CN100353637C - Active Harmonic Suppression Device - Google Patents
Active Harmonic Suppression Device Download PDFInfo
- Publication number
- CN100353637C CN100353637C CNB2004100747232A CN200410074723A CN100353637C CN 100353637 C CN100353637 C CN 100353637C CN B2004100747232 A CNB2004100747232 A CN B2004100747232A CN 200410074723 A CN200410074723 A CN 200410074723A CN 100353637 C CN100353637 C CN 100353637C
- Authority
- CN
- China
- Prior art keywords
- voltage
- power
- capacitor
- filter
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/40—Arrangements for reducing harmonics
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
技术领域technical field
本发明是关于一种有源谐波抑制装置,其特别有关应用于与非线性负载并联以滤除其所产生的谐波电流的装置。The present invention relates to an active harmonic suppression device, in particular to a device connected in parallel with a non-linear load to filter out the harmonic current generated by it.
背景技术Background technique
近年来由于半导体技术突飞猛进,许多具有良好可控性且耐高电压、大电流的电力电子组件被发展出来,这些组件目前已被广泛的应用在电力设备中,如马达、驱动器、电弧炉、电车、充电器及照明器具等。由于这些设备的非线性输入特性,使得它们将产生大量谐波电流。谐波电流的存在会导致一些问题,诸如变压器的过热现象、旋转机械的扰动、供应电压的失真、电力组件的破坏及医疗设备的机能故障等等。为了有效限制谐波污染问题,一些国际研究机构纷纷制定谐波管制标准,如IEEE519-1992及IEC1000-3-2及IEC1000-3-4等。在台湾台电公司也制订“电力系统谐波管制暂行标准”来管制谐波。In recent years, due to the rapid development of semiconductor technology, many power electronic components with good controllability and high voltage and high current resistance have been developed. These components have been widely used in power equipment, such as motors, drives, electric arc furnaces, trams , chargers and lighting fixtures, etc. Due to the non-linear input characteristics of these devices, they will generate a large number of harmonic currents. The existence of harmonic currents will cause some problems, such as overheating of transformers, disturbance of rotating machinery, distortion of supply voltage, damage of electrical components and functional failure of medical equipment, etc. In order to effectively limit the problem of harmonic pollution, some international research institutions have formulated harmonic control standards, such as IEEE519-1992, IEC1000-3-2 and IEC1000-3-4. Taipower Corporation in Taiwan also formulated the "Interim Standards for Harmonic Control of Power System" to control harmonics.
传统解决谐波问题的方法为无源电力滤波器,无源电力滤波器是由无源组件电感器及电容器所组成。然而,无源电力滤波器潜藏着谐振的危机,谐振将导致更大的谐波电流与谐波电压,它可能破坏滤波器本身及邻近的电力设备,且滤波特性受系统电抗影响很大,因此很难得到良好的滤波效果,更甚的是加装无源电力滤波器后可能吸引邻近的非线性负载所产生的谐波电流,而造成该无源电力滤波器的过载。The traditional solution to harmonic problems is the passive power filter, which is composed of passive components, inductors and capacitors. However, there is a potential resonance crisis in passive power filters, which will lead to larger harmonic currents and harmonic voltages, which may damage the filter itself and adjacent power equipment, and the filtering characteristics are greatly affected by the system reactance, so It is difficult to get a good filtering effect, what's more, after installing a passive power filter, it may attract the harmonic current generated by the adjacent nonlinear load, which will cause the passive power filter to overload.
近年来有利用电力电子组件组成的电能转换器来达成谐波滤除功能的技术称为有源电力滤波器,例如美国专利US6472775及US6320392等。有源电力滤波器其架构如图1所示,其包含一储能直流电容器、一电能转换器及一滤波组件,利用电流控制模式控制该电能转换器切换储能直流电容器上的电压经滤波组件产生一补偿电流注入电力馈线,而滤波组件可为一电感器或一电感器及电容器组合用以滤除该电力开关组件切换所造成的高频纹波电流。为了有效滤除高频切换电流,此滤波组件必须配合切换频率、直流电压与纹波电流等限制来选择。虽然该有源电力滤波器具有良好的滤波特性,但是该有源电力滤波器的电能转换器容量必须不小于负载谐波电流与电源电压的乘积,因此该有源电力滤波器的电能转换器的容量很大,因价格昂贵而限制其实用性,且这些有源电力滤波器由于该滤波组件仅用以滤除切换纹波,因此其阻抗不大,因此该储能直流电容器的电压必须高于电源电压的峰值,较高的储能直流电容器电压将导致较大的切换纹波,所以滤波组件必须利用具较低截止频率的低通滤波器以滤除该较大的切换纹波,它将导致高频响应变差、体积变大,且产生较高的电磁干扰问题。In recent years, a technology that uses a power converter composed of power electronic components to achieve a harmonic filtering function is called an active power filter, such as US patents US6472775 and US6320392. The structure of the active power filter is shown in Figure 1. It includes an energy storage DC capacitor, an electric energy converter and a filter component. The current control mode is used to control the power converter to switch the voltage on the energy storage DC capacitor through the filter component. A compensating current is generated and injected into the power feeder, and the filtering component can be an inductor or a combination of an inductor and a capacitor to filter the high-frequency ripple current caused by switching of the power switching component. In order to effectively filter high-frequency switching currents, the filter components must be selected in accordance with the limitations of switching frequency, DC voltage, and ripple current. Although the active power filter has good filtering characteristics, the power converter capacity of the active power filter must not be less than the product of the load harmonic current and the power supply voltage, so the power converter of the active power filter The capacity is very large, and its practicability is limited due to its high price, and these active power filters are only used to filter switching ripples, so their impedance is not large, so the voltage of the energy storage DC capacitor must be higher than The peak value of the power supply voltage, the higher voltage of the energy storage DC capacitor will cause a larger switching ripple, so the filter component must use a low-pass filter with a lower cut-off frequency to filter out the larger switching ripple, it will This leads to poor high-frequency response, larger volume, and higher electromagnetic interference problems.
