[go: up one dir, main page]

CH394717A - Steam generating plant with a gas turbine plant - Google Patents

Steam generating plant with a gas turbine plant

Info

Publication number
CH394717A
CH394717A CH1469761A CH1469761A CH394717A CH 394717 A CH394717 A CH 394717A CH 1469761 A CH1469761 A CH 1469761A CH 1469761 A CH1469761 A CH 1469761A CH 394717 A CH394717 A CH 394717A
Authority
CH
Switzerland
Prior art keywords
gas turbine
plant
steam generating
steam
line
Prior art date
Application number
CH1469761A
Other languages
German (de)
Inventor
Rene Dipl Ing Strub
Original Assignee
Sulzer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BE626096D priority Critical patent/BE626096A/xx
Application filed by Sulzer Ag filed Critical Sulzer Ag
Priority to CH1469761A priority patent/CH394717A/en
Priority to FR918868A priority patent/FR1341301A/en
Publication of CH394717A publication Critical patent/CH394717A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/02Applications of combustion-control devices, e.g. tangential-firing burners, tilting burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  

      Dampferzeugungsanlage    mit einer     Gasturbinenanlage       Die     Erfindung    bezieht sich auf eine     Dampferzeu-          gungsanlage    mit einer     Gasturbinenanlage,    bei der die  Abgasleitung der Gasturbine mit der     Brennkammer     der     Dampferzeugungsanlage    verbunden ist. Die Ver  wendung von     Gasturbinenanlagen    in     Dampferzeu-          gungsanlagen    ist an sich     vorteilhaft,    da dadurch der  thermische     Wirkungsgrad    verbessert werden kann.

    Schwierigkeiten ergeben sich aber, wenn die Dampf  erzeugungsanlage Belastungsschwankungen unterwor  fen ist, weil dabei der     Wirkungsgrad    der Gasturbinen  anlage sich rasch verschlechtert.  



  Die Erfindung ist dadurch gekennzeichnet, dass  die     Gasturbinenanlage    für die Lieferung einer     maxi-          malen        Gasmenge        ausgelegt        ist,        die        etwa        70        %        der-von     der     Dampferzeugungsanlage    bei Vollast benötigten       Brennluftmenge    entspricht, und dass ein regelbarer  Ventilator vorgesehen ist,

   der den Rest der von der       Dampferzeugungsanlage    benötigten     Brennluftmenge     liefert.  



  Ein Ausführungsbeispiel der Erfindung und deren  Vorteile sind im folgenden anhand der Zeichnung be  schrieben. Die Zeichnung zeigt eine schematische  Darstellung einer     Dampferzeugungsanlage        mit    einer       Gasturbinenanlage.    Die     Gasturbinenanlage    besteht  aus einem von der Gasturbine 1 mit konstanter Dreh  zahl angetriebenen Kompressor 2 und einer Brenn  kammer 3. Die Brennkammer 3 ist über eine Leitung  4 mit der     Austrittseite    des Kompressors 2 verbunden.  Den Brennstoff (Gas oder Öl) erhält die     Brennkam-          mer    über eine Leitung 6.

   Die Ansaugleitung des     Kom-          pressors    ist mit 7 bezeichnet und die     Austrittleitung     der Turbine 1 mit B. Diese Leitung 8 führt zur     Brenn-          kammer    der     Dampferzeugungsanlage    9. Diese ent  hält ein Rohrsystem 10, in dem     mittels    einer nicht  dargestellten Speisepumpe zugeführtes Speisewasser in  Dampf umgewandelt wird, der über die Leitung 12    einem nichtdargestellten Dampfverbraucher, z. B.  einer Dampfturbine,     zugeführt    wird.

   Die Brennkam  mer des Dampferzeugers 9 ist mit nicht näher dar  gestellten Brennern     ausgestattet,    die ihren Brennstoff  aus der Leitung 13 erhalten. An die Dampferzeuger  Brennkammer ist eine     Luftzufuhrleitung    14 ange  schlossen. Diese Leitung kommt von einem Ventilator  15, der beispielsweise von einem Elektromotor 16 an  getrieben ist.  



  Der Kompressor 2 wird von der Gasturbine 1 im  wesentlichen mit konstanter Drehzahl angetrieben,  saugt dabei über die Leitung 7 Luft an, komprimiert  sie und drückt sie über die Leitung 4 in die Brenn  kammer 3. Die hier entstehenden Gase     gelangen    über  die Leitung 5 in die Gasturbine 1, in der sie expan  dieren und     anschliessend    über die Leitung 8 zur       Brennkammer    des Dampferzeugers 9 strömen.

