[go: up one dir, main page]

CH637034A5 - Method for treating liquids with a reaction gas in an ultrasonic field - Google Patents

Method for treating liquids with a reaction gas in an ultrasonic field Download PDF

Info

Publication number
CH637034A5
CH637034A5 CH349079A CH349079A CH637034A5 CH 637034 A5 CH637034 A5 CH 637034A5 CH 349079 A CH349079 A CH 349079A CH 349079 A CH349079 A CH 349079A CH 637034 A5 CH637034 A5 CH 637034A5
Authority
CH
Switzerland
Prior art keywords
water
ultrasound
air
field
ultrasonic
Prior art date
Application number
CH349079A
Other languages
German (de)
Inventor
Bruno Mebes
Original Assignee
Sanitized Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanitized Ag filed Critical Sanitized Ag
Priority to CH349079A priority Critical patent/CH637034A5/en
Publication of CH637034A5 publication Critical patent/CH637034A5/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/81Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations by vibrations generated inside a mixing device not coming from an external drive, e.g. by the flow of material causing a knife to vibrate or by vibrating nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

The method involves employing a gaseous reactant or a mixture of gaseous reactants for the excitation of an ultrasonic transducer according to Hartmann, in order to improve the distribution of material, the reaction rate and the reaction product yield. The ultrasonic transducer is immersed directly in the liquid phase, so that the gaseous reactants flowing in, which produce the ultrasonic field, ensure intensive intermixing.

Description

       

  
 

**WARNUNG** Anfang DESC Feld konnte Ende CLMS uberlappen **.

 



   PATENTANSPRÜCHE
1. Verfahren zur Behandlung von Flüssigkeiten mit einem Reaktionsgas in einem Ultraschallfeld, dadurch gekennzeichnet, dass das Reaktionsgas in einem in der Flüssigkeit angeordneten Hartmann-Ultraschallgeber zur Erzeugung des Ultraschallfeldes herangezogen wird.



   2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass ein Luft/Ozon-Gemisch für die Behandlung von Wasser eingesetzt wird.



   3. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass Abwasser biologisch belüftet wird.



   4. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass ein Luft/Chlor-Gemisch zur Behandlung von Schwimmbadwasser eingesetzt wird.



   5. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass Gasreaktionen in Flüssigkeiten durchgeführt werden, wie die Chlorierung von Aromaten.



   Die Erfindung betrifft ein Verfahren zur Behandlung von Flüssigkeiten mit einem Reaktionsgas in einem Ultraschallfeld.



   Derartige Verfahren bestehen in der Regel aus einem Dosiersystem, in welchem ein oder mehrere Stoffe in der richtigen Menge der Flüssigkeit zugesetzt werden und gleichzeitig einem Ultraschallfeld ausgesetzt sind. Das Ultraschallfeld wird elektromagnetisch ausserhalb der Flüssigkeit oder durch Anströmen von Lamellen erzeugt.



   Das erfindungsgemässe Verfahren beruht darauf, dass der Ultraschall direkt in der Flüssigkeit durch einen Hartmann-Ultraschallgeber   (Fig.    2) erzeugt wird. Durch das direkte Einblasen von gasförmigen Medien wird mit diesen selbst durch eine Kavitationsdüse ein Ultraschallfeld erzeugt, welches in der zu behandelnden Flüssigkeit auftritt.



  Diese innige Durchmischung wird mit den gebräuchlichen Ultraschallgebern nicht erreicht. Durch die Plazierung des Ultraschallgebers in der Flüssigkeit sowie durch die Bildung des Ultraschallfeldes durch das gasförmige Medium selbst wird eine intensive Durchmischung sowie eine erhöhte Reaktionsfähigkeit und somit bessere Ausbeute erreicht. Die grössere Reaktionsgeschwindigkeit sowie die bessere Ausbeute sind dadurch zu erklären, dass die Reaktionspartner im Ultraschallfeld selbst einen hohen Verteilungsgrad aufweisen und dabei die Reaktionsoberfläche vergrössert wird.