有鉴于此,为了解决无源电力滤波器谐振及邻近谐波电流注入所造成过载问题,及有源电力滤波器的电能转换器容量大所造成的价格昂贵问题,而有结合无源组件及电力转换器的电力滤波器被发展出来,该无源组件用以降低该电力转换器的容量,如美国专利US5,567,994及US5,731,965等,该无源组件采用一无源电力滤波器,然而该无源电力滤波器使用一较大的电感器,因此体积庞大,且损失较大。而US6,717,465及US5,614,770的无源组件采用一电容器,因此体积及损失均可减小,US5,614,770电力转换器采用电流控制式,由负载电流计算出补偿电流并与回授的电力转换器输出电流进行闭回路控制,以使电力转换器操作成一电流产生器产生补偿电流注入电力馈线以滤除负载谐波电流。然而,由于该电流控制式电力转换器受限于控制器的频宽及增益,因此将使电力转换器输出电流与计算的补偿电流产生一定的误差;此外,其未同时检测电源电流作回授,造成补偿后电源电流仍有部分失真;而US6,717,465则采用电压控制式,使电力转换器操作成一电压源,且回授电源电流以降低电源电流的失真,改善了US5,614,770未检测电源电流作回授所产生的问题。然而,由于US6,717,465必须预估串联于电力转换器的无源组件值而造成生产制造上的困难,且由于该无源组件值可能因温度及老化等因素而造成偏移,造成滤波性能的下降。In view of this, in order to solve the overload problem caused by the resonance of the passive power filter and the adjacent harmonic current injection, and the expensive problem caused by the large capacity of the power converter of the active power filter, there is a combination of passive components and power The power filter of the converter is developed, and the passive component is used to reduce the capacity of the power converter, such as US Pat. Passive power filters use a larger inductor and are therefore bulky and have higher losses. The passive components of US6,717,465 and US5,614,770 use a capacitor, so the volume and loss can be reduced. The power converter of US5,614,770 adopts a current control type, and the compensation current is calculated from the load current and converted with the feedback power. The closed-loop control is performed on the output current of the converter, so that the power converter operates as a current generator to generate compensation current and inject it into the power feeder to filter out the load harmonic current. However, since the current-controlled power converter is limited by the bandwidth and gain of the controller, there will be a certain error between the output current of the power converter and the calculated compensation current; in addition, it does not simultaneously detect the power supply current for feedback , resulting in partial distortion of the power supply current after compensation; while US6,717,465 adopts a voltage control type, which makes the power converter operate as a voltage source, and feeds back the power supply current to reduce the distortion of the power supply current, which improves the undetected power supply of US5,614,770 Problems caused by current feedback. However, because US6,717,465 must estimate the value of the passive components connected in series to the power converter, it is difficult to manufacture, and because the value of the passive components may be offset due to factors such as temperature and aging, resulting in the filtering performance decline.
有鉴于此,本发明仍提出一可改善US6,717,465所采用电压控制方式必须预估串联于电力转换器的无源组件值的缺点,以使该电压控制方式的控制器更易于生产制造,且其滤波特性较不受无源组件值偏移的影响,本发明通过将电力转换器输出电流的谐波成份与负载电流谐波成份作闭回路控制,以改善US6,717,465所采用电压控制方式的电压控制器对串联于电力转换器的无源组件值的敏感度,并能简化控制电路,且可进一步选择是否调整谐波补偿装置的无功电流。In view of this, the present invention still proposes a shortcoming that the voltage control method adopted in US6,717,465 must estimate the value of the passive components connected in series to the power converter, so that the controller of the voltage control method is easier to manufacture, and Its filter characteristics are less affected by the value offset of passive components. The present invention controls the harmonic components of the output current of the power converter and the harmonic components of the load current in a closed loop to improve the voltage control method adopted in US6,717,465. The voltage controller is sensitive to the value of passive components connected in series with the power converter, and can simplify the control circuit, and can further choose whether to adjust the reactive current of the harmonic compensation device.
