CH371095A - Process for the production of pressure-resistant vessels - Google Patents
Process for the production of pressure-resistant vesselsInfo
- Publication number
- CH371095A CH371095A CH6292058A CH6292058A CH371095A CH 371095 A CH371095 A CH 371095A CH 6292058 A CH6292058 A CH 6292058A CH 6292058 A CH6292058 A CH 6292058A CH 371095 A CH371095 A CH 371095A
- Authority
- CH
- Switzerland
- Prior art keywords
- vessel
- stretching
- dependent
- pressure
- welded
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/14—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of aluminium; constructed of non-magnetic steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/24—Making hollow objects characterised by the use of the objects high-pressure containers, e.g. boilers, bottles
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
- C21D7/12—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars by expanding tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/18—Details relating to the spatial orientation of the reactor
- B01J2219/185—Details relating to the spatial orientation of the reactor vertical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/19—Details relating to the geometry of the reactor
- B01J2219/194—Details relating to the geometry of the reactor round
- B01J2219/1941—Details relating to the geometry of the reactor round circular or disk-shaped
- B01J2219/1943—Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0617—Single wall with one layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0636—Metals
- F17C2203/0639—Steels
- F17C2203/0643—Stainless steels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0352—Pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0388—Arrangement of valves, regulators, filters
- F17C2205/0394—Arrangement of valves, regulators, filters in direct contact with the pressure vessel
- F17C2205/0397—Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/22—Assembling processes
- F17C2209/221—Welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/011—Improving strength
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/05—Improving chemical properties
- F17C2260/053—Reducing corrosion
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Engineering & Computer Science (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
Verfahren zur Herstellung von niit Druck belastbaren Gefässen
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von geschweissten, mit Druck belastbaren Gefässen. Hierunter sind Gefässe zu verstehen, die einem vorbestimmten maximalen inneren Überdruck, dem Arbeitsdruck des Gefässes, widerstehen, z. B. geschlossene Druckgefässe, wie Autoklaven und Gasbehälter, ferner auch hohe offene Gefässe zum Aufbewahren von Flüssigkeiten, welche insbesondere an ihren unteren Teilen einem grossen statischen inneren Überdruck gewachsen sein müssen.
Für Druckgefässe bestehen bekanntlich von staatlichen Behörden genehmigte Vorschriften. So gelten z. B. in Schweden die Druckgefäss-Normen , die von der Druckgefäss-Kommission herausgegeben und von dem Königl. Arbeiterschutz-Amt geneh- migt worden sind. Die durch diese Normen vorgeschriebenen Formeln zur Berechnung der Wand stärken von Druckgefässen enthalten einen Faktor s. r, der ein Mass für die Festigkeit des Materials darstellt und für die Wandstärke massgebend ist.
Die vorliegende Erfindung hat den Zweck, eine Verbesserung der bisher üblichen Verfahren zur Herstellung von geschweissten Gefässen der genannten Art zu schaffen, und zwar in der Weise, dass die Wand stärke auf Grund eines aber-Wertes bestimmt werden kann, der die bisher zugrunde gelegten Werte für das betreffende Material wesentlich übersteigt. Die Erfindung beruht auf der Erkenntnis, dass viele Stähle, die sich zur Herstellung von derartigen Gegenständen eignen, die Eigenschaft besitzen, dass sie ihre Festigkeit erheblich steigern, falls sie unterhalb ihrer Umkristallisierungstemperatur, beispielsweise bei Zimmertemperatur, einer Zugspannung ausgesetzt werden, ohne dass dadurch ihre Dehnbarkeit in allzu hohem Grade herabgesetzt wird.
Typische derartige Stähle sind austenitische oder vorwiegend austenitische Stähle, beispielsweise austenitische rostfreie Stähle.
Erfindungsgemäss verfährt man dabei so, dass man als Werkstoff zur Herstellung des geschweissten Gefässes einen Stahl wählt, der als wesentlichen Struk turpestandtelil Austenit enthält, und dass man das Gefäss bei einer Temperatur unterhalb der Umkristallisierungstemperatur des erwähnten Stahles einem so grossen hydraulischen oder pneumatischen inneren Überdruck aussetzt, dass eine bleibende Dehnung erfolgt, wobei diese Kaitreckung ohne Verwendung einer äusseren, die Dehnung begrenzenden Form ausgeführt wird.
