CH571703A5 - Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc - Google Patents
Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric discInfo
- Publication number
- CH571703A5 CH571703A5 CH872674A CH872674A CH571703A5 CH 571703 A5 CH571703 A5 CH 571703A5 CH 872674 A CH872674 A CH 872674A CH 872674 A CH872674 A CH 872674A CH 571703 A5 CH571703 A5 CH 571703A5
- Authority
- CH
- Switzerland
- Prior art keywords
- coils
- change
- angular position
- disc
- disk
- Prior art date
Links
- 230000001939 inductive effect Effects 0.000 title claims description 7
- 238000005259 measurement Methods 0.000 title claims description 6
- 239000003302 ferromagnetic material Substances 0.000 claims abstract description 7
- 238000010276 construction Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/22—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
- G01D5/2208—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
- G01D5/2216—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by a movable ferromagnetic element, e.g. a core
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2205/00—Indexing scheme relating to details of means for transferring or converting the output of a sensing member
- G01D2205/70—Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
- G01D2205/73—Targets mounted eccentrically with respect to the axis of rotation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
The transducer has both coils located on a common axis and there is an eccentric disc (5) which is made of ferro-magnetic material. This disc is situated between the coils (1, 2). Pref. the disc is circular or its shape depends on a given desired relationship between the variation in the impedance of the coils and the change in angular position of the disc. The transducer makes it possible to measure mechanical variables in conjunction with carrier frequency amplifiers. The centre of rotation of the disc is midway between the two coils, so that the shape of the disc and its angular position determine the distances 'a' and 'b' between the edges of the disc and the coils.
Description
Die vorliegende Erfindung betrifft einen mechanischelektrischen, induktiven Doppelspulen-Umformer mit zwei axial fluchtend angeordneten Spulen.
Ein solcher Umformer gestattet die Änderungen der Winkellage beim Überprüfen von Maschinenteilen festzustellen.
Gegenwärtig werden für diese Messungen Messpotentiometer als Umformer der Lageänderung auf eine elektrische Grösse verwendet, bei denen die Widerstandsänderung der Lageänderung, das heisst der Änderung der Winkeleinstellung, direkt proportional ist.
Der Nachteil dieser Messpotentiometer besteht in der begrenzten Minimaldicke des Widerstandsdrahtes, so dass die Widerstandsänderung nicht kontinuierlich, sondern sprungartig verläuft. Dies wird durch den Übergang des beweglichen Läufers von einer Drahtwindung auf die nächste verursacht.
Die vorliegende Erfindung soll diesen Nachteil beseitigen durch einen Umformer in kontaktloser Ausführung, um eine kontinuierliche Messung der Winkellage ohne unerwünschte Sprünge sicherzustellen.
Dies wird erfindungsgemäss dadurch erreicht, dass zwischen den beiden Spulen eine exzentrische Scheibe aus ferromagnetischem Material angeordnet ist.
Dieser induktive Umformer ermöglicht eine Fühlerkonstruktion, die in Verbindung mit auf dem Prinzip der Trägerfrequenz arbeitenden Verstärkern zur Messung mechanischer Grössen verwendet werden kann.
Eine beispielsweise Ausführungsform des Erfindungsgegenstandes wird nachfolgend anhand der Zeichnung, welche in schematischer Darstellung einen Umformer zeigt, näher erläutert.
Der gezeigte Umformer weist zwei Spulen 1 und 2 auf. Die beiden Spulen 1 und 2 sind voneinander getrennt und umfassen Kerne 3 und 4. Die Spulen 1 und 2 sind fest angeordnet und auf einer senkrecht zu ihrer gemeinsamen Achse stehenden Welle ist zwischen ihnen eine exzentrische Scheibe 5 aus ferromagnetischem Material angeordnet. Die in Lagern gelagerte Welle dieser exzentrischen Scheibe 5 ist mit dem zu messenden Objekt zu verbinden.
In der Gleichgewichtsausgangslage ist die Scheibe 5 so gestellt, dass die Entfernungen a und b zwischen der Scheibe 5 und den Spulen 1 und 2 gleich sind und die Spulen 1 und 2 sich im elektrisch ausgewogene Zustand befinden. Falls ein Drehen der Scheibe 5 infolge der Lageänderung des gemessenen Objekts erfolgt, werden die Entfernungen a und b geändert, so dass eine Entfernung grösser und die zweite Entfernung um den gleichen Wert kleiner ist. So wird die elektrische Impedanz der beiden Spulen geändert. Die resultierende Impedanzänderung dieser Spulen, die in die Zweige einer Brückenanordnung geschaltet sind, ist eine Funktion der Lageänderung, was einer Änderung der Winkellage der Scheibe 5 entspricht.
