CH659908A5 - METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. - Google Patents
METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. Download PDFInfo
- Publication number
- CH659908A5 CH659908A5 CH322682A CH322682A CH659908A5 CH 659908 A5 CH659908 A5 CH 659908A5 CH 322682 A CH322682 A CH 322682A CH 322682 A CH322682 A CH 322682A CH 659908 A5 CH659908 A5 CH 659908A5
- Authority
- CH
- Switzerland
- Prior art keywords
- ion
- conducting plastic
- plastic polymer
- complex
- polyether
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 17
- 239000004033 plastic Substances 0.000 claims description 12
- 229920003023 plastic Polymers 0.000 claims description 12
- 229920000570 polyether Polymers 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- 230000001680 brushing effect Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- -1 sodium tetraphenylborate Chemical compound 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 150000003863 ammonium salts Chemical class 0.000 claims description 3
- 150000001447 alkali salts Chemical class 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 239000011231 conductive filler Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- UJCGKSGIHVBHKG-UHFFFAOYSA-N 3-acetyl-1h-azet-2-one Chemical compound CC(=O)C1=CNC1=O UJCGKSGIHVBHKG-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/12—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B17/00—Insulators or insulating bodies characterised by their form
- H01B17/50—Insulators or insulating bodies characterised by their form with surfaces specially treated for preserving insulating properties, e.g. for protection against moisture, dirt, or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/181—Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
Description
Die Erfindung geht aus von einem Verfahren zur Erhöhung der elektrischen Oberflächenleitfähigkeit eines Körpers nach der Gattung des Oberbegriffs des Anspruchs 1. The invention is based on a method for increasing the electrical surface conductivity of a body according to the preamble of claim 1.
Es gibt in der Elektrotechnik zahlreiche Anwendungsbeispiele für Isolatoren, welche eine geringe elektrische Leitfähigkeit aufzuweisen haben in der Ableitung statischer elektrischer Ladungen (insbesondere Oberflächenladungen), zur Feldsteuerung usw. Meist werden die Isoliermaterialien zu diesem Zweck mit elektrisch leitenden Füllermaterialien dotiert, wodurch eine entsprechende höhere Volumenleitfähigkeit des Verbundwerkstoffes erzielt wird. Unter diesen Werkstoffen nehmen u.a. die mit elektronisch leitenden Stoffen dotierten Kunststoffpolymere eine wichtige Stellung ein. In electrical engineering, there are numerous application examples for insulators that have low electrical conductivity in the discharge of static electrical charges (especially surface charges), for field control, etc. Mostly, the insulating materials are doped with electrically conductive filler materials for this purpose, resulting in a correspondingly higher volume conductivity of the composite material is achieved. Among these materials, plastic polymers doped with electronically conductive substances play an important role.
Die bisher zum Beispiel als Antistatika-Beläge meistens verwendeten, mit elektronisch leitenden Füllstoffen dotierten Kunststoffe wie Polyamide weisen jedoch in der Regel eine zu niedrige elektrische Leitfähigkeit auf und bedingen einen gewissen minimalen Wassergehalt, funktionieren also in der Regel nur bei einer gewissen minimalen Feuchtigkeit (Wasserdampfdruck) ihrer Umgebung. Zwar wurden elektrisch gut leitende Kunststoffe zum Beispiel auf der Basis von Polyacetylen entwickelt, doch sind diese Materialien chemisch nicht stabil, insbesondere nicht gegenüber Oxydation. Ferner werden für Hochfrequenz-Abschirmung Kunststoffe wie Polyäthylen verwendet, die mit elektrisch gut leitenden Stoffen wie Russ gefüllt sind. Es bereitet jedoch grosse Schwierigkeiten, die elektrische Leitfähigkeit derartiger Materialien im gewünschten Bereich mit hinreichender Genauigkeit und Reproduzierbarkeit einzustellen. However, the plastics, such as polyamides doped with electronically conductive fillers, mostly used as antistatic coverings, for example, as a rule have an electrical conductivity that is too low and require a certain minimal water content, so they usually only work with a certain minimal moisture (water vapor pressure ) of their surroundings. Although plastics with good electrical conductivity have been developed, for example, on the basis of polyacetylene, these materials are not chemically stable, especially not against oxidation. Furthermore, plastics such as polyethylene are used for high-frequency shielding, which are filled with electrically highly conductive substances such as carbon black. However, it is very difficult to adjust the electrical conductivity of such materials in the desired range with sufficient accuracy and reproducibility.
