimeric protein of herpes simplex virus type2 glycoprotein B and glycoprotein D”,Vaccine,21(25-26):3565-3574,2003)。还有人尝试利用嵌合基因技术将一种免疫原性比较弱的基因嵌合于另外一种病原微生物基因中,来提高弱抗原的免疫原性,此即异源性嵌合基因技术。其成功的例子有乙型肝炎表面抗原(HbsAg)的编码基因中嵌合了艾滋病病毒V3的编码基因。艾滋病病毒外壳蛋白抗原的V3表位是非常重要的保护性抗原决定蔟,但是由于其分子量较小,难以诱导出较强的免疫应答。然而,将编码HIVV3的基因嵌合在编码乙型肝炎表面抗原(HbsAg)的基因中,结果这种嵌合基因能诱导出特异性抗HIV V3的体液和细胞免疫应答(Bryder,“Imoroved immunogenicity ofHIV-1 epitopes in HbsAg chimeric DNA vaccine plasmids by structuralmutations of HbsAg”,DNAand Cell Biology,18(3):219-225,1999)。At present, it is believed that the immune effect of the single-gene tuberculosis DNA vaccine in large animal experiments is not ideal (Gregorialdis, "Genetic vaccines: strategies for optimization", Pharmaceutical Research, 15: 661-670, 1998); Although the double-gene vaccine constructed by the method is superior to the single-gene vaccine, it can achieve the purpose of expressing two different antigens with one vector, but there is no synergistic synergistic effect between the two, that is, the immune response induced by the fusion gene vaccine No better than single-gene vaccines (Stevenson, "DNA fusion gene vaccines against cancer: from laboratory to the clinic", Immunology Research, 199:156-180, 2004). Studies in recent years have found that chimeric virus vaccines with less side effects and stronger immunogenicity can sometimes be produced by chimerizing two viruses at the cellular level (Mathenge, “Fusion PCR generated Japanese encephalitis virus/
在结核病新型疫苗的研究工作中,有人曾将编码免疫原性比较差的结核杆菌保护性抗原ESAT6基因和编码免疫原性比较强的结核杆菌保护性抗原Ag85B基因融合在一起,其表达的蛋白抗原具有较大的分子量,有利于提高小分子ESAT6抗原的免疫原性;然而,将编码ESAT6的基因连接在编码Ag85B基因的氨基端和羧基端的效果有很大的区别,后者不如前者(师长宏,“结核分枝杆菌分泌蛋白Ag85B-ESAT6的融合表达及纯化”,中华结核和呼吸杂志,27(2):89-92,2004)。而且,由于蛋白质的抗原表位一般都集中在其氨基端和羧基端,融合连接方式是否可能会影响所表达的抗原的免疫学特性还有待研究。然而,嵌合方法有可能将一个小的基因嵌合在大基因的中间部位,在增强弱基因免疫原性的同时不影响大基因表达产物的免疫活性。但是迄今为止,在结核杆菌基因疫苗构建的研究中,未见采用嵌合基因技术并获得成功的报道。In the research of new tuberculosis vaccines, someone once fused the ESAT6 gene encoding the Mycobacterium tuberculosis protective antigen with relatively poor immunogenicity and the Ag85B gene encoding the Mycobacterium tuberculosis protective antigen with relatively strong immunogenicity, and the protein antigen expressed by it It has a larger molecular weight, which is conducive to improving the immunogenicity of the small molecule ESAT6 antigen; however, there is a big difference in the effect of linking the gene encoding ESAT6 to the amino-terminal and carboxyl-terminal of the gene encoding Ag85B, and the latter is not as good as the former (Shi Changhong , "Fusion expression and purification of Mycobacterium tuberculosis secretory protein Ag85B-ESAT6", Chinese Journal of Tuberculosis and Respiratory Medicine, 27(2):89-92, 2004). Moreover, since the antigenic epitopes of proteins are generally concentrated at their amino and carboxyl terminals, whether the fusion linking method may affect the immunological properties of the expressed antigen remains to be studied. However, the chimeric method may chimera a small gene in the middle of a large gene, which can enhance the immunogenicity of the weak gene without affecting the immunological activity of the expression product of the large gene. But so far, in the research on the construction of Mycobacterium tuberculosis gene vaccine, there is no report of using chimeric gene technology and achieving success.
本发明者令人惊奇地发现,采用基因嵌合技术将编码最小的结核杆菌保护性抗原的ESAT6基因嵌合到编码最具免疫保护效果的Ag85a抗原的基因中,产生的新型结核杆菌嵌合基因疫苗在动物实验中显示出优于单基因疫苗的免疫效果,其诱导产生的抗ESAT6抗体和抗Ag85a抗体都比单基因疫苗或二基因融合疫苗产生的高,从而有可能运用于实际疫苗中。The inventors surprisingly found that the ESAT6 gene encoding the smallest Mycobacterium tuberculosis protective antigen was chimerized into the gene encoding the Ag85a antigen with the most immune protection effect by using gene chimeric technology, resulting in a new type of Mycobacterium tuberculosis chimeric gene In animal experiments, the vaccine has shown that the immune effect is better than that of the single-gene vaccine, and the anti-ESAT6 antibody and anti-Ag85a antibody induced by it are higher than those produced by the single-gene vaccine or the two-gene fusion vaccine, so it may be used in actual vaccines.
发明概述Summary of the invention
本发明的目的在于提供一种免疫原性提高的嵌合型结核杆菌基因疫苗。The purpose of the present invention is to provide a chimeric Mycobacterium tuberculosis gene vaccine with improved immunogenicity.
本发明的目的还在于提供这种嵌合型结核杆菌基因疫苗的制备方法。The object of the present invention is also to provide a preparation method of the chimeric tubercle bacillus gene vaccine.
本发明的嵌合型结核杆菌基因疫苗包含序列1所示的编码结核杆菌结构蛋白85a基因和序列2所示的编码结核杆菌ESAT6基因,其中所述ESAT6基因嵌合在85a基因的第245-250位限制性内切酶Kpn I所识别的序列、第325-330位内切酶Pst I所识别的序列和第430-435位内切酶Acc I所识别的序列中的一个或两个位点上,所述85a基因连接于真核表达载体中。The chimeric Mycobacterium tuberculosis genetic vaccine of the present invention comprises the gene encoding Mycobacterium tuberculosis structural protein 85a shown in
序列1
1 TTTTCCCGGC CGGGCTTGCC GGTGGAGTAC CTGCAGGTGC CGTCGCCGTC GATGGGCCGT1 TTTTCCCGGC CGGGCTTGCC GGTGGAGTAC CTGCAGGTGC CGTCGCCGTC GATGGGCCGT
61 GACATCAAGG TCCAATTCCA AAGTGGTGGT GCCAACTCGC CCGCCCTGTA CCTGCTCGAC61 GACATCAAGG TCCAATTCCA AAGTGGTGGT GCCAACTCGC CCGCCCTGTA CCTGCTCGAC
121 GGCCTGCGCG CGCAGGACGA CTTCAGCGGC TGGGACATCA ACACCCCGGC GTTCGAGTGG121 GGCCTGCGCG CGCAGGACGA CTTCAGCGGC TGGGACATCA ACACCCCGGC GTTCGAGTGG
181 TACGACCAGT CGGGCCTGTC GGTGGTCATG CCGGTGGGTG GCCAGTCAAG CTTCTACTCC181 TACGACCAGT CGGGCCTGTC GGTGGTCATG CCGGTGGGTG GCCAGTCAAG CTTCTACTCC
241 ACT GGTACC AGCCCGCCTG CGGCAAGGCC GGTTGCCAGA CTTACAAGTG GGAGACCTTC241 ACT GGTACC AGCCCGCCTG CGGCAAGGCC GGTTGCCAGA CTTACAAGTG GGAGACCTTC
301 CTGACCAGCG AGCTGCCGGG GTGG CTGCAG GCCAACAGGC ACGTCAAGCC CACCGGAAGC301 CTGACCAGCG AGCTGCCGGG GTGG CTGCAG GCCAACAGGC ACGTCAAGCC CACCGGAAGC
361 GCCGTCGTCG GTCTTTCGAT GGCTGCTTCT TCGGCGCTGA CGCTGGCGAT CTATCACCCC361 GCCGTCGTCG GTCTTTCGAT GGCTGCTTCT TCGGCGCTGA CGCTGGCGAT CTATCACCCC
421 CAGCAGTTC G TCTACGCGGG AGCGATGTCG GGCCTGTTGG ACCCCTCCCA GGCGATGGGT421 CAGCAGTTC G TCTAC GCGGG AGCGATGTCG GGCCTGTTGG ACCCCTCCCA GGCGATGGGT
481 CCCACCCTGA TCGGCCTGGC GATGGGTGAC GCTGGCGGCT ACAAGGCCTC CGACATGTGG481 CCCACCCTGA TCGGCCTGGC GATGGGTGAC GCTGGCGGCT ACAAGGCCTC CGACATGTGG
541 GGCCCGAAGG AGGACCCGGC GTGGCAGCGC AACGACCCGC TGTTGAACGT CGGGAAGCTG541 GGCCCGAAGG AGGACCCGGC GTGGCAGCGC AACGACCCGC TGTTGAACGT CGGGAAGCTG
601 ATCGCCAACA ACACCCGCGT CTGGGTGTAC TGCGGCAACG GCAAGCCGTC GGATCTGGGT601 ATCGCCAACA ACACCCGCGT CTGGGTGTAC TGCGGCAACG GCAAGCCGTC GGATCTGGGT
661 GGCAACAACC TGCCGGCCAA GTTCCTCGAG GGCTTCGTGC GGACCAGCAA CATCAAGTTC661 GGCAACAACC TGCCGGCCAA GTTCCTCGAG GGCTTCGTGC GGACCAGCAA CATCAAGTTC
721 CAAGACGCCT ACAACGCCGG TGGCGGCCAC AACGGCGTGT TCGACTTCCC GGACAGCGGT721 CAAGACGCCT ACAACGCCGG TGGCGGCCAC AACGGCGTGT TCGACTTCCC GGACAGCGGT
781 ACGCACAGCT GGGAGTACTG GGGCGCGCAG CTCAACGCTA TGAAGCCCGA CCTGCAACGG781 ACGCACAGCT GGGAGTACTG GGGCGCGCAG CTCAACGCTA TGAAGCCCGA CCTGCAACGG
841 GCACTGGGTG CCACGCCCAA CACCGGGCCC GCGCCCCAGG GCGCCTAG841 GCACTGGGTG CCACGCCCAA CACCGGGCCC GCGCCCCAGG GCGCCTAG
序列2
1 ATGGCAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGT1 ATGGCAGAGC AGCAGTGGAA TTTCGCGGGT ATCGAGGCCG CGGCAAGCGC AATCCAGGGT
61 AATGTCACCT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA61 AATGTCACCT CCATTCATTC CCTCCTTGAC GAGGGGAAGC AGTCCCTGAC CAAGCTCGCA