Das beschriebene Verfahren bringt noch den Vorteil mit sich, dass örtliche Spannungskonzentrationen sich ausgleichen und zugleich eine Konstruktion mit gleichmässigerer Festigkeit ihrer einzelnen Teile erreicht wird.
Die Kaltreckung des Materials wird zweckmässigerweise dadurch erreicht, dass in das Gefäss Wasser oder eine andere Flüssigkeit unter einem die gewünschte bleibende Dehnung ergebenden Druck eingepresst wird und dadurch dem Material Festigkeitseigenschaften verliehen werden, die mit Rücksicht auf den vorgeschriebenen Sicherheitsfaktor bei dem für die Konstruktion bestimmten Betriebsdruck ausreichend sind.
Da zur Durchführung des Verfahrens keine das Gefäss umschliessenden Formen oder dergleichen benötigt werden, um die Ausdehnung des Gefässes zu begrenzen, ist seine betriebsmässige Anwendung äusserst einfach.
Falls nach der Druckbehandlung oder Kaltrekkung Rohrstutzen, Mannlochstutzen und ähnliche Anschlüsse durch Schweissen am Gefäss anzubringen sind, muss berücksichtigt werden, dass die beim Schweissen auftretende Erhitzung eine örtliche Beseitigung Wirkung der Kaitreckung hervorruft. Eine Kompensierung dieser örtlichen Schwächung lässt sich dadurch erreichen, dass die Stellen für den Anschluss der anzuschliessendenTeüe kräftiger bemessen werden, als sonst erforderlich wäre. Auch diejenigen
Stellen des Behälters, an denen Löcher und Stutzen anzubringen sind, können bereits im voraus kräftiger als die umgebenden Teile bemessen werden, beispielsweise so viel kräftiger, dass dort keine bleibende Dehnung entsteht. Eine Kombination der angedeuteten
Massnahmen ist auch möglich.
Die Erfindung wird nachstehend an Hand eines in der beiliegenden Zeichnung dargestellten Ausführungsbeispiels näher erläutert, in der
Fig. 1 ein geschweisstes zylindrisches Druckgefäss vor der Druckbehandlung und
Fig. 2 dasselbe Druckgefäss in fertig hergestelltem Zustand darstellt.
Es sei angenommen, dass der Behälter aus einem rostfreien Stahl mit 18% Chrom und 8% Nickel, also aus einem ausgeprägt austenitischen Material, hergestellt wird. Der Behälter besteht aus zwei gewölbten Stirnwänden 10 und 11 und einem diese miteinander verbindenden, ganz geschweissten, zylindrischen Mantel 12 von durchaus gleichmässiger Wandstärke. Mitten in jeder der Stirnwände befindet sich eine Öffnung mit eingeschweissten zylindrischen Stutzen 13 bzw. 14, während zwei zylindrische Stutzen 15 und 16 jeweils in Öffnungen im Mantelteil eingeschweisst sind. Jeder der Stutzen ist an seiner äusseren Mündung vorübergehend durch einen angeschweissten, gewölbten Deckel 18 abdichtend verschlossen. Mitten in einem der Deckel ist ein Anschlussstutzen 17 für eine nichtgezeigte Druckwasser- pumpe eingeschweisst.
Bei der Einführung von Druckwasser in den Behälter erfährt dieser eine maximale Dehnung in der Längsmitte des Mantels 12 in Umfangsrichtung des Behälters, während die Dehnung der durch die Stirnwände versteiften Endteile des Mantels etwas kleiner wird. Die Dehnung wird vermessen, und die Zuführung des Druckwassers wird unterbrochen, wenn der gewünschte Dehnungswert erreicht worden ist.