Es besteht daher ein grosses Bedürfnis, nach anderen, von den herkömmlichen Methoden abweichenden Verfahren zur Erreichung der gewünschten Oberflächenleitfähigkeit derartiger Körper Ausschau zu halten. There is therefore a great need to look for other methods that deviate from the conventional methods to achieve the desired surface conductivity of such bodies.
Der Erfindung liegt dabei die Aufgabe zugrunde, ein Verfahren zur Erhöhung der elektrischen Oberflächenleitfähigkeit eines aus einem elektrisch isolierenden Werkstoff bestehenden Körpers anzugeben, welches einen für elektrotechnische Zwecke zu verwendenden Isolator mit gut definierter und bequem einstellbarer Oberflächenleitfähigkeit als ein chemisch und thermisch stabiles Erzeugnis zu liefern vermag. The invention is based on the object of specifying a method for increasing the electrical surface conductivity of a body consisting of an electrically insulating material, which is able to supply an insulator to be used for electrotechnical purposes with a well-defined and easily adjustable surface conductivity as a chemically and thermally stable product .
Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst. This object is achieved by the features specified in the characterizing part of claim 1.
Ionenleitende Kunststoffpolymere sind schon seit langem bekannt. Eine besondere Art stellen unter anderem perfluorierte Polymere mit Sulfosäuren dar, welche zum Beispiel unter dem Handelsnamen «Nafion» von der Fa. Du Pont hergestellt und als Feststoffelektrolyte verwendet werden. Da sie jedoch nur in gequollenem, wasserhaltigem Zustand elektrisch leiten, sind sie für die vorgenannten Zwecke der Erhöhung der Oberflächenleitfähigkeit eines Isolators ungeeignet. Ion-conducting plastic polymers have been known for a long time. Perfluorinated polymers with sulfonic acids, which are manufactured, for example, under the trade name “Nafion” by Du Pont and are used as solid electrolytes, represent a special type. However, since they only conduct electricity in a swollen, water-containing state, they are unsuitable for the aforementioned purposes of increasing the surface conductivity of an insulator.
Eine weitere Gruppe von Ionenleitern stellen die Polyäther/ Salz-Komplexe dar (Armand, M.B., Chabagno, J.M., and Du-clot, M.J.K., Polyethers as solid electrolytes, in «Fast Ion Transport in Solids», eds. Vashishta, P.M., Mundy, J.N., and Shenoy, G.K., North-Holland 1979, p. 131-136; US-PS 4 303 748). Derartige nominell wasserfreie Polyäther/Salz-Komplexe auf der Basis von Polyäthylenoxid und Polypropylenoxid sowie Alkali- oder Ammoniumsalzen haben elektrische Leitfähigkeiten von 10~9 bis 10~6 (ßcm)-1 bei 20°C. Sie können deshalb unter anderem als Feststoffelektrolyte in elektrochemischen Zellen verwendet werden. Another group of ion conductors are the polyether / salt complexes (Armand, MB, Chabagno, JM, and Du-clot, MJK, Polyethers as solid electrolytes, in “Fast Ion Transport in Solids”, eds. Vashishta, PM, Mundy , JN, and Shenoy, GK, North Holland 1979, p. 131-136; U.S. Patent 4,303,748). Such nominally anhydrous polyether / salt complexes based on polyethylene oxide and polypropylene oxide as well as alkali or ammonium salts have electrical conductivities from 10 ~ 9 to 10 ~ 6 (ßcm) -1 at 20 ° C. They can therefore be used, among other things, as solid electrolytes in electrochemical cells.
Diese Komplexe sind in zahlreichen verschiedenen Lösungsmitteln löslich wie Wasser, Methanol, Azetylazeton, Azetonitril usw. Sie können deshalb durch Giessen, Bestreichen, Bepinseln, Spritzen und Sprühen oder Eintauchen des Werkstücks auf den zu überziehenden Körper aufgebracht werden. Anschliessend kann das Lösungsmittel durch Verdampfen/Verdunsten ausgetrieben werden. Die auf diese Weise hergestellten leitenden Überzüge zeichnen sich durch gute Haftfähigkeit und chemische Stabilität aus. These complexes are soluble in numerous different solvents such as water, methanol, acetylacetone, acetonitrile etc. They can therefore be applied to the body to be coated by pouring, brushing, brushing, spraying and spraying or immersing the workpiece. The solvent can then be driven off by evaporation / evaporation. The conductive coatings produced in this way are characterized by good adhesion and chemical stability.
Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele näher beschrieben. The invention is described in more detail using the following exemplary embodiments.