  Als Antriebsgase für den Ultraschallgeber können Luft, CO2, Cl2, Ozon oder deren Gemische eingesetzt werden. Bei andern chemischen Reaktionen können alle bekannten Gase, wie z. B. Methan, Gasgemische oder unter Druck verdampfte Flüssigkeiten verwendet werden, vorausgesetzt, dass sie eine Gasgeschwindigkeit in der Düse von über 330   m/sec-      l   erreichen und dabei ein Ultraschallfeld durch die Kavitationsdüse erzeugt wird. Da die Druckknoten im Ultraschallfeld sehr hohe Werte annehmen können, ist eine weitere Verbesserung der Reaktionsgeschwindigkeit mit diesem System zu erreichen.



   Ausführungsbeispiele der Erfindung werden   anschlies-    send anhand von Zeichnungen näher erläutert. Es zeigen:
Fig. 1 schematisch die Durchführung des Verfahrens nach Patentanspruch 2,
Fig. 2 eine Vergrösserung eines   Hartmarm-Ultraschallge-    bers, welcher direkt im zu behandelnden Medium arbeitet,
Fig. 3 schematisch die Durchführung des Verfahrens nach Patentanspruch 3.



   Beispiel I
Bei der Behandlung von Wasser, welches oxidierbare, gelöste bzw. feine Schwebestoffe enthält, wird das Verfahren wie folgt angewendet. Das zu behandelnde Wasser strömt gleichmässig durch das Rohr A (Fig. 1). Die mit Ozon angereicherte Luft wird durch die Düse B mit einer Geschwindigkeit von über 330   m/sec-      9   auf die Kavitationsdüse zentriert ausgeströmt. Dabei entsteht zwischen der Ausströmdüse und der Kavitationsdüse ein Schwingungsfeld im Ultraschallbereich. Die dabei erreichte Oxydation der gelösten Stoffe bzw. der Schwebestoffe ist grösser als bei normaler Begasung mit der gleichen Menge Luft/Ozon ohne Ultraschall.



  Durch die Anordnung im geschlossenen Rohrsystem wird eine längere Kontaktzeit des Gases mit der Flüssigkeit gewährleistet.



   Beispiel II
Bei der Desinfektion von Schwimmbadwasser wird durch den Hartmann-Ultraschallgeber ein dosiertes Gemisch Luft/Chlor eingespeist und im Rohrsystem mit dem Badwasser innig vermischt. Durch die erhöhte Durchmischung und Reaktionsgeschwindigkeit kann der Chlorverbrauch um ca.   3W0%    reduziert werden, und es wird trotzdem der gleiche desinfizierende Wert erreicht, wie wenn ohne Ultraschall mit erhöhter Chlormenge gearbeitet wird.



   Beispiel III
Im Apparat, siehe Fig. 3, wird durch Einblasen von Luft ins Abwasser im Ultraschallgeber A eine intensive Vermischung im Rohrbündel erreicht. Durch die eingeblasene Luft wird das Schmutzwasser gegen die Prallplatte B geschleudert und kommt in den Überlauf C. Von dort gelangt das Wasser in den Absetzbehälter D zur Dekantierung. Das abgetrennte Klarwasser kann nach genügender Reinigung direkt in den Vorfluter gelangen oder wird im Kreislauf so lange behan   delt,    bis die gewünschte Reinheit erreicht ist. Durch die intensive Behandlung im Ultraschall wird die Agglomeration von Schwebeteilchen gesteigert, so dass eine schnellere Sedimentation im Dekantiergefäss erreicht wird. Die intensive Vermischung mit Luft gewährleistet eine bessere Löslichkeit des Gases im Wasser.

   Soll nur eine Sauerstoffzuführung für den biologischen Abbau erreicht werden, so sind nur so viele Luftdüsen in Gang zu setzen, um eine genügende Belüftung zu garantieren. 



  
 

** WARNING ** beginning of DESC field could overlap end of CLMS **.

 



   PATENT CLAIMS
1. A method for treating liquids with a reaction gas in an ultrasound field, characterized in that the reaction gas is used in a Hartmann ultrasound transmitter arranged in the liquid to generate the ultrasound field.