121 GCGGCCTGGG GCGGTAGCGG TTCGGAGGCG TACCAGGGTG TCCAGCAAAA ATGGGACGCC121 GCGGCCTGGG GCGGTAGCGG TTCGGAGGCG TACCAGGGTG TCCAGCAAAA ATGGGACGCC
181 ACGGCTACCG AGCTGAACAA CGCGCTGCAG AACCTGGCGC GGACGATCAG CGAAGCCGGT181 ACGGCTACCG AGCTGAACAA CGCGCTGCAG AACCTGGCGC GGACGATCAG CGAAGCCGGT
241 CAGGCAATGG CTTCGACCGA AGGCAACGTC ACTGGGATGT TCGCATAG241 CAGGCAATGG CTTCGACCGA AGGCAACGTC ACTGGGATGT TCGCATAG
本发明的嵌合型结核杆菌基因疫苗的制备方法包括以下步骤:The preparation method of chimeric type tuberculosis gene vaccine of the present invention comprises the following steps:
(1)用序列3所示引物a和序列4所示引物b以聚合酶链反应扩增Ag85a基因序列;(1) using primer a shown in
(2)用内切酶Nhe I和BamH I分别消化Ag85a基因和真核表达载体,并用连接酶连接二者的消化产物,构建成含基因Ag85a的质粒;(2) digest the Ag85a gene and the eukaryotic expression vector with endonuclease Nhe I and BamH I respectively, and connect the digestion products of the two with ligase, and construct the plasmid containing gene Ag85a;
(3)用一对带有与Ag85a基因相同内切酶识别序列的引物扩增ESAT6基因;(3) using a pair of primers with the same endonuclease recognition sequence as the Ag85a gene to amplify the ESAT6 gene;
(4)用可识别上述内切酶识别序列的内切酶分别消化含基因Ag85a的质粒和ESAT6基因;(4) Digest the plasmid containing the gene Ag85a and the ESAT6 gene with an endonuclease that can recognize the above-mentioned endonuclease recognition sequence;
(5)用连接酶连接步骤(4)的消化产物,获得嵌合基因疫苗HG856。(5) Ligating the digestion product of step (4) with ligase to obtain the chimeric gene vaccine HG856.
发明详述Detailed description of the invention
本发明者通过计算机软件服务公司Intenet-based appliedbioinformatics company的Epitope Informatics对结核杆菌结构蛋白Ag85a基因的抗原表位进行搜索,发现其抗原表位主要集中在Ag85a的氨基端和羧基端(D’Souza,“Mapping of murine Thl helper T-cell epitopesof mycolyl transferases Ag85A,Ag85B,and Ag85C from Mycobacteriumtuberculosis”,Infection and Immunity,7(1):483-493,2003)。在不含抗原表位的Ag85a母体基因中间区段,可找到以下限制性内切酶所识别的序列,它们分别是第245-250位的Kpn I识别序列;第325-330的Pst I识别序列;及第430-435位的Acc I识别序列。The inventor searches for the antigenic epitopes of the Mycobacterium tuberculosis structural protein Ag85a gene through Epitope Informatics of the computer software service company Intenet-based applied bioinformatics company, and finds that its antigenic epitopes are mainly concentrated in the amino and carboxyl terminals of Ag85a (D'Souza, "Mapping of murine Thl helper T-cell epitopes of mycolyl transferases Ag85A, Ag85B, and Ag85C from Mycobacterium tuberculosis", Infection and Immunity, 7(1):483-493, 2003). In the middle segment of the Ag85a parental gene that does not contain antigenic epitopes, the sequences recognized by the following restriction endonucleases can be found, which are the Kpn I recognition sequence at position 245-250; the Pst I recognition sequence at position 325-330 and the Acc I recognition sequence at positions 430-435.
在结核杆菌85a基因(序列1)的上述限制性内切酶位点,即位于第245-250( GGTACC)位的限制性内切酶Kpn I识别序列、第325-330( CTGCAG)位的限制性内切酶Pst I识别序列和/或第430-435( GTCTAC)位的限制性内切酶Acc I识别序列,插入其它较小的基因序列,如编码结核杆菌保护性抗原的基因ESAT6(序列2),可构建成嵌合型结核杆菌基因疫苗。In the above-mentioned restriction endonuclease site of Mycobacterium tuberculosis 85a gene (sequence 1), namely the restriction endonuclease Kpn I recognition sequence at the 245-250 ( GGTACC ) position, the restriction at the 325-330 ( CTGCAG ) position Recognition sequence of sex endonuclease Pst I and/or restriction endonuclease Acc I recognition sequence of position 430-435 ( GTCTAC ), inserted into other smaller gene sequences, such as the gene ESAT6 (sequence 2), can be constructed into a chimeric Mycobacterium tuberculosis gene vaccine.
本发明者设计了带有限制性内切酶Nhe I( GCTAGC)和BamH I( GGATCC)识别位点的引物a和引物b,用PCR技术从结核杆菌染色体DNA扩增Ag85a母体基因,并用限制性内切酶Nhe I和BamH I分别消化Ag85a基因和真核表达载体,然后用连接酶连接两者的消化产物,构建成含母体基因Ag85a的质粒。The present inventors designed primer a and primer b with recognition sites for restriction endonucleases Nhe I ( GCTAGC ) and BamH I ( GGATCC ), amplified Ag85a maternal gene from Mycobacterium tuberculosis DNA by PCR technique, and used restriction The endonucleases Nhe I and BamH I digested the Ag85a gene and the eukaryotic expression vector respectively, and then connected the digested products with ligase to construct a plasmid containing the parent gene Ag85a.
本发明者还设计了在5’端分别携带Kpn I限制性内切酶识别序列、PstI限制性内切酶识别序列或Acc I限制性内切酶识别序列的引物,分别用于ESAT6小基因的PCR扩增。The present inventor has also designed primers carrying Kpn I restriction endonuclease recognition sequence, PstI restriction endonuclease recognition sequence or Acc I restriction endonuclease recognition sequence respectively at the 5' end, respectively for ESAT6 minigene PCR amplification.
用Kpn I限制性内切酶分别消化含Ag85a母体基因的真核表达载体和在5’端携带Kpn I限制性内切酶识别序列的引物获得的ESAT6小基因PCR扩增产物,然后将两者的消化产物用连接酶连接起来,选出连接方向正确者,构建成结核杆菌嵌合型基因疫苗HG856-1质粒。Use Kpn I restriction endonuclease to digest the eukaryotic expression vector containing the Ag85a parent gene and the ESAT6 minigene PCR amplification product obtained by the primer carrying the Kpn I restriction endonuclease recognition sequence at the 5' end respectively, and then the two The digested products were connected with ligase, and those with the correct connection direction were selected to construct the HG856-1 plasmid of the chimeric gene vaccine of Mycobacterium tuberculosis.
用Acc I限制性内切酶分别消化含Ag85a母体基因的真核表达载体和在5’端携带Acc I限制性内切酶识别序列的引物获得的ESAT6小基因PCR扩增产物,然后将两者的消化产物用连接酶连接起来,选出连接方向正确者,构建成结核杆菌嵌合型基因疫苗HG856-2质粒。The eukaryotic expression vector containing the Ag85a parent gene and the ESAT6 minigene PCR amplification product obtained by the primers carrying the Acc I restriction endonuclease recognition sequence at the 5' end were respectively digested with Acc I restriction endonuclease, and then the two The digested products were connected with ligase, and those with the correct connection direction were selected to construct the HG856-2 plasmid of the chimeric gene vaccine of Mycobacterium tuberculosis.
用Pst I限制性内切酶分别消化含Ag85a母体基因的真核表达载体和用5’端携带Pst I限制性内切酶识别序列的引物获得的ESAT6小基因PCR扩增产物,然后将两者的消化产物用连接酶连接起来,选出连接方向正确者,构建成结核杆菌嵌合型基因疫苗HG856-3质粒。The eukaryotic expression vector containing the Ag85a parent gene and the ESAT6 minigene PCR amplification product obtained by using the primers carrying the Pst I restriction endonuclease recognition sequence at the 5' end were respectively digested with Pst I restriction endonuclease, and then the two The digested products were connected with ligase, and those with the correct connection direction were selected to construct the HG856-3 plasmid of the chimeric gene vaccine of Mycobacterium tuberculosis.
因此,本发明的防治结核病的嵌合基因疫苗是将一个比较小的结核杆菌ESAT6基因插入到一个比较大的结核杆菌Ag85a母体基因的适当位点中嵌合而成。其中,以在Ag85a母体基因的第245-250位Kpn I识别序列位点和第430-435位的Acc I识别序列位点插入ESAT6基因构建成的嵌合型结核杆菌基因疫苗HG856-1和HG856-2质粒的免疫原性为佳。Therefore, the chimeric gene vaccine for preventing and treating tuberculosis of the present invention is formed by inserting a relatively small Mycobacterium tuberculosis ESAT6 gene into an appropriate site of a relatively large Mycobacterium tuberculosis Ag85a maternal gene. Among them, chimeric Mycobacterium tuberculosis genetic vaccines HG856-1 and HG856 were constructed by inserting the ESAT6 gene at the 245-250th Kpn I recognition sequence site and the 430-435th Acc I recognition sequence site of the Ag85a maternal gene. The immunogenicity of -2 plasmid is better.
