[go: up one dir, main page]

CN100348655C - Preparation of polymer composite material from halloysite nanometer tube - Google Patents

Preparation of polymer composite material from halloysite nanometer tube Download PDF

Info

Publication number
CN100348655C
CN100348655C CNB2005100353818A CN200510035381A CN100348655C CN 100348655 C CN100348655 C CN 100348655C CN B2005100353818 A CNB2005100353818 A CN B2005100353818A CN 200510035381 A CN200510035381 A CN 200510035381A CN 100348655 C CN100348655 C CN 100348655C
Authority
CN
China
Prior art keywords
halloysite
resin
polymer
rubber
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100353818A
Other languages
Chinese (zh)
Other versions
CN1746216A (en
Inventor
郭宝春
贾德民
杜明亮
郑小瑰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CNB2005100353818A priority Critical patent/CN100348655C/en
Publication of CN1746216A publication Critical patent/CN1746216A/en
Application granted granted Critical
Publication of CN100348655C publication Critical patent/CN100348655C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention relates to a method for preparing polymer composite material from halloysite nanometer tubes, which comprises the steps: halloysite nanometer tubes are mixed with polymer according to the weight ratio of 40 to 99: 0.5 to 60, and are homogeneously dispersed in a polymeric matrix; then, polymer composite material is obtained through forming. The halloysite nanometer tubes are natural clay minerals which are in a micro tubular structure formed by twisting silicate sheet layers under the natural condition. The polymer is one or more than one of thermoplastic plastic, thermosetting plastic and rubber. The polymer nanometer composite material which has obviously enhanced mechanical performance and flame retardant performance is formed. The present invention overcomes the defect that the existing nanometer fillers are not easily dispersed, and fillers are cheap and are easily obtained without dust pollution.

Description

埃洛石纳米管用于制备聚合物复合材料的方法The method that halloysite nanotube is used for preparing polymer composite material

技术领域technical field

本发明涉及聚合物复合材料技术领域,具体是指埃洛石纳米管用于制备聚合物复合材料的方法。The invention relates to the technical field of polymer composite materials, in particular to a method for preparing a polymer composite material using halloysite nanotubes.

背景技术Background technique

纳米复合材料(Nanocmposites)的主要特征是复合体系中的一个或多个组分至少有一维以纳米尺寸(≤100nm)均匀地分散在另一组分的基体中,有时又称为混杂材料或杂化材料(Hybrid Materials)。聚合物与某些无机物组成的有机/无机纳米复合材料,其聚合物与具有纳米尺寸的无机物形成均匀而牢固的结合,纳米相比表面积大,且相间距离小,存在特殊的相互作用,故其性能与相应的宏观或微米级复合材料(例如,传统的无机填料填充改性聚合物)相比有着显著的差异,表现出全新的性能或功能。The main feature of nanocomposites (Nanocmposites) is that one or more components in the composite system are uniformly dispersed in the matrix of another component with nanometer size (≤100nm) in at least one dimension, sometimes called hybrid materials or heterogeneous materials. Chemical materials (Hybrid Materials). Organic/inorganic nanocomposites composed of polymers and certain inorganic substances, the polymers form a uniform and firm combination with nanoscale inorganic substances, the surface area of nanoscale is large, and the distance between phases is small, and there is a special interaction. Therefore, its performance is significantly different from that of the corresponding macroscopic or micron-scale composite materials (for example, traditional inorganic filler-filled modified polymers), showing completely new properties or functions.

将具有纳米尺寸的改性剂和填料与聚合物复合是制备聚合物纳米复合材料的主要方法。Combining modifiers and fillers with nanometer size with polymers is the main method to prepare polymer nanocomposites.

目前聚合物纳米复合材料所用的填料可以分为两类,即天然的纳米填料和合成的纳米填料。The fillers currently used in polymer nanocomposites can be divided into two categories, namely natural nanofillers and synthetic nanofillers.

天然纳米级填料是指结构中含有纳米尺度的结构单元,在聚合物的制备中可以将纳米尺度的结构单元分散于聚合物中形成聚合物纳米复合材料。此类材料应用最多的是各种层状硅酸盐,例如蒙脱土和高岭土等。这类纳米级填料应用的主要困难在于需要克服层间离子键才能形成纳米级的分散,因而制备过程往往比较困难,分散效果不理想。Natural nanoscale fillers refer to structures containing nanoscale structural units. In the preparation of polymers, nanoscale structural units can be dispersed in polymers to form polymer nanocomposites. The most widely used materials of this type are various layered silicates, such as montmorillonite and kaolin. The main difficulty in the application of this type of nanoscale filler is that it needs to overcome the interlayer ionic bond to form nanoscale dispersion, so the preparation process is often difficult and the dispersion effect is not ideal.

合成的纳米填料包括各种合成的无机填料粉体,例如纳米碳酸钙、纳米二氧化硅、纳米二氧化钛、纳米氢氧化镁等。对于各种合成的纳米粉体,存在许多难于克服的缺点。首先纳米粉体的制备工艺相对复杂,成本一直居高不下;其次,纳米粉体堆积密度极低,导致团聚极易发生,粉尘污染严重;再者,纳米粉体的团聚使其表面改性困难,进一步造成其分散困难。Synthetic nano-fillers include various synthetic inorganic filler powders, such as nano-calcium carbonate, nano-silica, nano-titanium dioxide, and nano-magnesium hydroxide. For various synthetic nanopowders, there are many shortcomings that are difficult to overcome. Firstly, the preparation process of nanopowder is relatively complicated, and the cost has been high; secondly, the bulk density of nanopowder is extremely low, which leads to agglomeration easily and serious dust pollution; furthermore, agglomeration of nanopowder makes surface modification difficult , further making its dispersion difficult.

发明内容Contents of the invention

本发明的目的在于针对现有技术存在的缺陷,提供一种埃洛石纳米管用于制备聚合物复合材料的方法,形成具有明显提高的力学性能和阻燃性能的聚合物纳米复合材料;克服现有纳米填料分散困难的缺点,而且填料廉价易得,没有粉尘污染。The purpose of the present invention is to provide a kind of method that halloysite nanotube is used for preparing polymer composite material in view of the defect existing in the prior art, and form the polymer nanocomposite material with obviously improved mechanical property and flame retardant performance; Overcome the present invention It has the disadvantage of difficulty in dispersing nano fillers, and the fillers are cheap and easy to obtain without dust pollution.