   2. The method according to claim 1, characterized in that an air / ozone mixture is used for the treatment of water.



   3. The method according to claim 1, characterized in that wastewater is aerated biologically.



   4. The method according to claim 1, characterized in that an air / chlorine mixture is used for the treatment of swimming pool water.



   5. The method according to claim 1, characterized in that gas reactions are carried out in liquids, such as the chlorination of aromatics.



   The invention relates to a method for treating liquids with a reaction gas in an ultrasonic field.



   Such methods generally consist of a metering system in which one or more substances are added to the liquid in the correct amount and are simultaneously exposed to an ultrasonic field. The ultrasonic field is generated electromagnetically outside of the liquid or by the flow of lamellae.



   The method according to the invention is based on the fact that the ultrasound is generated directly in the liquid by a Hartmann ultrasound transmitter (FIG. 2). By directly blowing in gaseous media, an ultrasonic field is generated with them, even through a cavitation nozzle, which occurs in the liquid to be treated.



  This intimate mixing is not achieved with the usual ultrasound sensors. The placement of the ultrasound transmitter in the liquid and the formation of the ultrasound field by the gaseous medium itself result in intensive mixing and increased reactivity and thus better yield. The greater reaction speed and the better yield can be explained by the fact that the reaction partners themselves have a high degree of distribution in the ultrasonic field and the reaction surface is enlarged in the process.



  Air, CO2, Cl2, ozone or their mixtures can be used as drive gases for the ultrasound transmitter. In other chemical reactions, all known gases, such as. B. methane, gas mixtures or liquids evaporated under pressure, provided that they reach a gas velocity in the nozzle of over 330 m / sec- l and an ultrasonic field is generated by the cavitation nozzle. Since the pressure nodes in the ultrasonic field can assume very high values, a further improvement in the reaction speed can be achieved with this system.



   Exemplary embodiments of the invention are subsequently explained in more detail with reference to drawings. Show it:
1 schematically the implementation of the method according to claim 2,
2 shows an enlargement of a hard-arm ultrasound transmitter, which works directly in the medium to be treated,
3 schematically shows the implementation of the method according to claim 3.



   Example I
In the treatment of water which contains oxidizable, dissolved or fine suspended matter, the method is used as follows. The water to be treated flows evenly through pipe A (Fig. 1). The air enriched with ozone flows out through the nozzle B at a speed of over 330 m / sec-9 centered on the cavitation nozzle. This creates a vibration field in the ultrasonic range between the outflow nozzle and the cavitation nozzle. The oxidation of the dissolved substances or suspended matter achieved is greater than with normal fumigation with the same amount of air / ozone without ultrasound.



  The arrangement in the closed pipe system ensures a longer contact time of the gas with the liquid.



   Example II
When disinfecting swimming pool water, a dosed mixture of air / chlorine is fed in by the Hartmann ultrasound transmitter and intimately mixed with the bath water in the pipe system. Due to the increased mixing and reaction speed, the chlorine consumption can be reduced by approx.



   Example III
In the apparatus, see Fig. 3, an intensive mixing in the tube bundle is achieved by blowing air into the waste water in the ultrasonic generator A. Due to the blown air, the dirty water is thrown against the baffle plate B and comes into the overflow C. From there the water reaches the settling tank D for decanting. The separated clear water can get into the receiving water after sufficient cleaning or is treated in the circuit until the desired purity is reached. The intensive treatment with ultrasound increases the agglomeration of suspended particles so that faster sedimentation in the decanter is achieved. The intensive mixing with air ensures a better solubility of the gas in water.

   If only an oxygen supply for biodegradation is to be achieved, only so many air nozzles need to be set in motion in order to guarantee adequate ventilation.