本发明采用基因嵌合技术将编码最小的结核杆菌保护性抗原的ESAT6基因嵌合到编码最具免疫保护效果的Ag85a抗原的基因中,产生的新型结核杆菌嵌合基因疫苗在动物实验中显示出优于单基因疫苗的免疫效果,其诱导产生的抗ESAT6和抗Ag85a抗体都比单基因疫苗或二基因融合疫苗产生的高。The present invention uses gene chimeric technology to chimerize the ESAT6 gene encoding the smallest Mycobacterium tuberculosis protective antigen into the gene encoding the most immune-protective Ag85a antigen, and the resulting novel Mycobacterium tuberculosis chimeric gene vaccine has shown in animal experiments It is better than the immune effect of single-gene vaccine, and the anti-ESAT6 and anti-Ag85a antibodies induced by it are higher than those produced by single-gene vaccine or two-gene fusion vaccine.
附图说明Description of drawings
图1显示融合基因与嵌合基因的不同之处。Figure 1 shows how fusion genes differ from chimeric genes.
图2是含有结核杆菌Ag85a母体基因的真核表达载体HG85-pVAX1的构建图。Fig. 2 is a construction diagram of the eukaryotic expression vector HG85-pVAX1 containing the parental gene of Mycobacterium tuberculosis Ag85a.
图3是本发明结核杆菌嵌合型基因疫苗HG856的构建图。Fig. 3 is a construction diagram of the Mycobacterium tuberculosis chimeric genetic vaccine HG856 of the present invention.
图4显示嵌合型结核杆菌基因疫苗HG856在体外所表达的结核杆菌Ag85a和ESAT6嵌合蛋白质。Figure 4 shows the chimeric protein of Mycobacterium tuberculosis Ag85a and ESAT6 expressed in vitro by the chimeric Mycobacterium tuberculosis gene vaccine HG856.
图5显示所表达的Ag85a和ESAT6嵌合蛋白质的免疫印染(Westernblot)实验结果。Figure 5 shows the results of Western blot experiments of the expressed Ag85a and ESAT6 chimeric proteins.
图6显示加强免疫后小鼠血清中结核杆菌85a特异性抗体水平的变化。Figure 6 shows the changes in the level of Mycobacterium tuberculosis 85a-specific antibody in serum of mice after booster immunization.
图7显示加强免疫后小鼠血清中结核杆菌ESAT6特异性抗体水平的变化。Figure 7 shows the changes in the level of Mycobacterium tuberculosis ESAT6-specific antibody in mouse serum after booster immunization.
具体实施方式Detailed ways
以下用实施例对本发明作进一步阐述。这些实施例仅仅用于举例说明本发明,而不对本发明的范围构成任何限制。实施例中主要采用常规的基因工程分子生物学克隆方法,这些方法是本领域普通技术人员所熟知的,例如:卢圣栋主编“现代分子生物学实验技术”,(第二版,中国协和医科大学出版社,1999年12月,北京);和J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译:“分子克隆实验指南”(第三版,2002年8月,科学出版社出版,北京)中的有关章节。本领域普通技术人员按照以下实施例,不难根据具体情况略作修改和变换而成功实施本发明,这些修改和变换均落在本申请权利要求的范围内。The present invention is described further below with embodiment. These examples are only for illustrating the present invention and do not constitute any limitation to the scope of the present invention. Mainly adopt conventional genetic engineering molecular biology cloning method in the embodiment, these methods are well known to those of ordinary skill in the art, for example: " modern molecular biology experimental technology " edited by Lu Shengdong, (second edition, published by Peking Union Medical College Medical University Press, December 1999, Beijing); and J. Sambrook, D.W. Russell, translated by Huang Peitang, etc.: "Molecular Cloning Experiment Guide" (third edition, August 2002, published by Science Press, Beijing) relevant chapters in . According to the following examples, those skilled in the art can easily implement the present invention by slightly modifying and transforming according to specific conditions, and these modifications and transforms all fall within the scope of the claims of the present application.
实施例中所有用于PCR的引物均由上海生工生物工程技术有限公司合成、纯化和质谱法鉴定正确;各种限制性内切酶、其他修饰酶和相配套的反应缓冲液等试剂购自上海TaKaRa公司;化学试剂均购自上海化学试剂公司。All the primers used for PCR in the examples were synthesized, purified and identified by mass spectrometry by Shanghai Sangong Bioengineering Technology Co., Ltd.; reagents such as various restriction endonucleases, other modified enzymes and matching reaction buffers were purchased from Shanghai TaKaRa Company; chemical reagents were purchased from Shanghai Chemical Reagent Company.
实施例1 Ag85a基因的获得
设计引物a(序列3):Design primer a (SEQ ID NO: 3):
5’GACT GCTAGCCACCATGGTTTCCCGGCCGGGCTTGCCGG-3’5' GACT GCTAGC CACCATGGTTTCCCGGCCGGGCTTGCCGG-3'
引物a与Ag85a基因编码序列的5’端相一致,并与编码结构蛋白Ag85a基因的第2至第22位核苷酸序列互补(见序列1)。在其5’端含有一个Nhe I( GCTAGC)的酶切识别序列。Primer a is consistent with the 5' end of the Ag85a gene coding sequence, and is complementary to the 2nd to 22nd nucleotide sequence of the Ag85a gene encoding the structural protein (see sequence 1). It contains a NheI ( GCTAGC ) recognition sequence at its 5' end.
设计引物b(序列4):Design primer b (SEQ ID NO: 4):
5’GACT GGATCCTTACTAGGCGCCCTGGGGCGCGG-3’5'GACT GGATCC TTACTAGGCGCCCTGGGGCGCGG-3'
引物b与Ag85a基因编码序列的3’端相一致,并与Ag85a基因的第869至第885位核苷酸序列互补。在其5’端含有一个BamH I( GGATCC)的酶切识别序列。Primer b is consistent with the 3' end of the Ag85a gene coding sequence, and is complementary to the 869th to 885th nucleotide sequence of the Ag85a gene. It contains a restriction recognition sequence of BamH I ( GGATCC ) at its 5' end.
采用引物a和引物b,以结核杆菌标准菌株H37RV染色体DNA为模板,采用高保真pfu DNA聚合酶进行PCR反应,扩增结核杆菌Ag85a基因。其中模板量、引物量、酶用量、所用缓冲液均按基因工程分子克隆技术的常规方法进行(见J.萨姆布鲁克、D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,597-632页,2002年8月,科学出版社出版,北京)。四种dNTP的浓度分别为20μM,Mg2+浓度为1.5mM;变性、退火、延伸的温度分别为94℃、55℃、72℃,时间都是1分钟,共进行30个循环。得到Ag85a基因DNA序列。Primer a and primer b were used to amplify the Mycobacterium tuberculosis Ag85a gene by using high-fidelity pfu DNA polymerase to carry out PCR reaction with the chromosomal DNA of the standard strain H37RV of Mycobacterium tuberculosis as template. Wherein the template amount, primer amount, enzyme amount, and buffer used are all carried out according to the conventional method of genetic engineering molecular cloning technology (see J. Edition, pp. 597-632, August 2002, published by Science Press, Beijing). The concentrations of the four dNTPs were 20 μM, and the Mg 2+ concentration was 1.5 mM; the denaturation, annealing, and extension temperatures were 94°C, 55°C, and 72°C, respectively, and the time was 1 minute, and a total of 30 cycles were performed. The DNA sequence of Ag85a gene was obtained.
实施例2 含结核杆菌基因Ag85a的质粒载体HG85-pVAX1的构建Example 2 Construction of the plasmid vector HG85-pVAX1 containing the Mycobacterium tuberculosis gene Ag85a
在实施例1中引物a和引物b中已分别引入了Nhe I(
GCTAGC)和BamH I(
GGATCC)限制性内切酶位点,取PCR技术获得的结核杆菌Ag85a基因片段和真核表达载体pVAX1质粒(购自Invitrogen,Carlsbad,CA,USA)各1微克,分别加入10单位的Nhe I和BamH I限制性内切酶,混合于50微升的反应缓冲液中(按各酶试剂盒中的说明书选用缓冲液),37℃消化1小时,经常规琼脂糖凝胶电泳分离和胶中DNA回收方法(按J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,387-399页,404-407页,2002年8月,科学出版社出版,北京)分别得到互为粘性末端的Ag85a基因片段和pVAX1质粒片段。接着用T4连接酶(上海TaKaRa生物科技公司产品试剂盒,按操作说明书进行)将上述两种片段连接过夜,加入大肠杆菌DH1或DH5α感受态细胞悬液中,接种含卡那霉素的1%琼脂平板中37℃培养16-18小时,得到含HG85克隆质粒的转化工程菌。在含卡那霉素的培养基中培养该工程菌,离心收集,碱裂解法提取质粒,用Nhe I和BamH I两种不同酶进行酶切,酶切产物作琼脂电泳,验证正确的阳性克隆,选择正确的可用于后续嵌合操作的含结核杆菌基因Ag85a的质粒。Nhe I ( GCTAGC ) and BamH I ( GGATCC ) restriction endonuclease sites have been introduced into primer a and primer b respectively in Example 1, and the Mycobacterium tuberculosis Ag85a gene fragment obtained by PCR technology and the eukaryotic
常规琼脂糖凝胶DNA电泳:在50μl的酶切反应混合物中加入5μl的加样缓冲液(Loading Buffer),混匀后全部加入琼脂糖板的孔中,采用TAE电泳缓冲液,电泳时电压为80-90V/cm,30-45分钟。(见J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,387-399页,2002年8月,科学出版社出版,北京)。Conventional agarose gel DNA electrophoresis: Add 5 μl of loading buffer (Loading Buffer) to 50 μl of enzyme digestion reaction mixture, mix well and add all to the wells of the agarose plate, use TAE electrophoresis buffer, and the voltage during electrophoresis is 80-90V/cm, 30-45 minutes. (See J. Sambrook, D.W. Russell, translated by Huang Peitang, etc. "Molecular Cloning Experiment Guide", third edition, pages 387-399, August 2002, published by Science Press, Beijing).