Durch geeignete Formwahl der Scheibe 5 kann eine lineare Änderung der resultierenden elektrischen Impedanz der Spulen 1 und 2 in Abhängigkeit der Änderung der Winkellage bezüglich des mittleren Gleichgewichtszustandes erreicht werden.
Die Spulen 1 und 2 sind in benachbarten Zweigen der Brückenanordnung geschaltet, so dass eine Kompensation der Einflüsse bei Änderungen der Umformertemperatur erfolgt.
Der vorbeschriebene Umformer kann beim Bau von Fühlern verwendet werden, die direkt eine Änderung der Winkellage messen und auch bei der Konstruktion von Fühlern für eine Winkelbeschleunigung- oder Verzögerung, ferner bei Fühlern zur Abnahme von Torsionsschwingungen u. dgl.
PATENTANSPRUCH
Mechanisch-elektrischer, induktiver Doppelspulen-Umformer mit zwei axial fluchtend angeordneten Spulen, dadurch gekennzeichnet, dass zwischen den beiden Spulen (1 und 2) eine exzentrische Scheibe (5) aus ferromagnetischem Material angeordnet ist.
UNTERANSPRÜCHE
1. Doppelspulen-Umformer nach Patentanspruch, dadurch gekennzeichnet, dass die Scheibe (5) die Form eines kreisförmigen Exzenters aufweist.
2. Doppelspulen-Umformer nach Patentanspruch, dadurch gekennzeichnet, dass die Scheibe (5) eine solche Form aufweist, dass eine lineare Beziehung zwischen der Änderung der elektrischen Impedanz der Spulen und der Änderung der Winkellage der Scheibe (5) gegeben ist.
**WARNUNG** Ende DESC Feld konnte Anfang CLMS uberlappen**.
The present invention relates to a mechanical-electrical, inductive double-coil converter with two axially aligned coils.
Such a converter allows the changes in the angular position to be determined when checking machine parts.
At present, measuring potentiometers are used for these measurements as converters of the change in position to an electrical quantity, in which the change in resistance is directly proportional to the change in position, i.e. the change in the angle setting.
The disadvantage of this measuring potentiometer is the limited minimum thickness of the resistance wire, so that the change in resistance is not continuous but rather abrupt. This is caused by the transition of the movable rotor from one turn of the wire to the next.
The present invention is intended to eliminate this disadvantage by means of a transducer with a contactless design in order to ensure continuous measurement of the angular position without undesired jumps.
This is achieved according to the invention in that an eccentric disk made of ferromagnetic material is arranged between the two coils.
This inductive transducer enables a sensor construction that can be used in connection with amplifiers working on the principle of the carrier frequency to measure mechanical quantities.
An example embodiment of the subject matter of the invention is explained in more detail below with reference to the drawing, which shows a converter in a schematic representation.
The converter shown has two coils 1 and 2. The two coils 1 and 2 are separated from one another and comprise cores 3 and 4. The coils 1 and 2 are fixedly arranged and an eccentric disk 5 made of ferromagnetic material is arranged between them on a shaft perpendicular to their common axis. The shaft of this eccentric disk 5, which is mounted in bearings, is to be connected to the object to be measured.
In the initial equilibrium position, the disk 5 is set so that the distances a and b between the disk 5 and the coils 1 and 2 are the same and the coils 1 and 2 are in the electrically balanced state. If the disk 5 is rotated as a result of the change in position of the measured object, the distances a and b are changed so that one distance is greater and the second distance is smaller by the same value. This changes the electrical impedance of the two coils. The resulting change in impedance of these coils, which are connected in the branches of a bridge arrangement, is a function of the change in position, which corresponds to a change in the angular position of the disk 5.
By suitably selecting the shape of the disk 5, a linear change in the resulting electrical impedance of the coils 1 and 2 can be achieved as a function of the change in the angular position with respect to the mean state of equilibrium.
The coils 1 and 2 are connected in adjacent branches of the bridge arrangement, so that the effects of changes in the converter temperature are compensated for.