    

Claims (5)

PATENTANSPRÜCHE 1. Verfahren zur Behandlung von Flüssigkeiten mit einem Reaktionsgas in einem Ultraschallfeld, dadurch gekennzeichnet, dass das Reaktionsgas in einem in der Flüssigkeit angeordneten Hartmann-Ultraschallgeber zur Erzeugung des Ultraschallfeldes herangezogen wird.  PATENT CLAIMS 1. A method for treating liquids with a reaction gas in an ultrasound field, characterized in that the reaction gas is used in a Hartmann ultrasound transmitter arranged in the liquid to generate the ultrasound field. 2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass ein Luft/Ozon-Gemisch für die Behandlung von Wasser eingesetzt wird.  2. The method according to claim 1, characterized in that an air / ozone mixture is used for the treatment of water. 3. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass Abwasser biologisch belüftet wird.  3. The method according to claim 1, characterized in that wastewater is aerated biologically. 4. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass ein Luft/Chlor-Gemisch zur Behandlung von Schwimmbadwasser eingesetzt wird.  4. The method according to claim 1, characterized in that an air / chlorine mixture is used for the treatment of swimming pool water. 5. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, dass Gasreaktionen in Flüssigkeiten durchgeführt werden, wie die Chlorierung von Aromaten.  5. The method according to claim 1, characterized in that gas reactions are carried out in liquids, such as the chlorination of aromatics. Die Erfindung betrifft ein Verfahren zur Behandlung von Flüssigkeiten mit einem Reaktionsgas in einem Ultraschallfeld.  The invention relates to a method for treating liquids with a reaction gas in an ultrasonic field. Derartige Verfahren bestehen in der Regel aus einem Dosiersystem, in welchem ein oder mehrere Stoffe in der richtigen Menge der Flüssigkeit zugesetzt werden und gleichzeitig einem Ultraschallfeld ausgesetzt sind. Das Ultraschallfeld wird elektromagnetisch ausserhalb der Flüssigkeit oder durch Anströmen von Lamellen erzeugt.  Such methods generally consist of a metering system in which one or more substances are added to the liquid in the correct amount and are simultaneously exposed to an ultrasonic field. The ultrasonic field is generated electromagnetically outside of the liquid or by the flow of lamellae. Das erfindungsgemässe Verfahren beruht darauf, dass der Ultraschall direkt in der Flüssigkeit durch einen Hartmann-Ultraschallgeber (Fig. 2) erzeugt wird. Durch das direkte Einblasen von gasförmigen Medien wird mit diesen selbst durch eine Kavitationsdüse ein Ultraschallfeld erzeugt, welches in der zu behandelnden Flüssigkeit auftritt.  The method according to the invention is based on the fact that the ultrasound is generated directly in the liquid by a Hartmann ultrasound transmitter (FIG. 2). By directly blowing in gaseous media, an ultrasonic field is generated with them, even through a cavitation nozzle, which occurs in the liquid to be treated. Diese innige Durchmischung wird mit den gebräuchlichen Ultraschallgebern nicht erreicht. Durch die Plazierung des Ultraschallgebers in der Flüssigkeit sowie durch die Bildung des Ultraschallfeldes durch das gasförmige Medium selbst wird eine intensive Durchmischung sowie eine erhöhte Reaktionsfähigkeit und somit bessere Ausbeute erreicht. Die grössere Reaktionsgeschwindigkeit sowie die bessere Ausbeute sind dadurch zu erklären, dass die Reaktionspartner im Ultraschallfeld selbst einen hohen Verteilungsgrad aufweisen und dabei die Reaktionsoberfläche vergrössert wird. This intimate mixing is not achieved with the usual ultrasound sensors. The placement of the ultrasound transmitter in the liquid and the formation of the ultrasound field by the gaseous medium itself result in intensive mixing and increased reactivity and thus better yield. The greater reaction speed and the better yield can be explained by the fact that the reaction partners themselves have a high degree of distribution in the ultrasonic field and the reaction surface is enlarged in the process. Als Antriebsgase für den Ultraschallgeber können Luft, CO2, Cl2, Ozon oder deren Gemische eingesetzt werden. Bei andern chemischen Reaktionen können alle bekannten Gase, wie z. B. Methan, Gasgemische oder unter Druck verdampfte Flüssigkeiten verwendet werden, vorausgesetzt, dass sie eine Gasgeschwindigkeit in der Düse von über 330 m/sec- l erreichen und dabei ein Ultraschallfeld durch die Kavitationsdüse erzeugt wird. Da die Druckknoten im Ultraschallfeld sehr hohe Werte annehmen können, ist eine weitere Verbesserung der Reaktionsgeschwindigkeit mit diesem System zu erreichen. Air, CO2, Cl2, ozone or their mixtures can be used as drive gases for the ultrasound transmitter. In other chemical reactions, all known gases, such as. B. methane, gas mixtures or liquids evaporated under pressure, provided that they reach a gas velocity in the nozzle of over 330 m / sec- l and an ultrasonic field is generated by the cavitation nozzle. Since the pressure nodes in the ultrasonic field can assume very high values, a further improvement in the reaction speed can be achieved with this system. Ausführungsbeispiele der Erfindung werden anschlies- send anhand von Zeichnungen näher erläutert. Es zeigen: Fig. 1 schematisch die Durchführung des Verfahrens nach Patentanspruch 2, Fig. 2 eine Vergrösserung eines Hartmarm-Ultraschallge- bers, welcher direkt im zu behandelnden Medium arbeitet, Fig. 3 schematisch die Durchführung des Verfahrens nach Patentanspruch 3.  