琼脂糖凝胶中DNA片段的回收:使用试剂盒为北京鼎国生物技术发展中心生产的DNA片段快速纯化/回收试剂盒。按照试剂盒说明书进行操作,1%低熔点胶电泳后切下含所需要DNA片段的胶,装入EP管中,每管约100微升,加入400微升缓冲液(200mM Tris-HCl,1mM EDTA,pH8.0),65℃加热5分钟溶解胶,加等体积饱和酚抽提,1500rpm离心5分钟;取上清加等体积氯仿抽提,1500rpm离心5分钟;取上清加入10微升3M NaCl(pH5)。与2倍体积无水乙醇混匀后-20℃放置30分钟,1500rpm离心5分钟;沉淀的DNA用70%乙醇洗一次,除尽液体,用适当体积水溶解,回收得到Ag85aDNA片段。取2μl回收片段作琼脂糖凝胶电泳,估算回收的效率和后续连接反应需要加入的量。Recovery of DNA fragments in agarose gel: Use the kit for the rapid purification/recovery kit of DNA fragments produced by Beijing Dingguo Biotechnology Development Center. Operate according to the kit instructions, cut out the gel containing the required DNA fragment after 1% low-melting point gel electrophoresis, put it into an EP tube, about 100 microliters per tube, add 400 microliters of buffer (200mM Tris-HCl, 1mM EDTA, pH8.0), heated at 65°C for 5 minutes to dissolve the gel, added an equal volume of saturated phenol for extraction, centrifuged at 1500rpm for 5 minutes; took the supernatant and added an equal volume of chloroform for extraction, and centrifuged at 1500rpm for 5 minutes; took the supernatant and added 10 microliters 3M NaCl (pH5). After mixing with 2 times the volume of absolute ethanol, place it at -20°C for 30 minutes, centrifuge at 1500 rpm for 5 minutes; wash the precipitated DNA once with 70% ethanol, remove the liquid, dissolve it with an appropriate volume of water, and recover the Ag85a DNA fragment. Take 2 μl of recovered fragments for agarose gel electrophoresis to estimate the efficiency of recovery and the amount to be added in subsequent ligation reactions.
DNA连接反应:采用Promega出品的试剂盒,按说明书操作:将1微升的T4连接酶,1微升10×缓冲液,7μl的Ag85a DNA片段,1μl的pVAX1质粒片段,混匀后14℃连接过夜。(参见J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,85-86页,2002年8月,科学出版社出版,北京)。DNA ligation reaction: use the kit produced by Promega, operate according to the instructions: mix 1 μl of T4 ligase, 1 μl of 10× buffer, 7 μl of Ag85a DNA fragment, 1 μl of pVAX1 plasmid fragment, mix well and connect at 14°C overnight. (see J. Sambrook, D.W. Russell, Huang Peitang et al. translation "Molecular Cloning Experiment Guide", third edition, 85-86 pages, August 2002, published by Science Press, Beijing).
将连接好的含有Ag85a基因的pVAX1质粒(基因重组HG85克隆质粒)加入到大肠杆菌DG1或DH5α的感受态细胞中,37℃反应1小时转化该细胞。取出200μl接种含卡那霉素的琼脂培养基平板上,将细菌铺匀,37℃培养16-18小时。The ligated pVAX1 plasmid containing the Ag85a gene (recombinant HG85 cloning plasmid) was added to the competent cells of Escherichia coli DG1 or DH5α, and the cells were transformed at 37° C. for 1 hour. Take out 200 μl and inoculate it on the agar medium plate containing kanamycin, spread the bacteria evenly, and incubate at 37°C for 16-18 hours.
pVAX1载体质粒中含有抗卡那霉素基因,因此被基因重组HG85克隆载体质粒成功转化的大肠杆菌能在这种培养基上生长成为菌落。挑选单克隆菌落接种于3ml含有卡那霉素的培养液中,37℃,200rpm摇动培养14小时左右。取出1ml的菌液12000rpm.离心1分钟收集菌体,加入100μl溶液I(50mM葡萄糖,25mM Tris-HCl,10mM EDTA,pH8.0)重悬细菌,加入200μl溶液II(2%SDS,0.4molNaOH)裂解细菌5分钟,加入150μl溶液III(3M乙酸钾pH5.5)中和;13000rpm离心10分钟;吸取上清液加入其1/10体积的3M乙酸钠pH5.3),2倍体积的无水乙醇,室温反应10分钟后13000rpm离心10分钟;弃去上清液后,室温挥发除去乙醇,将获得的DNA用Nhe I和BamH I作酶切和琼脂糖凝胶电泳鉴定,获得含结核杆菌基因HG85的载体质粒HG85-pVAX1。The pVAX1 vector plasmid contains the anti-kanamycin gene, so the Escherichia coli successfully transformed by the recombinant HG85 cloning vector plasmid can grow into colonies on this medium. Select a single clone colony and inoculate it in 3ml of culture solution containing kanamycin, and culture it at 37°C with shaking at 200rpm for about 14 hours. Take out 1ml of the bacterial solution and centrifuge at 12000rpm for 1 minute to collect the bacterial cells, add 100μl solution I (50mM glucose, 25mM Tris-HCl, 10mM EDTA, pH8.0) to resuspend the bacteria, add 200μl solution II (2% SDS, 0.4molNaOH) Lyse the bacteria for 5 minutes, add 150 μl solution III (3M potassium acetate pH5.5) to neutralize; centrifuge at 13000rpm for 10 minutes; absorb the supernatant and add 1/10 volume of 3M sodium acetate pH5.3), 2 times the volume of anhydrous Ethanol, react at room temperature for 10 minutes and then centrifuge at 13000rpm for 10 minutes; after discarding the supernatant, evaporate the ethanol at room temperature, use Nhe I and BamH I for enzyme digestion and agarose gel electrophoresis identification to obtain the gene containing Mycobacterium tuberculosis HG85 vector plasmid HG85-pVAX1.
实施例3 嵌合型结核杆菌基因HG856-1载体质粒的构建Example 3 Construction of Chimeric Mycobacterium tuberculosis Gene HG856-1 Vector Plasmid
设计引物c(序列5):Design primer c (SEQ ID NO: 5):
5’-GACT GGTACCTAATGGCAGAGCAGCAGTGG-3’5'-GACT GGTACC TAATGGCAGAGCAGCAGTGG-3'
引物c与ESAT6基因编码序列的5’端相一致,并与ESAT6基因的第1至第18位核苷酸序列互补,在其5’端含有一个Kpn I的酶切识别序列。Primer c is consistent with the 5' end of the ESAT6 gene coding sequence, and is complementary to the 1st to 18th nucleotide sequence of the ESAT6 gene, and contains a KpnI enzyme recognition sequence at its 5' end.
设计引物d(序列6):Design primer d (SEQ ID NO: 6):
5’GACT GGTACCTTGCGAACATCCCAGTGAC-3’5'GACT GGTACC TTGCGAACATCCCAGTGAC-3'
引物d与ESAT6基因编码序列的3’端相一致,并与ESAT6基因的第268至第285位核苷酸序列互补,在其5’端也含有一个Kpn I的酶切识别序列。Primer d is consistent with the 3' end of the ESAT6 gene coding sequence, and is complementary to the 268th to 285th nucleotide sequence of the ESAT6 gene, and also contains a KpnI restriction recognition sequence at its 5' end.
用引物c和引物d,以结核杆菌标准菌株H37RV染色体DNA为模板,采用高保真pfu DNA聚合酶进行PCR反应,扩增结核杆菌ESAT6基因。其中模板量、引物量、酶用量、所用缓冲液均按基因工程分子克隆技术的常规方法进行(参见J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,85-86页,2002年8月,科学出版社出版,北京)。四种dNTP的浓度分别为20μM,Mg2+浓度为1.5mM;变性、退火、延伸的温度分别为94℃、55℃、72℃,时间都是1分钟。得到ESAT6基因DNA序列。Using primer c and primer d, the tuberculosis standard strain H37RV chromosomal DNA was used as a template, and the high-fidelity pfu DNA polymerase was used for PCR reaction to amplify tuberculosis ESAT6 gene. Wherein the template amount, primer amount, enzyme amount, and buffer used are all carried out according to the conventional method of genetic engineering molecular cloning technology (see J. Sambrook, DW Russell, Huang Peitang et al. Edition, pp. 85-86, August 2002, published by Science Press, Beijing). The concentrations of the four dNTPs were 20 μM, and the Mg 2+ concentrations were 1.5 mM; the denaturation, annealing, and extension temperatures were 94°C, 55°C, and 72°C, respectively, and the time was 1 minute. Get the DNA sequence of ESAT6 gene.