发明内容Contents of the invention
本发明的主要目的在提供一种有源谐波抑制装置,该装置包含一储能直流电容器、一电能转换器、一滤波电感器、一无功补偿电容器、一滤波电容器电阻器组及一控制电路。该储能直流电容器是作为该装置的电能储存装置,并提供第一电压。该电能转换器是电性连接该储能直流电容器,将该第一电压切换输出提供一补偿电压。该滤波电感器、无功补偿电容器及滤波电容器电阻器组是将该补偿电压转换成一补偿电流注入电力馈线,进而使电源电流趋近于正弦波。The main purpose of the present invention is to provide an active harmonic suppression device, which includes an energy storage DC capacitor, a power converter, a filter inductor, a reactive power compensation capacitor, a filter capacitor resistor group and a control circuit. The energy storage DC capacitor is used as an electric energy storage device of the device and provides a first voltage. The electric energy converter is electrically connected to the energy storage DC capacitor, and the first voltage switching output provides a compensation voltage. The filter inductor, reactive power compensation capacitor and filter capacitor resistor group convert the compensation voltage into a compensation current and inject it into the power feeder, thereby making the power supply current approach to a sine wave.
该装置的控制电路撷取负载电流、电源电流、电能转换器输出电流、电源电压及储能直流电容器电压等计算出期望输出电压,并由期望输出电压经脉宽调制电路产生该电能转换器内功率开关组的切换信号,因而提供一补偿电压,再经由该滤波电感器、无功补偿电容器及滤波电容器电阻器组将该补偿电压转换成一补偿电流注入电力馈线,进而使电源电流趋近于正弦波;此外,该有源谐波抑制装置可控制成提供固定或可变的输出无功。The control circuit of the device extracts the load current, power supply current, power converter output current, power supply voltage and energy storage DC capacitor voltage to calculate the expected output voltage, and the expected output voltage is generated by the pulse width modulation circuit in the power converter. The switching signal of the power switch group, thus providing a compensation voltage, and then through the filter inductor, reactive power compensation capacitor and filter capacitor resistor group, the compensation voltage is converted into a compensation current and injected into the power feeder, so that the power supply current tends to be sinusoidal wave; moreover, the active harmonic suppression device can be controlled to provide fixed or variable output reactive power.
由于本发明在电能转换器上串有无功补偿电容器,所以可降低储能直流电容器所提供的该第一电压的值,因此可有效降低电能转换器的功率开关组切换所产生的高频纹波电流,另外本发明的控制电路是电压控制式,可更进一步降低电能转换器的高频谐波电流。因此,本发明的有源谐波抑制装置可采用较小的滤波电感器,可减小整体电路体积,减轻重量,减少电感器上的电力损失,并可降低成本。此外,本发明的电能转换器直流侧电压较传统有源电力滤波器低,因此其电流纹波也较小。Since the present invention has a reactive power compensation capacitor in series on the electric energy converter, the value of the first voltage provided by the energy storage DC capacitor can be reduced, so that the high-frequency ripple generated by the switching of the power switch group of the electric energy converter can be effectively reduced In addition, the control circuit of the present invention is a voltage control type, which can further reduce the high-frequency harmonic current of the power converter. Therefore, the active harmonic suppression device of the present invention can use smaller filter inductors, which can reduce the overall circuit volume, reduce weight, reduce power loss on the inductor, and reduce costs. In addition, the DC side voltage of the power converter of the present invention is lower than that of the traditional active power filter, so its current ripple is also smaller.
附图说明Description of drawings
图1:已知的有源电力滤波器的方块示意图。Figure 1: Block schematic diagram of a known active power filter.
图2:本发明有源谐波抑制装置的电路示意图。Figure 2: A schematic circuit diagram of the active harmonic suppression device of the present invention.
图3:本发明第一较佳实施例有源谐波抑制装置的控制电路的方块图。Fig. 3: A block diagram of the control circuit of the active harmonic suppression device according to the first preferred embodiment of the present invention.
图4:本发明第二较佳实施例有源谐波抑制装置的控制电路的方块图。Fig. 4: A block diagram of the control circuit of the active harmonic suppression device according to the second preferred embodiment of the present invention.
图5:本发明第二较佳实施例有源谐波抑制装置的无功计算电路的方块示意图。Fig. 5: A schematic block diagram of the reactive power calculation circuit of the active harmonic suppression device according to the second preferred embodiment of the present invention.
图6:本发明第二较佳实施例有源谐波抑制装置的另一无功计算电路的方块示意图。Fig. 6: A schematic block diagram of another reactive power calculation circuit of the active harmonic suppression device according to the second preferred embodiment of the present invention.
