CA3111148A1 - Adjustable bed systems with rotating articulating bed frame - Google Patents
Adjustable bed systems with rotating articulating bed frame Download PDFInfo
- Publication number
- CA3111148A1 CA3111148A1 CA3111148A CA3111148A CA3111148A1 CA 3111148 A1 CA3111148 A1 CA 3111148A1 CA 3111148 A CA3111148 A CA 3111148A CA 3111148 A CA3111148 A CA 3111148A CA 3111148 A1 CA3111148 A1 CA 3111148A1
- Authority
- CA
- Canada
- Prior art keywords
- wall member
- continuous wall
- cap
- protection seal
- fastener
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 claims abstract description 5
- 230000006835 compression Effects 0.000 claims description 24
- 238000007906 compression Methods 0.000 claims description 24
- 239000000565 sealant Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 description 15
- 238000012423 maintenance Methods 0.000 description 6
- 230000006837 decompression Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/05—Parts, details or accessories of beds
- A61G7/053—Aids for getting into, or out of, bed, e.g. steps, chairs, cane-like supports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
- A61G7/015—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame divided into different adjustable sections, e.g. for Gatch position
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/002—Beds specially adapted for nursing; Devices for lifting patients or disabled persons having adjustable mattress frame
- A61G7/018—Control or drive mechanisms
Landscapes
- Health & Medical Sciences (AREA)
- Nursing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Invalid Beds And Related Equipment (AREA)
- Building Environments (AREA)
- Percussion Or Vibration Massage (AREA)
Abstract
Rotating and articulating bed frames are provided. The rotating and articulating bed includes a fixed bed frame; an articulating bed frame; and a rotating and pivoting frame mounted on the fixed bed frame and in communication with the articulating bed frame. The rotating and pivoting frame and articulating bed frame is rotatable with respect to the fixed bed frame on a plurality of discrete bearings around a vertical axis. The rotating and pivoting frame also includes a rotation assembly providing rotation between a pivot assembly and the fixed bed frame independent of movement of the articulating bed frame by the pivot assembly. The rotation assembly includes a support plate mounted on the fixed bed frame; a bearing plate spaced from the support plate; and a rotating drive shaft secured to the support plate such that rotation of the rotating drive shaft rotates the bearing plate.
Description
COMPRESSION FIT EME PROTECTION SEAL CAP
FIELD
[0001] This disclosure relates to an electromagnetic effect ("EME") protection seal cap and more particularly to an EME protection seal cap which is employed to cover a portion of a fastener which extends from a surface within an aircraft to prevent sparking within the interior of the aircraft.
BACKGROUND
FIELD
[0001] This disclosure relates to an electromagnetic effect ("EME") protection seal cap and more particularly to an EME protection seal cap which is employed to cover a portion of a fastener which extends from a surface within an aircraft to prevent sparking within the interior of the aircraft.
BACKGROUND
[0002] Current installation of EME protection seal caps, which cover an end portion of a fastener extending from a surface within an aircraft, requires much time, labor and cost and experiences a high rate of defective installations. Defective installation of an EME
protection seal cap requires re-installation of the defectively installed protection seal cap whether during fabrication of the aircraft or during in-service maintenance of the aircraft.
Since select aircraft utilize potentially thousands of EME protection seal caps, savings on installation and improvement on quality installations are of high value.
protection seal cap requires re-installation of the defectively installed protection seal cap whether during fabrication of the aircraft or during in-service maintenance of the aircraft.
Since select aircraft utilize potentially thousands of EME protection seal caps, savings on installation and improvement on quality installations are of high value.
[0003] Regardless of fabrication of the aircraft or in-service maintenance of the aircraft, the EME protection seal caps will be inspected and if determined to not meet specifications, the EME protection seal caps will be scraped off and replaced.
The replacement of the protection seal caps for in-service maintenance, which occur in the field, will experience installation of the protection seal caps within confined space within the aircraft in contrast to a controlled environment of a factory at time of fabrication of the aircraft. The installation of the EME protection seal cap requires the installer to hold the protection seal cap in place on a structure of the aircraft for approximately a minute while sealant, used in the installation of the protection seal cap, decompresses under the protection seal cap.