Exemplary embodiments of the invention are subsequently explained in more detail with reference to drawings. Show it: 1 schematically the implementation of the method according to claim 2, 2 shows an enlargement of a hard-arm ultrasound transmitter, which works directly in the medium to be treated, 3 schematically shows the implementation of the method according to claim 3. Beispiel I Bei der Behandlung von Wasser, welches oxidierbare, gelöste bzw. feine Schwebestoffe enthält, wird das Verfahren wie folgt angewendet. Das zu behandelnde Wasser strömt gleichmässig durch das Rohr A (Fig. 1). Die mit Ozon angereicherte Luft wird durch die Düse B mit einer Geschwindigkeit von über 330 m/sec- 9 auf die Kavitationsdüse zentriert ausgeströmt. Dabei entsteht zwischen der Ausströmdüse und der Kavitationsdüse ein Schwingungsfeld im Ultraschallbereich. Die dabei erreichte Oxydation der gelösten Stoffe bzw. der Schwebestoffe ist grösser als bei normaler Begasung mit der gleichen Menge Luft/Ozon ohne Ultraschall.  Example I In the treatment of water which contains oxidizable, dissolved or fine suspended matter, the method is used as follows. The water to be treated flows evenly through pipe A (Fig. 1). The air enriched with ozone flows out through the nozzle B at a speed of over 330 m / sec-9 centered on the cavitation nozzle. This creates a vibration field in the ultrasonic range between the outflow nozzle and the cavitation nozzle. The oxidation of the dissolved substances or suspended matter achieved is greater than with normal fumigation with the same amount of air / ozone without ultrasound. Durch die Anordnung im geschlossenen Rohrsystem wird eine längere Kontaktzeit des Gases mit der Flüssigkeit gewährleistet. The arrangement in the closed pipe system ensures a longer contact time of the gas with the liquid. Beispiel II Bei der Desinfektion von Schwimmbadwasser wird durch den Hartmann-Ultraschallgeber ein dosiertes Gemisch Luft/Chlor eingespeist und im Rohrsystem mit dem Badwasser innig vermischt. Durch die erhöhte Durchmischung und Reaktionsgeschwindigkeit kann der Chlorverbrauch um ca. 3W0% reduziert werden, und es wird trotzdem der gleiche desinfizierende Wert erreicht, wie wenn ohne Ultraschall mit erhöhter Chlormenge gearbeitet wird.  Example II When disinfecting swimming pool water, a dosed air / chlorine mixture is fed in by the Hartmann ultrasonic transmitter and intimately mixed with the bath water in the pipe system. Due to the increased mixing and reaction speed the chlorine consumption can be reduced by approx. Beispiel III Im Apparat, siehe Fig. 3, wird durch Einblasen von Luft ins Abwasser im Ultraschallgeber A eine intensive Vermischung im Rohrbündel erreicht. Durch die eingeblasene Luft wird das Schmutzwasser gegen die Prallplatte B geschleudert und kommt in den Überlauf C. Von dort gelangt das Wasser in den Absetzbehälter D zur Dekantierung. Das abgetrennte Klarwasser kann nach genügender Reinigung direkt in den Vorfluter gelangen oder wird im Kreislauf so lange behan delt, bis die gewünschte Reinheit erreicht ist. Durch die intensive Behandlung im Ultraschall wird die Agglomeration von Schwebeteilchen gesteigert, so dass eine schnellere Sedimentation im Dekantiergefäss erreicht wird. Die intensive Vermischung mit Luft gewährleistet eine bessere Löslichkeit des Gases im Wasser.  Example III In the apparatus, see Fig. 3, an intensive mixing in the tube bundle is achieved by blowing air into the waste water in the ultrasonic generator A. Due to the blown air, the dirty water is thrown against the baffle plate B and comes into the overflow C. From there the water reaches the settling tank D for decanting. The separated clear water can get into the receiving water after sufficient cleaning or is treated in the circuit until the desired purity is reached. The intensive treatment with ultrasound increases the agglomeration of suspended particles so that faster sedimentation in the decanter is achieved. The intensive mixing with air ensures a better solubility of the gas in water. Soll nur eine Sauerstoffzuführung für den biologischen Abbau erreicht werden, so sind nur so viele Luftdüsen in Gang zu setzen, um eine genügende Belüftung zu garantieren. **WARNUNG** Ende CLMS Feld konnte Anfang DESC uberlappen**.  If only an oxygen supply for biodegradation is to be achieved, only so many air nozzles need to be set in motion to guarantee adequate ventilation. ** WARNING ** End of CLMS field could overlap beginning of DESC **.
CH349079A 1979-04-12 1979-04-12 Method for treating liquids with a reaction gas in an ultrasonic field CH637034A5 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CH349079A CH637034A5 (en) 1979-04-12 1979-04-12 Method for treating liquids with a reaction gas in an ultrasonic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH349079A CH637034A5 (en) 1979-04-12 1979-04-12 Method for treating liquids with a reaction gas in an ultrasonic field