用Kpn I限制性内切酶消化实施例2中获得的含结核杆菌基因Ag85a的HG85-pVAX1质粒得到其片段,和以上得到的带有Kpn I酶切识别序列的结核杆菌ESAT6基因的DNA序列片段,按照与实施例2基本相似的方法(琼脂糖凝胶电泳、胶中DNA片段回收和DNA连接反应)将两个片段用T4连接酶连接,即将ESAT6基因DNA序列插入到结核杆菌Ag85a基因序列的249位Kpn I酶识别位点中。将重组的克隆按上述方法转化到感受态大肠杆菌中,接种卡那霉素琼脂平板培养;挑选3-5个阳性菌落小量增菌后,抽提质粒DNA作为模板;根据Ag85a基因中靠近ESAT6基因5’-端连接处的序列,设计一对引物并进行PCR扩增,对扩增产物的Ag85a基因和ESAT6基因连接处进行测序,选择插入方向正确者,构建成含有结核杆菌Ag85a和ESAT6基因相嵌合的基因疫苗HG856-1质粒。The HG85-pVAX1 plasmid containing the Mycobacterium tuberculosis gene Ag85a obtained in Example 2 is digested with Kpn I restriction endonuclease to obtain its fragment, and the DNA sequence fragment of the Mycobacterium tuberculosis ESAT6 gene with the Kpn I restriction endonuclease recognition sequence obtained above According to the method substantially similar to Example 2 (agarose gel electrophoresis, DNA fragment recovery and DNA ligation reaction in the gel), the two fragments are connected with T4 ligase, that is, the ESAT6 gene DNA sequence is inserted into the Mycobacterium tuberculosis Ag85a gene sequence 249 in the Kpn I enzyme recognition site. Transform the recombined clone into competent Escherichia coli according to the above method, and inoculate it on a Kanamycin agar plate for culture; select 3-5 positive colonies for small-scale enrichment, and extract the plasmid DNA as a template; Design a pair of primers for the sequence at the junction of the 5'-end of the gene and perform PCR amplification, sequence the junction of the Ag85a gene and the ESAT6 gene of the amplified product, select the one with the correct insertion direction, and construct a gene containing Mycobacterium tuberculosis Ag85a and ESAT6 A chimeric gene vaccine HG856-1 plasmid.
实施例4嵌合型结核杆菌基因HG856-2载体质粒的构建Example 4 Construction of Chimeric Mycobacterium tuberculosis Gene HG856-2 Vector Plasmid
设计引物e(序列7):Design primer e (SEQ ID NO: 7):
5’-GACT GTCTACTAATGGCAGAGCAGCAGTGG-3’5'-GACT GTCTAC TAATGGCAGAGCAGCAGTGG-3'
引物e与ESAT6基因编码序列的5’一致,并与ESAT6基因的第1至第18位核苷酸序列互补。在其5’端含有一个Acc I的酶切识别序列。Primer e is consistent with the 5' of the ESAT6 gene coding sequence, and is complementary to the 1st to 18th nucleotide sequence of the ESAT6 gene. It contains an Acc I restriction recognition sequence at its 5' end.
设计引物f(序列8):Design primer f (SEQ ID NO: 8):
5’-GACT GTCTACTTGCGAACATCCCAGTGAC-3’5'-GACT GTCTAC TTGCGAACATCCCAGTGAC-3'
引物f与ESAT6基因编码序列的3’一致,并与ESAT6基因的第268至第285位核苷酸序列互补。在其5’端也含有一个Acc I的酶切识别序列。Primer f is consistent with the 3' of the ESAT6 gene coding sequence, and is complementary to the 268th to 285th nucleotide sequence of the ESAT6 gene. It also contains an Acc I restriction recognition sequence at its 5' end.
用引物e和引物f,以结核杆菌标准菌株H37RV染色体DNA为模板,采用高保真pfu DNA聚合酶进行PCR反应,其中模板量、引物量、酶用量、所用缓冲液均按基因工程分子克隆技术的常规方法进行(参见J.萨姆布鲁克,D.W.拉塞尔著,黄培堂等译“分子克隆实验指南”,第三版,85-86页,2002年8月,科学出版社出版,北京)。四种dNTP的浓度分别为20μM,Mg2+浓度为1.5mM,变性、退火、延伸的温度分别为94℃、55℃、72℃,时间都是1分钟。得到ESAT6基因Using primer e and primer f, using the chromosomal DNA of the standard strain of Mycobacterium tuberculosis H37RV as a template, high-fidelity pfu DNA polymerase was used to carry out PCR reaction. Conventional methods (see J. Sambrook, DW Russell, "Molecular Cloning Experiment Guide" translated by Huang Peitang, third edition, pp. 85-86, August 2002, published by Science Press, Beijing). The concentrations of the four dNTPs were 20 μM, the Mg 2+ concentrations were 1.5 mM, the denaturation, annealing, and extension temperatures were 94° C., 55° C., and 72° C. for 1 minute. get ESAT6 gene
用Acc I限制性内切酶消化实施例2中获得的含结核杆菌基因Ag85a的HG85-pVAX1质粒得到其片段,和以上得到的带有Acc I内切酶切识别序列的结核杆菌ESAT6基因的DNA序列片段,按照与实施例2基本相似的方法(琼脂糖凝胶电泳、胶中DNA片段回收和DNA连接反应)将二片段用T4连接酶连接,即将ESAT6基因DNA序列插入到结核杆菌Ag85a基因序列的432位Acc I酶识别位点中,将重组的克隆按上述方法转化到感受态大肠杆菌中,接种卡那霉素琼脂平板培养;挑选3-5个阳性菌落小量增菌后,抽提质粒DNA作为模板;根据Ag85a基因中靠近ESAT6基因5’-端连接处的序列,设计一对引物并进行PCR扩增,对扩增产物的Ag85a基因和ESAT6基因连接处进行测序,选择插入方向正确者,构建成含有结核杆菌Ag85a和ESAT6基因相嵌合的基因疫苗HG856-2质粒。The HG85-pVAX1 plasmid containing the Mycobacterium tuberculosis gene Ag85a obtained in Example 2 is digested with Acc I restriction endonuclease to obtain its fragment, and the DNA of the Mycobacterium tuberculosis ESAT6 gene with the Acc I endonuclease recognition sequence obtained above Sequence fragment, according to the method substantially similar to embodiment 2 (agarose gel electrophoresis, DNA fragment recovery and DNA ligation reaction in the gel) two fragments are connected with T4 ligase, be about to insert ESAT6 gene DNA sequence into Mycobacterium tuberculosis Ag85a gene sequence In the 432-bit Acc I enzyme recognition site, the recombinant clone was transformed into competent Escherichia coli according to the above method, and inoculated on a Kanamycin agar plate for culture; after selecting 3-5 positive colonies for small-scale enrichment, extract Plasmid DNA was used as a template; according to the sequence of the Ag85a gene near the 5'-end junction of the ESAT6 gene, a pair of primers were designed and PCR amplified, and the amplified product was sequenced at the junction of the Ag85a gene and the ESAT6 gene, and the insertion direction was selected correctly. Or, construct the gene vaccine HG856-2 plasmid containing the chimeric gene of Mycobacterium tuberculosis Ag85a and ESAT6.
实施例5 嵌合型结核杆菌基因HG856-3载体质粒的构建Example 5 Construction of Chimeric Mycobacterium tuberculosis Gene HG856-3 Vector Plasmid
设计引物g(序列9):Design primer g (SEQ ID NO: 9):
5’-GACT CTGCAGTAATGGCAGAGCAGCAGTGG-3’5'-GACT CTGCAG TAATGGCAGAGCAGCAGTGG-3'
引物g与ESAT6基因编码序列的5’端相一致,并与ESAT6基因的第1至第18位核苷酸序列互补。在其5’端含有一个Pst I的酶切识别序列。Primer g is consistent with the 5' end of the ESAT6 gene coding sequence and is complementary to the 1st to 18th nucleotide sequence of the ESAT6 gene. It contains a Pst I enzyme recognition sequence at its 5' end.
设计引物h(序列10):Design primer h (SEQ ID NO: 10):
5’-GACT CTGCAGTTGCGAACATCCCAGTGAC-3’5'- GACTCTGCAGTTGCGAACATCCCAGTGAC -3'
引物h与ESAT6基因编码序列的3’端相一致,并与ESAT6基因的第268至第285位核苷酸序列互补。在其5’端也含有一个Pst I的酶切识别序列。Primer h is consistent with the 3' end of the ESAT6 gene coding sequence and is complementary to the 268th to 285th nucleotide sequence of the ESAT6 gene. It also contains a Pst I enzyme recognition sequence at its 5' end.
采用与实施例3相类似的技术和方法,在引物中设计Pst I酶切位点的序列,将含有该酶切位点的ESAT6基因PCR产物用Pst I限制性内切酶消化,然后再插入到HG85-pVAX1质粒中的Ag85a基因序列325-330位核苷酸的Pst I酶识别位点中,将重组的克隆按上述方法转化到感受态大肠杆菌中,接种卡那霉素琼脂平板培养;挑选3-5个阳性菌落小量增菌后,抽提质粒DNA作为模板;根据Ag85a基因中靠近ESAT6基因5’-端连接处的端序列,设计一对引物并进行PCR扩增,对扩增产物的Ag85a基因和ESAT6基因连接处进行测序,选择插入方向正确者,构建成含有结核杆菌Ag85a和ESAT6基因相嵌合的第三个结核杆菌嵌合型基因疫苗HG856-3质粒。Using techniques and methods similar to those in Example 3, the sequence of the Pst I restriction site is designed in the primer, and the ESAT6 gene PCR product containing the restriction site is digested with the Pst I restriction endonuclease, and then inserted Into the PstI enzyme recognition site of the Ag85a gene sequence 325-330 nucleotides in the HG85-pVAX1 plasmid, the recombinant clone was transformed into competent Escherichia coli as described above, and inoculated on a Kanamycin agar plate for culture; After selecting 3-5 positive colonies for small-scale enrichment, extract the plasmid DNA as a template; design a pair of primers according to the end sequence of the Ag85a gene near the 5'-end junction of the ESAT6 gene and carry out PCR amplification. The junction of Ag85a gene and ESAT6 gene of the product was sequenced, and the one with the correct insertion direction was selected to construct the third tubercle bacillus chimeric gene vaccine HG856-3 plasmid containing the chimeric gene of Mycobacterium tuberculosis Ag85a and ESAT6 gene.
