CA2625806C - Compositions for improving skin conditions comprising human growth hormone as an active ingredient - Google Patents
Compositions for improving skin conditions comprising human growth hormone as an active ingredient Download PDFInfo
- Publication number
- CA2625806C CA2625806C CA2625806A CA2625806A CA2625806C CA 2625806 C CA2625806 C CA 2625806C CA 2625806 A CA2625806 A CA 2625806A CA 2625806 A CA2625806 A CA 2625806A CA 2625806 C CA2625806 C CA 2625806C
- Authority
- CA
- Canada
- Prior art keywords
- skin
- growth hormone
- human growth
- hgh
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000854 Human Growth Hormone Substances 0.000 title claims abstract description 129
- 108010000521 Human Growth Hormone Proteins 0.000 title claims abstract description 128
- 102000002265 Human Growth Hormone Human genes 0.000 title claims abstract description 128
- 239000000203 mixture Substances 0.000 title claims abstract description 107
- 239000004480 active ingredient Substances 0.000 title abstract description 6
- 230000037303 wrinkles Effects 0.000 claims abstract description 16
- 208000002874 Acne Vulgaris Diseases 0.000 claims abstract description 13
- 206010000496 acne Diseases 0.000 claims abstract description 13
- 230000003779 hair growth Effects 0.000 claims abstract description 9
- 230000009759 skin aging Effects 0.000 claims abstract description 6
- 230000037394 skin elasticity Effects 0.000 claims abstract description 5
- 239000002502 liposome Substances 0.000 claims description 65
- 239000002537 cosmetic Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 4
- 238000011200 topical administration Methods 0.000 claims description 2
- 230000006872 improvement Effects 0.000 abstract description 26
- 238000000034 method Methods 0.000 abstract description 16
- 230000000699 topical effect Effects 0.000 abstract description 10
- 210000002514 epidermal stem cell Anatomy 0.000 abstract description 9
- 230000035755 proliferation Effects 0.000 abstract description 7
- 230000000638 stimulation Effects 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract description 2
- 230000003750 conditioning effect Effects 0.000 abstract 1
- 210000003491 skin Anatomy 0.000 description 71
- 238000009472 formulation Methods 0.000 description 66
- 230000000694 effects Effects 0.000 description 43
- 239000000243 solution Substances 0.000 description 39
- 150000003904 phospholipids Chemical class 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 30
- 210000004027 cell Anatomy 0.000 description 20
- 241000282414 Homo sapiens Species 0.000 description 19
- 210000002615 epidermis Anatomy 0.000 description 18
- 210000003780 hair follicle Anatomy 0.000 description 18
- 210000000130 stem cell Anatomy 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 239000008280 blood Substances 0.000 description 15
- 210000004369 blood Anatomy 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 108090000623 proteins and genes Proteins 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 12
- 235000019441 ethanol Nutrition 0.000 description 12
- 239000007853 buffer solution Substances 0.000 description 11
- 230000002500 effect on skin Effects 0.000 description 11
- 229910001868 water Inorganic materials 0.000 description 10
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 9
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- -1 alkyl acyl glutamate Chemical compound 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 8
- 239000006071 cream Substances 0.000 description 8
- 235000014113 dietary fatty acids Nutrition 0.000 description 8
- 239000000194 fatty acid Substances 0.000 description 8
- 229930195729 fatty acid Natural products 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000012384 transportation and delivery Methods 0.000 description 6
- JLPULHDHAOZNQI-ZTIMHPMXSA-N 1-hexadecanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC JLPULHDHAOZNQI-ZTIMHPMXSA-N 0.000 description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 210000002808 connective tissue Anatomy 0.000 description 5
- 108010005905 delta-hGHR Proteins 0.000 description 5
- 210000001339 epidermal cell Anatomy 0.000 description 5
- 150000002632 lipids Chemical class 0.000 description 5
- 230000037311 normal skin Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229940083466 soybean lecithin Drugs 0.000 description 5
- 210000000434 stratum corneum Anatomy 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 108010076876 Keratins Proteins 0.000 description 4
- 102000011782 Keratins Human genes 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000000122 growth hormone Substances 0.000 description 4
- 210000002432 hair matrix stem cell Anatomy 0.000 description 4
- 210000002510 keratinocyte Anatomy 0.000 description 4
- 235000019799 monosodium phosphate Nutrition 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 210000001732 sebaceous gland Anatomy 0.000 description 4
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 4
- 229910000162 sodium phosphate Inorganic materials 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108010013127 Met-human growth hormone Proteins 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- GEHJBWKLJVFKPS-UHFFFAOYSA-N bromochloroacetic acid Chemical compound OC(=O)C(Cl)Br GEHJBWKLJVFKPS-UHFFFAOYSA-N 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 229960005150 glycerol Drugs 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000787 lecithin Substances 0.000 description 3
- 235000010445 lecithin Nutrition 0.000 description 3
- 229940067606 lecithin Drugs 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 3
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 3
- 229960002216 methylparaben Drugs 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007634 remodeling Methods 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 238000011076 safety test Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 108010033419 somatotropin-binding protein Proteins 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 210000000498 stratum granulosum Anatomy 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 244000215068 Acacia senegal Species 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 206010003645 Atopy Diseases 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 206010013786 Dry skin Diseases 0.000 description 2
- 206010014970 Ephelides Diseases 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 206010062767 Hypophysitis Diseases 0.000 description 2
- 102000038455 IGF Type 1 Receptor Human genes 0.000 description 2
- 108010031794 IGF Type 1 Receptor Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 208000003351 Melanosis Diseases 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000003251 Pruritus Diseases 0.000 description 2
- 206010039792 Seborrhoea Diseases 0.000 description 2
- 206010040954 Skin wrinkling Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000037336 dry skin Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 2
- 231100000321 erythema Toxicity 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000003054 hormonal effect Effects 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 230000007803 itching Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000007721 medicinal effect Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000037312 oily skin Effects 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000037380 skin damage Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000000438 stratum basale Anatomy 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- JQWAHKMIYCERGA-UHFFFAOYSA-N (2-nonanoyloxy-3-octadeca-9,12-dienoyloxypropoxy)-[2-(trimethylazaniumyl)ethyl]phosphinate Chemical compound CCCCCCCCC(=O)OC(COP([O-])(=O)CC[N+](C)(C)C)COC(=O)CCCCCCCC=CCC=CCCCCC JQWAHKMIYCERGA-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- XXMFJKNOJSDQBM-UHFFFAOYSA-N 2,2,2-trifluoroacetic acid;hydrate Chemical compound [OH3+].[O-]C(=O)C(F)(F)F XXMFJKNOJSDQBM-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 1
- YXQXLHSRJUFMFD-UHFFFAOYSA-N 3-[(3,4-dihydroxyphenyl)methyl]-2h-chromene-7,8-diol Chemical group C1=C(O)C(O)=CC=C1CC1=CC2=CC=C(O)C(O)=C2OC1 YXQXLHSRJUFMFD-UHFFFAOYSA-N 0.000 description 1
- XPFCZYUVICHKDS-UHFFFAOYSA-N 3-methylbutane-1,3-diol Chemical compound CC(C)(O)CCO XPFCZYUVICHKDS-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 206010056438 Growth hormone deficiency Diseases 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 229910004354 OF 20 W Inorganic materials 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 101000868151 Rattus norvegicus Somatotropin Proteins 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- PMZXXNPJQYDFJX-UHFFFAOYSA-N acetonitrile;2,2,2-trifluoroacetic acid Chemical compound CC#N.OC(=O)C(F)(F)F PMZXXNPJQYDFJX-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 238000003975 animal breeding Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 210000004198 anterior pituitary gland Anatomy 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229960003340 calcium silicate Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001047 desmosome Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229940113120 dipropylene glycol Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000036252 glycation Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 238000000703 high-speed centrifugation Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229940100573 methylpropanediol Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 230000006740 morphological transformation Effects 0.000 description 1
- 210000002894 multi-fate stem cell Anatomy 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000011620 noble rat Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006298 saran Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 230000037393 skin firmness Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 210000000439 stratum lucidum Anatomy 0.000 description 1
- 210000000437 stratum spinosum Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 210000000971 yellow yolk Anatomy 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/64—Proteins; Peptides; Derivatives or degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/27—Growth hormone [GH], i.e. somatotropin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/14—Liposomes; Vesicles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/16—Emollients or protectives, e.g. against radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/007—Preparations for dry skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/02—Preparations for care of the skin for chemically bleaching or whitening the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/08—Anti-ageing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q7/00—Preparations for affecting hair growth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/70—Biological properties of the composition as a whole
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Dermatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Endocrinology (AREA)
- Birds (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Gerontology & Geriatric Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Cosmetics (AREA)
- Medicinal Preparation (AREA)
Abstract
Disclosed herein is a skin condition-improving composition for topical application to the skin, comprising human growth hormone as an active ingredient, and a method for improving skin conditions using the same. The disclosed composition exhibits various skin conditioning effects, such as acne treatment, wrinkle improvement, dark spot removal, skin elasticity improvement, hair growth stimulation, skin aging prevention, skin moisturization and the proliferation of skin epidermal stem cells.
Description
COMPOSITIONS FOR IMPROVING SKIN CONDITIONS COMPRISING HUMAN
GROWTH HORMONE AS AN ACTIVE INGREDIENT
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to skin condition-improving compositions for topical application to the skin, which comprises human growth hormone as an active ingredient and a method for improving skin conditions of a human.
DESCRIPTION OF THE RELATED ART
It is a generally known in the art that macromolecules such as human growth hormone (molecular weight of about 22 kD), cannot pass through the skin stratum corneum. A molecular weight that can be delivered efficiently through the skin epidermis is generally recognized to be no more than about 500 daltons or at most 2 kD even with the help of skin penetration enhancers. Accordingly, applying macromolecules such as human growth hormone topically to the intact skin and expecting cosmetic or medical efficacies by the action of macromolecules have been considered unsuccessful.