本发明的埃洛石纳米管用于制备聚合物复合材料的方法包括:埃洛石纳米管与聚合物按1∶10、1∶100、40∶100或1∶5的重量比混合,使埃洛石纳米管均匀分散于聚合物基体中,然后成型得到聚合物复合材料制品。The method that the halloysite nanotube of the present invention is used to prepare the polymer composite material comprises: the halloysite nanotube and the polymer are mixed by 1: 10, 1: 100, 40: 100 or 1: 5 weight ratio, make halloysite The stone nanotubes are evenly dispersed in the polymer matrix, and then molded to obtain polymer composite products.

所述埃洛石纳米管是一种天然的粘土矿物,由硅酸盐片层在天然条件下卷曲而成的微管状结构,具有相同的1∶1的SiO2/Al2O3比,片层结构卷曲成了SiO2在外层、Al2O3在内层的桶状结构。一般埃洛石纳米管由多个片层卷曲而成,管外径约为10-50nm,内径约为5-20nm,长度约为2-40μm,所以是一天然的多壁微管。当pH值在4~9之间时,埃洛石纳米管的表面Z电位在-20~-50mV之间变化。当pH小于6时,管内存在微弱的负电荷。相邻管壁的间距(层间距)根据含水与否有7.3埃和10.1埃两个数值。值得注意的是,埃洛石由于完全卷曲成管,不象其它粘土矿物那样具有离子交换性或膨胀性。从化学性质讲,埃洛石纳米管表层具有与SiO2非常相似的表面性质,而内层性质与Al2O3相似。The halloysite nanotube is a natural clay mineral, a microtubular structure formed by silicate sheets curled under natural conditions, with the same 1:1 SiO 2 /Al 2 O 3 ratio, the sheet The layer structure curls into a barrel structure with SiO 2 in the outer layer and Al 2 O 3 in the inner layer. Generally, the halloysite nanotube is formed by curling multiple sheets, the outer diameter of the tube is about 10-50nm, the inner diameter is about 5-20nm, and the length is about 2-40μm, so it is a natural multi-walled microtube. When the pH value is between 4 and 9, the surface zeta potential of halloysite nanotubes varies between -20 and -50mV. When the pH is less than 6, there is a weak negative charge inside the tube. The distance between adjacent pipe walls (interlayer distance) has two values of 7.3 angstroms and 10.1 angstroms according to whether it contains water or not. It is worth noting that halloysite is not ion-exchangeable or expansive like other clay minerals due to its complete coiling into tubes. In terms of chemical properties, the surface layer of halloysite nanotubes has very similar surface properties to SiO 2 , while the inner layer properties are similar to Al 2 O 3 .

所述聚合物是热塑性塑料、热固性塑料、橡胶中的一种或一种以上。The polymer is one or more of thermoplastics, thermosetting plastics and rubber.

所述热塑性塑料包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯三元共聚物(ABS)、聚甲基丙烯酸甲酯(PMMA)等通用塑料和聚酰胺(尼龙)、热塑性聚酯(PET和PBT)、聚甲醛(POM)、聚碳酸酯(PC)等工程塑料等中的一种或者多种混合物;The thermoplastics include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), acrylonitrile-butadiene-styrene terpolymer (ABS), polymethyl One or more mixtures of general-purpose plastics such as methyl acrylate (PMMA) and engineering plastics such as polyamide (nylon), thermoplastic polyester (PET and PBT), polyoxymethylene (POM), polycarbonate (PC), etc. ;

所述热固性树脂包括环氧树脂(EP)、不饱和聚酯树脂(UP)、烯丙基树脂、氨基树脂、热固性聚酰亚胺树脂、氰酸酯树脂、双马来酰亚胺树脂(BMIs)、酚醛树脂、热固性聚氨酯(PU)等中的一种或者多种混合物;Described thermosetting resin comprises epoxy resin (EP), unsaturated polyester resin (UP), allyl resin, amino resin, thermosetting polyimide resin, cyanate resin, bismaleimide resin (BMIs ), phenolic resin, thermosetting polyurethane (PU), etc. or one or more mixtures;

所述橡胶包括天然橡胶(NR)和各种合成橡胶,如丁苯橡胶(SBR)、聚异戊二烯(IR)、丁基橡胶(IIR)、聚丁二烯橡胶(PBR)、丙烯腈-丁二烯共聚物(NBR),以及各种热塑性弹性体等中的一种或者多种的混合物。The rubber includes natural rubber (NR) and various synthetic rubbers, such as styrene-butadiene rubber (SBR), polyisoprene (IR), butyl rubber (IIR), polybutadiene rubber (PBR), acrylonitrile -Butadiene copolymer (NBR), and a mixture of one or more of various thermoplastic elastomers, etc.

埃洛石纳米管与聚合物混合及成型可以采用现有技术通用的混合设备和成型设备。例如对热塑性塑料类聚合物采用双螺杆挤出机、密炼机或其它混合设备进行熔融混炼,用挤出机或注射机等设备成型;对热固性塑料类聚合物所用的混合设备包括研磨机和搅拌机等;对橡胶类聚合物所用的混合设备包括各种橡胶混炼设备。Mixing and molding of halloysite nanotubes and polymers can adopt common mixing equipment and molding equipment in the prior art. For example, twin-screw extruders, internal mixers or other mixing equipment are used for thermoplastic polymers for melting and mixing, and extruders or injection machines are used for molding; mixing equipment for thermosetting plastic polymers includes grinders and mixers, etc.; the mixing equipment used for rubber polymers includes various rubber mixing equipment.

为了进一步改善埃洛石纳米管和热塑性塑料的相容性,增强埃洛石纳米管与聚合物基体之间的结合,以及使埃洛石纳米管在聚合物基体中充分分散,本发明还可以采用表面改性剂对埃洛石纳米管材料进行表面处理,所述表面处理是可以采用本领域通用的方法,表面改性剂的用量占埃洛石纳米管的0.5~5%重量。In order to further improve the compatibility of halloysite nanotubes and thermoplastics, enhance the bonding between halloysite nanotubes and polymer matrix, and fully disperse halloysite nanotubes in polymer matrix, the present invention can also The halloysite nanotube material is surface treated with a surface modifier, and the surface treatment can adopt a common method in the field, and the amount of the surface modifier accounts for 0.5-5% by weight of the halloysite nanotube.

