CN100342543C - Packaging equipment and method capable of selecting optimal distance to package optical sensing module - Google Patents
Packaging equipment and method capable of selecting optimal distance to package optical sensing module Download PDFInfo
- Publication number
- CN100342543C CN100342543C CNB2004100296990A CN200410029699A CN100342543C CN 100342543 C CN100342543 C CN 100342543C CN B2004100296990 A CNB2004100296990 A CN B2004100296990A CN 200410029699 A CN200410029699 A CN 200410029699A CN 100342543 C CN100342543 C CN 100342543C
- Authority
- CN
- China
- Prior art keywords
- image
- optical sensor
- lens
- distance
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 174
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000010191 image analysis Methods 0.000 claims abstract description 29
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012858 packaging process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Landscapes
- Automatic Focus Adjustment (AREA)
- Studio Devices (AREA)
Abstract
Description
技术领域technical field
本发明提供一种封装设备,尤指一种能选取最佳距离封装光学感测模块的封装设备。The invention provides a packaging device, especially a packaging device capable of selecting an optimal distance to package an optical sensing module.
背景技术Background technique
光能源从古至今在人类的生活上一直是一个非常重要的能量来源,早期人类使用光能来取暖、升火或照明,近代对于光的特性又有更深入的了解,而衍生了更多的应用,不论在通讯上(光纤通讯),影像处理上(数字相机),显示器材上(液晶屏幕)或是其它的应用领域,都可以看到利用光学的科技产品,因此,关于光电结合等基本组件,如用以侦测光量大小的光学传感器,变成现今许多电子制造公司生产的主要产品之一。Light energy has been a very important source of energy in human life from ancient times to the present. Early humans used light energy for heating, fire or lighting. In modern times, they have a deeper understanding of the characteristics of light, and have derived more Applications, no matter in communication (optical fiber communication), image processing (digital camera), display equipment (liquid crystal screen) or other application fields, you can see technology products using optics. Components, such as optical sensors that detect the amount of light, have become one of the staple products produced by many electronics manufacturing companies today.
比较常见的光学传感器有两种,一种是数码相机使用的光学传感器,称为电荷耦合组件(CCD),是一种可记录光学变化的半导体。电荷耦合组件的表面具有储存电荷的能力,并以矩阵的方式排列,可以将一个以光学讯号呈现的影像讯号转成以电荷储存的影像讯号,而根据电荷耦合组件内储存电荷的多寡就可以判读该影像讯号的强弱,并且还原成原影像。另一种是利用金氧半晶体管(CMOS)原理做成的光学传感器,它是利用硅和锗这两种元素所做成的半导体,使其在CMOS上共存着带N和带P极的半导体,这两个互补效应所产生的电流即可被处理芯片记录和解读成影像。There are two types of optical sensors that are more common. One is the optical sensor used in digital cameras, called a charge-coupled device (CCD), which is a semiconductor that can record optical changes. The surface of the charge-coupled device has the ability to store charges and is arranged in a matrix. It can convert an image signal presented as an optical signal into an image signal stored in charge, and it can be judged according to the amount of charge stored in the charge-coupled device. The intensity of the image signal and restore to the original image. The other is an optical sensor made of the principle of a metal oxide semiconductor (CMOS), which is a semiconductor made of two elements, silicon and germanium, so that a semiconductor with N and P poles coexists on the CMOS. , the current generated by these two complementary effects can be recorded and interpreted as an image by the processing chip.