实验例1嵌合型结核杆菌基因疫苗HG856质粒的体外基因表达EXPERIMENTAL EXAMPLE 1 In Vitro Gene Expression of Chimeric Mycobacterium tuberculosis Gene Vaccine HG856 Plasmid
采用TNT体外转录和翻译系统试剂盒(Promega,Madison,WI,USA)来验证嵌合型结核杆菌基因HG856在体外的表达。按照美国Promega公司说明书中描述的实验步骤,在每次12.5微升反应系统中含有0.25微克嵌合型结核杆菌基因HG856质粒DNA和9微升TNT T7快速反应母液,与每毫升含400μCi[S35]标记的蛋氨酸混合后,30℃孵育90分钟。将该嵌合基因表达的蛋白质(带有[S35]放射性)作常规10%SDS-PAGE电泳,用放射自显影方法观察蛋白质的泳动位置来判断嵌合型结核杆菌基因是否表达,以及表达的正确性。TNT in vitro transcription and translation system kit (Promega, Madison, WI, USA) was used to verify the expression of chimeric Mycobacterium tuberculosis gene HG856 in vitro. According to the experimental procedure described in the instructions of Promega Corporation of the United States, each 12.5 microliter reaction system contains 0.25 micrograms of chimeric Mycobacterium tuberculosis gene HG856 plasmid DNA and 9 microliters of TNT T7 rapid reaction master solution, and each milliliter contains 400 μCi[ S 35 ]-labeled methionine was mixed and incubated at 30°C for 90 minutes. Perform regular 10% SDS-PAGE electrophoresis on the protein expressed by the chimeric gene (with [S 35 ] radioactivity), and use autoradiography to observe the swimming position of the protein to determine whether the chimeric Mycobacterium tuberculosis gene is expressed, and the expression correctness.
结果见图4。泳道1至5是5个待筛选的嵌合型结核杆菌基因克隆所表达的蛋白质。根据与标准蛋白质分子量29kDa和44kDa条带的比较,第4泳道中克隆表达的蛋白质分子量约为42kDa。结核杆菌Ag85a蛋白质抗原的分子量在32kDa左右;而结核杆菌ESAT6蛋白质抗原的分子量在10kDa左右,二者相加约为42kDa。因此第4泳道为嵌合型结核杆菌基因HG856所表达的产物。The results are shown in Figure 4.
实验例2免疫印染(Western blot)实验Experimental example 2 immunoblotting (Western blot) experiment
先将0.25μg结核杆菌蛋白质抗原Ag85a和蛋白质分子量标准进行SDS-聚丙乙烯琼脂糖凝胶垂直电泳,然后用100V电转移1.5小时的方法将蛋白质转移到硝酸纤维薄膜上。用5%脱脂奶粉封闭1小时,然后与1∶1,000稀释的特异性小鼠抗血清在37℃孵育1.5小时,用0.1%PBS-Tween-20洗涤3次;加入由PBS-Tween-20缓冲液1∶10,000稀释的硷性磷酸标记羊抗小鼠IgG抗体(Sigma,Cat#A3688),37℃孵育1.5小时,再洗涤3次;加入底物(BCIP/NBT∶AP Buffer=4∶1,BCIP/NBT购自Sigma公司)显色,用含1mM EDTA的PBS进行终止。0.25 μg Mycobacterium tuberculosis protein antigen Ag85a and protein molecular weight standard were subjected to vertical electrophoresis on SDS-polyethylene agarose gel, and then the protein was transferred to nitrocellulose membrane by 100V electrotransfer for 1.5 hours. Block with 5% skimmed milk powder for 1 hour, then incubate with specific mouse antiserum diluted 1:1,000 at 37°C for 1.5 hours, wash with 0.1% PBS-Tween-20 for 3 times; add PBS-Tween-20 buffer Alkaline phosphate-labeled goat anti-mouse IgG antibody (Sigma, Cat#A3688) diluted 1:10,000, incubated at 37°C for 1.5 hours, and washed 3 times; add substrate (BCIP/NBT:AP Buffer=4:1, BCIP /NBT (purchased from Sigma Company) for color development, was terminated with PBS containing 1 mM EDTA.
结果见图5。其中,The results are shown in Figure 5. in,
第1列:蛋白质标准分子量标记;Column 1: protein standard molecular weight marker;
第2列:85a单基因疫苗;Column 2: 85a monogenic vaccine;
第3列:HG856-2嵌合基因(插在85a基因的432位AccI酶切点);Column 3: HG856-2 chimeric gene (inserted in the 432 AccI restriction site of 85a gene);
第4列:HG856-1嵌合基因(插在85a基因的249位KpnI酶切点)。Column 4: HG856-1 chimeric gene (inserted at the KpnI restriction site at position 249 of the 85a gene).
结果显示,结核杆菌嵌合型基因疫苗与单基因的85a核酸疫苗都能产生特异性的抗结核杆菌85a蛋白质抗原的免疫应答。The results showed that both the tuberculosis chimeric gene vaccine and the single-gene 85a nucleic acid vaccine could produce specific immune responses against the tuberculosis 85a protein antigen.
实验例3结核杆菌嵌合型基因HG856质粒接种小鼠后诱导的血清Experimental Example 3 Serum Induced After Mice Inoculated with Mycobacterium Tuberculosis Chimeric Gene HG856 Plasmid
特异性抗体免疫应答反应(ELISA法测定)Specific antibody immune response (as determined by ELISA method)
材料和方法:Materials and methods:
1.实验动物1. Experimental animals
将8周龄雌性BALB/C小鼠随机分组后,在上海第二军医大学动物中心提供的SPF(Specific Pathogen Free)级动物房饲养。Eight-week-old female BALB/C mice were randomly divided into groups and raised in the SPF (Specific Pathogen Free) animal room provided by the Animal Center of Shanghai Second Military Medical University.
2.实验动物的免疫接种2. Immunization of experimental animals
采用三次核酸疫苗免疫以后,用蛋白质做最后加强免疫。After three times of nucleic acid vaccine immunization, the final booster immunization was done with protein.
将雌性BALB/C小鼠50只,随机分为10组,每组5只:第1-2组(ESAT6单基因疫苗)、第3-4组(85a单基因疫苗)、第5-6组(ESAT6+IL-12共表达双基因疫苗)、第7-8组(ESAT6插在85a432位点的嵌合基因疫苗)、第9-10组(ESAT6插在85a249位点的嵌合基因疫苗)。单数组为肌肉注射组,分别于胫前肌注射100μg/次,双数组为肌注后电转染组,分别于胫前肌注射10μg/次,每隔两周免疫一次,共3次。末次免疫后第10天,将尾静脉所采并分离的血清用ELISA测其效价。根据测试结果,确定基因免疫已经产生了特异性免疫应答后,即第三次基因疫苗免疫后8-12天再用相应的结核杆菌蛋白质抗原进行腹腔接种以加强免疫,50μg/只。一周后将动物麻醉后处死收获全血,离心后的血清于-20℃保存。50 female BALB/C mice were randomly divided into 10 groups, 5 in each group: Group 1-2 (ESAT6 monogene vaccine), Group 3-4 (85a monogene vaccine), Group 5-6 (ESAT6+IL-12 co-expression double gene vaccine), group 7-8 (chimeric gene vaccine with ESAT6 inserted at 85a432 site), group 9-10 (chimeric gene vaccine with ESAT6 inserted at 85a249 site) . The single group was the intramuscular injection group, which was injected 100 μg/time in the tibialis anterior muscle, and the double group was the electrotransfection group after intramuscular injection, which was injected 10 μg/time in the tibialis anterior muscle, and immunized once every two weeks, a total of 3 times. On the 10th day after the last immunization, the titer of the serum collected and separated from the tail vein was measured by ELISA. According to the test results, after confirming that the gene immunization has produced a specific immune response, that is, 8-12 days after the third gene vaccine immunization, the corresponding Mycobacterium tuberculosis protein antigen is used for intraperitoneal inoculation to boost the immunization, 50 μg per mouse. One week later, the animals were anesthetized and sacrificed to harvest whole blood, and the centrifuged serum was stored at -20°C.
3.体内电转染方法3. In vivo electrotransfection method
肌肉注射后立即用带电极的夹子夹住注射部位,用WJ-2002活体基因导入仪(宁波新芝生物科技股份有限公司)进行体内电转染(电压:100 V;脉冲次数:正反各6次;波宽:60毫秒;间隔:10毫秒)。Immediately after the intramuscular injection, the injection site was clamped with a clip with electrodes, and the in vivo electrotransfection was performed with the WJ-2002 in vivo gene introduction instrument (Ningbo Xinzhi Biotechnology Co., Ltd.) (voltage: 100 V; pulse frequency: 6 positive and 6 negative) times; wave width: 60 milliseconds; interval: 10 milliseconds).
4.采用常规ELISA间接法进行抗85aIgG抗体和抗ESAT-6抗体的检测4. Detection of anti-85aIgG antibody and anti-ESAT-6 antibody by conventional ELISA indirect method
以纯化的重组Ag85a蛋白或ESAT-6蛋白(各为1.25μg/mL)包被96孔酶标板(50μl/孔),4℃放置过夜,用0.1%PBS-吐温20洗涤3次;每孔用100μl的0.5%牛血清白蛋白进行封闭1小时,用0.1%PBS-吐温20洗涤3次;小鼠血清以1∶100开始倍比稀释至1∶102400,分别加入各孔中(50μl/孔),37℃孵育2小时,用0.1%PBS-吐温20洗涤3次;加入由PBS-吐温20缓冲液1∶10,000稀释的硷性磷酸标记羊抗小鼠IgG抗体(Sigma,Cat#A3688),37℃孵育1.5小时,再洗涤3次;加入底物显色,30分钟后用3M NaOH终止反应,并用酶标仪作OD105nm检测。结果见表1、表2和图6、图7。Coat 96-well ELISA plates (50 μl/well) with purified recombinant Ag85a protein or ESAT-6 protein (1.25 μg/mL each), place overnight at 4 ° C, and wash 3 times with 0.1% PBS-
表1:结核菌基因疫苗接种后及相应蛋白质疫苗加强后小鼠血清中结核杆菌85a特异性抗体水平检测(ELISA)Table 1: Detection of Mycobacterium tuberculosis 85a-specific antibody levels in serum of mice after inoculation with tuberculosis gene vaccine and after corresponding protein vaccine booster (ELISA)
图6中,■为肌注电转导组(10μg),□为肌肉注射组(100μg)。In Fig. 6, ■ is the intramuscular injection electrotransduction group (10 μg), and □ is the intramuscular injection group (100 μg).