   Diese       Gasmenge        entspricht        etwa        70        %        derjenigen        Gas-          menge,    die     für        die    Verbrennung des durch die Leitung  13 bei Vollast des Dampferzeugers zugeführten       Brennstoffes    benötigt wird.

   Wenn der Dampferzeuger       mit        einer        grösseren        Last        als        70        %        fährt,        so        wird        der     Rest der erforderlichen Luftmenge mit     Hilfe    des Ven  tilators 15 über die Leitung 14 in     die        Dampferzeuger-          Brennkammer    eingeblasen.

   Der Ventilator 15 fördert  also nur in dem Lastbereich zwischen etwa 70 und       100        %.        Er        ist        regelbar        ausgebildet,

          indem        beispiels-          weise    die     Drehzahl    der Antriebswelle verändert     wird.          Da        die        70        %        Gasmenge        der        normalen        Vollastgas-          menge    der     Gasturbinenanlage    entspricht und die       Drehzahl    praktisch konstant bleibt, arbeitet die Gas  turbinenanlage stets mit gutem Wirkungsgrad,

   denn  die bei Laständerungen des Dampferzeugers notwen  digen Anpassungen in der Brennluftzufuhr werden  vom Ventilator 15 übernommen.  



  Wenn es vorkommt, dass die Dampferzeugungs-           anlage        häufig        mit        weniger        als        etwa        70        %        Last        oetrie-          ben    wird, so     kann    auch dieser Lastbereich von der       Gasturbinenanlage    gut beherrscht werden, wenn nach  einer     Ausführungsform    der Erfindung in dem Kom  pressor 2 eine im Betrieb verstellbare     Leitschaufelung          vorgesehen    ist.



      Steam generation system with a gas turbine system The invention relates to a steam generation system with a gas turbine system, in which the exhaust pipe of the gas turbine is connected to the combustion chamber of the steam generation system. The use of gas turbine systems in steam generation systems is advantageous in itself, since this can improve the thermal efficiency.

    Difficulties arise, however, when the steam generating plant is subject to fluctuations in load because the efficiency of the gas turbine plant deteriorates rapidly.



  The invention is characterized in that the gas turbine system is designed for the delivery of a maximum amount of gas that corresponds to about 70% of the amount of combustion air required by the steam generation system at full load, and that a controllable fan is provided,

   which supplies the rest of the amount of combustion air required by the steam generation system.



  An embodiment of the invention and its advantages are described below with reference to the drawing be. The drawing shows a schematic representation of a steam generation plant with a gas turbine plant. The gas turbine system consists of a compressor 2 driven at constant speed by the gas turbine 1 and a combustion chamber 3. The combustion chamber 3 is connected to the outlet side of the compressor 2 via a line 4. The combustion chamber receives the fuel (gas or oil) via a line 6.

   The suction line of the compressor is denoted by 7 and the outlet line of the turbine 1 by B. This line 8 leads to the combustion chamber of the steam generation system 9. This contains a pipe system 10 in which feed water supplied by a feed pump, not shown, is converted into steam is, the via line 12 to a steam consumer, not shown, z. B. a steam turbine is supplied.

   The Brennkam mer of the steam generator 9 is equipped with burners that are not presented in detail and which receive their fuel from line 13. An air supply line 14 is connected to the steam generator combustion chamber. This line comes from a fan 15 which is driven, for example, by an electric motor 16.



  The compressor 2 is driven by the gas turbine 1 essentially at constant speed, sucks in air through the line 7, compresses it and pushes it through the line 4 into the combustion chamber 3. The gases produced here pass through the line 5 into the Gas turbine 1, in which they expand and then flow via line 8 to the combustion chamber of the steam generator 9.

   This amount of gas corresponds to about 70% of that amount of gas which is required for the combustion of the fuel supplied through line 13 when the steam generator is at full load.

   If the steam generator runs with a load greater than 70%, the rest of the required amount of air is blown with the help of the Ven fan 15 via line 14 into the steam generator combustion chamber.

   The fan 15 thus only promotes in the load range between approximately 70 and 100%. He is trained adjustable,

          by changing the speed of the drive shaft, for example. Since the 70% gas volume corresponds to the normal full load gas volume of the gas turbine system and the speed remains practically constant, the gas turbine system always works with good efficiency,

   because the necessary adjustments in the combustion air supply when the steam generator changes load are taken over by the fan 15.