然而,工厂生产制造用以侦测光量的组件时是出产一个同时包含一光学传感器和一透镜的光学感测模块。请参考图1。图1为一个光学感测模块10的示意图。该光学感测模块10包含一透镜14,一光学传感器16和一接口电路18。一般而言,所要侦测的影像范围比光学传感器的面积会大上许多,所以需要一个透镜将外界影像缩小成像在光学传感器上,如图1所示,发光物12经由透镜14成像在光学传感器16上。光学传感器16侦测到所接收影像的光学讯号后,将该光学讯号以电讯号的方式储存在接口电路18,并且,接口电路18能将这些带有影像信息的电讯号传输到其它的设备让影像进行处理。However, when a factory manufactures components for detecting the amount of light, it produces an optical sensing module including an optical sensor and a lens. Please refer to Figure 1. FIG. 1 is a schematic diagram of an optical sensing module 10 . The optical sensing module 10 includes a
现有技术中欲将透镜14成像于光学传感器16上,必须将透镜14与光学传感器16之间调整一个最佳距离(如图中的D),才能使光学传感器16上所形成的影像最清楚。工厂在出场这些光学感测模块10时必须找到这最佳距离,同时把透镜14与光学传感器16固定在这最佳距离上并封装起来,此后,使用者在使用光学感测模块10时就会得到一最清楚的影像,不必担心调焦的问题。In the prior art, if the
现今调整透镜14与光学传感器16之间最佳距离方法如下,首先在光学感测模块10外置一发光物12,发光物12会经由透镜14成像在光学传感器16上,此时,透镜14与光学传感器16之间有维持一段距离(通常不是最佳距离),之后,光学传感器16会将影像讯号传给接口电路18,并经由接口电路18把影像讯号输出至一台计算机,最后在计算机屏幕上显示投射于光学传感器16上的影像。测试者由计算机屏幕上的影像来判断到底现在的成像是否清楚,如果不清楚,表示透镜14与光学传感器16的距离并非透镜焦距,因此再用人工方式调整透镜14与光学传感器16的距离,同时一边注意计算机屏幕上的影像。当测试者认为计算机屏幕上的影像已是最清楚的情况下,则认定此时透镜14与光学传感器16的距离已为最佳距离,所以,把透镜14与光学传感器16固定封装,成为一可出厂上架的光学感测模块10。The current method for adjusting the optimal distance between the
虽然先前封装光学感测模块的方法可以在封装过程固定透镜与光学传感器间的最佳距离,但是却有下列缺点:一、由于以人工的方式来判断影像的清楚与模糊,常常会因测试者不同而定义不同的焦距,调焦的结果并不明确统一。二、人非机器而容易疲累,所以人工方式对焦较不可靠。三、人力资源价格较高,速度也较慢,不符合生产的经济较益。四、如果光学感测模块本身的透镜有污点或是光学传感器上有小坏点,无法快速有效的侦测。因此,本发明提供一种能选取最佳距离封装光学感测模块的封装设备,改善现有技术的缺点,提升封装光学感测模块准确度与速度。Although the previous method of packaging the optical sensing module can fix the optimal distance between the lens and the optical sensor during the packaging process, it has the following disadvantages: 1. Since the clarity and blur of the image are judged manually, it is often difficult for the tester Different focal lengths are defined differently, and the results of focusing are not clear and uniform. 2. People are not machines and are prone to fatigue, so manual focusing is less reliable. 3. The price of human resources is high and the speed is slow, which is not in line with the economic benefits of production. 4. If the lens of the optical sensing module itself is stained or there are small dead spots on the optical sensor, it cannot be detected quickly and effectively. Therefore, the present invention provides a packaging device capable of selecting an optimal distance to package the optical sensing module, which improves the shortcomings of the prior art and improves the accuracy and speed of packaging the optical sensing module.
发明内容Contents of the invention
本发明揭露一种能选取最佳距离封装光学感测模块的封装设备,其包含一基座,用来放置一透镜和一光学传感器,该透镜与该光学传感器间的距离为可调;一影像分析模块,用来分析该光学传感器接收的影像讯号及依据分析的结果输出一分析结果讯号;一距离调整模块,与该基座及该影像分析模块相连,用来依据该影像分析模块输出的分析结果讯号,调整该基座的透镜与光学传感器间的距离;以及一污点检测模块,与该基座相连,用来依据该光学传感器接收的影像讯号与一标准影像判断该透镜或该光学传感器是否污损。The invention discloses a packaging device capable of selecting an optimal distance to package an optical sensing module, which includes a base for placing a lens and an optical sensor, the distance between the lens and the optical sensor is adjustable; an image An analysis module is used to analyze the image signal received by the optical sensor and output an analysis result signal according to the analysis result; a distance adjustment module is connected to the base and the image analysis module to be used for analysis based on the output of the image analysis module result signal, adjust the distance between the lens of the base and the optical sensor; and a stain detection module, connected with the base, used to judge whether the lens or the optical sensor is based on the image signal received by the optical sensor and a standard image defaced.