Ia为85a单基因疫苗接种前,Ib为85a单基因疫苗接种后;Ia is before 85a single gene vaccination, Ib is after 85a single gene vaccination;
IIa为HG856-2疫苗接种前,IIb为HG856-2疫苗接种后;IIa is before HG856-2 vaccination, IIb is after HG856-2 vaccination;
IIIa为HG856-1疫苗接种前,IIIb为HG856-1疫苗接种后。IIIa is before HG856-1 vaccination, and IIIb is after HG856-1 vaccination.
从表1和图6可见,采用电转染法,85a基因疫苗接种的用量只有单纯肌肉注射的1/10,所得效果却与之相当,甚至略好;此时85a单基因或嵌合基因疫苗的效果无显著不同。而用蛋白疫苗加强后,单纯肌肉注射时嵌合基因疫苗效果不如单基因疫苗;但电转染的嵌合基因疫苗效果优于单基因疫苗,且均优于单纯肌肉注射。提示该嵌合基因疫苗作电转染基础接种,再用蛋白疫苗加强有良好应用前景。It can be seen from Table 1 and Figure 6 that the dosage of 85a gene vaccination is only 1/10 of that of simple intramuscular injection by electroporation, but the effect obtained is equivalent to it, or even slightly better; at this time, 85a single gene or chimeric gene vaccine effect was not significantly different. After boosting with protein vaccine, the effect of chimeric gene vaccine is not as good as that of single gene vaccine in simple intramuscular injection; however, the effect of electrotransfected chimeric gene vaccine is worse than that of single gene vaccine, and both are worse than simple intramuscular injection. It is suggested that the chimeric gene vaccine has a good application prospect as the basic vaccination of electrotransfection, and then boosted with protein vaccine.
表2:结核菌基因疫苗接种后及相应蛋白质疫苗加强后小鼠血清中结核杆菌的ESAT6特异性抗体水平Table 2: ESAT6-specific antibody levels of Mycobacterium tuberculosis in mouse serum after inoculation with the tuberculosis gene vaccine and after boosting with the corresponding protein vaccine
图7显示结核菌基因疫苗免疫并用相应蛋白质疫苗加强后小鼠血清抗ESAT-6抗体的检测,表示为平均几何效价。Figure 7 shows the detection of anti-ESAT-6 antibody in mouse serum after immunization with tuberculosis gene vaccine and boosted with corresponding protein vaccine, expressed as mean geometric titer.
ESAT-6抗原是弱抗原,比85a抗原弱得多,接种动物后较难诱导较强的免疫应答,但其嵌合在85a中后免疫原性得到加强。The ESAT-6 antigen is a weak antigen, much weaker than the 85a antigen, and it is difficult to induce a strong immune response after inoculating animals, but its immunogenicity is enhanced after being chimerized in 85a.
从表2和图7可见,采用电转染法,ESAT-6单基因疫苗接种的用量只有单纯肌肉注射的1/10,所得效果却与之相当;蛋白疫苗加强前ESAT-6单基因或嵌合基因疫苗的效果相差不多。It can be seen from Table 2 and Figure 7 that the dosage of ESAT-6 single-gene vaccine was only 1/10 of that of simple intramuscular injection by electroporation, but the effect was equivalent; Synthetic vaccines are similarly effective.
而用蛋白疫苗加强后,ESAT-6单基因疫苗单纯肌肉或电转染注射效果均不佳;单纯肌肉注射时嵌合基因HG43疫苗效果比ESAT-6单基因疫苗和嵌合基因HG44疫苗略好;但电转染的二种嵌合基因HE43和HE44疫苗效果均明显优于单基因疫苗,且大大优于单纯肌肉注射。提示该嵌合基因疫苗作电转染基础接种,再用蛋白疫苗加强有良好应用前景。为提高Th1细胞免疫应答,加强免疫最好采用重组卡介苗,或含结核杆菌相关基因的重组痘苗。本文所述的嵌合型结核菌基因疫苗适合作基础免疫。However, after boosting with protein vaccine, the effect of ESAT-6 single-gene vaccine alone intramuscular or electrotransfection injection is not good; the effect of chimeric gene HG43 vaccine is slightly better than ESAT-6 single-gene vaccine and chimeric gene HG44 vaccine when simple intramuscular injection ; But the effects of the two chimeric gene HE43 and HE44 vaccines by electrotransfection were significantly better than those of single-gene vaccines, and much better than that of simple intramuscular injection. It is suggested that the chimeric gene vaccine has a good application prospect as the basic vaccination of electrotransfection, and then boosted with protein vaccine. In order to improve the Th1 cell immune response, it is best to use recombinant BCG or recombinant vaccinia containing genes related to Mycobacterium tuberculosis for booster immunization. The chimeric tuberculosis gene vaccine described herein is suitable for basic immunization.
本实验例的结果显示:新型的嵌合型结核杆菌基因疫苗能同时在小鼠体内诱导抗结核杆菌85a和ESAT6的特异性抗体,而且效果优于85a单基因疫苗和ESAT6单基因疫苗,适合作基础免疫接种。The results of this experiment show that the new chimeric Mycobacterium tuberculosis gene vaccine can simultaneously induce specific antibodies against Mycobacterium tuberculosis 85a and ESAT6 in mice, and the effect is better than that of 85a single-gene vaccine and ESAT6 single-gene vaccine. Basic immunizations.
序列表sequence listing
<110>李忠明<110> Li Zhongming
<120>结核杆菌嵌合基因疫苗及其制备方法<120> Mycobacterium tuberculosis chimeric gene vaccine and preparation method thereof
<130>021194<130>021194
<140><140>
<141>2004-11-19<141>2004-11-19
<160>10<160>10
<170>PatentIn version 3.2<170>PatentIn version 3.2
<210>1<210>1
<211>887<211>887
<212>DNA<212>DNA
<213>结核杆菌染色体DNA<213> Mycobacterium tuberculosis chromosomal DNA
<400>1<400>1
ttttcccggc cgggcttgcc ggtggagtac ctgcaggtgc cgtcgccgtc gatgggccgt 60ttttcccggc cgggcttgcc ggtggagtac ctgcaggtgc cgtcgccgtc gatgggccgt 60
gacatcaagg tccaattcca aagtggtggt gccaactcgc ccgccctgta cctgctcgac 120gacatcaagg tccaattcca aagtggtggt gccaactcgc ccgccctgta cctgctcgac 120
ggcctgcgcg cgcaggacga cttcagcggc tgggacatca acaccccggc gttcgagtgg 180ggcctgcgcg cgcaggacga cttcagcggc tgggacatca acaccccggc gttcgagtgg 180
tacgaccagt cgggcctgtc ggtggtcatg ccggtgggtg gccagtcaag cttctactcc 240tacgaccagt cgggcctgtc ggtggtcatg ccggtgggtg gccagtcaag cttctactcc 240
actggtacca gcccgcctgc ggcaaggccg gttgccagac ttacaagtgg gagaccttcc 300actggtacca gcccgcctgc ggcaaggccg gttgccagac ttacaagtgg gagaccttcc 300
tgaccagcga gctgccgggg tggctgcagg ccaacaggca cgtcaagccc accggaagcg 360tgaccagcga gctgccgggg tggctgcagg ccaacaggca cgtcaagccc accggaagcg 360
ccgtcgtcgg tctttcgatg gctgcttctt cggcgctgac gctggcgatc tatcaccccc 420ccgtcgtcgg tctttcgatg gctgcttctt cggcgctgac gctggcgatc tatcaccccc 420
agcagttcgt ctacgcggga gcgatgtcgg gcctgttgga cccctcccag gcgatgggtc 480agcagttcgt ctacgcggga gcgatgtcgg gcctgttgga cccctcccag gcgatgggtc 480
ccaccctgat cggcctggcg atgggtgacg ctggcggcta caaggcctcc gacatgtggg 540ccaccctgat cggcctggcg atgggtgacg ctggcggcta caaggcctcc gacatgtggg 540
gcccgaagga ggacccggcg tggcagcgca acgacccgct gttgaacgtc gggaagctga 600gcccgaagga ggacccggcg tggcagcgca acgacccgct gttgaacgtc gggaagctga 600
tcgccaacaa cacccgcgtc tgggtgtact gcggcaacgg caagccgtcg gatctgggtg 660tcgccaacaa cacccgcgtc tgggtgtact gcggcaacgg caagccgtcg gatctgggtg 660
gcaacaacct gccggccaag ttcctcgagg gcttcgtgcg gaccagcaac atcaagttcc 720gcaacaacct gccggccaag ttcctcgagg gcttcgtgcg gaccagcaac atcaagttcc 720
aagacgccta caacgccggt ggcggccaca acggcgtgtt cgacttcccg gacagcggta 780aagacgccta caacgccggt ggcggccaca acggcgtgtt cgacttcccg gacagcggta 780
cgcacagctg ggagtactgg ggcgcgcagc tcaacgctat gaagcccgac ctgcaacggg 840cgcacagctg ggagtactgg ggcgcgcagc tcaacgctat gaagcccgac ctgcaacggg 840
cactgggtgc cacgcccaac accgggcccg cgccccaggg cgcctag 887cactgggtgc cacgcccaac accgggcccg cgccccaggg cgcctag 887
<210>2<210>2
<211>288<211>288
<212>DNA<212>DNA
<213>结核杆菌染色体DNA<213> Mycobacterium tuberculosis chromosomal DNA
<400>2<400>2
atggcagagc agcagtggaa tttcgcgggt atcgaggccg cggcaagcgc aatccagggt 60atggcagagc agcagtggaa tttcgcgggt atcgaggccg cggcaagcgc aatccagggt 60
aatgtcacct ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120aatgtcacct ccattcattc cctccttgac gaggggaagc agtccctgac caagctcgca 120
gcggcctggg gcggtagcgg ttcggaggcg taccagggtg tccagcaaaa atgggacgcc 180gcggcctggg gcggtagcgg ttcggaggcg taccagggtg tccagcaaaa atgggacgcc 180
acggctaccg agctgaacaa cgcgctgcag aacctggcgc ggacgatcag cgaagccggt 240acggctaccg agctgaacaa cgcgctgcag aacctggcgc ggacgatcag cgaagccggt 240
caggcaatgg cttcgaccga aggcaacgtc actgggatgt tcgcatag 288caggcaatgg cttcgaccga aggcaacgtc actgggatgt tcgcatag 288
<210>3<210>3
<211>39<211>39
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>3<400>3
gactgctagc caccatggtt tcccggccgg gcttgccgg 39gactgctagc caccatggtt tcccggccgg gcttgccgg 39
<210>4<210>4
<211>33<211>33
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>4<400>4
gactggatcc ttactaggcg ccctggggcg cgg 33gactggatcc ttactaggcg ccctggggcg cgg 33
<210>5<210>5
<211>30<211>30
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>5<400>5
gactggtacc taatggcaga gcagcagtgg 30gactggtacc taatggcaga gcagcagtgg 30