Publications (1)

Publication Number Publication Date
CH637034A5 true CH637034A5 (en) 1983-07-15

Family

ID=4257119

Family Applications (1)

Application Number Title Priority Date Filing Date
CH349079A CH637034A5 (en) 1979-04-12 1979-04-12 Method for treating liquids with a reaction gas in an ultrasonic field

Country Status (1)

Country Link
CH (1) CH637034A5 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0515732A1 (en) * 1991-04-25 1992-12-02 Ppv-Verwaltungs-Ag Apparatus for charging viscous liquids with gas
US5198122A (en) * 1991-04-08 1993-03-30 Trinity Environmental Technologies, Inc. Method of detoxification of substances by utilization of ultrasonic energy
WO1998048955A1 (en) * 1997-04-29 1998-11-05 Gkss-Forschungszentrum Geesthacht Gmbh Method for decontaminating contaminated soils
DE10320840A1 (en) * 2003-05-08 2004-12-09 Schmid, Andreas, Dr.-Ing. M.Sc. Device and method for introducing gaseous and / or liquid medium into liquid medium
US20130160688A1 (en) * 2010-06-29 2013-06-27 Richard Eric Whiteside Gas lift pump apparatus with ultrasonic energy generator and method
GB2521258A (en) * 2013-10-14 2015-06-17 Coldharbour Marine Ltd Apparatus and method
US9902630B2 (en) 2011-12-22 2018-02-27 Coldharbour Marine Limited Apparatus and method for liquid pumping
CN111960523A (en) * 2020-09-04 2020-11-20 浙江浙能技术研究院有限公司 Method and device for realizing gas-water mixing and activating through secondary hydrodynamic cavitation and ultrasonic cavitation
CN115738953A (en) * 2022-11-27 2023-03-07 昆明理工大学 Device and method for enhancing quality improvement effect of ozone on flue gas desulfurization product