Ausführungsbeispiel I Embodiment I
Zunächst wurde eine Lösung von 10 g Polyäthylenoxyd mit einem Molekulargewicht von ca. 6 000 000 in 1 Liter Methanol hergestellt. In dieser Lösung wurden 4,6 g Natriumthiocyanat aufgelöst. Die auf diese Weise erhaltene Flüssigkeit wurde dann auf ebene Glasplatten aufgebracht. Es wurden gleichmässige Schichten von (C2H40)4NaSCN durch Giessen, Pinseln und Aufsprühen hergestellt. Die Schichten hafteten gut auf dem Substrat und waren glasklar-transparent. Sie hatten durch5 First, a solution of 10 g of polyethylene oxide with a molecular weight of approximately 6,000,000 in 1 liter of methanol was prepared. 4.6 g of sodium thiocyanate were dissolved in this solution. The liquid thus obtained was then applied to flat glass plates. Uniform layers of (C2H40) 4NaSCN were produced by pouring, brushing and spraying. The layers adhered well to the substrate and were crystal-clear transparent. They had through 5
10 10th
15 15
20 20th
25 25th
30 30th
35 35
40 40
45 45
50 50
55 55
60 60
65 65
3 3rd
659 908 659 908
schnittlich eine elektrische Leitfähigkeit von 10~7 bis 10~6 (Qcm)-1 bei einer Temperatur von 20°C. On average an electrical conductivity of 10 ~ 7 to 10 ~ 6 (Qcm) -1 at a temperature of 20 ° C.
Ausführungsbeispiel II Embodiment II
Ähnlich Beispiel I wurde zunächst eine erste Lösung von 10 g Polyäthylenoxyd in 500 ml Methanol hergestellt. Dann wurde eine weitere Lösung von 9,71 g Natrium-Tetraphenyl-borat zubereitet. Die erste Lösung wurde der zweiten Lösung unter ständigem Rühren langsam zugegeben. Dabei bildete sich ein Niederschlag, der von der Lösung durch Filtrieren getrennt, mit Methanol gewaschen und getrocknet wurde. Die Trockensubstanz wurde nun in Azetylazeton gelöst und wie unter Beispiel I beschrieben auf eine Glasplatte aufgebracht und anschliessend getrocknet. Die aus (C2H40)8NaB(C6Hj)4 bestehende Oberflächenschichten hatten eine durchschnittliche elektrische Leitfähigkeitvon 10~9 bis 10—8 (Qcm)-1 bei einer Temperatur von 20°C. Similar to Example I, a first solution of 10 g of polyethylene oxide in 500 ml of methanol was first prepared. Then another solution of 9.71 g sodium tetraphenyl borate was prepared. The first solution was slowly added to the second solution with constant stirring. A precipitate formed, which was separated from the solution by filtration, washed with methanol and dried. The dry substance was then dissolved in acetyl acetone and applied to a glass plate as described in Example I and then dried. The surface layers consisting of (C2H40) 8NaB (C6Hj) 4 had an average electrical conductivity of 10 ~ 9 to 10-8 (Qcm) -1 at a temperature of 20 ° C.
Statt Azetylazeton kann zum Auflösen der Trockensubstanz auch Azetonitril verwendet werden. Instead of acetylazetone, acetonitrile can also be used to dissolve the dry substance.
Ganz allgemein können zur Durchführung des Verfahrens ionenleitende Kunststoffpolymere verwendet werden, mit welchen sich Oberflächenschichten mit einer elektrischen Leitfähigkeit bei 20°C von mindestens 10—10 (£2cm)—I, bevorzugt mit einer solchen von mindestens 10 19 (ßcm)-1 erzeugen lassen. In general, ion-conducting plastic polymers can be used to carry out the process, with which surface layers with an electrical conductivity at 20 ° C. of at least 10-10 (£ 2cm) -1, preferably with one of at least 10 19 (βcm) -1, are produced to let.
Mit Vorteil kann das ionenleitende Kunststoffpolymer ein The ion-conducting plastic polymer can be advantageous
Polyätherkomplex mit einem Wassergehalt von höchstens 1% sein und insbesondere aus Polyäthylenoxyd und einer weiteren Komponente aufgebaut sein. Diese weitere Komponente wird vorzugsweise aus der Gruppe der Alkalisalze oder der Ammoni-5 umsalze ausgewählt. Polyether complex with a water content of at most 1% and in particular be made of polyethylene oxide and another component. This further component is preferably selected from the group of the alkali metal salts or the ammonium salts.
Bevorzugte Ausführungen dieser Art entsprechen zum Beispiel den nachstehenden chemischen Formeln: Preferred embodiments of this type correspond, for example, to the chemical formulas below:
io (C2H40)5LiCF3C00; io (C2H40) 5LiCF3C00;
(C2H40)4KSCN; (C2H40) 4KSCN;
(C2H40)4NaSCN. (C2H40) 4NaSCN.