The replacement of the protection seal caps for in-service maintenance, which occur in the field, will experience installation of the protection seal caps within confined space within the aircraft in contrast to a controlled environment of a factory at time of fabrication of the aircraft. The installation of the EME protection seal cap requires the installer to hold the protection seal cap in place on a structure of the aircraft for approximately a minute while sealant, used in the installation of the protection seal cap, decompresses under the protection seal cap.
[0004] Without holding the protection seal cap in place during decompression of the sealant, the decompression of the sealant will cause liftoff of the protection seal cap with respect to the surface of the structure to which the protection seal cap is being secured.
Date Recue/Date Received 2021-02-25 Liftoff of the protection seal cap is unacceptable and requires re-installation of the protection seal cap resulting in additional labor and cost.
Date Recue/Date Received 2021-02-25 Liftoff of the protection seal cap is unacceptable and requires re-installation of the protection seal cap resulting in additional labor and cost.
[0005] There is a need to improve on the time expended for installation of protection seal caps including reducing the number of quality defects, which require re-installation of the protection seal cap. There is also a need to reduce the effort expended by the installer with respect to holding the protection seal cap during application of sealant and during decompression of the sealant, particularly in confined locations and also where installation orientations provide gravity challenges with respect to maintaining the protection seal cap in a desired position. In addition, there is a need to install a protection seal cap at the time of in-service maintenance wherein removal of all of the old sealant from the fastener is not required.
SUMMARY
SUMMARY
[0006] An example includes a protection seal cap for enclosing an end portion of a fastener which extends from a structure, which includes a cap member, which includes a sidewall that defines an interior space within the cap member. The sidewall forms a continuous wall member positioned within the cap member. The continuous wall member defines an opening providing access to the interior space. The continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member.
[0007] An example includes a method for holding a protection seal cap against a structure and enclosing an end portion of a fastener which extends from the structure.
The method includes positioning a cap member of the protection seal cap over the end portion of the fastener, wherein the cap member includes a sidewall which defines an interior space within the cap member. The sidewall forms a continuous wall member which defines an opening providing access to the interior space. The continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member. The method further includes deforming of the continuous wall member creating an interference compression fit between the continuous wall member and the end portion of the fastener.
Date Recue/Date Received 2021-02-25
The method includes positioning a cap member of the protection seal cap over the end portion of the fastener, wherein the cap member includes a sidewall which defines an interior space within the cap member. The sidewall forms a continuous wall member which defines an opening providing access to the interior space. The continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member. The method further includes deforming of the continuous wall member creating an interference compression fit between the continuous wall member and the end portion of the fastener.
Date Recue/Date Received 2021-02-25
[0008] The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
BRIEF SUMMARY OF THE DRAWINGS
BRIEF SUMMARY OF THE DRAWINGS
[0009] FIG. 1 is an exploded perspective of the protection seal cap for enclosing an end portion of a fastener which extends from a structure;
[0010] FIG. 2 is an enlarged bottom perspective view of the protection seal cap;
[0011] FIG. 3 is a cross section view along line 3-3 of FIG. 1 with an end portion of the fastener positioned enclosed within the protection seal cap deforming a continuous wall member;
[0012] FIG. 3A is the view of FIG. 3 with a phantom view of a configuration of the continuous wall member of FIG. 2 wherein the configuration of the continuous wall member is not deformed by an end portion of the fastener;
[0013] FIG. 4 is a cross section of the protection seal cap and the fastener along line 4-4 in FIG. 3A;
[0014] FIG. 5 is a cross section of the protection seal cap and the fastener along line 5-5 in FIG. 3A; and
[0015] FIG. 6 is a flow chart of a method for holding a protection seal cap against a structure and enclosing an end portion of a fastener which extends through the structure.
DESCRIPTION
DESCRIPTION
[0016] In referring to FIGS. 1 and 2, protection seal cap 10, for enclosing an end portion 12 of fastener 14 extending from structure 16 includes cap member 18. Cap member 18 includes sidewall 20, which defines interior space 22 within cap member 18.
Sidewall 20 forms continuous wall member 24, as seen in FIG. 2, which defines opening 26 providing access to interior space 22. Continuous wall member 24 is configured to create an Date Recue/Date Received 2021-02-25 interference compression fit between end portion 12 of fastener 14 and continuous wall member 24.
Sidewall 20 forms continuous wall member 24, as seen in FIG. 2, which defines opening 26 providing access to interior space 22. Continuous wall member 24 is configured to create an Date Recue/Date Received 2021-02-25 interference compression fit between end portion 12 of fastener 14 and continuous wall member 24.