Some attempts have been made to deliver proteins to the dermal layer of the skin by topical application of liposomes encapsulating the proteins. It has been reported that the proteins encapsulated into lipsomes are delivered via the dermis or the hair follicles. For delivery through hair follicles, either a delivery system in the form of liposomes or a lipid composite comprising lipids such as fatty acids has been reported to be favorable. In addition, although efficiencies turned out to be much lower, an aqueous solution containing an organic solvent such as ethanol or an aqueous solution containing a polymer such as polyethylene glycol, has also been tested as a facilitating medium for delivery through hair follicles. With respect to efficiencies of delivering proteins through the skin using liposomes carrying proteins, a general principle has not been established yet, because cases of liposomal protein deliveries have been scarce and even in those rare cases, the efficiencies of protein deliveries varied widely depending on the empirical choices of the target proteins and the nature of the liposomes used. One thing to note is that, although the idea of delivering proteins through hair follicles is gaining more acceptances, even when a protein is delivered in a liposome-encapsulated form, liposomes may not pass through the infundibular portion of the hair follicles intact, rather they may undergo different morphological transformations or phase transitions owing to, first, the characteristics of the phospholipids conferring inside and outside pH's and charge valences of the liposomes, second, those of the proteins attached to or encapsulated by the liposomes, and third, those of the constituting ingredients of the surrounding tissues making up the hair follicles. Thus as a whole, these three factors and their complex interactions seem to determine follicular delivery efficiencies of the liposomes containing the proteins in question through empirical formulations rather than by a general guiding principle at the moment. What is particularly noteworthy with regard to the present invention is the existence of a report stating human growth hormone receptors are located on the living cell layers of the epidermis and throughout the ancillary organs and tissues constituting and surrounding the hair follicles.
Human growth hormone is secreted from the anterior lobe of pituitary gland and circulates with blood while it influences each organ of the human body. In the growth stage of a human, it is particularly involved in the growth of skeleton, an increase in muscles, the decomposition of fat, the growth of the internal organs, sexual growth and the like. In addition, it was suggested that when human growth hormone was administered by injection to adults at a physiological range of blood concentration, it would show various effects, such as the strengthening of the heart circulatory system, the enhancement of exercise ability, the strengthening of muscles, the reduction in abdominal fatness, the increase in libido, the improvement of improvement of arteriosclerosis, and the improvement of geriatric depression.
It is known that the effects of human growth hormone on the human body are not caused by the human growth hormone itself, but rather are caused by the action of insulin-like growth factor-1 (IGF-1), the expression of which is stimulated by human growth hormone and which is produced mainly in the liver and secreted into blood.
This is because the blood half-time of human growth hormone is about 15 minutes, whereas the blood half-time of IGF-1 is about 20 hours, indicating that IGF-1 can be lasting much longer than human growth hormone. Concretely speaking, human growth hormone secreted from pituitary gland binds to human growth hormone-binding protein present in blood, migrates with blood circulation, and meets a human growth hormone receptor present in each tissue of the human. At this time, the human growth hormone is liberated from the human growth hormone-binding protein while it binds to the human growth hormone receptor, and the synthesis and secretion of IGF-1 are stimulated as a result of signaling caused by the binding. The IGF-1 secreted into blood then binds to an IGF-1 binding protein, and circulates with blood flow while it binds to an IGF-1 receptor present in each tissue of the human body, thus exhibiting various physiological effects caused by the secretion of human growth hormone. Accordingly, if the effect of the injection agent human growth hormone on the skin will be actually shown, it will be an effect caused by the action of IGF-1, and thus will necessarily depend on the presence or absence of the IGF-1 receptor on the surface of dermal cells that can be brought into direct contact with blood.
Even if the skin is considered to be influenced directly by human growth hormone, but not by IGF-1, the influence will necessarily be transferred by the human growth hormone receptor present at sites which are in contact with blood. Therefore, it is considered that expecting any effect on the skin by applying human growth hormone (having molecular size that cannot pass through the skin) together with cosmetics to the normal skin surface that is not brought into direct contact with blood is not common sense. The present invention is a first report that, through a method of applying human growth hormone in the form of a cosmetic preparation to the normal skin surface that is not in direct contact with blood, but not a method of transferring the effect of human growth hormone through blood, the human growth hormone can show cosmetic and medical effects on the skin, such as the improvement of acne, wrinkles, atopic skin, skin damage caused by UV light, dark spots, freckles, dry skin and oily skin, the reduction of hair follicles, and the stimulation of hair growth.
Skin tissue consists of the epidermis, the dermis and the hypodermis. The epidermis determines the properties of the skin, and is frequently susceptible to damage directly from the external environment, and thus the repair and regeneration of the epidermis are highly important. The epidermis consists of a layer of epidermal cells. The skin epidermal cells are also called "keratinocytes", because the skin epidermal cells synthesize intermediate filament protein keratin that strengthens the epidermis, during their differentiation. These cells are layered with differentiation while migrating toward the epidermis, and become flat while organs inside the cells gradually disappear and they become dead cells. A cell layer located at the innermost portion of the epidermis is contiguous to the basal lamina and called the "stratum basale", and the cells forming the layer are called "basal cells", among which epidermal stem cells are present. The cells of the stratum basale differentiate into the epidermis while they sequentially form the stratum spinosum, the stratum granulosum, the stratum lucidum and the stratum corneum, the stratums being divided into a living cell layer at the lower position with respect to the stratum granulosum, and a dead cell layer at the upper position. Flattened scale-like tissues outside the stratum corneum are also called "squames" where keratins are densely filled. Cells located from the outside of the stratum granulosum to the stratum corneum are reinforced with a layer of cross-linked protein whose plasma membrane is thin and tough. While the epidermal cells are proliferated from the epidermal stem cells and differentiated into the stratum corneum, they are internally reinforced by the cross-linking of keratins and are also linked by keratins with desmosomes firmly linked with other cells in the same layer so as to maintain the entire layer structure thereof.
The epidermal cells are differentiated into the outer epidermis while they produce and secrete lipid so as to form double-layered tissue on a plasma membrane cornified with protein, thus preventing the skin surface from the external environment, like saran wrap. Since the human epidermis is replaced at two-week interval, the proliferation 5 ability of skin stem cells forming the epidermis can be considered to be huge.
It was recently reported that the multipotent stem cells of the skin are located at the bulge region, which lies just below the sebaceous gland of hair follicles. These bulge stem cells serve as the basis for making epidermal stem cells, hair matrix stem cells, and sebaceous glands stem cells. The bulge stem cells are located only in the bulge region and express a special combination of protein while maintaining their property as stem cells. The epidermal stem cells maintain the epidermis while they proliferate and differentiate. When a hair falls out, the hair matrix stem cells will proliferate and differentiate to make a new hair. However, the epidermal stem cells, the hair matrix stem cells or the sebaceous glands stem cells have limitations in their proliferation ability or the ability to maintain the ability of stem cells, and thus, for example, most of the epidermal stem cells will differentiate after they proliferate 3-6 times. On the other hand, although the bulge stem cells proliferate slower than the other three stem cells, it seems that the bulge stem cells can indefinitely proliferate during the life of human beings while making the epidermal stem cells, the hair matrix stem cells and the sebaceous glands stem cells and, at the same time, maintaining their stem cell character. The fact that the expression and action of human growth hormone occurs at the location of the bulge stem cells has been disclosed for the first time through the present invention, and this novel finding is quite significant, considering that human growth hormone exhibits the effects of improving various skin conditions by the present invention.
GROWTH HORMONE AS AN ACTIVE INGREDIENT
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to skin condition-improving compositions for topical application to the skin, which comprises human growth hormone as an active ingredient and a method for improving skin conditions of a human.
DESCRIPTION OF THE RELATED ART
It is a generally known in the art that macromolecules such as human growth hormone (molecular weight of about 22 kD), cannot pass through the skin stratum corneum. A molecular weight that can be delivered efficiently through the skin epidermis is generally recognized to be no more than about 500 daltons or at most 2 kD even with the help of skin penetration enhancers. Accordingly, applying macromolecules such as human growth hormone topically to the intact skin and expecting cosmetic or medical efficacies by the action of macromolecules have been considered unsuccessful.
Some attempts have been made to deliver proteins to the dermal layer of the skin by topical application of liposomes encapsulating the proteins. It has been reported that the proteins encapsulated into lipsomes are delivered via the dermis or the hair follicles. For delivery through hair follicles, either a delivery system in the form of liposomes or a lipid composite comprising lipids such as fatty acids has been reported to be favorable. In addition, although efficiencies turned out to be much lower, an aqueous solution containing an organic solvent such as ethanol or an aqueous solution containing a polymer such as polyethylene glycol, has also been tested as a facilitating medium for delivery through hair follicles. With respect to efficiencies of delivering proteins through the skin using liposomes carrying proteins, a general principle has not been established yet, because cases of liposomal protein deliveries have been scarce and even in those rare cases, the efficiencies of protein deliveries varied widely depending on the empirical choices of the target proteins and the nature of the liposomes used. One thing to note is that, although the idea of delivering proteins through hair follicles is gaining more acceptances, even when a protein is delivered in a liposome-encapsulated form, liposomes may not pass through the infundibular portion of the hair follicles intact, rather they may undergo different morphological transformations or phase transitions owing to, first, the characteristics of the phospholipids conferring inside and outside pH's and charge valences of the liposomes, second, those of the proteins attached to or encapsulated by the liposomes, and third, those of the constituting ingredients of the surrounding tissues making up the hair follicles. Thus as a whole, these three factors and their complex interactions seem to determine follicular delivery efficiencies of the liposomes containing the proteins in question through empirical formulations rather than by a general guiding principle at the moment. What is particularly noteworthy with regard to the present invention is the existence of a report stating human growth hormone receptors are located on the living cell layers of the epidermis and throughout the ancillary organs and tissues constituting and surrounding the hair follicles.
Human growth hormone is secreted from the anterior lobe of pituitary gland and circulates with blood while it influences each organ of the human body. In the growth stage of a human, it is particularly involved in the growth of skeleton, an increase in muscles, the decomposition of fat, the growth of the internal organs, sexual growth and the like. In addition, it was suggested that when human growth hormone was administered by injection to adults at a physiological range of blood concentration, it would show various effects, such as the strengthening of the heart circulatory system, the enhancement of exercise ability, the strengthening of muscles, the reduction in abdominal fatness, the increase in libido, the improvement of improvement of arteriosclerosis, and the improvement of geriatric depression.
It is known that the effects of human growth hormone on the human body are not caused by the human growth hormone itself, but rather are caused by the action of insulin-like growth factor-1 (IGF-1), the expression of which is stimulated by human growth hormone and which is produced mainly in the liver and secreted into blood.