Die für jeden einzelnen Fall geeignete Dehnung hängt in erster Reihe von den Eigenschaften des zur Anwendung gelangenden Materials ab. In der Regel ist eine bleibende Dehnung des Materials der schwächsten Teile des Gefässes erforderlich, die wesentlich grösser als 0,2% ist, um eine erhebliche Verbesserung der Festigkeitseigenschaften des Gefässes bzw. eine erhebliche Erhöhung der Streckgrenze des Stahles zu gewährleisten. Vorzugsweise wählt man den Kaltreckungsdruck hoch genug, um eine bleibende Dehnung der schwächsten Teile von 1 bis 4%, höchstens aber 10%, zu erreichen.
Nach erfolgter Kaltreckung werden die vorübergehend angeschweissten Deckel 18 weggeschnitten.
Gemäss Fig. 2 wird anstelle der entfernten Deckel 18 an den Stutzen 13 und 14 jeweils ein Flanschstück 20, am Stutzen 15 ein gerades Rohr 21 und am verstärkten Stutzen 16 ein geflanschtes Knierohr 22 angeschweisst. Es ist zu bemerken, dass die Wandstärke der Stutzen 13 und 15 verhältnismässig klein bemes sen ist, während die Behälterwand rings um diese Stutzen durch Aufschweissen eines zusätzlichen Bleches verstärkt ist und dass die Wandstärke des Stutzens 14 so gross ist, dass er allein eine ausreichende Versteifung des angrenzenden Teils der Stirnwand gewährleistet, um der durch das Loch in dieser Stirnwand hervorgerufenen Schwächung Rechnung zu tragen. Wenn man die Stutzen erst nach der Kaltverformung anschweissen will, muss man die Verstärkungen noch etwas stärker bemessen.
Wie aus Fig. 1 ersichtlich, ist im Mantelteil 12 ein Blech 19 eingeschweisst, das wesentlich stärker ist als die übrigen Mantelbleche. Nach der Kaltreckung des Behälters wird aus diesem Blech eine Öffnung ausgeschnitten, in der ein Mannlochring 23 eingeschweisst wird (siehe Fig. 2). Dieser Mannlochring ist derart bemessen, dass er lediglich der durch das Loch hervorgerufenen Schwächung Rechnung trägt.
Die Stärke des ebenfalls der Kaltreckung unterworfenen Bleches 19 ist dagegen so bemessen, dass sie für den durch das Schweissen entfernten Kaltreckungseffekt Kompensation leistet. Der Mannlochdeckel ist mit 24 und der Mannlochbügel mit 25 bezeichnet.
Ein Behälter der auf der Zeichnung dargestellten Art wurde aus einem austenitischen Material hergestellt, dessen Streckgrenze anfangs bei 25,0 kgmm2 lag. Dadurch, dass in den Behälter bei Zimmertemperatur Wasser unter einem solchen Druck eingepresst wurde, dass eine maximale bleibende Dehnung des Mantels von 2,3 % erfolgte, wurde eine Erhöhung der Streckgrenze um 7,5 kgi'mm2 auf 32,5 kgXmm2 erreicht. Zugleich stellte sich eine nur geringfügige Absenkung des Dehnbarkeitswertes des Materials ein, und zwar von 53 auf 495o. Die angegebenen Zahlenwerte beziehen sich in diesem Falle auf das Material des Behälters vor bzw. nach der Druckbehandlung.
In dem beschriebenen Falle ergab sich durch die Anwendung der Erfindung bei gleichbleibendem Sicherheitsfaktor eine Materialersparung von etwa 23%.
Process for the production of pressure-resistant vessels
The subject matter of the present invention is a method for the production of welded vessels that can withstand pressure. This is to be understood as meaning vessels that withstand a predetermined maximum internal overpressure, the working pressure of the vessel, e.g. B. closed pressure vessels such as autoclaves and gas containers, and also tall open vessels for storing liquids, which must be able to withstand a large static internal overpressure, especially at their lower parts.
As is well known, there are regulations approved by state authorities for pressure vessels. So apply z. B. in Sweden the pressure vessel standards, which are issued by the pressure vessel commission and from the Royal. Workers Protection Office have been approved. The formulas prescribed by these standards for calculating the wall thickness of pressure vessels contain a factor s. r, which is a measure of the strength of the material and is decisive for the wall thickness.