本发明提供一种能以光学感测模块中一透镜与一光学传感器的最佳封装距离来封装该光学感测模块的方法,包含以下步骤:The present invention provides a method for packaging the optical sensing module with the optimal packaging distance between a lens and an optical sensor in the optical sensing module, comprising the following steps:
(a)读取该光学传感器接收的影像讯号;(a) read the image signal received by the optical sensor;
(b)影像分析模块从该光学传感器接收的影像讯号中,撷取一部分影像讯号;(b) the image analysis module extracts a part of the image signal from the image signal received by the optical sensor;
(c)影像分析模块再依据所撷取的部分影像讯号来计算影像差异系数,该影像差异系数的计算进行下列步骤:(c) The image analysis module calculates the image difference coefficient according to the captured part of the image signal, and the calculation of the image difference coefficient performs the following steps:
(c1)在该部分影像讯号中,计算水平轴上各个相邻的局部影像讯号的差值的平方;(c1) in the partial image signal, calculate the square of the difference between each adjacent partial image signal on the horizontal axis;
(c2)该部分影像讯号中,计算垂直轴上各个相邻的局部影像讯号的差值的平方;以及(c2) of the partial image signal, calculate the square of the difference between adjacent partial image signals on the vertical axis; and
(c3)将该水平轴上各个影像讯号差值的平方与垂直轴上各个影像讯号差值的平方相加,以取得该影像差异系数;(c3) adding the square of each image signal difference on the horizontal axis to the square of each image signal difference on the vertical axis to obtain the image difference coefficient;
(d)距离调整模块依据该影像差异系数,控制调整机构调整该透镜与该光学传感器间的距离,该步骤(d)调整该透镜与该光学传感器间的距离,使得该透镜与该光学传感器在该距离下,所撷取的部分影像讯号所计算出影像差异系数为最大;(d) The distance adjustment module controls the adjustment mechanism to adjust the distance between the lens and the optical sensor according to the image difference coefficient, and the step (d) adjusts the distance between the lens and the optical sensor so that the lens and the optical sensor are within At this distance, the image difference coefficient calculated from the captured part of the image signal is the largest;
(e)由封装模块固定该透镜与该光学传感器并完成该光学感测模块的封装。(e) fixing the lens and the optical sensor by the packaging module and completing the packaging of the optical sensing module.
本发明相对于现有结构的效果是显著的:The present invention is remarkable with respect to the effect of existing structure:
在本发明能选取最佳距离封装光学感测模块的封装设备中,利用影像分析模块与距离调整模块的配合将基座上的透镜与光学传感器自动调整到封装的最佳距离,使得该光学感测模块封装之后,所侦测的影像能够在内部的光学传感器中较清楚的成像。另外,本发明的封装设备具有一个污点检测模块,能够在封装过程中同时检测光学感测模块中透镜与光学传感器是否有污损的情况,如果检测到可能有污损情形时,进一步指出透镜上与光学传感器上污损的位置。本发明将封装与光学检测合于同一流程,而且以全自动的方式实现了调整封装距离、封装光学感测模块以及检测光学模块,大大的缩短了先前封装和测试的时间,减少封装测试过程所需的人力资源,增进效率光学感测模块的出厂效率,并且提升光学感测模块封装检测的准确度,是现有技术所无法达到的。In the packaging equipment of the present invention that can select the optimal distance to package the optical sensing module, the lens on the base and the optical sensor are automatically adjusted to the optimal distance of the packaging by using the cooperation of the image analysis module and the distance adjustment module, so that the optical sensor After the detection module is packaged, the detected image can be clearly imaged in the internal optical sensor. In addition, the packaging equipment of the present invention has a stain detection module, which can simultaneously detect whether the lens and the optical sensor in the optical sensing module are stained during the packaging process. With a defaced position on the optical sensor. The present invention combines packaging and optical detection into the same process, and realizes the adjustment of packaging distance, packaging of optical sensing modules and detection optical modules in a fully automatic manner, which greatly shortens the time of previous packaging and testing, and reduces the cost of packaging and testing. It is beyond the reach of the prior art to reduce the required human resources, improve the factory efficiency of the optical sensing module, and improve the accuracy of packaging and inspection of the optical sensing module.