[0017] With respect to discussion related to continuous wall member 24, continuous wall member is designated as 24 in a non-deformed condition, as seen in FIG.
2, and will be referred to as 24' with continuous wall member being in a deformed condition by way of an interference compression fit between the continuous wall member and end portion 12 of fastener 14, as seen in FIGS. 3-5. With respect to continuous wall member 24', sidewall 20, as seen in FIG. 4, has a width dimension D greater than first width dimension D1 of continuous wall member 24'. Continuous wall member 24' extends in direction 25 away from sidewall 20 of cap member 18. Continuous wall member 24 has first end surface 28, as seen in FIG. 2. First end surface 28 of continuous wall member 24 is positioned within first plane P1, as seen in FIG. 2 wherein first plane P1 is shown as a line designated as P1 and is aligned along first end surface 28 representing first end surface 28 being in first plane P1.
2, and will be referred to as 24' with continuous wall member being in a deformed condition by way of an interference compression fit between the continuous wall member and end portion 12 of fastener 14, as seen in FIGS. 3-5. With respect to continuous wall member 24', sidewall 20, as seen in FIG. 4, has a width dimension D greater than first width dimension D1 of continuous wall member 24'. Continuous wall member 24' extends in direction 25 away from sidewall 20 of cap member 18. Continuous wall member 24 has first end surface 28, as seen in FIG. 2. First end surface 28 of continuous wall member 24 is positioned within first plane P1, as seen in FIG. 2 wherein first plane P1 is shown as a line designated as P1 and is aligned along first end surface 28 representing first end surface 28 being in first plane P1.
[0018] End portion 12 of fastener 14, in this example, includes a tool interface configuration 30, as seen in FIG. 1, for engaging fastener 14 with a compatible configuration of a tool so as to facilitate the tool gripping fastener 14 for tightening or loosening fastener 14 relative to structure 16. Tool interface configuration 30 can take on various shapes so long as the shape is compatible with being gripped by a particular tool for tightening or loosening fastener 14. In this example, end portion 12 of fastener 14, also includes a cylindrical portion 32 positioned adjacent to tool interface configuration 30 on one side of cylindrical portion 32 and positioned to abut structure 16 on an opposing side of cylindrical portion 32. In this example, a twelve point bolt head is the tool interface configuration 30 along with cylindrical portion 32 are known as a head portion of fastener 14. Head portions of fasteners 14 can take on a wide variety of shapes and dimensions.
In this example, when fastener 14 is tightened cylindrical portion 32 applies a compressive force against structure 16 along with a nut or a swaged collar (not shown) positioned on fastener 14 on an opposing side of structure 16.
In this example, when fastener 14 is tightened cylindrical portion 32 applies a compressive force against structure 16 along with a nut or a swaged collar (not shown) positioned on fastener 14 on an opposing side of structure 16.
[0019] As mentioned above, a head portion of end portion 12 of fastener 14 can take on a wide variety of configurations and sizes. Similarly, end portion 12 of fastener 14 can Date Recue/Date Received 2021-02-25 be positioned on an opposing side of fastener 14 and can take on one of a variety of configurations and sizes which include, for example, a wide variety of nut(s) (not shown) or a wide variety of nut(s) and washer(s) (also not shown). In applying cap member 18 to end portion 12 of fastener 14, cap member 18 can be used to engage either end portion 12 of fastener 14 as needed in fabrication or maintenance of an aircraft. Cap member 18 can be used to enclose end portion 12 of fastener 14 which includes the head portion of the fastener 14 as shown for example in FIGS. 1-5 or to enclose end portion 12 of fastener 14 which includes the nut(s) or nut(s) and washer(s) portion of the fastener 14 on an opposing end of the fastener 14 which is not shown. In either application, continuous wall member 24 creates an interference compression fit with an end portion 12 of fastener 14 such that cap member 18 positioned against structure 16 holds position with respect to fastener 14 and encloses end portion 12 of fastener 14 within cap member 18 and structure 16. In accomplishing this interference compression fit, opening 26 of cap member 18, defined by continuous wall member 24 can be shaped and dimensioned by continuous wall member 24 so as to create the interference compression fit with end portion 12 of fastener 14 of either end portion of fastener 14, as described above, as needed. For example, the interference compression fit would be made with the head portion of fastener 14, as seen in the example shown in FIGS. 4 and 5, or with nut(s), nut(s) and washer(s) or a swaged collar of fastener 14 (not shown).