The present invention has the purpose of creating an improvement of the previously customary method for producing welded vessels of the type mentioned, in such a way that the wall thickness can be determined on the basis of a but value that is based on the values previously used for the material in question significantly exceeds. The invention is based on the knowledge that many steels which are suitable for the production of such objects have the property that they increase their strength considerably if they are exposed to tensile stress below their recrystallization temperature, for example at room temperature, without thereby losing their strength Extensibility is reduced to an excessive degree.
Typical steels of this type are austenitic or predominantly austenitic steels, for example austenitic stainless steels.
According to the invention, a steel is chosen as the material for the manufacture of the welded vessel, which contains austenite as the essential structure, and the vessel is exposed to such a large hydraulic or pneumatic internal overpressure at a temperature below the recrystallization temperature of the steel mentioned that a permanent elongation takes place, this stretching being carried out without the use of an external shape that limits the elongation.
The method described also has the advantage that local stress concentrations are balanced out and, at the same time, a construction with more uniform strength of its individual parts is achieved.
The cold stretching of the material is expediently achieved in that water or another liquid is pressed into the vessel under a pressure that results in the desired permanent elongation and thereby the material is given strength properties that take into account the prescribed safety factor at the operating pressure determined for the construction are sufficient.
Since no molds or the like surrounding the vessel are required in order to limit the extent of the vessel to carry out the method, its operational use is extremely simple.
If pipe sockets, manhole sockets and similar connections are to be attached to the vessel by welding after pressure treatment or cold stretching, it must be taken into account that the heating that occurs during welding causes a local elimination effect of the quay stretching. This local weakening can be compensated for by making the points for the connection of the parts to be connected more powerful than would otherwise be necessary. Even those
Places on the container where holes and nozzles are to be attached can be dimensioned in advance to be stronger than the surrounding parts, for example so much stronger that there is no permanent expansion there. A combination of the indicated
Measures are also possible.
The invention is explained in more detail below with reference to an exemplary embodiment shown in the accompanying drawing, in which
1 shows a welded cylindrical pressure vessel before the pressure treatment and
Fig. 2 shows the same pressure vessel in the completely manufactured state.
It is assumed that the container is made from a stainless steel with 18% chromium and 8% nickel, that is to say from a pronounced austenitic material. The container consists of two arched end walls 10 and 11 and a completely welded, cylindrical jacket 12 which connects these with one another and has a thoroughly uniform wall thickness. In the middle of each of the end walls there is an opening with welded-in cylindrical connecting pieces 13 and 14, while two cylindrical connecting pieces 15 and 16 are each welded into openings in the casing part. Each of the nozzles is temporarily sealed off at its outer mouth by a welded, arched cover 18. A connecting piece 17 for a pressurized water pump (not shown) is welded in the middle of one of the covers.
When pressurized water is introduced into the container, the latter experiences a maximum expansion in the longitudinal center of the jacket 12 in the circumferential direction of the container, while the expansion of the end parts of the jacket stiffened by the end walls becomes somewhat smaller. The expansion is measured and the supply of pressurized water is interrupted when the desired expansion value has been reached.
The elongation that is suitable for each individual case depends primarily on the properties of the material used. As a rule, a permanent elongation of the material of the weakest parts of the vessel, which is significantly greater than 0.2%, is necessary in order to ensure a considerable improvement in the strength properties of the vessel or a considerable increase in the yield strength of the steel. The cold stretching pressure is preferably chosen to be high enough to achieve a permanent elongation of the weakest parts of 1 to 4%, but not more than 10%.
After cold stretching has taken place, the temporarily welded-on covers 18 are cut away.