15 Die oben erwähnte weitere Komponente kann auch im besonderen eine nicht wasserlösliche Komplexverbindung, zum Beispiel Natrium-Tetraphenylborat sein. 15 The additional component mentioned above can also be, in particular, a non-water-soluble complex compound, for example sodium tetraphenylborate.
Die nach dem Verfahren hergestellten Überzüge weisen bevorzugt eine Oberflächenleitfähigkeit von nicht mehr als 10~7 20 Q~1 bei 20°C auf. The coatings produced by the process preferably have a surface conductivity of not more than 10 ~ 7 20 Q ~ 1 at 20 ° C.
Die Anwendungsbereiche des Verfahrens bewegen sich von der Herstellung von Überzügen zur Ableitung elektrostatischer Ladungen über die Erzeugung von Oberflächenschichten zur Steuerung elektrischer Potentiale bis zur Beschichtung von Iso-25 lierkörpern zur Abschirmung elektromagnetischer Wellen im Hochfrequenzbereich. The application areas of the process range from the production of coatings for the discharge of electrostatic charges to the generation of surface layers for the control of electrical potentials to the coating of insulating bodies for the shielding of electromagnetic waves in the high frequency range.
v v
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH322682A CH659908A5 (en) | 1982-05-26 | 1982-05-26 | METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. |
DE19823223119 DE3223119A1 (en) | 1982-05-26 | 1982-06-21 | Process for increasing the electrical surface conductivity of a body |
DE19833317761 DE3317761A1 (en) | 1982-05-26 | 1983-05-16 | Process for increasing the electrical surface conductivity of a body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH322682A CH659908A5 (en) | 1982-05-26 | 1982-05-26 | METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. |
Publications (1)
Publication Number | Publication Date |
---|---|
CH659908A5 true CH659908A5 (en) | 1987-02-27 |
Family
ID=4251365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH322682A CH659908A5 (en) | 1982-05-26 | 1982-05-26 | METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH659908A5 (en) |
DE (2) | DE3223119A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2542322B1 (en) * | 1983-03-11 | 1986-11-14 | Elf Aquitaine | MACROMOLECULAR MATERIAL WITH ION CONDUCTION CONSISTING OF SALT SOLUTION IN A COPOLYMER |
US4578326A (en) * | 1983-03-11 | 1986-03-25 | Societe Nationale Elf Aquitaine | Novel macromolecular material for use in realizing electrolytes and/or electrodes |
EP0162706B1 (en) * | 1984-05-22 | 1991-02-27 | Nippon Telegraph And Telephone Corporation | Polymer film with conductive pattern and method of manufacturing the same |
FR2568574B1 (en) * | 1984-07-31 | 1986-12-12 | Comp Generale Electricite | ION CONDUCTIVE POLYMER AND SOLID ELECTROLYTE USING THE SAME |
FR2570224B1 (en) * | 1984-09-11 | 1987-03-20 | Elf Aquitaine | SOLID POLYMER ELECTROLYTE CONSISTING OF A CROSSLINKED COPOLYMER |
DE3709508A1 (en) * | 1987-03-23 | 1988-10-06 | Behr Industrieanlagen | Apparatus for the electrostatic coating of workpieces |
US5498761A (en) * | 1988-10-11 | 1996-03-12 | Wessling; Bernhard | Process for producing thin layers of conductive polymers |
DE58909810D1 (en) * | 1988-10-11 | 1997-09-04 | Zipperling Kessler & Co | METHOD FOR PRODUCING THIN LAYERS FROM CONDUCTIVE POLYMERS |
JPH0397758A (en) * | 1989-09-11 | 1991-04-23 | Dai Ichi Kogyo Seiyaku Co Ltd | Modification of electrical conductivity of molded article of resin |
US5011739A (en) * | 1989-10-02 | 1991-04-30 | Eastman Kodak Company | Moisture stable biasable transfer members and method for making same |
US5250357A (en) * | 1991-11-26 | 1993-10-05 | Eastman Kodak Company | Moisture stable elastomeric polyurethane biasable transfer members |
US5156915A (en) * | 1991-11-26 | 1992-10-20 | Eastman Kodak Company | Moisture stable polyurethane biasable members |
US5212032A (en) * | 1991-11-26 | 1993-05-18 | Eastman Kodak Company | Moisture stable polyurethane biasable transfer members |