[0020] In the present example, opening 26, as seen in FIG. 2, formed by continuous wall member 24, can take on one of a wide variety of shapes and sizes. So long as the shape and size of continuous wall member 24 allows continuous wall member 24 to encounter end portion 12 of fastener 14 such that end portion 12 of fastener 14 contacts and deforms continuous wall member 24' and an interference compression fit is created between end portion 12 and continuous wall member 24'.
[0021] As seen in FIG. 3, continuous wall member 24', in this example, is deformed by end portion 12 of fastener 14 at three spaced locations 34, 36 and 38 of continuous wall member 24'. Deformation of continuous wall member 24', in this example, includes compressing portions of continuous wall member 24' which contact cylinder portion 32 of end portion 12 of fastener 14. The compression deformation of continuous wall member Date Recue/Date Received 2021-02-25 24' occurs, in this example, at each of the three locations 34, 36 and 38. For example, at location 34 continuous wall member 24 has thickness "T" where cylinder portion 32 is in contact with continuous wall member 24' in contrast to continuous wall member 24' having a greater thickness "T1" between contact location 34 and contact location 36 where end portion 12 of fastener 14 is not in contact with continuous wall member 24'.
This deformation of continuous wall member 24' occurs with cap member 18 being constructed of a material such as thermoplastic or thermoset which is less hard than metal construction, in this example, of end portion 12 of fastener 14. The deformation of continuous wall member 24' is seen in FIG. 4 at location 36 as deformation 37 and at location 34 as deformation 35 and similarly shown in FIG. 5 at location 36 as deformation 37. Such deformation similarly occurs in this example at location 38.
This deformation of continuous wall member 24' occurs with cap member 18 being constructed of a material such as thermoplastic or thermoset which is less hard than metal construction, in this example, of end portion 12 of fastener 14. The deformation of continuous wall member 24' is seen in FIG. 4 at location 36 as deformation 37 and at location 34 as deformation 35 and similarly shown in FIG. 5 at location 36 as deformation 37. Such deformation similarly occurs in this example at location 38.
[0022] In this example, further deformation of continuous wall member 24' occurs with deformation of the overall configuration or shape of continuous wall member 24' which effects shape of opening 26 with end portion 12 of fastener 14 positioned within opening 26 surrounded by and in contact with continuous wall member 24'. The shape of continuous wall member 24' becomes distorted as seen in FIG. 3A. Continuous wall member 24, in a non-deformed and undistorted state of FIG. 2 is shown in FIG.
3A in phantom and designated as continuous wall member 24. Continuous wall member 24', which is deformed and distorted by end portion 12 of fastener 14 is designated in FIG 3A
as continuous wall member 24'.
3A in phantom and designated as continuous wall member 24. Continuous wall member 24', which is deformed and distorted by end portion 12 of fastener 14 is designated in FIG 3A
as continuous wall member 24'.
[0023] With deformation of continuous wall member 24' at locations 34, 36 and along with the distortion in shape of continuous wall member 24', a compression interference fit is created between end portion 12 of fastener 14 and continuous wall member 24' creating friction between continuous wall member 24' and end portion 12 of fastener 14. With cap member 18 positioned against structure 16, the compression friction maintains cap member secured to fastener 14 and end portion 12 of fastener 14 enclosed within cap member 18. With continuous wall member 24' gripping end portion 12 of fastener 14 by way of the interference compression and resulting friction, cap member 18 can be positioned and secured into any orientation onto structure 16 within an aircraft regardless of gravitational forces operating on cap member 18.
This Date Recue/Date Received 2021-02-25 orientation can include extreme orientations of cap member 18 such as being positioned upside down on a surface, positioned on a vertical surface or positioned on an inclined surface without the individual installer needing to hold cap member 18 in place. The holding of cap member 18 in place, by way of the interference compression fit and maintaining end portion 12 of fastener 14 enclosed within cap member 18 and structure 16, as will be described below, cap member 18 is in proper position during injecting of sealant within cap member 18 facilitating installation of cap member 18 and in proper position during decompression of sealant without any need for the installer to hold cap member 18 in place providing enhanced rate of quality installations. Moreover, the compression fit capabilities of continuous wall member 24' also provides installer the ability to not have to remove all sealant in an in-service maintenance of the aircraft. The compression interference fit will accommodate cap member 18 gripping end portion 12 of fastener 14 without all sealant being removed from the end portion 12 of fastener 14 and provide installer from needing to remove all sealant when installing of cap member 18.