现有封装光学感测模块的方法利用测试人员手动调整透镜与光学传感器间的封装距离常因判断影像的清楚与模糊的定义不同产生调焦的结果不明确的情形。再者,先前的方法所需人力资源价格高,封装速度慢,不符合生产的经济效益。而且,不能在封装过程中快速有效的侦测透镜的污点或是光学传感器上的坏点。本发明能选取最佳距离封装光学感测模块的封装设备,具有影像分析模块、距离调整模块以及污点检测模块,能够自动完成光学感测模块的封装以及透镜和光学传感器的污损检测,具有速度快、效率高、准确度提升与低成本的优点。The existing method of packaging the optical sensing module uses testers to manually adjust the packaging distance between the lens and the optical sensor, often resulting in unclear focusing results due to different definitions of clear and blurred images. Furthermore, the human resources required by the previous method are expensive and the packaging speed is slow, which is not in line with the economic benefits of production. Moreover, it is impossible to quickly and effectively detect stains on the lens or dead pixels on the optical sensor during the packaging process. The present invention can select the optimal distance to package the packaging equipment of the optical sensing module, has an image analysis module, a distance adjustment module and a stain detection module, can automatically complete the packaging of the optical sensing module and the stain detection of the lens and the optical sensor, and has the advantages of high speed The advantages of fast, high efficiency, improved accuracy and low cost.
附图说明Description of drawings
图1为现有光学感测模块的示意图。FIG. 1 is a schematic diagram of a conventional optical sensing module.
图2为本发明的第一实施例能选取最佳距离封装光学感测模块的封装设备的方块图。FIG. 2 is a block diagram of a packaging device capable of selecting an optimal distance to package an optical sensing module according to a first embodiment of the present invention.
图3为透镜和光学传感器间相距不同距离时,影像差异系数FD的变化示意图。FIG. 3 is a schematic diagram of the change of the image difference coefficient FD when the distance between the lens and the optical sensor is different.
图4为本发明的第二实施例能选取最佳距离封装光学感测模块的封装设备的方块图。FIG. 4 is a block diagram of a packaging device capable of selecting an optimal distance to package an optical sensing module according to a second embodiment of the present invention.
图5为本发明封装设备内基座结构的俯视图。Fig. 5 is a top view of the base structure in the packaging device of the present invention.
图6为本发明用来检测一透镜或一光学传感器是否污损的方法的流程图。FIG. 6 is a flowchart of a method for detecting whether a lens or an optical sensor is defaced according to the present invention.
图7为本发明决定光学感测模块中一透镜与一光学传感器的最佳封装距离的方法的流程图。FIG. 7 is a flow chart of the method for determining the optimal packaging distance between a lens and an optical sensor in the optical sensing module of the present invention.