This is because the blood half-time of human growth hormone is about 15 minutes, whereas the blood half-time of IGF-1 is about 20 hours, indicating that IGF-1 can be lasting much longer than human growth hormone. Concretely speaking, human growth hormone secreted from pituitary gland binds to human growth hormone-binding protein present in blood, migrates with blood circulation, and meets a human growth hormone receptor present in each tissue of the human. At this time, the human growth hormone is liberated from the human growth hormone-binding protein while it binds to the human growth hormone receptor, and the synthesis and secretion of IGF-1 are stimulated as a result of signaling caused by the binding. The IGF-1 secreted into blood then binds to an IGF-1 binding protein, and circulates with blood flow while it binds to an IGF-1 receptor present in each tissue of the human body, thus exhibiting various physiological effects caused by the secretion of human growth hormone. Accordingly, if the effect of the injection agent human growth hormone on the skin will be actually shown, it will be an effect caused by the action of IGF-1, and thus will necessarily depend on the presence or absence of the IGF-1 receptor on the surface of dermal cells that can be brought into direct contact with blood.
Even if the skin is considered to be influenced directly by human growth hormone, but not by IGF-1, the influence will necessarily be transferred by the human growth hormone receptor present at sites which are in contact with blood. Therefore, it is considered that expecting any effect on the skin by applying human growth hormone (having molecular size that cannot pass through the skin) together with cosmetics to the normal skin surface that is not brought into direct contact with blood is not common sense. The present invention is a first report that, through a method of applying human growth hormone in the form of a cosmetic preparation to the normal skin surface that is not in direct contact with blood, but not a method of transferring the effect of human growth hormone through blood, the human growth hormone can show cosmetic and medical effects on the skin, such as the improvement of acne, wrinkles, atopic skin, skin damage caused by UV light, dark spots, freckles, dry skin and oily skin, the reduction of hair follicles, and the stimulation of hair growth.
Skin tissue consists of the epidermis, the dermis and the hypodermis. The epidermis determines the properties of the skin, and is frequently susceptible to damage directly from the external environment, and thus the repair and regeneration of the epidermis are highly important. The epidermis consists of a layer of epidermal cells. The skin epidermal cells are also called "keratinocytes", because the skin epidermal cells synthesize intermediate filament protein keratin that strengthens the epidermis, during their differentiation. These cells are layered with differentiation while migrating toward the epidermis, and become flat while organs inside the cells gradually disappear and they become dead cells. A cell layer located at the innermost portion of the epidermis is contiguous to the basal lamina and called the "stratum basale", and the cells forming the layer are called "basal cells", among which epidermal stem cells are present. The cells of the stratum basale differentiate into the epidermis while they sequentially form the stratum spinosum, the stratum granulosum, the stratum lucidum and the stratum corneum, the stratums being divided into a living cell layer at the lower position with respect to the stratum granulosum, and a dead cell layer at the upper position. Flattened scale-like tissues outside the stratum corneum are also called "squames" where keratins are densely filled. Cells located from the outside of the stratum granulosum to the stratum corneum are reinforced with a layer of cross-linked protein whose plasma membrane is thin and tough. While the epidermal cells are proliferated from the epidermal stem cells and differentiated into the stratum corneum, they are internally reinforced by the cross-linking of keratins and are also linked by keratins with desmosomes firmly linked with other cells in the same layer so as to maintain the entire layer structure thereof.
The epidermal cells are differentiated into the outer epidermis while they produce and secrete lipid so as to form double-layered tissue on a plasma membrane cornified with protein, thus preventing the skin surface from the external environment, like saran wrap. Since the human epidermis is replaced at two-week interval, the proliferation 5 ability of skin stem cells forming the epidermis can be considered to be huge.
It was recently reported that the multipotent stem cells of the skin are located at the bulge region, which lies just below the sebaceous gland of hair follicles. These bulge stem cells serve as the basis for making epidermal stem cells, hair matrix stem cells, and sebaceous glands stem cells. The bulge stem cells are located only in the bulge region and express a special combination of protein while maintaining their property as stem cells. The epidermal stem cells maintain the epidermis while they proliferate and differentiate. When a hair falls out, the hair matrix stem cells will proliferate and differentiate to make a new hair. However, the epidermal stem cells, the hair matrix stem cells or the sebaceous glands stem cells have limitations in their proliferation ability or the ability to maintain the ability of stem cells, and thus, for example, most of the epidermal stem cells will differentiate after they proliferate 3-6 times. On the other hand, although the bulge stem cells proliferate slower than the other three stem cells, it seems that the bulge stem cells can indefinitely proliferate during the life of human beings while making the epidermal stem cells, the hair matrix stem cells and the sebaceous glands stem cells and, at the same time, maintaining their stem cell character. The fact that the expression and action of human growth hormone occurs at the location of the bulge stem cells has been disclosed for the first time through the present invention, and this novel finding is quite significant, considering that human growth hormone exhibits the effects of improving various skin conditions by the present invention.
DETAILED DESCRIPTION OF THIS INVENTION
The present inventors have made intensive researches to develop a substance capable of improving skin conditions, and as a result, found that the topical application of human growth hormone to the skin can greatly improve skin conditions, thereby completing the present invention.
Accordingly, it is an object of the present invention to provide a skin condition-improving composition for topical application to the skin.
It is another object of the present invention to provide a method for improving skin conditions.
Other objects and advantages of the present invention will become apparent from the detailed description to follow taken in conjugation with the appended claims.
In one aspect of this invention, there is provided a composition formulated for topical administration to skin for improving skin conditions, which comprises human growth hormone and a cosmetically or pharmaceutically acceptable carrier, wherein the skin condition is acne, wrinkles, dark spots, poor skin elasticity, poor hair growth, skin aging or poor skin moisture.
The present inventors have conducted studies and efforts to find a novel use of human growth hormone and, as a result, found that the topical application of human growth hormone to the skin can greatly improve skin conditions. Current therapy with human growth hormone is performed mainly to treat dwarfism and human growth hormone deficiency using an injection method. In the prior art, because of the high molecular weight of human growth hormone and a prejudice for the action pathway of human growth hormone, it was not noticed that the topical application of human growth hormone to the normal skin makes it possible to expect the effect thereof. The present invention greatly deviates from this conventional common sense or knowledge in the art and is characterized in that the effect of the topical application of human growth hormone to the normal skin has been found for the first time. The present invention is the first invention of applying human growth hormone to the skin through two routes, i.e., hair follicles and the epidermis.
The present invention is the first report showing that, by a method of applying human growth hormone to the normal skin surface opposite to a region that is in contact with blood, but not by a method of transferring the effect of human growth hormone through blood, human growth hormone can show cosmetic and medical effects on the skin, such as the improvement of acne, wrinkles, atopic skin, skin damage caused by UV light, dark spots, freckles, dry skin and oily skin, the reduction of hair follicles, and the stimulation of hair growth.
Human growth hormone (hGH) which is used as an active ingredient in the present invention may be any polypeptide showing human growth hormone activity.
For example, any one selected from the group consisting of mature hGH, Met-hGH, hGH variants, modified-hGH, hGH fragments and hGH analogues may be used.
Preferred is mature hGH or Met-hGH. The mature hGH refers to a human growth hormone having the amino acid sequence of the major human growth hormone present in human blood, the Met-hGH refers to a human growth hormone having methionine added to the N-terminus of mature hGH, the hGH variants refer to human growth hormones having the amino acid sequences of human growth hormones other than the major human growth hormone present in the human body, the modified hGH
refers to a human growth hormone modified by adhesion of an additive such as pegylation or glycation to at least one amino acid residue of human growth hormone, the hGH fragments indicate human growth hormones obtained by deleting a portion of the amino acid sequences of human growth hormones by a genetic engineering method or biochemical method, and the hGH analogue refers to a human growth hormone obtained by modifying the amino acid sequence of human growth hormone into another amino acid sequence having properties similar thereto by a genetic engineering method. As used herein, the phrase "having human growth hormone activity" can be specified according to one of the following two methods. In one method, it can be specified according to whether human growth hormone causes signaling by binding to a human growth hormone-binding protein or a human growth hormone receptor, and in another method, it can be specified according to whether biological effects caused by the action of human growth hormone are shown.
In the present invention, human growth hormone can be applied to the skin as an aqueous solution or with a carrier. One of the surprising characteristics of the present invention is that, as illustrated in Example XII and FIG. 10b, even when an aqueous solution of human growth hormone itself is applied directly to the skin, the desired effect of improving skin conditions can be somewhat achieved. Even when an aqueous solution of human growth hormone itself is topically applied to the skin, the human growth hormone will reach the location of bulge stem cells in hair follicles and can provide the effect of improving skin conditions.
According to a preferred embodiment of the present invention, a composition according to the present invention has a phospholipid or liposome composition, and preferably a liposome composition. It is preferable that human growth hormone as an active ingredient be encapsulated in liposome and applied to the skin.
According to a more preferred embodiment of the present invention, the present composition has a nanoliposome composition. As used herein, the term "nanoliposome" refers to a liposome having the form of conventional liposome and a mean particle diameter of 20-1000 nm. According to a preferred embodiment of the present invention, the mean particle diameter of the nanoliposome is 50-500 nm, more preferably 50-nm, and most preferably 50-250 nm.
Liposome is defined as a spherical phospholipid vesicle of colloidal particles which are associated with themselves, and liposomes composed of amphiphilic molecules each having a water soluble head (hydrophilic group) and a water insoluble tail (hydrophobic group) show a structure aligned by spontaneous binding caused by the interaction therebetween, and are classified, according to the size and lamellarity thereof, into SUV (small unilamellar vesicle), LUV (large unilamellar vesicle) and MLV
(multi lamellar vesicle). The liposomes showing various lamellarities as described above have a double membrane structure similar to the cell membrane.
The (nano)liposome in the present invention can be prepared using phospholipid, polyol, a surfactant, fatty acid, salt and/or water.
Phospholipid which is a component used in the preparation of the present (nano)liposome is used as biphilic lipid, and examples thereof include natural phospholipids (e.g., egg yolk lecithin, soybean lecithin, and sphingomyelin) and synthetic phospholipids (e.g., dipalmitoylphosphatidylcholine or hydrogenated lecithin), the lecithin being preferred. More preferably, the lecithin is a naturally derived unsaturated or saturated lecithin extracted from soybean or egg yolk.