This Date Recue/Date Received 2021-02-25 orientation can include extreme orientations of cap member 18 such as being positioned upside down on a surface, positioned on a vertical surface or positioned on an inclined surface without the individual installer needing to hold cap member 18 in place. The holding of cap member 18 in place, by way of the interference compression fit and maintaining end portion 12 of fastener 14 enclosed within cap member 18 and structure 16, as will be described below, cap member 18 is in proper position during injecting of sealant within cap member 18 facilitating installation of cap member 18 and in proper position during decompression of sealant without any need for the installer to hold cap member 18 in place providing enhanced rate of quality installations. Moreover, the compression fit capabilities of continuous wall member 24' also provides installer the ability to not have to remove all sealant in an in-service maintenance of the aircraft. The compression interference fit will accommodate cap member 18 gripping end portion 12 of fastener 14 without all sealant being removed from the end portion 12 of fastener 14 and provide installer from needing to remove all sealant when installing of cap member 18.
[0024] In referring to FIGS. 2, 3, 4 and 5, sidewall 20 forms wall member 40 positioned spaced apart from continuous wall member 24, 24'. Wall member 40 extends in direction
25 as seen in FIG. 4, away from sidewall 20 of cap member 18 which defines interior space 22. Wall member 40 has second end surface 42. Second end surface 42 is configured such that second end surface 42 extends within a second plane P2, as seen in FIG. 2, wherein second plane P2 is shown as a line designated as P2 and aligned along second end surface 42 representing second end surface 42 being in second plane P2. In this example, first end surface 28 and second end surface 42 are coplanar. In other examples of cap member 18, first and second planes P1 and P2 are not coplanar with one another but are parallel to one another. Such configuration would for example, have first end 28, with cap member 18 positioned on structure 16, be positioned slightly separated from the surface of structure 16 ensuring second end surface 42 to be in contact with the surface of structure 16. This configuration would prevent sealant 62 from escaping channel 44 to outside 56 of cap member 18, described below, and thereby prevent additional cleaning of sealant 62 from the surface of structure 16 versus sealant 62 escaping from channel 44 past first end 28 into interior space 22 which is acceptable.
Date Recue/Date Received 2021-02-25 [0025] In referring to FIGS. 2, 3, 4 and 5, channel 44, defined by sidewall 29 of cap member 18, is positioned extending about continuous wall member 24, 24' and positioned between continuous wall member 24, 24' and wall member 40. Wall member 40 defines two ports 46, 48 which extend through wall member 40 which are spaced from one another. Two ports 46, 48 are each positioned on opposing sides 50, 52 of cap member 18. Each of the two ports 46, 48 are in fluid communication with channel 44.
First flow path 54 extends from outside 56 of cap member 18 through, for example, port 46 of the two ports 46, 48 and into the channel 44. Second flow path 58 extends from inside 60 of channel 44 to port 48 of the two ports 46, 48 and through port 48 of two ports 46, 48 to outside 56 of cap member 18. This configuration permits installer to inject sealant 62 through for example port 46 of two ports 46, 48 with sealant 62 exiting port 48 of two ports 46, 48, as seen in FIG. 5. With sealant moving out of port 48 in this example, the installer is provided an indication that sealant 62 has flowed through channel 44 and is present within channel 44.
Date Recue/Date Received 2021-02-25 [0025] In referring to FIGS. 2, 3, 4 and 5, channel 44, defined by sidewall 29 of cap member 18, is positioned extending about continuous wall member 24, 24' and positioned between continuous wall member 24, 24' and wall member 40. Wall member 40 defines two ports 46, 48 which extend through wall member 40 which are spaced from one another. Two ports 46, 48 are each positioned on opposing sides 50, 52 of cap member 18. Each of the two ports 46, 48 are in fluid communication with channel 44.