所述的表面改性剂可以采用本领域通用的表面改性剂,发明人经过创造性探索,发现本发明采用的最佳表面改性剂包括三类,其中Described surface modifier can adopt general surface modifier in the art, and inventor finds that the optimum surface modifier that the present invention adopts comprises three classes through creative exploration, wherein

(1)γ-氨基丙基三乙氧基硅烷、γ-环氧基丙基三乙氧基硅烷、乙烯基苯基乙撑二胺丙基三甲氧基硅烷单盐酸盐、γ-甲基丙烯酰氧基丙基三甲氧基硅烷等各种有机硅烷,钛酸酯偶联剂。这类表面改性剂可以直接加入埃洛石纳米管或埃洛石纳米管与聚合物的混合体系中。(1) γ-aminopropyltriethoxysilane, γ-epoxypropyltriethoxysilane, vinylphenylethylenediaminepropyltrimethoxysilane monohydrochloride, γ-methyl Various organosilanes such as acryloxypropyltrimethoxysilane, titanate coupling agent. Such surface modifiers can be directly added to the halloysite nanotubes or the mixed system of halloysite nanotubes and polymers.

(2)用于埃洛石纳米管接枝的乙烯基单体,包括马来酸酐(MAH)及其酯、富马酸酐(FAH)及其酯、丙烯酸(AA)、甲基丙烯酸(MA)、长链丙烯酸酯或甲基丙烯酸酯、丙烯酸β-羟丙酯(HPA)、甲基丙烯酸β-羟乙酯(HEMA)、丙烯酰胺、二乙烯苯、二甲基丙烯酸乙二醇酯等;这类表面改性剂可以需要在热引发或光引发的条件下与埃洛石纳米管接枝。(2) Vinyl monomers for halloysite nanotube grafting, including maleic anhydride (MAH) and its esters, fumaric anhydride (FAH) and its esters, acrylic acid (AA), methacrylic acid (MA) , long-chain acrylate or methacrylate, β-hydroxypropyl acrylate (HPA), β-hydroxyethyl methacrylate (HEMA), acrylamide, divinylbenzene, ethylene glycol dimethacrylate, etc.; Such surface modifiers may need to be grafted with halloysite nanotubes under thermally or photoinitiated conditions.

(3)用于改善聚合物与埃洛石纳米管界面的大分子偶联剂,包括聚丙烯接枝马来酸酐和聚乙烯接枝马来酸酐等。这类表面改性剂可以直接加入埃洛石纳米管与聚合物的混合体系中。(3) Macromolecular coupling agents used to improve the interface between polymers and halloysite nanotubes, including polypropylene grafted maleic anhydride and polyethylene grafted maleic anhydride, etc. Such surface modifiers can be directly added to the mixed system of halloysite nanotubes and polymers.

本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

1、本发明采用的埃洛石纳米管成本低廉,资源丰富,可大大降低聚合物复合材料的生产成本。1. The halloysite nanotubes used in the present invention are low in cost and rich in resources, which can greatly reduce the production cost of polymer composite materials.

2、本发明制备的聚合物复合材料可应用于制造各种热塑性塑料、热固性塑料和硫化橡胶制品,也可用于粘合剂、涂料等其它聚合物领域,具有广阔的应用前景。2. The polymer composite material prepared by the present invention can be used in the manufacture of various thermoplastics, thermosetting plastics and vulcanized rubber products, and can also be used in other polymer fields such as adhesives and coatings, and has broad application prospects.

3、本发明制备的热塑性和热固性聚合物复合材料的冲击强度、弯曲模量和弯曲强度等力学性能显著提高,而且热分解温度和提高聚合物的阻燃性能也明显提高。3. The mechanical properties such as impact strength, flexural modulus and flexural strength of the thermoplastic and thermosetting polymer composite materials prepared by the present invention are significantly improved, and the thermal decomposition temperature and the flame retardancy of the polymer are also significantly improved.

4、本发明制备的聚合物复合材料用于橡胶领域,可以显著的提高橡胶的模量、拉伸强度、扯断伸长率、永久变形、撕裂强度和硬度,还可提高橡胶的交联密度、老化性能、动态力学性能和加工性能。4. The polymer composite material prepared by the present invention is used in the field of rubber, which can significantly improve the modulus, tensile strength, elongation at break, permanent deformation, tear strength and hardness of the rubber, and can also improve the crosslinking of the rubber. Density, aging properties, dynamic mechanical properties and processing properties.

具体实施方式Detailed ways

实施例1Example 1

第一步:将1克γ-氨基丙基三乙氧基硅烷溶于少量丙酮中,然后均匀喷洒于埃洛石纳米管材料中,待丙酮自然挥发后然后将改性过的埃洛石纳米管于80℃条件下烘干4小时。Step 1: Dissolve 1 gram of γ-aminopropyltriethoxysilane in a small amount of acetone, and then evenly spray it on the halloysite nanotube material. After the acetone volatilizes naturally, the modified halloysite nanotube The tubes were dried at 80°C for 4 hours.

第二步:将100克表面改性的埃洛石纳米管与1000克聚乙烯树脂混合,然后用双螺杆挤出机进行熔融共混造粒。Step 2: Mix 100 grams of surface-modified halloysite nanotubes with 1000 grams of polyethylene resin, and then use a twin-screw extruder to carry out melt blending and granulation.

第三步:用注射机将第二步中得到的混合物进行注射成型,制得聚乙烯/埃洛石纳米管复合材料制品。The third step: injecting the mixture obtained in the second step with an injection machine to obtain a polyethylene/halloysite nanotube composite material product.