图号说明:Description of figure number:
1谐波抑制装置 10电能转换器 11滤波电感器1 Harmonic suppression device 10 Power converter 11 Filter inductor
12无功补偿电容器 13滤波电容器电阻器组 14储能直流电容器12 Reactive power compensation capacitor 13 Filter
15电能转换器的输出电流 16负载电流 17电源电流15 Output current of
18补偿电流 2控制电路 200谐波检出器18 compensation current 2
201第一带阻滤波器 202减法器 203第一放大器201 first band-
204第一控制器 205第二带阻滤波器 206第二放大器204
207相移电路 208低通滤波器 209减法器207
210第二控制器 211乘法器 212加法器210
213脉宽调制器 3控制电路 300谐波捡出器213
301第一带阻滤波器 302减法器 303第一放大器301 first band-
304第一控制器 305第二带阻滤波器 306第二放大器304 first controller 305 second band-
307低通滤波器 308减法器 309第二控制器307 Low-
310相移电路 311乘法器 312无功计算电路310
313限制器 314乘法器 315加法器313
316脉宽调制器 41相移电路 42乘法器316
43低通滤波器 51相位检出电路 52放大器43 Low-
具体实施方式Detailed ways
为了让本发明的上述和其它目的、特征和优点能更明确被了解,下文将特举本发明较佳实施例,并配合所附图式,作详细说明如下。In order to make the above and other objects, features and advantages of the present invention more clearly understood, preferred embodiments of the present invention will be exemplified below and described in detail in conjunction with the accompanying drawings.
请参照图2所示,本发明有源谐波抑制装置1的系统架构包含一电能转换器10,一滤波电感器11,一无功补偿电容器12,一滤波电容器电阻器组13、一储能直流电容器14及一控制电路2。该储能直流电容器14作为该装置的储能组件,并提供一第一电压,该电能转换器10包含有一功率开关组,其是电性连接该储能直流电容器14,并将该第一电压作切换以提供一补偿电压输出,该滤波电感器11、无功补偿电容器12及滤波电容器电阻器组13是将该补偿电压转换成一补偿电流18注入电力馈线以滤除负载电流16的谐波成份,进而使电源电流17趋近于正弦波,该控制电路2用以产生该电能转换器10的驱动信号;该谐波抑制装置1除具有谐波抑制功能外,尚能提供一固定或可调的无功量。Please refer to Fig. 2, the system architecture of the active harmonic suppression device 1 of the present invention includes a power converter 10, a filter inductor 11, a reactive power compensation capacitor 12, a filter capacitor resistor group 13, an energy
图3是揭示本发明第一较佳实施例有源谐波抑制装置1的控制电路2的控制方块图。该有源谐波抑制装置1具有谐波滤除及提供一固定无功补偿的功能,该固定无功补偿量由该无功补偿电容器12与电源电压决定,若忽略滤波电感的影响,该固定无功补偿量可表示为FIG. 3 is a control block diagram showing the
其中ω为电源基波频率,C为无功补偿电容器12的电容器值,VS1为三相电源相电压基波的均方根值。Where ω is the fundamental frequency of the power supply, C is the capacitor value of the reactive power compensation capacitor 12, and V S1 is the root mean square value of the fundamental wave of the phase voltage of the three-phase power supply.
第一较佳实施例采用电压控制式,因此必须计算参考补偿电压,该第一较佳实施例的控制方块是利用负载电流16、电源电流17、电能转换器输出电流15、储能直流电容器14的电压及电源电压等计算出参考补偿电压,经脉波宽度调制来产生电能转换器10的功率开关组切换信号,并产生该补偿电压。The first preferred embodiment adopts the voltage control type, so the reference compensation voltage must be calculated. The control block of the first preferred embodiment utilizes the load current 16, the supply current 17, the power converter output current 15, the energy
该第一较佳实施例的控制方块主要分成三个回路,其包含负载谐波补偿回路、电源谐波抑制回路及储能直流电容器稳压回路。The control block of the first preferred embodiment is mainly divided into three loops, which include a load harmonic compensation loop, a power supply harmonic suppression loop, and an energy storage DC capacitor voltage stabilization loop.