  If it happens that the steam generation plant is frequently operated with less than about 70% load, then this load range can also be well controlled by the gas turbine plant if, according to one embodiment of the invention, a guide vanes adjustable during operation in the compressor 2 is provided.

 

Claims (1)

PATENTANSPRUCH Dampferzeugungsanlage mit einer Gasturbinen anlage, bei der die Abgasleitung der Gasturbine mit der Brennkammer der Dampferzeugungsanlage ver bunden ist, dadurch gekennzeichnet, dass die Gas- turbinenanlage für die Lieferung einer maximalen Gasmenge ausgelegt ist, PATENT CLAIM Steam generating plant with a gas turbine plant in which the exhaust pipe of the gas turbine is connected to the combustion chamber of the steam generating plant, characterized in that the gas turbine plant is designed for the delivery of a maximum amount of gas, die etwa 70 % der von der Dampferzeugungsanlage bei Vollast benötigten Brenn- luftmenge entspricht, und dass ein regelbarer Ven tilator vorgesehen ist, der den Rest der von der Dampferzeugungsanlage benötigten Brennluftmenge liefert. which corresponds to about 70% of the amount of combustion air required by the steam generation system at full load, and that a controllable fan is provided which supplies the rest of the amount of combustion air required by the steam generation system. UNTERANSPRUCH Anlage nach Patentanspruch, dadurch gekenn zeichnet, dass der Gasturbinenkompressor mit im Be trieb einstellbarer Leitschaufelung versehen ist. SUBCLAIM System according to claim, characterized in that the gas turbine compressor is provided with guide vanes that can be adjusted during operation.
CH1469761A 1961-12-19 1961-12-19 Steam generating plant with a gas turbine plant CH394717A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BE626096D BE626096A (en) 1961-12-19
CH1469761A CH394717A (en) 1961-12-19 1961-12-19 Steam generating plant with a gas turbine plant
FR918868A FR1341301A (en) 1961-12-19 1962-12-17 Steam power plant including a gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1469761A CH394717A (en) 1961-12-19 1961-12-19 Steam generating plant with a gas turbine plant

Publications (1)

Publication Number Publication Date
CH394717A true CH394717A (en) 1965-06-30

Family

ID=4403096

Family Applications (1)

Application Number Title Priority Date Filing Date
CH1469761A CH394717A (en) 1961-12-19 1961-12-19 Steam generating plant with a gas turbine plant

Country Status (2)

Country Link
BE (1) BE626096A (en)
CH (1) CH394717A (en)

Also Published As

Publication number Publication date
BE626096A (en)

Similar Documents

Publication Publication Date Title
DE2005723C3 (en) Control device of a gas turbine plant
DE2263559B2 (en) Gas turbine plant
CH632559A5 (en) Method for the operation of a ship's propulsion system and device for performing the method
DE2555358A1 (en) CONTROL DEVICE FOR GAS HEATERS WITH ARTIFICIAL EXHAUST
DE1964758A1 (en) Control of a furnace system for the thermal treatment of metals
CH394717A (en) Steam generating plant with a gas turbine plant
DE2200102C3 (en) Device for generating a working gas flow
DE1032033B (en) Ram air turbine as a power source for auxiliary equipment in a gas turbine aircraft
CH250742A (en) Thermal power plant with at least two combustion turbines connected in series and running at independent rotational speeds.
DE704134C (en) Control method for systems for the generation of hot gases under pressure, primarily hot compressed air
DE886829C (en) Thermal power plant, in which at least part of the working fluid carries out a cycle
DE808603C (en) Device for generating drafts, especially for small steam boilers
DE845376C (en) Induced draft device
DE767590C (en) Gas turbine plant with rapid regulation
DE661860C (en) Device for combustion air supply for pressurized combustion systems
DE947825C (en) System for generating compressed air
DE589031C (en) Industrial combustion system with mechanical induced draft system and recirculation of part of the flue gases for the purpose of mixing it with the fresh flue gases
DE923518C (en) Exhaust gas turbine blower
DE3101066C2 (en)
DE655698C (en) Compressor system for pressure firing of steam generators or charging of internal combustion engines
DE1072013B (en) Gas turbine plant with mechanically independent compressor and power turbine
DE730793C (en) Wind heater system for blast furnaces
DE670517C (en) Pulverized coal firing
CH243691A (en) Method for regulating a gas turbine plant.
CH240293A (en) Gas turbine system in which at least part of the working fluid performs a cycle.