所得复合材料用扫描电镜和透射电镜观察,发现埃洛石纳米管以纳米尺度均匀分散于聚乙烯基体中,说明已经制得了聚合物/埃洛石纳米管复合材料。Observing the obtained composite material with a scanning electron microscope and a transmission electron microscope, it is found that the halloysite nanotubes are uniformly dispersed in the polyethylene matrix at a nanometer scale, indicating that the polymer/halloysite nanotube composite material has been prepared.

实施例2Example 2

第一步:将1克乙烯基苯基乙撑二胺丙基三甲氧基硅烷单盐酸盐溶于少量乙醇中,水解3分钟后均匀喷洒于埃洛石纳米管中,待乙醇自然挥发后然后将改性过的埃洛石纳米管于90℃条件下烘干5小时。Step 1: Dissolve 1 gram of vinylphenylethylenediaminepropyltrimethoxysilane monohydrochloride in a small amount of ethanol, hydrolyze it for 3 minutes, and spray it evenly in halloysite nanotubes. After the ethanol volatilizes naturally Then the modified halloysite nanotubes were dried at 90° C. for 5 hours.

第二步:将1克表面改性的埃洛石纳米管与100克环氧树脂混合,室温下搅拌2小时。Step 2: Mix 1 g of surface-modified halloysite nanotubes with 100 g of epoxy resin and stir at room temperature for 2 hours.

第三步:将15克间苯二甲胺加入到上述混合物中,搅拌均匀,脱气,然后浇注入试验模具中。The third step: 15 grams of m-xylylenediamine was added to the mixture, stirred evenly, degassed, and then poured into the test mold.

第四步:室温停放24小时后,用70℃后固化一小时,制得环氧树脂/埃洛石纳米管复合材料。Step 4: After parking at room temperature for 24 hours, post-cure at 70° C. for one hour to prepare epoxy resin/halloysite nanotube composite material.

所得复合材料用扫描电镜和透射电镜观察,发现埃洛石纳米管以纳米尺度均匀分散于环氧树脂中,说明已经制得了聚合物/埃洛石纳米管复合材料。Observing the obtained composite material with a scanning electron microscope and a transmission electron microscope, it is found that the halloysite nanotubes are uniformly dispersed in the epoxy resin at a nanometer scale, indicating that the polymer/halloysite nanotube composite material has been prepared.

实施例3Example 3

第一步:将10克的例二得到的改性埃洛石纳米管加入到适量丙酮中,然后加入3克丙烯酸异辛酯和0.1克光敏引发剂,搅拌10分钟。然后置于托盘中,待丙酮自然挥发,烘干,用紫外光处理一定时间,制得改性埃洛石纳米管。Step 1: Add 10 grams of the modified halloysite nanotubes obtained in Example 2 into an appropriate amount of acetone, then add 3 grams of isooctyl acrylate and 0.1 grams of photoinitiator, and stir for 10 minutes. Then place it in a tray, wait for the acetone to volatilize naturally, dry it, and treat it with ultraviolet light for a certain period of time to prepare the modified halloysite nanotube.

第二步:采用两辊开炼机混炼天然橡胶(NR)、配合剂、及改性埃洛石纳米管材料,混炼胶过夜后用平板硫化机硫化成型,硫化条件为:143℃×正硫化时间,制得天然橡胶/埃洛石纳米复合材料。Step 2: Use a two-roll mill to mix natural rubber (NR), compounding agents, and modified halloysite nanotube materials. After the mixed rubber is left overnight, use a flat vulcanizer to vulcanize and shape it. The vulcanization conditions are: 143°C× The natural rubber/halloysite nanocomposite was prepared with positive vulcanization time.

混炼胶基本配方:天然胶100,改性埃洛石纳米管40,硬脂酸2,ZnO4,促进CZ 1.5,促进DM 0.5,硫磺1.5。Basic formula of compound rubber: natural rubber 100, modified halloysite nanotube 40, stearic acid 2, ZnO4, promotion CZ 1.5, promotion DM 0.5, sulfur 1.5.

所得复合材料用扫描电镜和透射电镜观察,发现埃洛石纳米管以几十纳米的尺度均匀分散于天然橡胶基体中,说明已经制得了天然橡胶/埃洛石纳米管复合材料。Observing the obtained composite material with scanning electron microscope and transmission electron microscope, it is found that the halloysite nanotubes are evenly dispersed in the natural rubber matrix at the scale of tens of nanometers, indicating that the natural rubber/halloysite nanotube composite material has been prepared.

表1列出了埃洛石改性和含量对天然橡胶硫化胶交联密度的影响,从表中可以看到,天然胶的交联密度只有0.194,而加入40wt%的未改性埃洛石纳米管后,体系的交联密度升高,而加入40wt%改性埃洛石纳米管的体系的交联密度则由大幅度的升高,从未改性的埃洛石纳米管填充的0.194上升到了0.310,说明了改性剂与埃洛石表面发生化学结合、并且与橡胶的双键发生化学作用,形成良好的交联网络,使得埃洛石起到了物理交联点的作用,从而大大提高了体系的交联密度。Table 1 has listed the influence of halloysite modification and content on the crosslinking density of natural rubber vulcanizate, as can be seen from the table, the crosslinking density of natural rubber is only 0.194, and adding 40wt% unmodified halloysite After adding nanotubes, the crosslinking density of the system increased, while the crosslinking density of the system added with 40wt% modified halloysite nanotubes was greatly increased, and the 0.194 increased to 0.310, indicating that the modifier chemically combines with the surface of halloysite and reacts chemically with the double bond of rubber to form a good cross-linking network, which makes halloysite play the role of physical cross-linking point, thus greatly The crosslink density of the system is increased.