According to FIG. 2, instead of the removed cover 18, a flange piece 20 is welded to the connection piece 13 and 14, a straight pipe 21 is welded to the connection piece 15 and a flanged elbow pipe 22 is welded to the reinforced connection piece 16. It should be noted that the wall thickness of the nozzle 13 and 15 is relatively small dimensioned, while the container wall is reinforced around this nozzle by welding on an additional sheet and that the wall thickness of the nozzle 14 is so great that it alone provides sufficient stiffening the adjoining part of the end wall ensured in order to take into account the weakening caused by the hole in this end wall. If you want to weld the sockets after cold forming, you have to make the reinforcements a little stronger.
As can be seen from Fig. 1, a sheet 19 is welded into the jacket part 12, which is much stronger than the other jacket sheets. After the container has been cold-stretched, an opening is cut out of this sheet, into which a manhole ring 23 is welded (see FIG. 2). This manhole ring is dimensioned in such a way that it only takes into account the weakening caused by the hole.
On the other hand, the thickness of the sheet 19, which is also subjected to cold stretching, is such that it compensates for the cold stretching effect removed by the welding. The manhole cover is designated with 24 and the manhole bracket with 25.
A container of the type shown in the drawing was made from an austenitic material, the yield strength of which was initially 25.0 kgmm2. The fact that water was pressed into the container at room temperature under such a pressure that a maximum permanent elongation of the shell of 2.3% took place, an increase in the yield point of 7.5 kgi'mm2 to 32.5 kgXmm2 was achieved. At the same time, there was only a slight decrease in the elasticity value of the material, from 53 to 495o. In this case, the numerical values given relate to the material of the container before or after the pressure treatment.
In the case described, the application of the invention resulted in a material saving of about 23% with the same safety factor.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE752057 | 1957-08-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
CH371095A true CH371095A (en) | 1963-08-15 |
Family
ID=20271587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH6292058A CH371095A (en) | 1957-08-16 | 1958-08-14 | Process for the production of pressure-resistant vessels |
Country Status (5)
Country | Link |
---|---|
US (1) | US3456831A (en) |
JP (1) | JPS5024912B1 (en) |
CH (1) | CH371095A (en) |
DE (1) | DE1285489B (en) |
FI (1) | FI41377C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3934787A (en) * | 1971-12-18 | 1976-01-27 | Buss, A.G. | Method of mounting pipe flanges in the wall of a pressure vessel |
FR2366368A1 (en) * | 1976-10-01 | 1978-04-28 | Framatome Sa | WELDLESS TUBE RELAXATION PROCESS |
US4364161A (en) * | 1980-12-29 | 1982-12-21 | The Marison Company | Method of fabricating a high pressure tank |
US4656718A (en) * | 1985-02-27 | 1987-04-14 | Roto-Finish Company, Inc. | Method of producing a finishing chamber for a vibratory finishing machine |
DE8711147U1 (en) * | 1987-08-17 | 1987-10-01 | Messer Griesheim Gmbh, 6000 Frankfurt | Base for pressure gas containers made of high-alloy chrome-nickel steels |
FR2622041B1 (en) * | 1987-10-16 | 1990-03-09 | Framatome Sa | METHOD FOR MANUFACTURING A VESSEL OF A LIGHT WATER NUCLEAR REACTOR AND VESSEL OF A NUCLEAR REACTOR MANUFACTURED BY THIS PROCESS |
ES2163954B1 (en) * | 1998-08-07 | 2003-06-01 | Suarez Carlos Infanzon | PROCEDURE FOR FLUID CONFORMING METAL CONTAINERS, ESPECIALLY MANUFACTURED IN STAINLESS STEEL. |
US6193848B1 (en) * | 1998-12-09 | 2001-02-27 | Chicago Bridge & Iron Company | Pressure-tight vessel for cyclic thermal handling |
US9222622B2 (en) * | 2007-11-26 | 2015-12-29 | Air Products And Chemicals, Inc. | Vessels with personnel access provisions |