图号说明Description of figure number
10 光学感测模块 14 透镜 16 光学传感器10
18 接口电路 30 封装设备 32 污点检测模块18 Interface circuit 30
33 存储器 34 距离调整模块 36 影像分析模块33
37 逻辑装置 31 封装模块 35 调整机构37
38 基座 40 封装设备 44 马达38
46 讯号转换接口 48 处理器 39 掀盖46
具体实施方式Detailed ways
请参考图2,图2为本发明的第一实施例能选取最佳距离封装光学感测模块的封装设备30的方块图。封装设备30包含一污点检测模块32、一距离调整模块34、一影像分析模块36、一封装模块31以及一基座38。基座38用来放置一透镜和一光学传感器,而该透镜和该光学传感器之间相隔一段距离,基座38另包含一调整机构35,用来调整该透镜与该光学传感器间的距离。影像分析模块36与基座38相连,用来分析基座38上的光学传感器所接收的影像讯号。距离调整模块34与基座38以及影像分析模块36相连,当影像分析模块36分析完一组的影像讯号后,把分析结果传至距离调整模块34,距离调整模块34依据该分析结果决定是否控制调整机构35来调整基座38上该透镜和该光学传感器间的距离,如果该透镜和该光学传感器间的距离必须改变,距离调整模块34控制基座38内的调整机构35调整透镜和该光学传感器间的距离。污点检测模块32与基座38相连,用来判断光学传感器所接收的影像讯号是否为无污点的完美影像讯号。封装模块31用来封装该透镜和该光学传感器以形成该光学感测模块。Please refer to FIG. 2 , which is a block diagram of a packaging device 30 capable of selecting an optimal distance to package an optical sensing module according to a first embodiment of the present invention. The packaging device 30 includes a
影像分析模块36收到基座38传来的影像讯号后,撷取其中的部分影像讯号做为分析之用。影像分析的功能是由影像分析模块36内部的一个逻辑装置37来完成的。逻辑装置37能判断一影像讯号的清楚程度,其方法是透过一个称作影像差异系数的参数来做评估。如果一影像的影像差异系数愈大,表示该影像愈清楚。假设所撷取的部分影像讯号由复数个像素的影像讯号构成,只取Color Filter中为Gb(或Gr)的位置的像素,其影像讯号值以g(x,y)表示。接下来定义一个水平轴上的讯号梯度Gx和垂直轴上的讯号梯度Gy,分别以数学式表示如下:After receiving the image signal from the
Gx=g(x,y)-g(x+1,y)Gx=g(x,y)-g(x+1,y)
Gy=g(x,y)-g(x,y+1)Gy=g(x,y)-g(x,y+1)
因此,影像差异系数FD可表示如下:Therefore, the image difference coefficient FD can be expressed as follows:
基座38中透镜和光学传感器相隔不同距离时,影像分析模块36分析所接收影像讯号的影像差异系数FD也不相同。如果距离调整模块34调整基座38上透镜和光学传感器的距离从近到远时,可以得到不同影像差异系数FD的值。When the lens in the
请参考图3,图3为透镜和光学传感器间相距不同距离时,影像差异系数FD的变化示意图。图中的横轴为透镜和光学传感器间的距离,纵轴表示影像差异系数FD。如图3所示,当透镜和光学传感器间相距一最佳距离时,影像差异系数FD为最大,而此距离即为封装设备30将光学感测模块封装固定的距离。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of the change of the image difference coefficient FD when the distance between the lens and the optical sensor is different. The horizontal axis in the figure represents the distance between the lens and the optical sensor, and the vertical axis represents the image difference factor FD. As shown in FIG. 3 , when there is an optimal distance between the lens and the optical sensor, the image difference coefficient FD is the largest, and this distance is the distance at which the packaging device 30 packages and fixes the optical sensing module.