负载谐波补偿回路主要用以补偿负载所产生的谐波电流,为了产生负载电流16的谐波成份,US6,717,465利用电能转换器10产生一谐波电压成份等于负载电流16的谐波成份与滤波电感器11及无功补偿电容器12的合成阻抗的乘积的输出补偿电压。然而,US6,717,465必须预估串联于电力转换器的无源组件值,因而造成生产制造上的困难。再者,由于该无源组件值可能因温度及老化等因素而造成偏移,因此造成滤波性能的下降。为改善此缺点,本发明通过将电能转换器输出电流的谐波成份与负载电流谐波成份作闭回路控制,以减少参考补偿电压的计算对串联于电能转换器的无源组件值的敏感度。因此该负载谐波补偿回路即将负载电流16检出经谐波检出器200取出该负载电流谐波成份,且也将电能转换器输出电流15检出经第一带阻滤波器201滤除基波成份而取出其谐波成份。将该负载电流谐波成份及该电能转换器输出电流的谐波成份经减法器202相减,相减结果经第一放大器203放大,该谐波检出器200可为一带阻滤波器以滤除负载电流的基波而取出其谐波成分,也可采用一傅立叶级数(Fourier series)算法来计算负载电流的各次谐波量,若谐波检出器200采用带阻滤波器,其将对该负载所产生的谐波电流完全补偿,而若谐波检出器200采用傅立叶级数算法,则可选择若干特定阶数谐波进行补偿。为求得补偿电压,该第一放大器203的输出必须乘以滤波电感器11及无功补偿电容器12的合成阻抗,由于电感器电压可由电流的微分求得,电容器的电压可由电流的积分求得,而电感器与电容器杂散电阻器的电压可由电流乘以一比例求得。因此该第一放大器203的输出乘以滤波电感器11及无功补偿电容器12的合成阻抗,可由该第一放大器203的输出经一PID控制器而得。由于在主要谐波频率下谐波抑制装置1中该滤波电感器11的阻抗远小于该无功补偿电容器12的阻抗值,因此所须的PID控制器也可简化成PI控制器,以防止微分控制器受噪声的干扰。因此该第一放大器203的输出经第一控制器204即可得负载谐波补偿回路的输出电压信号,该第一控制器204可为PID控制器或PI控制器。The load harmonic compensation circuit is mainly used to compensate the harmonic current generated by the load. In order to generate the harmonic component of the load current 16, US6,717,465 uses the power converter 10 to generate a harmonic voltage component equal to the harmonic component of the load current 16 and The output compensation voltage is the product of the combined impedance of the filter inductor 11 and the reactive power compensation capacitor 12 . However, US6,717,465 must estimate the value of passive components connected in series with the power converter, thus causing difficulties in manufacturing. Furthermore, since the values of the passive components may shift due to factors such as temperature and aging, the filtering performance is degraded. In order to improve this shortcoming, the present invention performs closed-loop control on the harmonic components of the output current of the power converter and the harmonic components of the load current to reduce the sensitivity of the calculation of the reference compensation voltage to the value of the passive components connected in series with the power converter . Therefore, the load harmonic compensation circuit detects the load current 16 through the
电源谐波抑制回路主要是用以修正该负载谐波补偿回路补偿结果的误差,进一步抑制电源电流的谐波成份。在该电源谐波抑制回路中,市电的电源电流17被检出后,再送到第二带阻滤波器205滤除基波。若电源电流17经第一回路补偿后仍有谐波,则可经由该电源谐波抑制回路捡出再经第二放大器206放大后,作为该电源谐波抑制回路输出信号。由于该谐波抑制装置1采用电压控制式,因此该电源谐波抑制回路检出电源电流的谐波成份再放大作补偿,其频宽可远高于采用电流控制式,因此本发明谐波抑制装置1的控制方法将得到较采用传统电流控制方法更好的补偿效果。特别是,在采用数字电路来实现控制器时,例如微控器或数字信号处理器。The power supply harmonic suppression circuit is mainly used to correct the error of the compensation result of the load harmonic compensation circuit, and further suppress the harmonic component of the power supply current. In the power supply harmonic suppression circuit, after the mains power supply current 17 is detected, it is sent to the second
为了维持储能直流电容器14所提供的第一电压的稳定,以使电能转换器10能正常运转,所以必须设置储能直流电容器稳压回路。该储能直流电容器稳压回路必须产生一基波电压信号,其与该谐波抑制装置1电流同相位,使电能转换器10能吸收有功或释放有功,以维持储能直流电容器14所提供的第一电压的稳定。由于该谐波抑制装置1在基波频率时为电容性,该谐波抑制装置1的基频电流超前电源电压90度,该储能直流电容器稳压回路检出储能直流电容器14的第一电压再经过低通滤波器208滤除其纹波电压,低通滤波器208输出送到减法器209与设定电压相减后送到第二控制器210,而电源电压则送到一相移电路207产生一超前90度的弦波信号,将第二控制器210与相移电路207的输出经乘法器211相乘后,作为该储能直流电容器稳压回路的输出信号。In order to maintain the stability of the first voltage provided by the energy
最后将负载谐波补偿回路、电源谐波抑制回路及储能直流电容器稳压回路的输出信号经加法器212相加后即为电能转换器10的参考补偿电压信号,将此参考补偿电压信号送至脉宽调制器213可得到电能转换器10内功率开关组的切换信号。Finally, the output signals of the load harmonic compensation circuit, the power supply harmonic suppression circuit and the energy storage DC capacitor voltage stabilization circuit are added together by the
图4是揭示本发明第二较佳实施例有源谐波抑制装置1的控制电路2的控制方块图。该有源谐波抑制装置1具有谐波滤除及提供一可变无功补偿的功能,该可变无功补偿的范围介于最大值QMAX与最小值QMIN之间,若忽略滤波电感的影响,QMAX与QMIN可表示为FIG. 4 is a control block diagram showing the
QMIN=QMAX(1-Vai,max/Vs1) (3)Q MIN = Q MAX (1-V ai, max /V s1 ) (3)
其中ω为电源基波频率,C为无功补偿电容器12的电容器值,VS1为三相电源相电压基波的均方根值,而Vai,max为该电能转换器10能产生最大基波电压的均方根值可表示如下Among them, ω is the frequency of the fundamental wave of the power supply, C is the capacitor value of the reactive power compensation capacitor 12, V S1 is the root mean square value of the fundamental wave of the phase voltage of the three-phase power supply, and V ai,max is the maximum fundamental wave that the power converter 10 can produce. The root mean square value of the wave voltage can be expressed as follows
其中Vdc为该储能直流电容器14的第一电压。Wherein V dc is the first voltage of the energy
该第二较佳实施例采用电压控制式,因此必需计算参考补偿电压,该第二较佳实施例的控制方块是利用负载电流16、电源电流17、电能转换器输出电流15、储能直流电容器14的电压及电源电压等计算出参考补偿电压,经脉波宽度调制来产生电能转换器10的功率开关组切换信号,并产生该补偿电压。This second preferred embodiment adopts the voltage control formula, therefore must calculate the reference compensation voltage, the control block of this second preferred embodiment is to utilize load current 16, supply current 17, electric energy converter output current 15, energy storage DC capacitor The reference compensation voltage is calculated from the voltage of 14 and the power supply voltage, and the switching signal of the power switch group of the power converter 10 is generated through pulse width modulation, and the compensation voltage is generated.