The converter described above can be used in the construction of sensors that directly measure a change in the angular position and also in the construction of sensors for angular acceleration or deceleration, and also for sensors for the decrease in torsional vibrations and the like. like
PATENT CLAIM
Mechanical-electrical, inductive double-coil converter with two axially aligned coils, characterized in that an eccentric disc (5) made of ferromagnetic material is arranged between the two coils (1 and 2).
SUBCLAIMS
1. Double coil converter according to claim, characterized in that the disc (5) has the shape of a circular eccentric.
2. Double coil converter according to claim, characterized in that the disc (5) has such a shape that there is a linear relationship between the change in the electrical impedance of the coils and the change in the angular position of the disc (5).
** WARNING ** End of DESC field could overlap beginning of CLMS **.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH872674A CH571703A5 (en) | 1974-06-25 | 1974-06-25 | Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH872674A CH571703A5 (en) | 1974-06-25 | 1974-06-25 | Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc |
Publications (1)
Publication Number | Publication Date |
---|---|
CH571703A5 true CH571703A5 (en) | 1976-01-15 |
Family
ID=4344018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH872674A CH571703A5 (en) | 1974-06-25 | 1974-06-25 | Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc |
Country Status (1)
Country | Link |
---|---|
CH (1) | CH571703A5 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2936456A1 (en) * | 1978-09-11 | 1980-03-27 | Ogasawara Hiromi | ROTATION ANGLE MEASURING DEVICE |
WO2008060801A1 (en) | 2006-11-14 | 2008-05-22 | Raytheon Company | Angular position measurement device |
-
1974
- 1974-06-25 CH CH872674A patent/CH571703A5/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2936456A1 (en) * | 1978-09-11 | 1980-03-27 | Ogasawara Hiromi | ROTATION ANGLE MEASURING DEVICE |
WO2008060801A1 (en) | 2006-11-14 | 2008-05-22 | Raytheon Company | Angular position measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19817356A1 (en) | Angle indicator for determining an angle between a sensor arrangement and a magnetic field | |
DE2326257A1 (en) | INDUCTIVE TRANSFER | |
EP0334854A1 (en) | Measurement system for rotation angle and/or rotation speed. | |
DE2216091A1 (en) | DEVICE FOR NON-CONTACT TEMPERATURE MEASUREMENT ON A MOVING OBJECT | |
EP0395665B1 (en) | Measuring device for determining the torque of a rotating mechanical part | |
DE4400616A1 (en) | Magnetic position sensor for shaft orientation or RFM indication | |
DE102021112380A1 (en) | Steering actuator for a vehicle and method of operating the same | |
DE3517849C2 (en) | ||
EP0425529B1 (en) | A measuring device for determining an angle of rotation | |
DE2432032A1 (en) | Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc | |
DE4438715C1 (en) | Magnetic field sensor chip for linear or angular incremental measuring device | |
CH571703A5 (en) | Inductive double-coil measurement transducer - is non-contacting and performs continuous measurement of angular position using eccentric disc | |
EP0045814A1 (en) | Adjustable spiral spring for measuring instruments | |
DE19646056C2 (en) | Device for measuring the speed of a body rotating about an axis of rotation | |
DE2445111C3 (en) | Device for measuring changes in the area of machine parts by inductive means | |
DE10001346A1 (en) | Device for determination of the torque produced by a motor vehicle auxiliary power unit has a rigid connection between two axles with a magnetic torque measurement arrangement | |
DE2515258A1 (en) | INDUCTIVE TRANSFER | |
DE7422689U (en) | DOUBLE COIL TRANSMITTER | |
DE3425147C2 (en) | Arrangement to reduce the influence of the creep error on the measurement signal in the case of strain gauge sensors | |
DE3237843A1 (en) | Device for contactless linear measurement of the distance and its temporal derivation between an object and a ferromagnetic body | |
DE4102478A1 (en) | Inductive angle transducer for machinery, research, control etc. - has sectored surface bounding airgap between mutually rotatable soft magnetic cores | |
DE919073C (en) | Electric push button and process for its manufacture | |
DE466965C (en) | Device for monitoring combustion systems in which the ratio of two operating parameters is displayed on a single scale | |
EP3495792B1 (en) | Device and method for compensating for external fields in magnetostrictive torque measurement | |
AT159364B (en) | Device for length measurement on an electromagnetic basis. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased | ||
PL | Patent ceased |