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198122A (en) * 1991-04-08 1993-03-30 Trinity Environmental Technologies, Inc. Method of detoxification of substances by utilization of ultrasonic energy
EP0515732A1 (en) * 1991-04-25 1992-12-02 Ppv-Verwaltungs-Ag Apparatus for charging viscous liquids with gas
WO1998048955A1 (en) * 1997-04-29 1998-11-05 Gkss-Forschungszentrum Geesthacht Gmbh Method for decontaminating contaminated soils
DE10320840A1 (en) * 2003-05-08 2004-12-09 Schmid, Andreas, Dr.-Ing. M.Sc. Device and method for introducing gaseous and / or liquid medium into liquid medium
DE10320840B4 (en) * 2003-05-08 2005-06-30 Schmid, Andreas, Dr.-Ing. M.Sc. Apparatus and method for introducing gaseous and / or liquid medium into liquid medium
US20130160688A1 (en) * 2010-06-29 2013-06-27 Richard Eric Whiteside Gas lift pump apparatus with ultrasonic energy generator and method
US9902630B2 (en) 2011-12-22 2018-02-27 Coldharbour Marine Limited Apparatus and method for liquid pumping
GB2521258A (en) * 2013-10-14 2015-06-17 Coldharbour Marine Ltd Apparatus and method
GB2521258B (en) * 2013-10-14 2018-02-07 Coldharbour Marine Ltd Apparatus and method
US10765988B2 (en) 2013-10-14 2020-09-08 Coldharbour Marine Limited Apparatus and method for treating gas in a liquid medium with ultrasonic energy for chemical reaction
CN111960523A (en) * 2020-09-04 2020-11-20 浙江浙能技术研究院有限公司 Method and device for realizing gas-water mixing and activating through secondary hydrodynamic cavitation and ultrasonic cavitation
CN111960523B (en) * 2020-09-04 2023-12-12 浙江浙能技术研究院有限公司 Method and device for realizing gas-water miscible activation through secondary hydrodynamic cavitation and ultrasonic cavitation
CN115738953A (en) * 2022-11-27 2023-03-07 昆明理工大学 Device and method for enhancing quality improvement effect of ozone on flue gas desulfurization product

Similar Documents

Publication Publication Date Title
DE3738295A1 (en) REACTOR AND METHOD FOR THE BIOLOGICAL PURIFICATION OF POLLUTANT-BASED WATER
DE3002604A1 (en) METHOD AND DEVICE FOR BIOLOGICAL WASTE WATER TREATMENT
ATE71064T1 (en) METHOD AND DEVICE FOR TREATMENT AND DISINFECTION OF SWIMMING POOL WATER USING CHLORINE AND OZONE.
DE69305411T3 (en) System and method for eliminating microorganisms
CH637034A5 (en) Method for treating liquids with a reaction gas in an ultrasonic field
DE4325803A1 (en) Process for the treatment of organically contaminated water
DE4032288C2 (en)
DE68904761T2 (en) DEVICE FOR SOLVING OZONE IN A FLUIDUM.
DE2211890A1 (en) Waste water purification - using conc hydrogen peroxide forming nascent oxygen recombined for biological purification
EP0703828B1 (en) Process and device for separating suspended substances from fluids
DE19910639A1 (en) Ozonization reactor for treating liquids, e.g. water, includes an ozone-generating electrolysis cell and an immersion pump and/or vacuum injector for recycling ozone
CH673780A5 (en)
DE4327526C2 (en) Air purification system and method for air purification using the system
DE3031755A1 (en) Continuous chemical treatment of effluents - esp. from laundries, contg. dissolved, emulsified or colloidal contaminants
DE4143107C2 (en) Device for treating liquids
CH661264A5 (en) Process and plant for removing urea and ammonium from bathing water
EP0786435A2 (en) Process and device for waste water treatment
DE4216784A1 (en) Process for the oxidation of organic substances in water or waste water
DE3640964A1 (en) Process and apparatus for introducing air and/or oxygen into activation tanks in waste water purification and for aerating lakes, ponds and rivers
DE2400416C3 (en) Process for treating waste water
DE2542167C3 (en) Process for the flotation of particles dispersed and / or emulsified in polluted water
DE19810650A1 (en) Removal of small particles from process water
DE19702884C2 (en) Device for cleaning waste water with ozone
CH521293A (en) Sewage pretreatment plant - for removal of detergents before discharge into public sewers using ozone aeration
DE2512815C2 (en) Device for biological waste water treatment

Legal Events

Date Code Title Description
PL Patent ceased
PL Patent ceased