表1埃络石改性和含量对天然橡胶硫化胶交联密度的影响Table 1 Effect of the modification and content of hallite on the crosslinking density of natural rubber vulcanizate

样品 sample     天然橡胶 natural rubber   NR/埃洛石纳米管(100/40) NR/ Halloysite nanotubes (100/40) NR/改性埃洛石纳米管(100/40) NR/modified halloysite nanotubes (100/40) 交联密度 Crosslink density     0.194 0.194   0.220 0.220 0.310 0.310

表2是天然胶/改性埃洛石纳米管复合材料的物理机械性能。从表2可以改性埃洛石纳米管对天然胶有良好的增强作用,这是由于埃洛石纳米管的管状结构形成比传统填充网络更致密的增强网络结构。因此埃洛石纳米管填充体系大大降低了永久变形,提高了拉伸强度。这主要是由于改性剂与埃洛石表面的硅醇基团发生化学结合,形成稳定键合作用,而在体系硫化时形成良好的交联网络,改善了埃洛石纳米管和橡胶的界面作用力,形成物理机械性能较好的天然橡胶/改性埃洛石纳米复合材料。Table 2 is the physical and mechanical properties of natural rubber/modified halloysite nanotube composites. From Table 2, it can be seen that the modified halloysite nanotubes have a good reinforcing effect on natural rubber, which is due to the tubular structure of halloysite nanotubes forming a denser network structure than the traditional filling network. Therefore, the halloysite nanotube filling system greatly reduces the permanent deformation and improves the tensile strength. This is mainly because the modifier chemically combines with the silanol groups on the surface of halloysite to form a stable bond, and a good cross-linked network is formed when the system is vulcanized, which improves the interface between halloysite nanotubes and rubber Force to form natural rubber/modified halloysite nanocomposites with better physical and mechanical properties.

表2天然胶/改性埃洛石纳米管复合材料的物理机械性能Table 2 Physical and mechanical properties of natural rubber/modified halloysite nanotube composites

力学性能mechanical properties NRNR    NR/改性埃洛石纳米管(10wt%) NR/modified halloysite nanotubes (10wt%) NR/改性埃洛石纳米管(30wt%) NR/modified halloysite nanotubes (30wt%) NR/炭黑(50份半补强)NR/carbon black (50 parts semi-reinforced)   300%定伸应力,MPa拉伸强度,MPa扯断伸长率,%拉伸永久变形,%硬度(邵尔A),度 300% modulus stress, MPa tensile strength, MPa elongation at break, % tensile set, % hardness (Shore A), degree   1.724.77301242 1.724.77301242     6.632.06302558 6.632.06302558 7.226.55503763 7.226.55503763   9.627.95603865 9.627.95603865

实施例4Example 4

第一步:将1克双γ-甲基丙烯酰氧基丙基三甲氧基硅烷溶于少量丙酮中,然后均匀喷洒于埃洛石纳米管材料中,然后将改性过的埃洛石纳米管于80℃条件下烘干4小时。Step 1: Dissolve 1 gram of bis-γ-methacryloxypropyltrimethoxysilane in a small amount of acetone, and then evenly spray it on the halloysite nanotube material, and then apply the modified halloysite nanotube material The tubes were dried at 80°C for 4 hours.

第二步:将200克表面改性的埃洛石纳米管与1000克聚丙烯树脂混合,然后用双螺杆挤出机进行熔融共混造粒。Step 2: Mix 200 grams of surface-modified halloysite nanotubes with 1000 grams of polypropylene resin, and then use a twin-screw extruder to carry out melt blending and granulation.

第三步:用注射机将第二步中得到的混合物进行注射成型,制得聚丙烯/埃洛石纳米管复合材料。The third step: injecting the mixture obtained in the second step with an injection machine to prepare a polypropylene/halloysite nanotube composite material.

所得复合材料用扫描电镜和透射电镜观察,发现埃洛石纳米管以纳米尺度均匀分散于聚丙烯基体中,说明已经制得了聚合物/埃洛石纳米管复合材料。Observing the obtained composite material with a scanning electron microscope and a transmission electron microscope, it is found that the halloysite nanotubes are uniformly dispersed in the polypropylene matrix at a nanometer scale, indicating that the polymer/halloysite nanotube composite material has been prepared.

表3列出了聚丙烯/埃洛石复合材料的部分力学性能。由此表可以看到,聚丙烯/埃洛石纳米复合材料的冲击强度、拉伸强度、弯曲模量和弯曲强度等力学性能均比纯聚丙烯有不同幅度的提高,特别是用改性埃洛石纳米管填充的聚丙烯纳米复合材料,其冲击强度、弯曲强度和弯曲模量均由大幅度的提高。Table 3 lists some mechanical properties of polypropylene/halloysite composites. It can be seen from the table that the impact strength, tensile strength, flexural modulus and flexural strength of polypropylene/halloysite nanocomposites are all improved in different ranges compared with pure polypropylene. The impact strength, flexural strength and flexural modulus of polypropylene nanocomposites filled with rockite nanotubes are greatly improved.

表3聚丙烯/埃洛石复合材料力学性能的影响Table 3 Effect of polypropylene/halloysite composites on mechanical properties

改性剂modifier 冲击强度(KJ/m2)Impact strength (KJ/m 2 ) 拉伸强度(MPa) Tensile strength (MPa)   弯曲模量(MPa) Flexural modulus (MPa)   弯曲强度(MPa) Bending strength (MPa) 纯PP埃洛石纳米管改性埃洛石纳米管 Pure PP halloysite nanotubes modified halloysite nanotubes 4.066.368.36 4.066.368.36 32.432.034.5 32.432.034.5   1183.001254.671592.55 1183.001254.671592.55   40.6541.9646.86 40.6541.9646.86

实施例5Example 5

第一步:将1克丙烯酸β-羟丙酯和0.5克甲苯二异氰酸酯混合表面改性剂溶于少量丙酮中,然后均匀喷洒于100克埃洛石纳米管材料中,待丙酮自然挥发后将改性过的埃洛石纳米管于80℃条件下烘干4小时。Step 1: Dissolve 1 gram of β-hydroxypropyl acrylate and 0.5 gram of toluene diisocyanate mixed surface modifier in a small amount of acetone, and then evenly spray it on 100 grams of halloysite nanotube material. After the acetone volatilizes naturally The modified halloysite nanotubes were dried at 80°C for 4 hours.

第二步:将表面改性的埃洛石纳米管与聚丙烯树脂混合,然后用双螺杆挤出机进行熔融共混造粒。The second step: mixing the surface-modified halloysite nanotubes with polypropylene resin, and then using a twin-screw extruder to perform melt blending and granulation.

第三步:用注射机将第二步中得到的混合物进行注射成型,制得聚丙烯/埃洛石纳米管复合材料。The third step: injecting the mixture obtained in the second step with an injection machine to prepare a polypropylene/halloysite nanotube composite material.