Polyols which can be used in the preparation of the present (nano)liposome are not specifically limited and preferably include propylene glycol, dipropylene glycol, 1,3-butylene glycol, glycerin, methylpropanediol, isoprene glycol, pentylene glycol, erythritol, xylitol and sorbitol.
The surfactant which can be used in the preparation of the present (nano)liposome may be any surfactant known in the art, and examples thereof include anionic surfactants (e.g., alkyl acyl glutamate, alkyl phosphate, alkyl lactate, dialkyl phosphate and trialkyl phosphate), cationic surfactants, amphoteric surfactants and nonionic surfactants (e.g., alkoxylated alkylether, alkoxylated alkylester, alkylpolyglycoside, polyglycerylester and sugar ester).
The fatty acids which can be used in the preparation of the present (nano)liposome are higher fatty acids, and preferably saturated or unsaturated fatty acid having a C12_22 alkyl chain, and examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and linoleic acid.
The salt which is used in the preparation of the present (nano)liposome may be any salt known in the art, and examples thereof include phosphate salt, sulfate salt, nitrate salt, chloride salt, hydroxide salt, sodium salt, potassium salt, calcium salt, ammonium salt, amino acid salt, and amino acid.
Water which is used in the preparation of the present (nano)liposome is generally deionized distilled water.
5 According to a preferred embodiment of the present invention, the present (nano)liposome is prepared only with phospholipid, salt and water, as described in detail in Examples below.
According to a preferred embodiment of the present invention, the present hGH-containing nanoliposome is prepared through a process comprising the steps 10 of: (a) dissolving a phospholipid capable of forming liposome (preferably, yellow yolk lecithin or soybean lecithin) in a buffered aqueous solution of salt containing human growth hormone; and (b) passing the aqueous solution containing human growth hormone and phospholipid through a high-pressure homogenizer while gradually increasing the content of the phospholipid and the pressure of the high-pressure homogenizer as the number of the passages increases, thus preparing a human growth hormone-containing nanoliposome.
The aqueous solution containing human growth hormone is preferably a buffer solution having a pH of 6-8, and more preferably about 7, for example, sodium phosphate buffer solution. If the sodium phosphate buffer solution is used, the concentration thereof will preferably be 5-100 mM, more preferably 5-60 mM, even more preferably 10-30 mM, and most preferably about 20 mM.
The most prominent feature of the present process is that the mixture of the phospholipid and the hGH-containing aqueous solution is passed through the high-pressure homogenizer several times, in which the amount of the phospholipid and the pressure of the homogenizer are increased in a stepwise manner as the number of the passages increases. According to a preferred embodiment of the present invention, the pressure of the homogenizer is stepwisely increased from 0 to 1000 bar, and preferably from 0 to 800 bar. The pressure may be increased by 50 bar or 100 bar, preferably 100 bar. According to a preferred embodiment of the present invention, the amount of the phospholipid is stepwisely increased from 5 to 40 w/v(%), and more preferably from 5 to 30 w/v(%).
Through the high-pressure homogenization process including these stepwise increases in phospholipid content and pressure, an hGH-containing nanoliposome is prepared and a liquid hGH-containing nanoliposome is preferably prepared.
The composition of the present invention is useful in the improvement in various skin conditions. Preferably, the present composition is effective in the improvement in skin conditions including acne, wrinkle, dark spots, skin elasticity, hair growth, skin aging, skin moisture and proliferation of dermal stem cell. More specifically, the improvements in skin conditions refer to the treatment of acne, improvement of wrinkle, removal of dark spots, improvement of skin elasticity, promotion of hair growth, prevention of skin aging, improvement of moisture-retaining property of skin or promotion of dermal stem cell proliferation.
More preferably, the skin condition improved by the present invention is acne, wrinkle or hair growth.
The present composition may be provided as a cosmetic or pharmaceutical composition.
The cosmetic compositions of this invention for improving skin conditions may be formulated in a wide variety of forms, for example, including a solution, a suspension, an emulsion, a paste, an ointment, a gel, a cream, a lotion, a powder, a soap, a surfactant-containing cleanser, an oil, a powder foundation, an emulsion foundation, a wax foundation and a spray.
The cosmetically acceptable carrier contained in the present cosmetic composition, may be varied depending on the type of the formulation. For example, the formulation of ointment, pastes, creams or gels may comprise animal and vegetable fats, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silica, talc, zinc oxide or mixtures of these substances. In the formulation of powder or spray, it may comprise lactose, talc, silica, aluminum hydroxide, calcium silicate, polyamide powder and mixtures of these substances. Spray may additionally comprise the customary propellants, for example, chlorofluorohydrocarbons, propane/butane or dimethyl ether.
The formulation of solution and emulsion may comprise solvent, solubilizer and emulsifier, for example water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylglycol, oils, in particular cottonseed oil, groundnut oil, maize germ oil, olive oil, castor oil and sesame seed oil, glycerol fatty esters, polyethylene glycol and fatty acid esters of sorbitan or mixtures of these substances. The formulation of suspension may comprise liquid diluents, for example water, ethanol or propylene glycol, suspending agents, for example ethoxylated isosteary alcohols, polyoxyethylene sorbitol esters and poly oxyethylene sorbitan esters, micocrystalline cellulose, aluminum metahydroxide, bentonite, agar and tragacanth or mixtures of these substances.
The formulation of soap may comprise alkali metal salts of fatty acids, salts of fatty acid hemiesters, fatty acid protein hydrolyzates, isethionates, lanolin, fatty alcohol, vegetable oil, glycerol, sugars or mixtures of these substances.
Furthermore, the cosmetic compositions of this invention may contain auxiliaries as well as carrier. The non-limiting examples of auxiliaries include preservatives, antioxidants, stabilizers, solubilizers, vitamins, colorants, odor improvers or mixtures of these substances.
Where the present composition is formulated to provide a pharmaceutical composition, it may comprise a pharmaceutically acceptable carrier including carbohydrates (e.g., lactose, amylose, dextrose, sucrose, sorbitol, mannitol, starch, cellulose), gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, water, salt solutions, alcohols, gum arabic, syrup, vegetable oils (e.g., corn oil, cotton-seed oil, peanut oil, olive oil, coconut oil), polyethylene glycols, methyl cellulose, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil, but not limited to.
The pharmaceutical compositions of this invention, further may contain wetting agent, sweetening agent, emulsifier, buffer, suspending agent, preservatives, flavors, perfumes, lubricant, stabilizer, or mixtures of these substances. Details of suitable pharmaceutically acceptable carriers and formulations can be found in Remington's Pharmaceutical Sciences (19th ed., 1995), which is incorporated herein by reference.
The pharmaceutical composition of this invention is formulated for topical application onto skin.
The correct dosage of the pharmaceutical compositions of this invention will be varied according to the particular formulation, the mode of application, age, body weight and sex of the patient, diet, time of administration, condition of the patient, drug combinations, reaction sensitivities and severity of the disease. It is understood that the ordinary skilled physician will readily be able to determine and prescribe a correct dosage of this pharmaceutical compositions. According to a preferred embodiment of this invention, the suitable dosage unit is to administer once a day with 0.001-100 ng/cm2(unit surface area of skin), most preferably, 0.1-2 ng/cm2.
According to the conventional techniques known to those skilled in the art, the pharmaceutical compositions of this invention can be formulated with pharmaceutical acceptable carrier and/or vehicle as described above, finally providing several forms including a unit dosage form. Most preferably, the pharmaceutical composition is a solution comprising nanoliposomes.
The present composition acts on epidermal stem cell to increase the number of hair follicles so as to stimulate of hair growth, proliferates the keratinocytes of the epidermal layer to greatly inhibit skin aging, improves the skin damaged by UV
light and wrinkles formed by UV light, remodels the connective tissue of the dermal layer to improve skin firmness and improve wrinkles, and shows the effects of treating acne and removing dark spots. Taken together, the composition of this invention can greatly improve skin conditions. In addition, the present composition is very safe to the human body, and has excellent stability when it is prepared in the form of a nanoliposome.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an electron microscope photograph of a human growth hormone (hGH)-containing liposome cream formulation (formulation A) prepared in Example I.
FIG. 2 is a gel permeation chromatogram of an hGH-containing liposome (Lipo-hGH) of formulation B prepared in Example I.
FIG. 3 shows the results of SDS-PAGE for hGH encapsulated with Lipo-hGH
of formulation B prepared in Example I.
FIG. 4 is a reverse-phase HPLC chromatogram of hGH encapsulated in Lipo-hGH of formulation B prepared in Example I.
FIG. 5 is a reverse-phase HPLC chromatogram of phospholipid in Lipo-hGH of formulation B prepared in Example I.
FIG. 6 is a graphic diagram showing safety test results for Lipo-hGH of formulation B prepared in Example I.
FIG. 7 is a graphic diagram showing safety test results for an hGH-containing liposome according to the present invention.
FIG. 8 shows test results for the wrinkle-reducing effect of the present hGH-encapsulated liposome on nude mice having UV-induced wrinkles.
FIG. 9 shows analysis results for the activity of human growth hormone encapsulated in an hGH-encapsulating liposome according to the present invention.
FIG. 10a is a photograph showing the localization of human growth hormone, which occurs when the present hGH-encapsulating nanoliposome is delivered to the skin through hair follicles in Sprague Dawley rats.
FIG. 10b is a photograph showing the effect of the present hGH-encapsulated nanoliposome on the dermal layer and hair follicles of the skin of Sprague Dawley rats.
FIG. 11a is a photograph showing the effect of the present hGH-encapsulated nanoliposome on the epidermis and dermis of the skin of ICR mice.
FIG. 11b is a photograph showing that the present hGH-encapsulated nanoliposome induces the remodeling of connective tissue in the dermal layer of ICR
5 mice.
FIG. 12 is a photograph showing the effect of the present hGH-encapsulated nanoliposome on artificial human skin.
FIG. 13 shows analysis results for the particle size distribution of an hGH-encapsulated nanoliposome according to the present invention.