该控制电路3主要分成四个回路,其中包含负载谐波补偿回路、电源谐波抑制回路、储能直流电容器稳压回路及无功调整回路。The
负载谐波补偿回路主要用以补偿负载所产生的谐波电流,为了输出负载电流16的谐波成份,US6,717,465利用电能转换器10产生一谐波电压成份等于负载电流16的谐波成份与滤波电感器11及无功补偿电容器12的合成阻抗的乘积的输出补偿电压。然而,US6,717,465必须预估串联于电力转换器的无源组件值,因而造成生产制造上的困难。再者,由于该无源组件值可能因温度及老化等因素而造成偏移,因此造成滤波性能的下降。为改善此缺点,本发明通过将电能转换器输出电流的谐波成份与负载电流谐波成份作闭回路控制,以减少参考补偿电压的计算对串联于电能转换器的无源组件值的敏感度。因此该负载谐波补偿回路即将负载电流16检出经一谐波检出器300取出该负载电流的谐波成份,且也将电能转换器输出电流15检出经第一带阻滤波器301滤除基波成份而取出其谐波成份。将该负载电流谐波成份及该电能转换器输出电流的谐波成份经减法器302相减,相减结果经第一放大器303放大,该谐波检出器300可为一带阻滤波器以滤除负载电流的基波而取出其谐波成分,也可采用一傅立叶级数算法来计算负载电流的各次谐波量,若谐波检出器300采用带阻滤波器,其将对该负载所产生的谐波电流完全补偿,而若谐波检出器300采用傅立叶级数算法,则可选择若干特定阶数谐波进行补偿。为求得补偿电压,该第一放大器303的输出必须乘以滤波电感器11及无功补偿电容器12的合成阻抗。由于电感器电压可由电流的微分求得,电容器的电压可由电流的积分求得,而电感器与电容器杂散电阻器的电压可由电流乘以一比例求得,因此该第一放大器303的输出乘以滤波电感器11及无功补偿电容器12的合成阻抗可由该第一放大器303的输出经一PID控制器而得。由于在主要谐波频率下谐波抑制装置1中该滤波电感器11的阻抗远小于该无功补偿电容器12的阻抗值,因此所须的PID控制器也可简化成PI控制器,以防止微分控制器受噪声的干扰。因此该第一放大器303的输出经第一控制器304即可得负载谐波补偿回路的输出电压信号,该第一控制器304可为PID控制器或PI控制器。The load harmonic compensation circuit is mainly used to compensate the harmonic current generated by the load. In order to output the harmonic component of the load current 16, US6,717,465 uses the power converter 10 to generate a harmonic voltage component equal to the harmonic component of the load current 16 and The output compensation voltage is the product of the combined impedance of the filter inductor 11 and the reactive power compensation capacitor 12 . However, US6,717,465 must estimate the value of passive components connected in series with the power converter, thus causing difficulties in manufacturing. Furthermore, since the values of the passive components may shift due to factors such as temperature and aging, the filtering performance is degraded. In order to improve this shortcoming, the present invention performs closed-loop control on the harmonic components of the output current of the power converter and the harmonic components of the load current to reduce the sensitivity of the calculation of the reference compensation voltage to the value of the passive components connected in series with the power converter . Therefore, the load harmonic compensation circuit detects the load current 16 through a
电源谐波抑制回路主要是用以修正该负载谐波补偿回路补偿结果的误差,进一步抑制电源电流的谐波成份。在该电源谐波抑制回路中,市电的电源电流17被检出后,再送到第二带阻滤波器305滤除基波。若电源电流17经第一回路补偿后仍有谐波,则可经由该电源谐波抑制回路检出再经第二放大器306放大后,作为该电源谐波抑制回路输出信号,由于该谐波抑制装置1采用电压控制式,因此该电源谐波抑制回路检出电源电流的谐波成份再放大作补偿,其频宽可远高于采用电流控制式,因此本发明谐波抑制装置1的控制方法将得到较采用传统电流控制方法更好的补偿效果。特别是,在采用数字电路来实现控制器时,例如微控器或数字信号处理器。The power supply harmonic suppression circuit is mainly used to correct the error of the compensation result of the load harmonic compensation circuit, and further suppress the harmonic component of the power supply current. In the power supply harmonic suppression circuit, after the mains power supply current 17 is detected, it is sent to the second band rejection filter 305 to filter out the fundamental wave. If the power supply current 17 still has harmonics after being compensated by the first loop, it can be detected by the power supply harmonic suppression loop and then amplified by the
为了维持储能直流电容器14所提供的第一电压的稳定,以使电能转换器10能正常运转,所以有储能直流电容器稳压回路存在,该储能直流电容器稳压回路必须产生一基波电压信号,其与该谐波抑制装置1电流同相位,使电能转换器10能吸收有功或释放有功,以维持储能直流电容器14所提供的第一电压的稳定。由于该谐波抑制装置1在基波频率时为电容性,该谐波抑制装置1的基频电流超前电源电压90度,该储能直流电容器稳压回路检出储能直流电容器14的第一电压再经过低通滤波器307滤除其纹波电压,低通滤波器307输出送到减法器308与设定电压相减后送到第二控制器309,而电源电压则送到一相移电路310产生一超前90度的弦波信号,将第二控制器309与相移电路310的输出经乘法器311相乘后,作为该储能直流电容器稳压回路的输出信号。In order to maintain the stability of the first voltage provided by the energy
无功调整回路则用以调整该谐波抑制装置1所提供无功量,该谐波抑制装置1所提供无功量为The reactive power adjustment circuit is used to adjust the reactive power provided by the harmonic suppression device 1, and the reactive power provided by the harmonic suppression device 1 is
Q=QMAX(1-Va1/Vs1) (5)Q=Q MAX (1-V a1 /V s1 ) (5)