First flow path 54 extends from outside 56 of cap member 18 through, for example, port 46 of the two ports 46, 48 and into the channel 44. Second flow path 58 extends from inside 60 of channel 44 to port 48 of the two ports 46, 48 and through port 48 of two ports 46, 48 to outside 56 of cap member 18. This configuration permits installer to inject sealant 62 through for example port 46 of two ports 46, 48 with sealant 62 exiting port 48 of two ports 46, 48, as seen in FIG. 5. With sealant moving out of port 48 in this example, the installer is provided an indication that sealant 62 has flowed through channel 44 and is present within channel 44.
[0026] As earlier discussed, fastener 14 is constructed of a harder material than that of the material which constructs continuous wall member 24, 24' such that with a force applied by the end portion 12 of fastener 14 against continuous wall member 24 continuous wall member 24' deforms. The deformation of continuous wall member 24, 24' provides the interference compression fit between continuous wall member 24' and end portion 12 of fastener 14 properly holding cap member 18 in position for sealant 62 injection to be accomplished and for decompression of sealant 62 to occur without cap member 18 experiencing unwanted liftoff of cap member 18 from structure 16.
[0027] In referring to FIG. 6, method 64 is shown for holding protection seal cap 10 against structure 16 and enclosing end portion 12 of fastener 14 which extends from structure 16. Method 64 includes positioning 66 cap member 18 of protection seal cap over end portion 12 of fastener 14. Cap member 18 includes sidewall 20 which defines interior space 22 within cap member 18. Sidewall 20 forms continuous wall member 24 positioned within cap member 18. Continuous wall member 24 defines opening 26 providing access to interior space 22. Continuous wall member 24 is configured to create an interference compression fit between end portion 12 of fastener 14 and continuous Date Recue/Date Received 2021-02-25 wall member 24. Method 64 further includes deforming 68 of continuous wall member 24' creating an interference compression fit between continuous wall member 24' and end portion 12 of fastener 14.
[0028] Positioning 66 of cap member 18 further includes positioning cap member against structure 16. Sidewall 20 forms wall member 40 positioned spaced from continuous wall member 24. Wall member 40 extends about continuous wall member and channel 44 defined by sidewall 20 is positioned between wall member 40 and continuous wall member 24. Wall member 40 defines two ports 46, 48 which extend through wall member 40 and are in fluid communication with channel 44. Method further includes injecting sealant 62 into channel 44 through one of the two ports 46, 48.
[0029] While various embodiments have been described above, this disclosure is not intended to be limited thereto. Variations can be made to the disclosed embodiments that are still within the scope of this disclosure.
Date Recue/Date Received 2021-02-25
Date Recue/Date Received 2021-02-25
Claims (20)
ARE DEFINED AS FOLLOWS:
1. A protection seal cap for enclosing an end portion of a fastener which extends from a structure, comprising:
a cap member comprising a sidewall that defines an interior space within the cap member, wherein:
the sidewall forms a continuous wall member positioned within the cap member;
the continuous wall member defines an opening providing access to the interior space; and the continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member.
a cap member comprising a sidewall that defines an interior space within the cap member, wherein:
the sidewall forms a continuous wall member positioned within the cap member;
the continuous wall member defines an opening providing access to the interior space; and the continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member.
2. The protection seal cap of claim 1, wherein the sidewall has a width dimension greater than a first width dimension of the continuous wall member.
3. The protection seal cap of claim 1 or 2, wherein the continuous wall member extends in a direction away from the sidewall of the cap member which defines the interior space.
4. The protection seal cap of any one of claims 1-3, wherein:
the continuous wall member has a first end surface; and Date Recue/Date Received 2021-02-25 the first end surface of the continuous wall member is positioned within a first plane.
the continuous wall member has a first end surface; and Date Recue/Date Received 2021-02-25 the first end surface of the continuous wall member is positioned within a first plane.
5. The protection seal cap of any one of claims 1-4, wherein the sidewall forms a wall member positioned spaced from the continuous wall member.
6. The protection seal cap of claim 5, wherein the wall member extends in a direction away from the sidewall of the cap member which defines the interior space.
7. The protection seal cap of claim 5 or 6, wherein:
the wall member has a second end surface; and the second end surface is configured such that the second end surface extends within a second plane.
the wall member has a second end surface; and the second end surface is configured such that the second end surface extends within a second plane.
8. The protection seal cap of any one of claims 5-7, wherein a channel is positioned extending about the continuous wall member and positioned between the continuous wall member and the wall member.