10 FIG. 14 is a graphic diagram showing the wrinkle-reducing effect of the present hGH-encapsulated nanoliposome.
The following specific examples are intended to be illustrative of the invention and should not be construed as limiting the scope of the invention as defined by 15 appended claims.
EXAMPLES
Example I: Preparation of various human growth hormone-containing liposome (Lipo-hGH) formulations Formulation A (cream formulation): human growth hormone-containing cream formulation Phospholipid used in formulation A was lipoid S100 (Lipoid GmbH, Germany) or lipoid S75 (Lipoid GmbH, Germany).
The heat exchanger of a high-pressure homogenizer (max. output 5 L/hr, highest pressure 1200 bar, Model HS-1002; manufactured by Hwasung Machinery Co., Ltd., South Korea) was placed in ice water such that the temperature of the outlet of the homogenizer did not exceed 30 C, and the inside of the homogenizer was then washed with distilled water so as to be ready to operate. Then, to 100 ml of a solution of human growth hormone (LG Life Sciences, Ltd) dissolved in a buffer solution (20 mM NaH2PO4 pH 6.5-7.5, 1 mM EDTA) at a concentration of 1 mg/ml, phospholipid was added at a ratio of 5 w/v% and sufficiently hydrated and stirred.
The stirred solution was passed through the homogenizer three times or more at room temperature and a low pressure of 0 bar. To the solution passed through the homogenizer, phospholipid was added to a ratio of 6 w/v% and sufficiently hydrated and stirred. The stirred solution was passed through the homogenizer three times or more at 100 bar. Then, to the solution passed through the homogenizer in the condition of 100 bar, phospholipid was added to a ratio of 7 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 200 bar. Then, to the solution passed through the homogenizer in the condition of 200 bar, phospholipid was added to a ratio of 8 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 300 bar. To the solution passed through the homogenizer in the condition of 300 bar, phospholipid was added to a ratio of 9 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 400 bar. Then, to the solution passed through the homogenizer in the condition of 400 bar, phospholipid was added to a ratio of 10 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 500 bar. Then, to the solution passed through the homogenizer in the condition of 500 bar, phospholipid was added to a ratio of 11 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer thre times or more at 600 bar. Then, to the solution passed through the homogenizer in the condition of 600 bar, phospholipid was added to a ratio of 12 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 800 bar, thus preparing a human growth hormone-containing liposome (Lipo-hGH) cream formulation.
FIG. 1 shows an electron microscope photograph of the human growth hormone-containing liposome cream formulation prepared in this Example. The liposome cream formulation prepared in this Example was coated with gold and observed with a scanning electron microscope (HITACHI S 2500). In the observation result, the shape of the bent and connected background was presumed as gel, and small spherical grains were estimated as nanosize (0.02-0.3 m) loposomes.
Formulation B (liposome formulation): Human growth hormone (hGH)-containing liposome formulation Phospholipid used in the preparation of formulation B was soybean lecithin (ShinDongBang Corp., South Korea), Metarin P (Degussa Texturant Systems Deutschland GmbH & Co. KG), Nutripur S (Degussa Texturant Systems Deutschland GmbH & Co. KG) or Emultop (Degussa Texturant Systems Deutschland GmbH & Co.
KG).
The heat exchanger of a high-pressure homogenizer (max. output 5 L/hr, highest pressure 1200 bar, Model HS-1002; manufactured by Hwasung Machinery Co., Ltd., South Korea) was placed in ice water such that the temperature of the outlet of the homogenizer did not exceed 30 C, and the inside of the homogenizer was then washed with distilled water so as to be ready to operate. Then, to 100 ml of a solution of human growth hormone (LG Life Sciences, Ltd.) dissolved in a buffer solution (20 mM NaH2PO4 pH 6.5-7.5, 1 mM EDTA) at a concentration of 1 mg/ml, phospholipid was added at a ratio of 10 w/v% and sufficiently hydrated and stirred.
The stirred solution was passed through the homogenizer three times or more at room temperature and a low pressure of 0 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 14 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 100 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 18 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 200 bar. Then, to the solution passed through the homogneizer, phospholipid was added to a ratio of 20 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 300 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 22 w/v%, and sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 400 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 24 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 500 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 26 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 600 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 28 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 700 bar.
Then, the solution passed through the homogenizer at 700 bar was passed through the homogenizer three times or more at 800 bar and discharged from the homogenizer. The discharged solution was subjected to high-speed centrifugation at 15,000 x g for 30 minutes, and the supernatant was separated. At this time, human growth hormone which has not been encapsulated in liposome was removed by gel permeation chromatography (GE Healthcare, USA), thus obtaining liquid phase liposome (see FIG. 2).
Formulation B prepared using a solution of distilled water and buffer solution (20 mM NaH2PO4, 1 mM EDTA, pH 6.0-7.5) did not show a difference in the physical properties and stability of liposome. Also, the obtained formulation was stored in more than 10 w/v% of soybean lecithin at 15-30 C for a long period of time and, as a result, the phase separation into a lipid layer (lower) and an aqueous solution (upper) occurred. However, in less than 10 w/v% of soybean lecithin, it had excellent stability without phase separation.
Example II: FPLC separation and SDS-PAGE analysis For the analysis of the human growth hormone-containing liposome of formulation B prepared in Example I, FPLC (Acta explorer, Amersham Bioscience) was equipped with a superdex 200 HR/30 column at room temperature, and the column was equilibrated with two times the column volume of a buffer solution (20 mM
NaH2PO4, 1 mM EDTA and 150 mM NaCl). Then, the human growth hormone-containing liposome was separated into fractions which were then collected and analyzed by SDS-PAGE. As shown in FIG. 3, the band of human growth hormone could be observed at about 22 kDa.
Example III: Quantification of human growth hormone in liposome HPLC (Shimazu) was equipped with a C18 Delta pack column (Waters, USA), and reverse phase-HPLC was performed by concentration gradient (B 60-10% : 0-min, B 60%: 25.01-30 min) at a flow rate of 1 ml/min using 0.1% TFA
acetonitrile as solvent A and 0.1% TFA H2O as solvent B. A standard sample (international standard human growth hormone NIBSC code 98/574) was quantified using a fluorescence detector (excitation: 295 nm, range: 270-300 nm; emission: 350 nm, range: 300-nm) in conditions of oven temperature of 55 C and run time of 30 min. Then, a sample was pretreated by disrupting the human growth hormone-containing liposome solution with a sonicator and adding a buffer solution (50 mM Tris-CI pH 8.0, 1 mM
EDTA, 8 M urea, 2% Tween 20) thereto in the same volume as the sample and then pipetting the mixture, and was quantified by HPLC using the fluorescence detector (see FIG. 4).
From the quantification results, it can be seen that the Lipo-hGH of formulation B prepared in Example I contained about 3.69 pg/ml of human growth hormone.
Example IV: Analysis of phospholipid content HPLC (Shimazu) was equipped with a Spherisorb S5 NH2 column (Waters), and HPLC was performed by isocratic gradient at a flow rate of 1 ml/min using a mixed solvent of 60% acetonitrile, 30% methanol and 5% H20. Phospholipid was completely dissolved in a mixed solvent of methanol: chloroform (90%:10%) and 5 quantified using a UV light detector (215 nm) in conditions of oven temperature of 35 C and run time of 20 min. In the same manner, the present human growth hormone-containing liposome solution was completely dissolved in a mixed solvent of methanol: chloroform (90%:10%) and then quantified by HPLC (see FIG. 5).
From the quantification results, it can be seen that the Lipo-hGH of 10 formulation B prepared in Example I contained about 3.26 mg/ml of phospholipid.
Example V: Stability test A stability test for the human growth hormone-containing liposome of formulation B prepared in Example I was performed in the following manner. The 15 present Lipo-hGH containing 0.1% methyl paraben was analyzed for stability by placing it in brown color bottles, standing the bottles at 4 C and 15-30 C, respectively, and quantifying the content of hGH by HPLC at one-week intervals. As can be seen in FIG. 6, the present Lipo-hGH after 10 months of storing had initial hGH
contents of 87.5% at 4 C and 75% at room temperature. This suggests that the 20 present Lipo-hGH has excellent stability.
Example VI: Safety test To test the safety of the present human growth hormone-containing liposome (formulation B prepared in Example I), cytotoxicities for human keratinocyte cell line HaCaT (DKFZ, Germany) and human embryonic fibroblast HEF (gift from Prof.
Lee, Jaeyong, Department of Biochemistry, School of Medicine, Hallym University) were examined.
The present inventors have made intensive researches to develop a substance capable of improving skin conditions, and as a result, found that the topical application of human growth hormone to the skin can greatly improve skin conditions, thereby completing the present invention.
Accordingly, it is an object of the present invention to provide a skin condition-improving composition for topical application to the skin.
It is another object of the present invention to provide a method for improving skin conditions.
Other objects and advantages of the present invention will become apparent from the detailed description to follow taken in conjugation with the appended claims.
In one aspect of this invention, there is provided a composition formulated for topical administration to skin for improving skin conditions, which comprises human growth hormone and a cosmetically or pharmaceutically acceptable carrier, wherein the skin condition is acne, wrinkles, dark spots, poor skin elasticity, poor hair growth, skin aging or poor skin moisture.
The present inventors have conducted studies and efforts to find a novel use of human growth hormone and, as a result, found that the topical application of human growth hormone to the skin can greatly improve skin conditions. Current therapy with human growth hormone is performed mainly to treat dwarfism and human growth hormone deficiency using an injection method. In the prior art, because of the high molecular weight of human growth hormone and a prejudice for the action pathway of human growth hormone, it was not noticed that the topical application of human growth hormone to the normal skin makes it possible to expect the effect thereof. The present invention greatly deviates from this conventional common sense or knowledge in the art and is characterized in that the effect of the topical application of human growth hormone to the normal skin has been found for the first time. The present invention is the first invention of applying human growth hormone to the skin through two routes, i.e., hair follicles and the epidermis.
The present invention is the first report showing that, by a method of applying human growth hormone to the normal skin surface opposite to a region that is in contact with blood, but not by a method of transferring the effect of human growth hormone through blood, human growth hormone can show cosmetic and medical effects on the skin, such as the improvement of acne, wrinkles, atopic skin, skin damage caused by UV light, dark spots, freckles, dry skin and oily skin, the reduction of hair follicles, and the stimulation of hair growth.