US9695934B2 (en) * | 2011-06-27 | 2017-07-04 | General Electric Technology Gmbh | Nozzle and nozzle assembly configured to minimize combined thermal and pressure stress during transients |
DE102015014276A1 (en) * | 2015-11-06 | 2017-05-11 | Cool-System Keg Gmbh | Disposable drinks barrel made of stainless steel |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT113621B (en) * | 1927-06-23 | 1929-06-25 | Krupp Ag | Process for increasing the yield point in hollow bodies made of steel alloys, which cannot be given an increase in the yield point by quenching and tempering, in particular in the case of hollow bodies made of austenitic steel alloys. |
GB292937A (en) * | 1927-06-23 | 1928-11-01 | Krupp Ag | Method for increasing the yield point in hollow bodies from steel alloys, to which anincrease in the yield point cannot be imparted by heat treatment, particularly in hollow bodies from austenitic steel alloys |
US2337247A (en) * | 1938-04-29 | 1943-12-21 | Smith Corp A O | Method of making multilayer vessels |
DE939030C (en) * | 1943-06-20 | 1956-02-16 | Basf Ag | Method for generating pre-stresses in hollow bodies |
US2652943A (en) * | 1947-01-09 | 1953-09-22 | Williams Sylvester Vet | High-pressure container having laminated walls |
US2579646A (en) * | 1947-06-30 | 1951-12-25 | Mcnamar Boiler & Tank Company | Method of forming spherical containers |
CH287948A (en) * | 1949-12-09 | 1952-12-31 | Ferrand Georges Auguste | Process for increasing the mechanical resistance of hollow steel bodies. |
US2914346A (en) * | 1954-05-21 | 1959-11-24 | Griscom Russell Co | Method of welding stainless steel and welded joints |
US2961530A (en) * | 1958-05-12 | 1960-11-22 | Day Brite Lighting Inc | Lighting fixture lens mounting |
-
1958
- 1958-08-13 DE DEA30084A patent/DE1285489B/en active Pending
- 1958-08-14 CH CH6292058A patent/CH371095A/en unknown
- 1958-08-15 JP JP33023132A patent/JPS5024912B1/ja active Pending
- 1958-08-16 FI FI581357A patent/FI41377C/en active
-
1967
- 1967-01-20 US US610713A patent/US3456831A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US3456831A (en) | 1969-07-22 |
FI41377C (en) | 1969-11-10 |
FI41377B (en) | 1969-07-31 |
DE1285489B (en) | 1968-12-19 |
JPS5024912B1 (en) | 1975-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH371095A (en) | Process for the production of pressure-resistant vessels | |
CH639296A5 (en) | CONTAINERS CONTAINED IN CHAMBERS AND METHOD FOR PRODUCING THE SAME. | |
DE1650154A1 (en) | Process for the production of containers with multiple jackets, and containers produced by this process | |
EP0036860B1 (en) | Fettling chamber for thermal fettling | |
DE2648613A1 (en) | PRESSURE VESSEL | |
DE858915C (en) | Flange profiled from sheet metal | |
EP3527601A1 (en) | Aerosol can assembly | |
DE838597C (en) | Vessel for high internal pressures | |
DE564611C (en) | Process for the production of centrifugal casting molds consisting of individual sections | |
DE555447C (en) | Oxygen cylinder, especially for breathing equipment | |
DE69000599T2 (en) | LIQUID STORAGE. | |
DE831991C (en) | Closure of thick-walled technical containers for high vacuum | |
CH444455A (en) | Method for producing a cylindrical container, in particular a cistern, arranged on a foundation | |
DE1452533A1 (en) | Process for the production of pressure vessels with high tensile strength and device for carrying out the process | |
AT204662B (en) | Device for corrosion protection of the pressure vessels of boilers, hot water storage tanks or the like. | |
DE550188C (en) | Radiator member | |
DE666344C (en) | Cast container with a partition cast into the wall | |
DE741344C (en) | High pressure container with rolled bottom for steam boiler and chemical high pressure synthesis | |
DE2005145A1 (en) | High pressure reaction vessel and distillate tank | |
AT159582B (en) | Process for the production of capacitor electrodes. | |
DE699401C (en) | Process for making interchangeable panels | |
DE503863C (en) | Safety valve | |
CH625040A5 (en) | ||
DE634120C (en) | Mold | |
DE528369C (en) | Device for cooling and solidifying liquids |