9. The protection seal cap of any one of claims 5-8, wherein the wall member defines two ports which extend through the wall member.
10. The protection seal cap of claim 9, wherein the two ports are spaced apart from one another.
11. The protection seal cap of claim 10, wherein the two ports are each positioned on opposing sides of the cap member.
Date Recue/Date Received 2021-02-25
Date Recue/Date Received 2021-02-25
12. The protection seal cap of any one of claims 9-11, wherein the two ports are in fluid communication with the channel.
13. The protection seal cap of claim 12, wherein:
a first flow path extends from outside of the cap member through one port of the two ports and into the channel; and a second flow path extends from inside of the channel to a second port of the two ports and through the second port to outside of the cap member.
a first flow path extends from outside of the cap member through one port of the two ports and into the channel; and a second flow path extends from inside of the channel to a second port of the two ports and through the second port to outside of the cap member.
14. The protection seal cap of any one of claims 1-13, wherein the fastener is constructed of a harder material than that of a material which constructs the continuous wall member.
15. A method for holding a protection seal cap against a structure and enclosing an end portion of a fastener which extends from the structure, comprising:
positioning a cap member of the protection seal cap over the end portion of the fastener wherein:
the cap member comprises a sidewall which defines an interior space within the cap member;
the sidewall forms a continuous wall member positioned within the cap mem ber;
the continuous wall member defines an opening providing access to the interior space; and Date Recue/Date Received 2021-02-25 the continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member; and deforming the continuous wall member creating an interference compression fit between the continuous wall member and the end portion of the fastener.
positioning a cap member of the protection seal cap over the end portion of the fastener wherein:
the cap member comprises a sidewall which defines an interior space within the cap member;
the sidewall forms a continuous wall member positioned within the cap mem ber;
the continuous wall member defines an opening providing access to the interior space; and Date Recue/Date Received 2021-02-25 the continuous wall member is configured to create an interference compression fit between the end portion of the fastener and the continuous wall member; and deforming the continuous wall member creating an interference compression fit between the continuous wall member and the end portion of the fastener.
16. The method of claim 15, wherein the positioning of the cap member further includes positioning the cap member against the structure.
17. The method of claim 15 or 16, wherein the sidewall forms a wall member positioned spaced apart from the continuous wall member.
18. The method of claim 17, wherein:
the wall member extends about the continuous wall member; and a channel defined by the sidewall is positioned between the wall member and the continuous wall member.
the wall member extends about the continuous wall member; and a channel defined by the sidewall is positioned between the wall member and the continuous wall member.
19. The method of claim 17 or 18, wherein:
the wall member defines two ports which extend through the wall member and are in fluid communication with the channel.
the wall member defines two ports which extend through the wall member and are in fluid communication with the channel.
20. The method of claim 19, further including injecting sealant into the channel through one of the two ports.
Date Recue/Date Received 2021-02-25
Date Recue/Date Received 2021-02-25
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/123,560 | 2018-09-06 | ||
US16/123,560 US10898008B2 (en) | 2016-07-26 | 2018-09-06 | Adjustable bed systems with rotating articulating bed frame |
PCT/US2019/049723 WO2020051315A1 (en) | 2018-09-06 | 2019-09-05 | Adjustable bed systems with rotating articulating bed frame |
Publications (1)
Publication Number | Publication Date |
---|---|
CA3111148A1 true CA3111148A1 (en) | 2020-03-12 |
Family
ID=69722691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA3111148A Pending CA3111148A1 (en) | 2018-09-06 | 2019-09-05 | Adjustable bed systems with rotating articulating bed frame |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3846663A4 (en) |