Human growth hormone (hGH) which is used as an active ingredient in the present invention may be any polypeptide showing human growth hormone activity.
For example, any one selected from the group consisting of mature hGH, Met-hGH, hGH variants, modified-hGH, hGH fragments and hGH analogues may be used.
Preferred is mature hGH or Met-hGH. The mature hGH refers to a human growth hormone having the amino acid sequence of the major human growth hormone present in human blood, the Met-hGH refers to a human growth hormone having methionine added to the N-terminus of mature hGH, the hGH variants refer to human growth hormones having the amino acid sequences of human growth hormones other than the major human growth hormone present in the human body, the modified hGH
refers to a human growth hormone modified by adhesion of an additive such as pegylation or glycation to at least one amino acid residue of human growth hormone, the hGH fragments indicate human growth hormones obtained by deleting a portion of the amino acid sequences of human growth hormones by a genetic engineering method or biochemical method, and the hGH analogue refers to a human growth hormone obtained by modifying the amino acid sequence of human growth hormone into another amino acid sequence having properties similar thereto by a genetic engineering method. As used herein, the phrase "having human growth hormone activity" can be specified according to one of the following two methods. In one method, it can be specified according to whether human growth hormone causes signaling by binding to a human growth hormone-binding protein or a human growth hormone receptor, and in another method, it can be specified according to whether biological effects caused by the action of human growth hormone are shown.
In the present invention, human growth hormone can be applied to the skin as an aqueous solution or with a carrier. One of the surprising characteristics of the present invention is that, as illustrated in Example XII and FIG. 10b, even when an aqueous solution of human growth hormone itself is applied directly to the skin, the desired effect of improving skin conditions can be somewhat achieved. Even when an aqueous solution of human growth hormone itself is topically applied to the skin, the human growth hormone will reach the location of bulge stem cells in hair follicles and can provide the effect of improving skin conditions.
According to a preferred embodiment of the present invention, a composition according to the present invention has a phospholipid or liposome composition, and preferably a liposome composition. It is preferable that human growth hormone as an active ingredient be encapsulated in liposome and applied to the skin.
According to a more preferred embodiment of the present invention, the present composition has a nanoliposome composition. As used herein, the term "nanoliposome" refers to a liposome having the form of conventional liposome and a mean particle diameter of 20-1000 nm. According to a preferred embodiment of the present invention, the mean particle diameter of the nanoliposome is 50-500 nm, more preferably 50-nm, and most preferably 50-250 nm.
Liposome is defined as a spherical phospholipid vesicle of colloidal particles which are associated with themselves, and liposomes composed of amphiphilic molecules each having a water soluble head (hydrophilic group) and a water insoluble tail (hydrophobic group) show a structure aligned by spontaneous binding caused by the interaction therebetween, and are classified, according to the size and lamellarity thereof, into SUV (small unilamellar vesicle), LUV (large unilamellar vesicle) and MLV
(multi lamellar vesicle). The liposomes showing various lamellarities as described above have a double membrane structure similar to the cell membrane.
The (nano)liposome in the present invention can be prepared using phospholipid, polyol, a surfactant, fatty acid, salt and/or water.
Phospholipid which is a component used in the preparation of the present (nano)liposome is used as biphilic lipid, and examples thereof include natural phospholipids (e.g., egg yolk lecithin, soybean lecithin, and sphingomyelin) and synthetic phospholipids (e.g., dipalmitoylphosphatidylcholine or hydrogenated lecithin), the lecithin being preferred. More preferably, the lecithin is a naturally derived unsaturated or saturated lecithin extracted from soybean or egg yolk.
Polyols which can be used in the preparation of the present (nano)liposome are not specifically limited and preferably include propylene glycol, dipropylene glycol, 1,3-butylene glycol, glycerin, methylpropanediol, isoprene glycol, pentylene glycol, erythritol, xylitol and sorbitol.
The surfactant which can be used in the preparation of the present (nano)liposome may be any surfactant known in the art, and examples thereof include anionic surfactants (e.g., alkyl acyl glutamate, alkyl phosphate, alkyl lactate, dialkyl phosphate and trialkyl phosphate), cationic surfactants, amphoteric surfactants and nonionic surfactants (e.g., alkoxylated alkylether, alkoxylated alkylester, alkylpolyglycoside, polyglycerylester and sugar ester).
The fatty acids which can be used in the preparation of the present (nano)liposome are higher fatty acids, and preferably saturated or unsaturated fatty acid having a C12_22 alkyl chain, and examples thereof include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid and linoleic acid.
The salt which is used in the preparation of the present (nano)liposome may be any salt known in the art, and examples thereof include phosphate salt, sulfate salt, nitrate salt, chloride salt, hydroxide salt, sodium salt, potassium salt, calcium salt, ammonium salt, amino acid salt, and amino acid.
Water which is used in the preparation of the present (nano)liposome is generally deionized distilled water.
5 According to a preferred embodiment of the present invention, the present (nano)liposome is prepared only with phospholipid, salt and water, as described in detail in Examples below.
According to a preferred embodiment of the present invention, the present hGH-containing nanoliposome is prepared through a process comprising the steps 10 of: (a) dissolving a phospholipid capable of forming liposome (preferably, yellow yolk lecithin or soybean lecithin) in a buffered aqueous solution of salt containing human growth hormone; and (b) passing the aqueous solution containing human growth hormone and phospholipid through a high-pressure homogenizer while gradually increasing the content of the phospholipid and the pressure of the high-pressure homogenizer as the number of the passages increases, thus preparing a human growth hormone-containing nanoliposome.
The aqueous solution containing human growth hormone is preferably a buffer solution having a pH of 6-8, and more preferably about 7, for example, sodium phosphate buffer solution. If the sodium phosphate buffer solution is used, the concentration thereof will preferably be 5-100 mM, more preferably 5-60 mM, even more preferably 10-30 mM, and most preferably about 20 mM.
The most prominent feature of the present process is that the mixture of the phospholipid and the hGH-containing aqueous solution is passed through the high-pressure homogenizer several times, in which the amount of the phospholipid and the pressure of the homogenizer are increased in a stepwise manner as the number of the passages increases. According to a preferred embodiment of the present invention, the pressure of the homogenizer is stepwisely increased from 0 to 1000 bar, and preferably from 0 to 800 bar. The pressure may be increased by 50 bar or 100 bar, preferably 100 bar. According to a preferred embodiment of the present invention, the amount of the phospholipid is stepwisely increased from 5 to 40 w/v(%), and more preferably from 5 to 30 w/v(%).
Through the high-pressure homogenization process including these stepwise increases in phospholipid content and pressure, an hGH-containing nanoliposome is prepared and a liquid hGH-containing nanoliposome is preferably prepared.
The composition of the present invention is useful in the improvement in various skin conditions. Preferably, the present composition is effective in the improvement in skin conditions including acne, wrinkle, dark spots, skin elasticity, hair growth, skin aging, skin moisture and proliferation of dermal stem cell. More specifically, the improvements in skin conditions refer to the treatment of acne, improvement of wrinkle, removal of dark spots, improvement of skin elasticity, promotion of hair growth, prevention of skin aging, improvement of moisture-retaining property of skin or promotion of dermal stem cell proliferation.
More preferably, the skin condition improved by the present invention is acne, wrinkle or hair growth.
The present composition may be provided as a cosmetic or pharmaceutical composition.
The cosmetic compositions of this invention for improving skin conditions may be formulated in a wide variety of forms, for example, including a solution, a suspension, an emulsion, a paste, an ointment, a gel, a cream, a lotion, a powder, a soap, a surfactant-containing cleanser, an oil, a powder foundation, an emulsion foundation, a wax foundation and a spray.
The cosmetically acceptable carrier contained in the present cosmetic composition, may be varied depending on the type of the formulation. For example, the formulation of ointment, pastes, creams or gels may comprise animal and vegetable fats, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silica, talc, zinc oxide or mixtures of these substances. In the formulation of powder or spray, it may comprise lactose, talc, silica, aluminum hydroxide, calcium silicate, polyamide powder and mixtures of these substances. Spray may additionally comprise the customary propellants, for example, chlorofluorohydrocarbons, propane/butane or dimethyl ether.
The formulation of solution and emulsion may comprise solvent, solubilizer and emulsifier, for example water, ethanol, isopropanol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylglycol, oils, in particular cottonseed oil, groundnut oil, maize germ oil, olive oil, castor oil and sesame seed oil, glycerol fatty esters, polyethylene glycol and fatty acid esters of sorbitan or mixtures of these substances. The formulation of suspension may comprise liquid diluents, for example water, ethanol or propylene glycol, suspending agents, for example ethoxylated isosteary alcohols, polyoxyethylene sorbitol esters and poly oxyethylene sorbitan esters, micocrystalline cellulose, aluminum metahydroxide, bentonite, agar and tragacanth or mixtures of these substances.
The formulation of soap may comprise alkali metal salts of fatty acids, salts of fatty acid hemiesters, fatty acid protein hydrolyzates, isethionates, lanolin, fatty alcohol, vegetable oil, glycerol, sugars or mixtures of these substances.
Furthermore, the cosmetic compositions of this invention may contain auxiliaries as well as carrier. The non-limiting examples of auxiliaries include preservatives, antioxidants, stabilizers, solubilizers, vitamins, colorants, odor improvers or mixtures of these substances.
Where the present composition is formulated to provide a pharmaceutical composition, it may comprise a pharmaceutically acceptable carrier including carbohydrates (e.g., lactose, amylose, dextrose, sucrose, sorbitol, mannitol, starch, cellulose), gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, water, salt solutions, alcohols, gum arabic, syrup, vegetable oils (e.g., corn oil, cotton-seed oil, peanut oil, olive oil, coconut oil), polyethylene glycols, methyl cellulose, methylhydroxy benzoate, propylhydroxy benzoate, talc, magnesium stearate and mineral oil, but not limited to.
The pharmaceutical compositions of this invention, further may contain wetting agent, sweetening agent, emulsifier, buffer, suspending agent, preservatives, flavors, perfumes, lubricant, stabilizer, or mixtures of these substances. Details of suitable pharmaceutically acceptable carriers and formulations can be found in Remington's Pharmaceutical Sciences (19th ed., 1995), which is incorporated herein by reference.
The pharmaceutical composition of this invention is formulated for topical application onto skin.