其中Va1为该电能转换器10与电源基波电压同相位的输出基波电压均方根值,由式(5)可看出通过调整该电能转换器10与电源基波电压同相位的输出基波电压可改变该谐波抑制装置1所提供无功量,因此由无功计算电路312计算所需补偿的无功量经一限制器313后可获得该电能转换器10与电源基波电压同相位的输出基波电压的振幅,该限制器313的输出与检出的电源电压送到乘法器314,即可得该无功计算回路的输出信号。该限制器313主要用以限制该谐波抑制装置1所提供无功量范围介于最大值QMAX与最小值QMIN之间。关于该无功计算电路312,于下文予以详细描述。Among them, V a1 is the root mean square value of the output fundamental wave voltage of the power converter 10 in phase with the fundamental wave voltage of the power supply. It can be seen from formula (5) that by adjusting the output of the power converter 10 in phase with the fundamental wave voltage of the power supply The fundamental wave voltage can change the reactive power provided by the harmonic suppression device 1, so the reactive power calculated by the reactive
图5及图6是揭示无功计算电路312的两种实现方块图。请参照图5所示为无功计算电路的第一实现方块图,无功计算由电源电压经一相移电路41产生90度超前相移后,与负载电流经一乘法器42相乘,该乘法器42输出后再经一低通滤波器43取出其平均成份即为所需补偿无功量。请参照图6所示为无功计算电路的第二实现方块图,无功计算是通过将电源电压及电流经一相位检出电路51检出电源电压及电流的相位差,再经由一放大器52而得补偿无功量。FIG. 5 and FIG. 6 are block diagrams illustrating two implementations of the reactive
请再参照图4所示,最后将负载谐波补偿回路、电源谐波抑制回路、储能直流电容器稳压回路及无功调整回路的输出信号经加法器315相加后,即作为电能转换器10的参考补偿电压信号,将此参考补偿电压信号送至脉宽调制器316可得到电能转换器10内功率开关组的切换信号。Please refer to Figure 4 again. Finally, the output signals of the load harmonic compensation circuit, the power supply harmonic suppression circuit, the energy storage DC capacitor voltage stabilization circuit and the reactive power adjustment circuit are added by the
由于本发明在电能转换器10上串有无功补偿电容器12,所以可降低储能直流电容器14所提供的该第一电压的值,因此可有效降低电能转换器10的功率开关组切换所产生的高频纹波电流,另外本发明的控制电路2是电压控制式,可更进一步降低电能转换器的高频谐波电流。因此,本发明的有源谐波抑制装置1可采用较小的滤波电感器11,可减小整体电路体积,减轻重量,减少电感器上的电力损失,并可降低成本。此外,本发明的电能转换器直流侧电压较传统有源电力滤波器低,因此其电流纹波也较小。Since the present invention has a reactive power compensation capacitor 12 connected in series on the power converter 10, the value of the first voltage provided by the energy
虽然本发明已以前述较佳实施例揭示,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与修改,因此本发明的保护范围当视权利要求书为准。Although the present invention has been disclosed with the aforementioned preferred embodiments, it is not intended to limit the present invention. Any skilled person can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore The protection scope of the present invention should be determined by the claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100747232A CN100353637C (en) | 2004-09-13 | 2004-09-13 | Active Harmonic Suppression Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100747232A CN100353637C (en) | 2004-09-13 | 2004-09-13 | Active Harmonic Suppression Device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1750352A CN1750352A (en) | 2006-03-22 |
CN100353637C true CN100353637C (en) | 2007-12-05 |
Family
ID=36605660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100747232A Expired - Fee Related CN100353637C (en) | 2004-09-13 | 2004-09-13 | Active Harmonic Suppression Device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100353637C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI347058B (en) * | 2007-03-05 | 2011-08-11 | Ablerex Electronics Co Ltd | Active power filter apparatus |
CN102684198B (en) * | 2012-05-29 | 2014-04-23 | 电子科技大学 | A Harmonic Suppression Method for Bidirectional Converter of Energy Storage Unit in Wind-solar-Storage System |
CN103532358B (en) * | 2013-10-16 | 2015-12-09 | 廊坊英博电气有限公司 | Can the scr voltage regula-tor unit of harmonic inhabitation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0898405A (en) * | 1994-09-27 | 1996-04-12 | Meidensha Corp | Active filter |
US5614770A (en) * | 1994-06-06 | 1997-03-25 | Helionetics, Inc. | Structure and method for performing active injection mode filtering on an AC power system |
CN1356753A (en) * | 2001-09-19 | 2002-07-03 | 西安交通大学 | Control method of active power filter in mixed filter system for electrified railway |