在选取一最佳距离来封装光学感测模块时,封装设备30中各模块的运作情形举例如下:距离调整模块34首先控制基座38改变透镜和光学传感器间的距离,在距离改变的过程中影像分析模块36一边分析各距离下的影像差异系数FD。如果在距离改变的过程中影像差异系数FD开始变小,且小于一个程度时,则距离调整模块34控制基座38内的调整机构35反向调整透镜和光学传感器间的距离(也就是说,原本距离是拉远时将之拉近,原本距离是拉近时,将之拉远),反之,如果在距离改变的过程中影像差异系数FD愈来愈大,则继续同向调整距离,一直到影像差异系数FD开始变小为止。由图3可知,最佳距离发生在曲线的转折处,所以距离调整模块34和影像分析模块36互相配合,找出最佳距离,之后,距离调整模块34将基座上透镜和光学传感器间固定在这最佳距离由封装模块31完成光学感测模块的封装。When selecting an optimal distance to package the optical sensing module, the operation of each module in the packaging equipment 30 is for example as follows: the
距离调整模块34在调整距离的过程中,是以一不同的距离调整幅度改变透镜和光学传感器间的距离。首次搜寻时,距离调整模块34固定以较大的调整幅度去寻找最佳的焦距,待搜寻超过曲线转折处之后,会以更小的调整幅度开始反向搜寻,去寻找更精确的焦距位置,如此反复直到以最小的调整幅度搜寻完毕为止。这样做的目的是能让调距离的过程变得既快而且准确。During the distance adjustment process, the
本发明的封装设备30有一项重要的特点是具有一污点检测模块32,可以检测透镜上的污点或是光学传感器的坏点。污点检测模块32包含一个存储器33,其用来储存一个标准影像。标准影像为一个完美的参考影像,它是由一组完美(没有污损)的透镜和光学传感器接收一样本光源所得到的影像讯号储存在该存储器33之内。假设欲封装的透镜和光学传感器都是品质良好而没有问题,则该样本光源经由该透镜和该光学传感器传给污点检测模块32的影像讯号应该与存储器33内储存的标准影像一模一样。反之,如果污点检测模块32接收的影像讯号与存储器33内的标准影像不一样时,表示透镜或是光学传感器有污损的情形。An important feature of the packaging device 30 of the present invention is that it has a
基座38传至污点检测模块32的光学传感器所接收的影像讯号分成复数个子影像讯号,每个子影像讯号表示光学传感器上一个像素讯号,而每个像素讯号对应于光学传感器一个位置。另一方面,标准影像也分解成复数个子标准影像,每一子标准影像一样对应于光学传感器一个位置,当污点检测模块32进行比对时,是将对应同一位置的复数个子影像讯号与复数个子标准影像的逐一比对,如果发现比对不符合时,可以知道是对应那些位置的子影像讯号不符合,由此可回推光学传感器或透镜上有污损的位置。The image signal received by the optical sensor transmitted from the base 38 to the
另外,本发明的污点检测不一定为一独立的污点检测模块来完成,污点检测的功能可由影像分析模块内的电路一并完成。因此本发明的第二实施例的能选取最佳距离封装光学感测模块的封装设备包含一距离调整模块34、一影像分析模块36、一封装模块31以及一基座38。距离调整模块34、封装模块31以及基座38皆与前述的功能相同,但影像分析模块36除了包含前述功能之外,另有污损检测的功能。In addition, the stain detection of the present invention is not necessarily completed by an independent stain detection module, and the stain detection function can be completed by the circuit in the image analysis module. Therefore, the packaging device capable of selecting the optimal distance to package the optical sensing module according to the second embodiment of the present invention includes a
请参考图4,图4为本发明的第二实施例能选取最佳距离封装光学感测模块的封装设备40的方块图。封装设备40包含一透镜14、一光学传感器16、一基座38、一马达44、一讯号转换接口46以及一处理器48。基座38以某一可调距离置放透镜14和光学传感器16。光学传感器16所接收的影像讯号传至讯号转换接口46。讯号转换接口46将影像讯号储存或是传至处理器48。处理器48用来分析处理该影像讯号,并将分析结果传回讯号转换接口46。马达44用以调整透镜14和光学传感器16间的距离。讯号转换接口46将依据处理器48的分析结果控制马达44转动,使得透镜14和光学传感器16相距一最佳距离,作为封装距离。请参考图5。图5为本发明封装设备内基座38结构的俯视图。图5中的基座38包含一掀盖39,掀盖39打开后,透镜14和光学传感器16置放于其内,掀盖39用来固定或保护透镜14和光学传感器16,让封装设备40在封装的过程能顺利完成。Please refer to FIG. 4 , which is a block diagram of a