表4列出了各种聚丙烯/埃洛石纳米管复合材料热降解温度。Table 4 lists the thermal degradation temperatures of various polypropylene/halloysite nanotube composites.

表4各种聚丙烯/埃洛石纳米管复合材料热降解温度Table 4 Thermal degradation temperature of various polypropylene/halloysite nanotube composites

组成composition 失重5%温度(℃) Weight loss 5% temperature (°C)     失重10%温度(℃)  10% weight loss temperature (°C) 最大失重速率温度(℃) Maximum weight loss rate temperature (°C) 纯PP未改性埃洛石纳米管10%未改性埃洛石纳米管30%改性埃洛石纳米管10%改性HNT 20改性HNT 30% Pure PP unmodified halloysite nanotube 10% unmodified halloysite nanotube 30% modified halloysite nanotube 10% modified HNT 20 modified HNT 30% 384415381445433433 384415381445433433     399430400461445447 399430400461445447 451460440487474478 451460440487474478

由表4可以看到,在PP失重5%的温度最高可提高超过60℃,说明热稳定性大大提高。It can be seen from Table 4 that the temperature at which PP loses 5% of its weight can be increased by more than 60°C, indicating that the thermal stability is greatly improved.

Claims (8)

1、一种埃洛石纳米管用于制备聚合物复合材料的方法,其特征在于埃洛石纳米管与聚合物按1∶10、1∶100、40∶100或1∶5的重量比混合,使埃洛石纳米管均匀分散于聚合物基体中,然后成型得到聚合物复合材料制品;所述埃洛石纳米管是一种天然的粘土矿物,由硅酸盐片层在天然条件下卷曲而成的微管状结构;所述聚合物是热塑性塑料、热固性塑料、橡胶中的一种或一种以上。1, a kind of method that halloysite nanotube is used for preparing polymer composite material, it is characterized in that halloysite nanotube mixes with polymer by the weight ratio of 1: 10, 1: 100, 40: 100 or 1: 5, The halloysite nanotubes are uniformly dispersed in the polymer matrix, and then shaped to obtain polymer composite products; the halloysite nanotubes are a kind of natural clay minerals, which are formed by curling silicate sheets under natural conditions. The formed microtubular structure; the polymer is one or more of thermoplastics, thermosetting plastics, and rubber. 2、根据权利要求1所述的方法,其特征在于所述热塑性塑料包括聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、丙烯腈-丁二烯-苯乙烯三元共聚物、聚甲基丙烯酸甲酯、聚酰胺、热塑性聚酯、聚甲醛、聚碳酸酯中的一种或者多种的混合物。2. The method according to claim 1, wherein said thermoplastic comprises polyethylene, polypropylene, polyvinyl chloride, polystyrene, acrylonitrile-butadiene-styrene terpolymer, polymethyl One or more mixtures of methyl acrylate, polyamide, thermoplastic polyester, polyoxymethylene, and polycarbonate. 3、根据权利要求1所述的方法,其特征在于所述热固性树脂包括环氧树脂、不饱和聚酯树脂、烯丙基树脂、氨基树脂、热固性聚酰亚胺树脂、氰酸酯树脂、双马来酰亚胺树脂、酚醛树脂、热固性聚氨酯中的一种或者多种的混合物。3. The method according to claim 1, wherein the thermosetting resin comprises epoxy resin, unsaturated polyester resin, allyl resin, amino resin, thermosetting polyimide resin, cyanate resin, bis One or more mixtures of maleimide resin, phenolic resin, and thermosetting polyurethane. 4、根据权利要求1所述的方法,其特征在于所述橡胶包括丁苯橡胶、聚异戊二烯、丁基橡胶、聚丁二烯橡胶、丙烯腈-丁二烯共聚物中的一种或者多种的混合物。4. The method according to claim 1, wherein the rubber comprises one of styrene-butadiene rubber, polyisoprene, butyl rubber, polybutadiene rubber, and acrylonitrile-butadiene copolymer or a variety of mixtures. 5、根据权利要求1-4之一所述的方法,其特征在于用表面改性剂对埃洛石纳米管进行表面处理,表面改性剂用量占埃洛石纳米管的0.5~5%重量。5. The method according to any one of claims 1-4, characterized in that the halloysite nanotubes are surface treated with a surface modifier, and the amount of the surface modifier accounts for 0.5 to 5% by weight of the halloysite nanotubes . 6、根据权利要求5所述的方法,其特征在于表面改性剂是γ-氨基丙基三乙氧基硅烷、γ-环氧基丙基三乙氧基硅烷、乙烯基苯基乙撑二胺丙基三甲氧基硅烷单盐酸盐、γ-甲基丙烯酰氧基丙基三甲氧基硅烷或钛酸酯偶联剂。6. The method according to claim 5, characterized in that the surface modifier is γ-aminopropyltriethoxysilane, γ-epoxypropyltriethoxysilane, vinylphenylethylenedi Aminopropyltrimethoxysilane monohydrochloride, γ-methacryloxypropyltrimethoxysilane or titanate coupling agent. 7、根据权利要求5所述的方法,其特征在于所述表面改性剂是马来酸酐及其酯、富马酸酐及其酯、丙烯酸、甲基丙烯酸、长链丙烯酸酯、甲基丙烯酸酯、丙烯酸β-羟丙酯、甲基丙烯酸β-羟乙酯、丙烯酰胺、二乙烯苯、二甲基丙烯酸乙二醇酯中的一种或一种以上。7. The method according to claim 5, wherein the surface modifier is maleic anhydride and its esters, fumaric anhydride and its esters, acrylic acid, methacrylic acid, long-chain acrylates, methacrylates , one or more of β-hydroxypropyl acrylate, β-hydroxyethyl methacrylate, acrylamide, divinylbenzene, and ethylene glycol dimethacrylate. 8、根据权利要求5所述的方法,其特征在于所述的表面改性剂是聚丙烯接枝马来酸酐或聚乙烯接枝马来酸酐。8. The method according to claim 5, characterized in that said surface modifier is polypropylene grafted maleic anhydride or polyethylene grafted maleic anhydride.
CNB2005100353818A 2005-06-24 2005-06-24 Preparation of polymer composite material from halloysite nanometer tube Expired - Fee Related CN100348655C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100353818A CN100348655C (en) 2005-06-24 2005-06-24 Preparation of polymer composite material from halloysite nanometer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100353818A CN100348655C (en) 2005-06-24 2005-06-24 Preparation of polymer composite material from halloysite nanometer tube