The correct dosage of the pharmaceutical compositions of this invention will be varied according to the particular formulation, the mode of application, age, body weight and sex of the patient, diet, time of administration, condition of the patient, drug combinations, reaction sensitivities and severity of the disease. It is understood that the ordinary skilled physician will readily be able to determine and prescribe a correct dosage of this pharmaceutical compositions. According to a preferred embodiment of this invention, the suitable dosage unit is to administer once a day with 0.001-100 ng/cm2(unit surface area of skin), most preferably, 0.1-2 ng/cm2.
According to the conventional techniques known to those skilled in the art, the pharmaceutical compositions of this invention can be formulated with pharmaceutical acceptable carrier and/or vehicle as described above, finally providing several forms including a unit dosage form. Most preferably, the pharmaceutical composition is a solution comprising nanoliposomes.
The present composition acts on epidermal stem cell to increase the number of hair follicles so as to stimulate of hair growth, proliferates the keratinocytes of the epidermal layer to greatly inhibit skin aging, improves the skin damaged by UV
light and wrinkles formed by UV light, remodels the connective tissue of the dermal layer to improve skin firmness and improve wrinkles, and shows the effects of treating acne and removing dark spots. Taken together, the composition of this invention can greatly improve skin conditions. In addition, the present composition is very safe to the human body, and has excellent stability when it is prepared in the form of a nanoliposome.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is an electron microscope photograph of a human growth hormone (hGH)-containing liposome cream formulation (formulation A) prepared in Example I.
FIG. 2 is a gel permeation chromatogram of an hGH-containing liposome (Lipo-hGH) of formulation B prepared in Example I.
FIG. 3 shows the results of SDS-PAGE for hGH encapsulated with Lipo-hGH
of formulation B prepared in Example I.
FIG. 4 is a reverse-phase HPLC chromatogram of hGH encapsulated in Lipo-hGH of formulation B prepared in Example I.
FIG. 5 is a reverse-phase HPLC chromatogram of phospholipid in Lipo-hGH of formulation B prepared in Example I.
FIG. 6 is a graphic diagram showing safety test results for Lipo-hGH of formulation B prepared in Example I.
FIG. 7 is a graphic diagram showing safety test results for an hGH-containing liposome according to the present invention.
FIG. 8 shows test results for the wrinkle-reducing effect of the present hGH-encapsulated liposome on nude mice having UV-induced wrinkles.
FIG. 9 shows analysis results for the activity of human growth hormone encapsulated in an hGH-encapsulating liposome according to the present invention.
FIG. 10a is a photograph showing the localization of human growth hormone, which occurs when the present hGH-encapsulating nanoliposome is delivered to the skin through hair follicles in Sprague Dawley rats.
FIG. 10b is a photograph showing the effect of the present hGH-encapsulated nanoliposome on the dermal layer and hair follicles of the skin of Sprague Dawley rats.
FIG. 11a is a photograph showing the effect of the present hGH-encapsulated nanoliposome on the epidermis and dermis of the skin of ICR mice.
FIG. 11b is a photograph showing that the present hGH-encapsulated nanoliposome induces the remodeling of connective tissue in the dermal layer of ICR
5 mice.
FIG. 12 is a photograph showing the effect of the present hGH-encapsulated nanoliposome on artificial human skin.
FIG. 13 shows analysis results for the particle size distribution of an hGH-encapsulated nanoliposome according to the present invention.
10 FIG. 14 is a graphic diagram showing the wrinkle-reducing effect of the present hGH-encapsulated nanoliposome.
The following specific examples are intended to be illustrative of the invention and should not be construed as limiting the scope of the invention as defined by 15 appended claims.
EXAMPLES
Example I: Preparation of various human growth hormone-containing liposome (Lipo-hGH) formulations Formulation A (cream formulation): human growth hormone-containing cream formulation Phospholipid used in formulation A was lipoid S100 (Lipoid GmbH, Germany) or lipoid S75 (Lipoid GmbH, Germany).
The heat exchanger of a high-pressure homogenizer (max. output 5 L/hr, highest pressure 1200 bar, Model HS-1002; manufactured by Hwasung Machinery Co., Ltd., South Korea) was placed in ice water such that the temperature of the outlet of the homogenizer did not exceed 30 C, and the inside of the homogenizer was then washed with distilled water so as to be ready to operate. Then, to 100 ml of a solution of human growth hormone (LG Life Sciences, Ltd) dissolved in a buffer solution (20 mM NaH2PO4 pH 6.5-7.5, 1 mM EDTA) at a concentration of 1 mg/ml, phospholipid was added at a ratio of 5 w/v% and sufficiently hydrated and stirred.
The stirred solution was passed through the homogenizer three times or more at room temperature and a low pressure of 0 bar. To the solution passed through the homogenizer, phospholipid was added to a ratio of 6 w/v% and sufficiently hydrated and stirred. The stirred solution was passed through the homogenizer three times or more at 100 bar. Then, to the solution passed through the homogenizer in the condition of 100 bar, phospholipid was added to a ratio of 7 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 200 bar. Then, to the solution passed through the homogenizer in the condition of 200 bar, phospholipid was added to a ratio of 8 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 300 bar. To the solution passed through the homogenizer in the condition of 300 bar, phospholipid was added to a ratio of 9 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 400 bar. Then, to the solution passed through the homogenizer in the condition of 400 bar, phospholipid was added to a ratio of 10 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 500 bar. Then, to the solution passed through the homogenizer in the condition of 500 bar, phospholipid was added to a ratio of 11 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer thre times or more at 600 bar. Then, to the solution passed through the homogenizer in the condition of 600 bar, phospholipid was added to a ratio of 12 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 800 bar, thus preparing a human growth hormone-containing liposome (Lipo-hGH) cream formulation.
FIG. 1 shows an electron microscope photograph of the human growth hormone-containing liposome cream formulation prepared in this Example. The liposome cream formulation prepared in this Example was coated with gold and observed with a scanning electron microscope (HITACHI S 2500). In the observation result, the shape of the bent and connected background was presumed as gel, and small spherical grains were estimated as nanosize (0.02-0.3 m) loposomes.
Formulation B (liposome formulation): Human growth hormone (hGH)-containing liposome formulation Phospholipid used in the preparation of formulation B was soybean lecithin (ShinDongBang Corp., South Korea), Metarin P (Degussa Texturant Systems Deutschland GmbH & Co. KG), Nutripur S (Degussa Texturant Systems Deutschland GmbH & Co. KG) or Emultop (Degussa Texturant Systems Deutschland GmbH & Co.
KG).
The heat exchanger of a high-pressure homogenizer (max. output 5 L/hr, highest pressure 1200 bar, Model HS-1002; manufactured by Hwasung Machinery Co., Ltd., South Korea) was placed in ice water such that the temperature of the outlet of the homogenizer did not exceed 30 C, and the inside of the homogenizer was then washed with distilled water so as to be ready to operate. Then, to 100 ml of a solution of human growth hormone (LG Life Sciences, Ltd.) dissolved in a buffer solution (20 mM NaH2PO4 pH 6.5-7.5, 1 mM EDTA) at a concentration of 1 mg/ml, phospholipid was added at a ratio of 10 w/v% and sufficiently hydrated and stirred.
The stirred solution was passed through the homogenizer three times or more at room temperature and a low pressure of 0 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 14 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 100 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 18 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 200 bar. Then, to the solution passed through the homogneizer, phospholipid was added to a ratio of 20 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 300 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 22 w/v%, and sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 400 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 24 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 500 bar.
Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 26 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 600 bar. Then, to the solution passed through the homogenizer, phospholipid was added to a ratio of 28 w/v%, sufficiently hydrated and stirred, and passed through the homogenizer three times or more at 700 bar.
Then, the solution passed through the homogenizer at 700 bar was passed through the homogenizer three times or more at 800 bar and discharged from the homogenizer. The discharged solution was subjected to high-speed centrifugation at 15,000 x g for 30 minutes, and the supernatant was separated. At this time, human growth hormone which has not been encapsulated in liposome was removed by gel permeation chromatography (GE Healthcare, USA), thus obtaining liquid phase liposome (see FIG. 2).
Formulation B prepared using a solution of distilled water and buffer solution (20 mM NaH2PO4, 1 mM EDTA, pH 6.0-7.5) did not show a difference in the physical properties and stability of liposome. Also, the obtained formulation was stored in more than 10 w/v% of soybean lecithin at 15-30 C for a long period of time and, as a result, the phase separation into a lipid layer (lower) and an aqueous solution (upper) occurred. However, in less than 10 w/v% of soybean lecithin, it had excellent stability without phase separation.
Example II: FPLC separation and SDS-PAGE analysis For the analysis of the human growth hormone-containing liposome of formulation B prepared in Example I, FPLC (Acta explorer, Amersham Bioscience) was equipped with a superdex 200 HR/30 column at room temperature, and the column was equilibrated with two times the column volume of a buffer solution (20 mM
NaH2PO4, 1 mM EDTA and 150 mM NaCl). Then, the human growth hormone-containing liposome was separated into fractions which were then collected and analyzed by SDS-PAGE. As shown in FIG. 3, the band of human growth hormone could be observed at about 22 kDa.
Example III: Quantification of human growth hormone in liposome HPLC (Shimazu) was equipped with a C18 Delta pack column (Waters, USA), and reverse phase-HPLC was performed by concentration gradient (B 60-10% : 0-min, B 60%: 25.01-30 min) at a flow rate of 1 ml/min using 0.1% TFA
acetonitrile as solvent A and 0.1% TFA H2O as solvent B. A standard sample (international standard human growth hormone NIBSC code 98/574) was quantified using a fluorescence detector (excitation: 295 nm, range: 270-300 nm; emission: 350 nm, range: 300-nm) in conditions of oven temperature of 55 C and run time of 30 min. Then, a sample was pretreated by disrupting the human growth hormone-containing liposome solution with a sonicator and adding a buffer solution (50 mM Tris-CI pH 8.0, 1 mM
EDTA, 8 M urea, 2% Tween 20) thereto in the same volume as the sample and then pipetting the mixture, and was quantified by HPLC using the fluorescence detector (see FIG. 4).
From the quantification results, it can be seen that the Lipo-hGH of formulation B prepared in Example I contained about 3.69 pg/ml of human growth hormone.