AU (1) | AU2019335304A1 (en) |
CA (1) | CA3111148A1 (en) |
MX (1) | MX2021002680A (en) |
TW (1) | TWI813763B (en) |
WO (1) | WO2020051315A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11704859B2 (en) * | 2020-08-20 | 2023-07-18 | Sony Interactive Entertainment LLC | System and method for accelerated ray tracing |
CN113907973B (en) * | 2021-08-30 | 2022-10-14 | 安徽省朗威医疗器械科技股份有限公司 | Rotating bed |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4635894A (en) * | 1985-06-17 | 1987-01-13 | Fournier Accessory Furniture, Inc. | Multi-purpose furniture swivel assembly |
US5802640A (en) * | 1992-04-03 | 1998-09-08 | Hill-Rom, Inc. | Patient care system |
KR970008651B1 (en) * | 1992-05-22 | 1997-05-28 | 다다시 이우라 | Rotary Bed |
FR2710261B1 (en) * | 1993-09-23 | 1995-12-01 | Jean Darfeuille | Variable geometry medical bed. |
US8615828B2 (en) * | 2003-02-10 | 2013-12-31 | Ferdinand Schermel | Multi-position reclining bed |
US20090045311A1 (en) * | 2007-08-14 | 2009-02-19 | Reza Seyedin | Multi-purpose, free-standing, portable, laptop computer or display object 360-degree swivel base assembly |
DE202013001182U1 (en) | 2012-02-14 | 2013-02-22 | Isko Koch Gmbh | Rotating seat bed |
TWM524188U (en) * | 2015-11-20 | 2016-06-21 | Joson Care Entpr Co Ltd | Bed rest structure improvement |
EP3490515A4 (en) * | 2016-07-26 | 2020-09-09 | Ppj, Llc | Adjustable bed systems with rotating articulating bed frame |
US10898008B2 (en) * | 2016-07-26 | 2021-01-26 | Ppj, Llc | Adjustable bed systems with rotating articulating bed frame |
CN107198617A (en) * | 2017-06-30 | 2017-09-26 | 重庆鬼谷子医疗器械科技有限公司 | A kind of medical bed for nursing care |
-
2019
- 2019-09-05 TW TW108132059A patent/TWI813763B/en active
- 2019-09-05 EP EP19857763.7A patent/EP3846663A4/en active Pending
- 2019-09-05 MX MX2021002680A patent/MX2021002680A/en unknown
- 2019-09-05 WO PCT/US2019/049723 patent/WO2020051315A1/en unknown
- 2019-09-05 AU AU2019335304A patent/AU2019335304A1/en not_active Abandoned
- 2019-09-05 CA CA3111148A patent/CA3111148A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
TW202011918A (en) | 2020-04-01 |
MX2021002680A (en) | 2021-05-12 |
EP3846663A1 (en) | 2021-07-14 |
EP3846663A4 (en) | 2022-05-18 |
WO2020051315A1 (en) | 2020-03-12 |
AU2019335304A1 (en) | 2021-03-18 |
TWI813763B (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3111148A1 (en) | Adjustable bed systems with rotating articulating bed frame | |
EP3882159A1 (en) | Compression fit eme protection seal cap | |
US5549278A (en) | Parallel-slide gate valve | |
KR20150119226A (en) | System for sealingly holding cables which extend through an opening | |
CN101629650B (en) | Vacuum valve and closure plate for a vacuum valve | |
US20050199848A1 (en) | Vacuum gate valve | |
RU2413881C2 (en) | Nut intended to fix windshield of aircraft and device to fix windshield of aircraft, comprising such nut | |
CN105937660B (en) | A kind of pipeline supporting arrangement | |
CN108351029B (en) | Circumferential debris seal for pin joint | |
US20050146096A1 (en) | Trunnion assembly | |
KR20080008243A (en) | Shielding disc mountable to vacuum valve and connecting rod | |
US6053329A (en) | Vibratory frame mounting structure for screening machines | |
CN106015749A (en) | Pipeline supporting device | |
CN105864518A (en) | High-tightness pipeline supporting device | |
US20140166341A1 (en) | Dust tight and water tight seal for conduit/junction box connection | |
KR101892893B1 (en) | Hinge | |
US5033874A (en) | Cover element for a bearing | |
JPH07167340A (en) | Shaft sealing device valve | |
EP2893229B1 (en) | Segmented valve packing gland | |
CN217977619U (en) | Internal part box repairing kit | |
CN106051312B (en) | A kind of pipe-supporting device and Pipe installing adjusting method for being provided with guide rod | |
CN216143208U (en) | Gate valve with soft and hard sealing structure | |
CN106051313B (en) | It is a kind of can feeding lubricating pipe-supporting device and Pipe installing adjusting method | |
CN221257066U (en) | Pressure valve | |
CN105889641A (en) | Pipeline supporting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20220805 |
|
EEER | Examination request |
Effective date: 20220805 |
|
EEER | Examination request |
Effective date: 20220805 |
|
EEER | Examination request |
Effective date: 20220805 |
|
EEER | Examination request |
Effective date: 20220805 |