Publications (2)

Publication Number Publication Date
CN1746216A CN1746216A (en) 2006-03-15
CN100348655C true CN100348655C (en) 2007-11-14

Family

ID=36165949

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100353818A Expired - Fee Related CN100348655C (en) 2005-06-24 2005-06-24 Preparation of polymer composite material from halloysite nanometer tube

Country Status (1)

Country Link
CN (1) CN100348655C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617974A (en) * 2012-04-01 2012-08-01 宁波康氏塑料科技有限公司 Acrylonitrile butadiene styrene (ABS)/ nerchinskite composite material and preparation method thereof
CN102634242A (en) * 2012-04-18 2012-08-15 天津大学 Method for preparing composite material by modifying halloysite nanotube and compounding waterborne polyurethane

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888419B2 (en) 2005-09-02 2011-02-15 Naturalnano, Inc. Polymeric composite including nanoparticle filler
US8124678B2 (en) 2006-11-27 2012-02-28 Naturalnano, Inc. Nanocomposite master batch composition and method of manufacture
US8648132B2 (en) 2007-02-07 2014-02-11 Naturalnano, Inc. Nanocomposite method of manufacture
CN101372620B (en) * 2008-09-25 2011-05-18 河南省科学院 Galapectite load antimony pentoxide nano complex and preparation thereof
CN102070805A (en) * 2010-11-25 2011-05-25 中山科成化纤有限公司 A kind of polyolefin/halloysite nanotube composite masterbatch and its preparation method and application
CN102153744B (en) * 2011-02-23 2013-01-23 株洲时代新材料科技股份有限公司 Preparation method of halloysite nanotube reinforced flame-retardant anionic polymerization nylon
CN102120907B (en) * 2011-03-30 2013-09-25 华南理工大学 Solvent-free nano composite epoxy resin floor coating and preparation method thereof
CN102250347B (en) * 2011-05-04 2012-11-21 中国地质大学(武汉) Preparation method of chelating type ion exchange resin with natural halloysite nanotube (HNT) as matrix
CN103087252B (en) * 2013-01-16 2014-12-31 珠海得米新材料有限公司 Preparation method of high-absorption composite
CN103087553A (en) * 2013-01-30 2013-05-08 北京化工大学常州先进材料研究院 Maleic anhydride grafted modified halloysite nanotube and preparation method thereof
CN103254531A (en) * 2013-05-27 2013-08-21 常州大学 Flame-retardant PVC (polyvinyl chloride) composite material and preparation method thereof
CN103665719A (en) * 2013-11-26 2014-03-26 蔡芳昌 Modified polypropylene resin composition with high toughness composition and preparation method thereof
CN103622836B (en) * 2013-12-02 2015-09-30 天津大学 Poly-2-acrylamide-2-methylpro panesulfonic acid-methyl methacrylate-galapectite denture base material and preparation method
CN103622835A (en) * 2013-12-02 2014-03-12 天津大学 DMC-MMA (methyl methacrylate)-halloysite copolymerized denture base material and preparation method thereof
CN105098148A (en) * 2014-05-15 2015-11-25 国家纳米科学中心 Preparation method of nanoscale silicon and silicon/carbon composite materials and application thereof
ES2667368T3 (en) 2014-07-09 2018-05-10 Sabanci Universitesi Food packaging materials with antibacterial, ethylene capture and barrier properties
US9073014B1 (en) 2014-10-01 2015-07-07 Kuwait Institute For Scientific Research Nanocomposite mixed-matrix membrane
CN104262939A (en) * 2014-10-10 2015-01-07 浙江环龙新材料科技有限公司 TPU (Thermoplastic Poly Urethane) thin film smooth anti-blocking masterbatch
CN104448733A (en) * 2014-12-10 2015-03-25 惠州市昌亿科技股份有限公司 Reinforcing toughening agent for 3D printing PBT and PBT composite material prepared from reinforcing toughening agent
CN104558848B (en) * 2015-01-19 2017-05-24 苏州银禧科技有限公司 Halloysite nanotube-enhanced conducting polypropylene material and preparation method thereof
EP3130572B1 (en) 2015-08-10 2022-01-05 The Boeing Company Inorganic thermoset resin and method of making thereof
CN105694283B (en) * 2016-02-24 2017-07-21 东莞市国贤塑胶有限公司 High-strength PVC elastomer and its preparation technology for charging electric vehicle cable
CN105820580A (en) * 2016-05-12 2016-08-03 东莞市联洲知识产权运营管理有限公司 High-strength silicone rubber electromagnetic shielding material and preparing method thereof
CN105885364A (en) * 2016-07-04 2016-08-24 蚌埠市正园电子科技有限公司 Reinforced and modified PBT (polybutylene terephthalate) material with epoxy resin bonding performance and preparation method for reinforced and modified PBT material
CN106800724A (en) * 2016-12-21 2017-06-06 马鞍山瑞美塑业有限公司 A kind of antibacterial wear-resistant plastic
CN107603547A (en) * 2017-10-26 2018-01-19 鹤山市怡信化工厂有限公司 A kind of nano-material modified Epoxy-imide adhesive
CN108249822A (en) * 2018-02-27 2018-07-06 利高工艺品(厦门)有限公司 A kind of imitative stone and its manufacture craft
US20210261421A1 (en) * 2018-04-25 2021-08-26 Jfe Mineral Company, Ltd. Metahalloysite powder and metahalloysite powder production method
US10153507B1 (en) 2018-07-30 2018-12-11 Kuwait Institute For Scientific Research Method of making a nanocomposite polyelectrolyte membrane
CN111704767A (en) * 2019-03-18 2020-09-25 广州市香港科大霍英东研究院 A kind of high rigidity and high toughness polypropylene composite material and preparation method thereof
CN110591157B (en) * 2019-08-30 2021-03-30 厦门大学 Preparation method and application of polyphosphazene polymer modified halloysite nanotube composite material with different coating thicknesses
CN110982205A (en) * 2019-12-19 2020-04-10 湖南大学 Preparation method and application of skeleton-imitated polymer composite material for dummy
CN111187472A (en) * 2020-03-30 2020-05-22 苏州润佳工程塑料股份有限公司 Regeneration method of polypropylene material for vehicle
CN113561537A (en) * 2021-07-22 2021-10-29 苏州捷丹耀科技有限公司 Optical fiber for high-purity low-loss optical cable and preparation method thereof
CN113861359B (en) * 2021-10-11 2024-01-30 中国电建集团中南勘测设计研究院有限公司 Modified halloysite nanotube, photo-curing lining material, and preparation methods and applications thereof
CN114031859A (en) * 2021-12-15 2022-02-11 广东特帅科技股份有限公司 High-molecular modified material of high-cold-resistance UV-resistant intelligent turnover frame for storage and transportation of fresh products
CN115181403A (en) * 2022-06-17 2022-10-14 山东科技大学 Polylactic acid/organic intercalation modified halloysite composite material and preparation method thereof
CN116144104A (en) * 2022-12-13 2023-05-23 湖北合聚高分子材料有限公司 Halloysite/talcum powder composite modified PP material and preparation method thereof
CN115926423B (en) * 2023-01-10 2023-08-15 大韩高性能材料(广东)有限公司 Impact-resistant pearlescent PC color master batch and preparation method thereof
CN116925516B (en) * 2023-08-17 2024-02-09 韦尔通科技股份有限公司 High-temperature-resistant and low-temperature-resistant bio-based hot melt adhesive pipe and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810734A (en) * 1987-03-26 1989-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing composite material
JPH07324390A (en) * 1994-05-31 1995-12-12 Nippon Kayaku Co Ltd Humidity conditioning material
CN1318657A (en) * 2000-04-04 2001-10-24 石美秀 Manufacture of fibre containing functional mineral powder and fibre prepared by the same
CN1346385A (en) * 1999-02-10 2002-04-24 Basf公司 Thermoplastic nanocomposites
CN1362641A (en) * 2000-12-28 2002-08-07 伊斯曼柯达公司 Imaging element with supporter containing nano composition material
KR20030020190A (en) * 2001-09-03 2003-03-08 한국화학연구원 An Preparation Method of Polymer-kaolinite Nanocomposite
CN1473176A (en) * 2001-07-23 2004-02-04 ������������ʽ���� Thermoplastic resin composition, molded article and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810734A (en) * 1987-03-26 1989-03-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing composite material
JPH07324390A (en) * 1994-05-31 1995-12-12 Nippon Kayaku Co Ltd Humidity conditioning material
CN1346385A (en) * 1999-02-10 2002-04-24 Basf公司 Thermoplastic nanocomposites
CN1318657A (en) * 2000-04-04 2001-10-24 石美秀 Manufacture of fibre containing functional mineral powder and fibre prepared by the same
CN1362641A (en) * 2000-12-28 2002-08-07 伊斯曼柯达公司 Imaging element with supporter containing nano composition material
CN1473176A (en) * 2001-07-23 2004-02-04 ������������ʽ���� Thermoplastic resin composition, molded article and manufacturing method thereof
KR20030020190A (en) * 2001-09-03 2003-03-08 한국화학연구원 An Preparation Method of Polymer-kaolinite Nanocomposite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617974A (en) * 2012-04-01 2012-08-01 宁波康氏塑料科技有限公司 Acrylonitrile butadiene styrene (ABS)/ nerchinskite composite material and preparation method thereof
CN102634242A (en) * 2012-04-18 2012-08-15 天津大学 Method for preparing composite material by modifying halloysite nanotube and compounding waterborne polyurethane