US5217838A (en) * | 1991-11-26 | 1993-06-08 | Eastman Kodak Company | Moisture stable biasable transfer members |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3245833A (en) * | 1964-04-20 | 1966-04-12 | Eastman Kodak Co | Electrically conductive coatings |
DE2310186C3 (en) * | 1973-03-01 | 1980-04-10 | Basf Ag, 6700 Ludwigshafen | Process for the antistatic finishing of textile fiber goods |
GB1503906A (en) * | 1974-05-14 | 1978-03-15 | Agfa Gevaert | Antistatic coating compositions |
FR2328558A1 (en) * | 1975-10-24 | 1977-05-20 | Charbonnages Ste Chimique | PROCESS FOR MANUFACTURING ANTISTATIC FILMS OF SYNTHETIC POLYMERS AND PRODUCTS OBTAINED |
DE2645729C3 (en) * | 1976-10-09 | 1980-09-11 | Reuter Technologie Gmbh, 2844 Lemfoerde | Electrically conductive plastic compounds |
JPS6051279B2 (en) * | 1977-10-19 | 1985-11-13 | 呉羽化学工業株式会社 | Method for polarizing thermoplastic resin piezoelectric pyroelectric film |
DE2842519C2 (en) * | 1978-09-29 | 1983-07-14 | Deutsch-Kanadische Grundstücksgesellschaft mbH Canespa KG, 3005 Hemmingen | Process for coating electrically insulating surfaces with an electrically conductive plastic layer |
-
1982
- 1982-05-26 CH CH322682A patent/CH659908A5/en not_active IP Right Cessation
- 1982-06-21 DE DE19823223119 patent/DE3223119A1/en not_active Withdrawn
-
1983
- 1983-05-16 DE DE19833317761 patent/DE3317761A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
DE3223119A1 (en) | 1983-12-01 |
DE3317761A1 (en) | 1983-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH659908A5 (en) | METHOD FOR INCREASING THE ELECTRICAL SURFACE CONDUCTIVITY OF A BODY. | |
EP0195381B1 (en) | Composite material and electrically conductive polymers | |
EP0099055B1 (en) | Process for the preparation of film-shaped polymers of pyrroles | |
EP0099984B1 (en) | Electrically conductive pyrrole copolymers and process for their preparation | |
DE69322094T2 (en) | HETEROGENEOUS MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF | |
DE3856509T2 (en) | Composition for the production of interpenetrating polymer networks | |
DE69313063T2 (en) | Proton-conducting, polymeric solid electrolyte | |
DE10296599B4 (en) | Polymer electrolyte fuel cell | |
WO1995000678A1 (en) | Method of manufacturing metal components protected against corrosion, and metal components manufactured by this method | |
DE2111796A1 (en) | Flexible, porous material for separators | |
DE2624203A1 (en) | ION EXCHANGE MATERIAL AND METHOD OF MANUFACTURING IT | |
DE69016322T2 (en) | Process for the electrostatic coating of a molded plastic part. | |
DE69508014T2 (en) | Electrically conductive polymer compositions, manufacturing processes and coated substrates | |
DE3615975A1 (en) | Polyanilines, process for their preparation and cells containing them | |
DE3610388A1 (en) | STABLE ELECTRODES BASED ON MACROMOLECULAR MATERIALS AND METHOD FOR THEIR USE | |
DE3630708A1 (en) | METHOD FOR PRODUCING A COMPOSITE MATERIAL FROM AN ELECTRICALLY CONDUCTIVE POLYMER AND A CERAMIC MATERIAL | |
EP0195380B1 (en) | Process for manufacturing electrically conductive foam materials | |
DE3881376T2 (en) | DOUBLE DISASSEMBLY METHOD OF A NEUTRAL SALT. | |
DE1950052A1 (en) | Electrochemical generators with negative lithium electrodes | |
DE69315941T2 (en) | Electrolyte for use in electrolytic capacitors and electrolytic capacitors | |
EP0123261A2 (en) | Process for electrochemically separating ion mixtures | |
CH651966A5 (en) | LITHIUM-IODINE SOLID PRIMARY CELL. | |
DE3201909A1 (en) | POLYACETYLENE CELL WITH CERAMIC SOLID ELEMENT ELECTROLYTE | |
DE19927981A1 (en) | Spatial permeation of porous, insulating or semiconductor structure with conducting synthetic resin, useful for making photovoltaic solid state cell, involves impregnation with monomer solution containing oxidant and evaporating solvent | |
DE3305401A1 (en) | METHOD FOR PRODUCING ELECTRICALLY CONDUCTIVE PLASTICS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased | ||
PL | Patent ceased |