请参考图6,图6为本发明用来检测一透镜或一光学传感器的方法的流程图。步骤100中接收一经由该透镜成像于该光学传感器的影像讯号。步骤110将该影像讯号分成复数个子影像讯号,该复数个子影像讯号表示光学传感器上每一个像素讯号,而每个像素讯号对应于光学传感器上的一个位置。步骤120将该复数个子影像讯号与一标准影像做比对,其中该标准影像为之前所述的一个完美的参考影像,它是由一组完美(没有污损)的透镜和光学传感器接收一样本光源所得到的影像讯号。标准影像也分解成复数个子标准影像,每一子标准影像一样对应于光学传感器一个位置,当步骤120进行比对时,是将对应同一位置的复数个子影像讯号与复数个子标准影像的逐一比对。在步骤130中,如果发现步骤120中比对不相符,找出不相符的子影像讯号的对应位置,并推知光学传感器或透镜上有污损的位置。图6流程的顺序为本发明方法中较佳的实施例,其中的流程顺序可依情况做变化,不限定于所述的顺序。Please refer to FIG. 6 , which is a flowchart of a method for inspecting a lens or an optical sensor of the present invention. In
请参考图7,图7为本发明决定光学感测模块中一透镜与一光学传感器的最佳封装距离的方法的流程图。首先在步骤200中调整该透镜与该光学传感器之间的距离为一固定距离,其中调整距离的过程如前所述,是逐次以不同调整幅度作搜寻,以求得更精确的最佳距离。接着在步骤210读取该光学传感器接收的影像讯号。步骤220从该光学传感器接收的影像讯号中,撷取一部分影像讯号作为之后分析影像用,取太大的范围可能会涵盖到不同景深的物体,不易对焦。步骤230根据步骤220所撷取的部分影像讯号来计算影像差异系数。如前所述,影像差异系数是用来评估一影像讯号的清楚程度,如果一影像的影像差异系数愈大,表示该影像愈清楚。步骤230中影像差异系数的计算进行下列步骤:Please refer to FIG. 7 . FIG. 7 is a flowchart of a method for determining an optimal packaging distance between a lens and an optical sensor in an optical sensing module according to the present invention. Firstly, in
(a)在该部分影像讯号中,水平轴上各个相邻的局部影像讯号的差值以Gx=g(x,y)-g(x+1,y)表示,其中g(x,y)为该局部影像中的对应于ColorFilter为Gb(或Gr)的坐标位置,计算局部影像讯号差值的平方Gx2;(a) In this part of the image signal, the difference between each adjacent partial image signal on the horizontal axis is represented by Gx=g(x, y)-g(x+1, y), where g(x, y) For the coordinate position corresponding to ColorFilter being Gb (or Gr) in the partial image, calculate the square Gx 2 of the partial image signal difference;
(b)在该部分影像讯号中,垂直轴上各个相邻的局部影像讯号的差值以Gy=g(x,y)-g(x,y+1)表示,计算局部影像讯号差值的平方Gy2;(b) In this part of the image signal, the difference value of each adjacent partial image signal on the vertical axis is represented by Gy=g(x, y)-g(x, y+1), and the difference value of the partial image signal is calculated square Gy 2 ;
(c)将所有的水平轴上的局部影像讯号差值的平方Gx2和所有的垂直轴上的局部影像讯号差值的平方Gy2相加,得到该影像差异系数。(c) Adding the squares Gx 2 of all local image signal differences on the horizontal axis and the squares Gy 2 of all the local image signal differences on the vertical axis to obtain the image difference coefficient.