Also Published As

Publication number Publication date
CN1746216A (en) 2006-03-15

Similar Documents

Publication Publication Date Title
CN100348655C (en) Preparation of polymer composite material from halloysite nanometer tube
CN101343386B (en) Preparation method for rubber/keramite nano-tube nano-composite material
JP3826301B2 (en) Modified calcium carbonate, polymer composition containing the same, and production method thereof
Dai et al. Mechanical properties of carbon nanotubes-polymer composites
CN100491452C (en) Preparation method of clay and styrene-butadiene rubber nanocomposite material modified by silane coupling agent
CN102796294B (en) Preparation method of calcium carbonate modified butylbenzene/natural rubber composite material
CN107501486A (en) A kind of nano silicon of surface grafting polyisoprene, preparation method and applications
CN100412126C (en) Composite materials and preparation of a class of fluid-like inorganic nanoparticles and polymers
CN101838421A (en) Preparation method of modified filler/polypropylene composite material
Jia et al. Advances in rubber/halloysite nanotubes nanocomposites
CN1210345C (en) Polyvinyl chloride reinforcing and tougheness improving modifier and preparation and application thereof
WO2012014676A1 (en) Fiber-reinforced thermoplastic resin composition and process for producing fiber-reinforced thermoplastic resin composition
CN110105781A (en) One kind enhancing bamboo powder/polyethylene interface compatibility technology based on the bionical interface modification of polyacrylamide base dopamine
CN101113216A (en) A modified rubber powder nanocomposite material and its preparation method
KR101621126B1 (en) Polymer pellet for extrusion, polymer composites and method for preparing them
CN101215410B (en) Polybutylene terephthalate modified resin
CN1194998C (en) Nano-class rubber-laminated inorganic substance composition and its preparing process
CN111019217B (en) Nano composite polymer material
CN1333004C (en) Method for preparing nano silicate fiber and rubber composite material
CN101735509A (en) Micron-nano silicon carbide/polypropylene composite and preparation method thereof
CN1597531A (en) Modified nanometer calcium carbonate and its preparation method
CN101386695B (en) Polypropylene-nano particle compound material and preparation method thereof
WO2004039881A1 (en) Polyolefin resin composition and processes for the production thereof
CN117247639A (en) Tire inner liner rubber composition containing bio-based modified cracking carbon black, mixing method and tire
CN101486816B (en) High impact resistance polypropylene composite material and preparation thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071114

Termination date: 20150624

EXPY Termination of patent right or utility model