CN1404196A (en) * | 2002-10-16 | 2003-03-19 | 武汉大学 | Harmonic, reactive and negative sequence comprehensive control method and device for complicated power system |
CN1449083A (en) * | 2002-03-11 | 2003-10-15 | 盈正豫顺电子股份有限公司 | Active harmonic suppression device and control method |
CN1503423A (en) * | 2002-11-08 | 2004-06-09 | 盈正豫顺电子股份有限公司 | Hybrid virtual work compensation device |
-
2004
- 2004-09-13 CN CNB2004100747232A patent/CN100353637C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614770A (en) * | 1994-06-06 | 1997-03-25 | Helionetics, Inc. | Structure and method for performing active injection mode filtering on an AC power system |
JPH0898405A (en) * | 1994-09-27 | 1996-04-12 | Meidensha Corp | Active filter |
CN1356753A (en) * | 2001-09-19 | 2002-07-03 | 西安交通大学 | Control method of active power filter in mixed filter system for electrified railway |
CN1449083A (en) * | 2002-03-11 | 2003-10-15 | 盈正豫顺电子股份有限公司 | Active harmonic suppression device and control method |
CN1404196A (en) * | 2002-10-16 | 2003-03-19 | 武汉大学 | Harmonic, reactive and negative sequence comprehensive control method and device for complicated power system |
CN1503423A (en) * | 2002-11-08 | 2004-06-09 | 盈正豫顺电子股份有限公司 | Hybrid virtual work compensation device |
Also Published As
Publication number | Publication date |
---|---|
CN1750352A (en) | 2006-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7301787B2 (en) | Active type harmonic suppression apparatus | |
CN1449083A (en) | Active harmonic suppression device and control method | |
CN101277016B (en) | Active power filter device and control method | |
Teodorescu et al. | A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation | |
Kulkarni et al. | Mitigation of lower order harmonics in a grid-connected single-phase PV inverter | |
TWI243526B (en) | Three-phase three-wire active power filter | |
Liu et al. | Power quality improvement using controllable inductive power filtering method for industrial DC supply system | |
CN109004841B (en) | AC-DC-DC converter and double-loop feedforward secondary ripple suppression method thereof | |
CN107342590B (en) | Damping device and damping method for converter system | |
CN110912150B (en) | Virtual impedance-based hybrid active filter grid-connection method | |
CN100470998C (en) | Hybrid reactive power compensation device | |
CN108462177A (en) | A kind of serial active filter and system of gird-connected inverter | |
CN100407539C (en) | Control Method of High Power Active Filter | |
CN110266017B (en) | Hybrid state feedback virtual damping control method for LCL (lower control limit) type active power filter | |
CN107800151B (en) | Island microgrid inverter control method with virtual passive filter | |
CN112928757B (en) | A periodic frequency modulation APF variable carrier frequency digital PI control system and its control method | |
CN107370153A (en) | A kind of active electric filter device | |
CN100353637C (en) | Active Harmonic Suppression Device | |
CN110572017B (en) | A single-phase inverter DC wide frequency domain ripple suppression device and its control method | |
Jou et al. | New active power filter and control method | |
Arulkumar et al. | Design of optimal LLCL filter with an improved control strategy for single phase grid connected PV inverter | |
CN110572018A (en) | A Secondary Ripple Current Suppression Method of DC Power Supply | |
CN113067337B (en) | Multifunctional electric energy quality controller | |
CN110071510A (en) | Single-phase hybrid active electric filter and its control method based on UPQC | |
Unnikrishnan et al. | Hybrid series active power filter for mitigating power quality problems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071205 |