步骤240中判断步骤230计算得到的影像差异数是否开始变小且小于一个程度,变更调整幅度且反向寻搜,否则继续以相同的方向和调整幅度,重复步骤210、步骤220以及步骤230的流程,直到以最小的调整幅度寻搜到最大的影像差异数值时,停止调整透镜与该光学传感器之间的距离,并固定透镜与该光学传感器之间的距离为影像差异系数最大值时的距离。一旦最佳距离已经找出,步骤250将透镜与该光学传感器封装成一光学感测模块,即完成所有步骤。图7流程的顺序为本发明方法中较佳的实施例,其中的流程顺序可依情况做变化,不限定于所述的顺序。In
以上所述仅为本发明的较佳实施例凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明专利的涵盖范围。The above descriptions are only preferred embodiments of the present invention. All equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the patent of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100296990A CN100342543C (en) | 2004-03-30 | 2004-03-30 | Packaging equipment and method capable of selecting optimal distance to package optical sensing module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100296990A CN100342543C (en) | 2004-03-30 | 2004-03-30 | Packaging equipment and method capable of selecting optimal distance to package optical sensing module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1677682A CN1677682A (en) | 2005-10-05 |
CN100342543C true CN100342543C (en) | 2007-10-10 |
Family
ID=35050083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100296990A Expired - Fee Related CN100342543C (en) | 2004-03-30 | 2004-03-30 | Packaging equipment and method capable of selecting optimal distance to package optical sensing module |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100342543C (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020220185A1 (en) * | 2019-04-29 | 2020-11-05 | 深圳市大疆创新科技有限公司 | Cleaning method, cleaning control system, computer readable storage medium, cleaning system, optical sensor, and mobile platform |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5438190A (en) * | 1991-07-22 | 1995-08-01 | Canon Kabushiki Kaisha | Lens control device |
CN1119975A (en) * | 1994-06-02 | 1996-04-10 | 三菱电机株式会社 | Optical processing method and implementation device thereof |
JP2001203927A (en) * | 2000-01-19 | 2001-07-27 | Hitachi Kokusai Electric Inc | Television camera |
CN1480761A (en) * | 2002-09-04 | 2004-03-10 | 力捷电脑股份有限公司 | Method for adjusting rellecting mirror to optimum position |
-
2004
- 2004-03-30 CN CNB2004100296990A patent/CN100342543C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5438190A (en) * | 1991-07-22 | 1995-08-01 | Canon Kabushiki Kaisha | Lens control device |
CN1119975A (en) * | 1994-06-02 | 1996-04-10 | 三菱电机株式会社 | Optical processing method and implementation device thereof |
JP2001203927A (en) * | 2000-01-19 | 2001-07-27 | Hitachi Kokusai Electric Inc | Television camera |
CN1480761A (en) * | 2002-09-04 | 2004-03-10 | 力捷电脑股份有限公司 | Method for adjusting rellecting mirror to optimum position |
Also Published As
Publication number | Publication date |
---|---|
CN1677682A (en) | 2005-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101430330B1 (en) | Transparent object detection system and transparent flat plate detection system | |
CN103858001B (en) | Method for inspecting flat panel | |
CA2787124C (en) | Cell characterization using multiple focus planes | |
US8373789B2 (en) | Auto focus system and auto focus method | |
KR20080004769A (en) | Image sensor with improved resolution and image detection method using the same | |
US20090046922A1 (en) | Surface Inspecting Apparatus | |
JP5662174B2 (en) | AF lens unit characteristic inspection apparatus, characteristic inspection method, control program, and readable storage medium | |
CN1383485A (en) | Method and device for detecting foreign matter in through hole | |
CN109827974B (en) | Resin optical filter film crack detection device and detection method | |
JP2012247743A (en) | Chart for checking resolution and method for checking resolution | |
CN100342543C (en) | Packaging equipment and method capable of selecting optimal distance to package optical sensing module | |
JP5466099B2 (en) | Appearance inspection device | |
KR20150068884A (en) | Semiconductor inspecting method, semiconductor inspecting apparatus and semiconductor manufacturing method | |
CN113777040B (en) | Focusing method and device of linear array camera and automatic optical detection equipment | |
JP2006308884A (en) | Automatic focusing device | |
TW201007162A (en) | Optical carriage structure of inspection apparatus and its inspection method | |
KR101124566B1 (en) | Apparatus for examining a wafer | |
TWI471551B (en) | Method and apparatus for detecting small reflectivity variations in electronic parts at high speed | |
TWI395047B (en) | Automatic focusing method and image capture apparatus using the same | |
CN112461762A (en) | HSV model-based solution turbidity detection method, medium and image processing system | |
TWI702569B (en) | Method for enhancing instant image sharpness | |
CN119310088B (en) | A method and device for detecting internal contamination of a fully transparent color film LCD | |
CN111380875B (en) | Defect detection method and system | |
CN113155416B (en) | System and method for rapidly detecting external quantum efficiency of single pixel on large-area light-emitting piece | |
CN112557350B (en) | HSV model-based solution turbidity detection method, medium and image system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20071010 Termination date: 20140330 |