<210>6<210>6
<211>29<211>29
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>6<400>6
gactggtacc ttgcgaacat cccagtgac 29gactggtacc ttgcgaacat cccagtgac 29
<210>7<210>7
<211>30<211>30
<212>DNA<212>DNA
<213>多核苷酸<213> polynucleotide
<400>7<400>7
gactgtctac taatggcaga gcagcagtgg 30gactgtctac taatggcaga gcagcagtgg 30
<210>8<210>8
<211>29<211>29
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>8<400>8
gactgtctac ttgcgaacat cccagtgac 29gactgtctac ttgcgaacat cccagtgac 29
<210>9<210>9
<211>30<211>30
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>9<400>9
gactctgcag taatggcaga gcagcagtgg 30gactctgcag taatggcaga gcagcagtgg 30
<210>10<210>10
<211>29<211>29
<212>多核苷酸<212> polynucleotide
<213>人工合成<213> Synthetic
<400>10<400>10
gactctgcag ttgcgaacat cccagtgac 29gactctgcag ttgcgaacat cccagtgac 29
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100843761A CN100354004C (en) | 2004-11-19 | 2004-11-19 | Tubercle bacillus chimeric gene vaccine and preparation process thereof |
PCT/CN2005/001914 WO2006053485A1 (en) | 2004-11-19 | 2005-11-14 | A chimeric mycobacterium tuberculosis gene vaccine and the preparation method thereof |
ZA200704459A ZA200704459B (en) | 2004-11-19 | 2007-05-30 | A chimeric mycobacterium tuberculosis gene vaccine and the preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100843761A CN100354004C (en) | 2004-11-19 | 2004-11-19 | Tubercle bacillus chimeric gene vaccine and preparation process thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1736490A CN1736490A (en) | 2006-02-22 |
CN100354004C true CN100354004C (en) | 2007-12-12 |
Family
ID=36079561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100843761A Expired - Lifetime CN100354004C (en) | 2004-11-19 | 2004-11-19 | Tubercle bacillus chimeric gene vaccine and preparation process thereof |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN100354004C (en) |
WO (1) | WO2006053485A1 (en) |
ZA (1) | ZA200704459B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101088559B (en) * | 2006-06-12 | 2011-12-07 | 上海欣安基因免疫与疫苗研究开发有限公司 | Polyepitope tuberculosis gene vaccine and its prepn process |
CN101376891B (en) * | 2007-08-27 | 2012-05-23 | 上海生物制品研究所有限责任公司 | Preparation and application of novel tuberculosis vaccine |
CN101376025B (en) * | 2007-08-29 | 2012-05-23 | 中国人民解放军总医院第二附属医院 | Tubercle bacillus gene vaccine for treating drug-resistant tuberculosis |
WO2010010577A1 (en) * | 2008-07-25 | 2010-01-28 | Department Of Biotechnology | Constructing a dna chimera for vaccine development against leishmaniasis and tuberculosis |
CN101912605A (en) * | 2010-04-23 | 2010-12-15 | 上海市公共卫生临床中心 | Reinforced mosaic gene recombinant bacillus calmette-guerin and preparation method thereof |
CN102268446B (en) * | 2010-06-03 | 2013-01-02 | 上海海规生物科技有限公司 | Tubercle bacillus Ag85ab mosaic gene vaccine and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002004018A2 (en) * | 2000-07-10 | 2002-01-17 | Colorado State University Research Foundation | Mid-life vaccine and methods for boosting anti-mycobacterial immunity |
CN1539504A (en) * | 2003-05-09 | 2004-10-27 | 浙江省医学科学院 | A Chimeric Gene Vaccine of Hepatitis E Virus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1029053A1 (en) * | 1997-11-10 | 2000-08-23 | Statens Seruminstitut | Nucleic acid fragments and polypeptide fragments derived from mycobacterium tuberculosis |
WO2000047227A2 (en) * | 1999-02-09 | 2000-08-17 | Powderject Vaccines, Inc. | Mycobacterium tuberculosis, immunization |
CN1467221A (en) * | 2002-07-14 | 2004-01-14 | 虹 王 | Preparation and application of tubercle bacillus CFP-10, ESAT-6 and CD40L fusion bacterin |
-
2004
- 2004-11-19 CN CNB2004100843761A patent/CN100354004C/en not_active Expired - Lifetime
-
2005
- 2005-11-14 WO PCT/CN2005/001914 patent/WO2006053485A1/en active Application Filing
-
2007
- 2007-05-30 ZA ZA200704459A patent/ZA200704459B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002004018A2 (en) * | 2000-07-10 | 2002-01-17 | Colorado State University Research Foundation | Mid-life vaccine and methods for boosting anti-mycobacterial immunity |
CN1539504A (en) * | 2003-05-09 | 2004-10-27 | 浙江省医学科学院 | A Chimeric Gene Vaccine of Hepatitis E Virus |
Non-Patent Citations (1)
Title |
---|
结核杆菌Ag85A及ESAT-6双价抗原融合表达载体的构建及其在大肠杆菌中的高效表达 谢勇恩等人. 中国人兽共患病杂志,第18卷第2期 2002 * |
Also Published As
Publication number | Publication date |
---|---|
ZA200704459B (en) | 2009-04-29 |
CN1736490A (en) | 2006-02-22 |
WO2006053485A1 (en) | 2006-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2677799C2 (en) | Modified supercoiled proteins with improved properties | |
AU682344B2 (en) | Recombinant poxvirus and streptococcal M protein vaccine | |
EP0478664A1 (en) | Vector-mediated genomic insertion and expression of dna in bcg | |
CN101451145A (en) | Tuberculosis gene vaccine based on T cell epitope as well as preparation method and use thereof | |
CN105349562B (en) | Recombinant vector expressing porcine parvovirus VP2 protein, recombinant bacterium and application thereof | |
CN100354004C (en) | Tubercle bacillus chimeric gene vaccine and preparation process thereof | |
US20020076405A1 (en) | Antigenized antibody vaccine for foot-and-mouth disease | |
Mourich et al. | Spermine compaction is an efficient and economical method of producing vaccination-grade DNA | |
WO2017113050A1 (en) | Method of preparing porcine circovirus type 2 capsid protein and pharmaceutical composition comprising same | |
KR20160150277A (en) | Soluble recombinant antigen protein of porcine epidemic diarrhea virus and vaccine composition for preventing or treating porcine epidemic diarrhea comprising the same | |
CN111683679A (en) | Live attenuated flaviviruses with heterologous antigens | |
JPH07504082A (en) | M. Paratuberculosis promoter and its use for the expression of immunogenic sequences | |
CN101319011A (en) | Multitype HCV-E1 Epitope Compound Immunogen and Its Encoding Gene and Application | |
JP4411213B2 (en) | Vaccines against oncovirus infections such as feline leukemia virus | |
US20210187102A1 (en) | Method of obtaining a polyepitopic protein and polyepitopic dna vector | |
CN104127883B (en) | Multi-T cell epitope tuberculosis gene vaccine using HSP65 as epitope scaffold | |
WO2005021035A1 (en) | A bivalent vaccine against fmd, its preparation methods and applications | |
CN101991864B (en) | A kind of Leptospira interrogans DNA vaccine and its construction method and application | |
CN100457912C (en) | Recombinant Ag85B bacillus Calmette-Guerin vaccine | |
Nosareva et al. | Construction of an encapsulated ESAT-6-based anti-TB DNA vaccine and evaluation of its immunogenic properties | |
TWI633114B (en) | Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein | |
US9963487B2 (en) | Production of polypeptides relevant to human and animal health using Yarrowia lipolytica | |
TWI659966B (en) | Preparation method of pcv2 capsid protein and pharmaceutical composition containing said capsid protein | |
CN119662502A (en) | A BCG_1059c gene knockout recombinant BCG vaccine and its construction method and application | |
JP2017512499A (en) | Mosaic HIV-1 sequences and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: GUAN DINGTAI HAIGUI BIOTECHNOLOGY CO., LTD. Free format text: FORMER OWNER: LI ZHONGMING Effective date: 20141120 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 200436 ZHABEI, SHANGHAI TO: 065500 LANGFANG, HEBEI PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20141120 Address after: 065500 Guan County, Hebei City, Langfang Province Patentee after: GU'AN DINGTAI HAIGUI BIOLOGICAL TECHNOLOGY Co.,Ltd. Address before: 200436, B building, No. 3, West 395 Shanghai Road, Zhabei District Patentee before: Li Zhongming |
|
CX01 | Expiry of patent term |
Granted publication date: 20071212 |
|
CX01 | Expiry of patent term |