Example IV: Analysis of phospholipid content HPLC (Shimazu) was equipped with a Spherisorb S5 NH2 column (Waters), and HPLC was performed by isocratic gradient at a flow rate of 1 ml/min using a mixed solvent of 60% acetonitrile, 30% methanol and 5% H20. Phospholipid was completely dissolved in a mixed solvent of methanol: chloroform (90%:10%) and 5 quantified using a UV light detector (215 nm) in conditions of oven temperature of 35 C and run time of 20 min. In the same manner, the present human growth hormone-containing liposome solution was completely dissolved in a mixed solvent of methanol: chloroform (90%:10%) and then quantified by HPLC (see FIG. 5).
From the quantification results, it can be seen that the Lipo-hGH of 10 formulation B prepared in Example I contained about 3.26 mg/ml of phospholipid.
Example V: Stability test A stability test for the human growth hormone-containing liposome of formulation B prepared in Example I was performed in the following manner. The 15 present Lipo-hGH containing 0.1% methyl paraben was analyzed for stability by placing it in brown color bottles, standing the bottles at 4 C and 15-30 C, respectively, and quantifying the content of hGH by HPLC at one-week intervals. As can be seen in FIG. 6, the present Lipo-hGH after 10 months of storing had initial hGH
contents of 87.5% at 4 C and 75% at room temperature. This suggests that the 20 present Lipo-hGH has excellent stability.
Example VI: Safety test To test the safety of the present human growth hormone-containing liposome (formulation B prepared in Example I), cytotoxicities for human keratinocyte cell line HaCaT (DKFZ, Germany) and human embryonic fibroblast HEF (gift from Prof.
Lee, Jaeyong, Department of Biochemistry, School of Medicine, Hallym University) were examined.
HaCaT and HEF were suspended in 10% FBS/DMEM (FD media at concentrations of 1 x 105 cells/ml and 5 x 104 cells/ml, respectively. 1 ml of each of the suspensions was added to a 24-well plate and then cultured in a 5% CO2 incubator at 37 C for one day. After one day of the culture, the upper-layer medium was carefully removed, and a suitable amount of 10% FD medium and various concentrations of samples were added to the wells of the plate and allowed to react in a 5% CO2 incubator at 37 Cfor one day. The samples used were a buffer solution (containing 20 mM Na-Pi, pH 7.0, 1 mM EDTA and 0.1% methyl paraben), liposome, human growth hormone and the Lipo-hGH of formulation B prepared in Example I.
After the reaction, the viability of the cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT: Sigma, USA) (Shearman et al., Proc. Natl.
Acad. Sci. 91(4):1470-4(1994), Shearman et al., J. Neurochem. 65(1):218-27(1995) and Kaneko et al., J. Neurochem. 65(6):2585-93(1995)). The MTT reaction products were measured for absorbance at 570 nm using an ELISA reader (Molecular Devices, USA). The cell viability by each of the samples was expressed as a value relative to the absorbance of a well not containing the samples, taken as 100 % (FIG. 7).
As can be seen in FIG. 7, the present hGH-containing nanoliposome had no effect the cell viability of HaCaT and HEF, indicating that it is a formulation very safe to a living body.
Example VII: Analysis for proliferation of nanoliposome formulation Lipo-hGH in Nb2 cells To the well of a 96-well plate containing 50 l of the Nb2 noble rat lymphoma cell line (NIBSC ECACC #97041101 ) at a concentration of 1 x 105 cells/ml, S-hGH
(standard human growth hormone, NIBSC code 98/574), a sample comprising a 1000-fold dilution of a pretreated solution (obtained by disrupting a liposome solution containing no human growth hormone with a sonicator and adding a solution (containing 50 mM Tris-CI pH 8.0, 1 mM EDTA, 8 M urea, 2% Tween 20) thereto in the same volume as the sample and then pipetting the mixture) added S-hGH, or a sample comprising a 1000-fold dilution of the Lipo-hGH (N-hGH; formulation B
prepared in Example I) subjected to a sample pretreatment process (comprising disrupting a liposome solution containing no human growth hormone with a sonicator and adding a solution (containing 50 mM Tris-Cl pH 8.0, 1 mM EDTA, 8 M urea, 2%
Tween 20) thereto in the same volume as the sample and then pipetting the mixture), was added. Each of the samples was cultured in a 5% CO2 incubator at 37 Cfor 5 days, and the amount of the proliferated cells was measured using MTT. The mean absorbance of the group containing hGH was calculated as a value relative to the mean absorbance of the control group containing no hGH, taken as 100%.
As shown in FIG. 9, the human growth hormone encapsulated in the present Lipo-hGH maintained its original activity.
Example VIII: Analysis of particle size distribution The Lipo-hGH of formulation B separated by gel permeation chromatography in the above Example was analyzed for particle size distribution at a refractive index of 1.52 using a particle size analyzer (Mastersizer 2000/ Malvern Instruments Ltd.) (see FIG. 13). As represented in FIG. 13, the present Lipo-hGH showed the largest distribution at a particle size of 0.193 m, indicating that the Lipo-hGH of formulation B is present in the nanometer size.
Example IX: Analysis of wrinkle-improving effect 4-week-old nude mice (purchased from Korea Research Institute of Chemical Technology) were tested using the Lipo-hGH (N-hGH). An animal breeding chamber was kept at a temperature of 22 2 Cand a humidity of 55-60% in a 12-hr light/12-hr dark cycle, and the animals were permitted free access to solid feed (Central Lab.
Animal Inc., Seoul, Korea) and water sterilized by irradiation and were acclimated for about 2 weeks. In order to induce wrinkles on the backside of these nude mice, mJ of UVB was irradiated to the mice three times a week for 8 weeks. Then, to the UVB-irradiated back, each of a sample solution and a control solution were applied using a cosmetic brush for 8 weeks. Then, a wrinkle-improving effect was evaluated according to the Donald method (Hyun-Seok Kim et. al, Mech. Ageing Dev. (2005.
8.16 In press)).
The test results are shown in FIGS. 8 and 14. In FIG. 8, the control group (n=3) was not treated with anything, the UVB-control group (n=3) was treated with 20 mJ of UVB to induce only wrinkles, the liposome (n=3) was treated with 20 mJ of UVB to induce wrinkle and was treated with liposome, and the Lipo-hGH group (n=3) was treated with 20 ml of UVB to induce wrinkles and treated with the present Lipo-hGH. As shown in FIGS. 8 and 14, the present Lipo-hGH had the effect of effectively removing the UV-induced wrinkles, which was clearly shown starting from 2 weeks after the topical application of the present Lipo-hGH.
Example X: Analysis of acne treatment effect The acne treatment effect of the present human growth hormone-containing liposome was examined in the following manner.
Sixty 15-40-year-old women were randomly divided into three groups, and then allowed to use each of the hGH-containing liposome formulation B of Example I
(formulation 1), a comparative solution containing only liposome (formulation 2) and a comparative buffer solution (formulation 3) first after face washing two times (morning and evening) a day for 3 weeks. In addition, there was no particular limitation on usually used cosmetics. Then, the improvement of acne was evaluated based on the user's opinion according to the following criteria. The rest results are shown in Table 1 below. Evaluation criteria: +++ (had a very good improvement effect); ++ (had a significant improvement effect); + (had a slight improvement effect); (had no improvement effect, but not became worse); and - (became worse).
After the reaction, the viability of the cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT: Sigma, USA) (Shearman et al., Proc. Natl.
Acad. Sci. 91(4):1470-4(1994), Shearman et al., J. Neurochem. 65(1):218-27(1995) and Kaneko et al., J. Neurochem. 65(6):2585-93(1995)). The MTT reaction products were measured for absorbance at 570 nm using an ELISA reader (Molecular Devices, USA). The cell viability by each of the samples was expressed as a value relative to the absorbance of a well not containing the samples, taken as 100 % (FIG. 7).
As can be seen in FIG. 7, the present hGH-containing nanoliposome had no effect the cell viability of HaCaT and HEF, indicating that it is a formulation very safe to a living body.
Example VII: Analysis for proliferation of nanoliposome formulation Lipo-hGH in Nb2 cells To the well of a 96-well plate containing 50 l of the Nb2 noble rat lymphoma cell line (NIBSC ECACC #97041101 ) at a concentration of 1 x 105 cells/ml, S-hGH
(standard human growth hormone, NIBSC code 98/574), a sample comprising a 1000-fold dilution of a pretreated solution (obtained by disrupting a liposome solution containing no human growth hormone with a sonicator and adding a solution (containing 50 mM Tris-CI pH 8.0, 1 mM EDTA, 8 M urea, 2% Tween 20) thereto in the same volume as the sample and then pipetting the mixture) added S-hGH, or a sample comprising a 1000-fold dilution of the Lipo-hGH (N-hGH; formulation B
prepared in Example I) subjected to a sample pretreatment process (comprising disrupting a liposome solution containing no human growth hormone with a sonicator and adding a solution (containing 50 mM Tris-Cl pH 8.0, 1 mM EDTA, 8 M urea, 2%
Tween 20) thereto in the same volume as the sample and then pipetting the mixture), was added. Each of the samples was cultured in a 5% CO2 incubator at 37 Cfor 5 days, and the amount of the proliferated cells was measured using MTT. The mean absorbance of the group containing hGH was calculated as a value relative to the mean absorbance of the control group containing no hGH, taken as 100%.
As shown in FIG. 9, the human growth hormone encapsulated in the present Lipo-hGH maintained its original activity.
Example VIII: Analysis of particle size distribution The Lipo-hGH of formulation B separated by gel permeation chromatography in the above Example was analyzed for particle size distribution at a refractive index of 1.52 using a particle size analyzer (Mastersizer 2000/ Malvern Instruments Ltd.) (see FIG. 13). As represented in FIG. 13, the present Lipo-hGH showed the largest distribution at a particle size of 0.193 m, indicating that the Lipo-hGH of formulation B is present in the nanometer size.
Example IX: Analysis of wrinkle-improving effect 4-week-old nude mice (purchased from Korea Research Institute of Chemical Technology) were tested using the Lipo-hGH (N-hGH). An animal breeding chamber was kept at a temperature of 22 2 Cand a humidity of 55-60% in a 12-hr light/12-hr dark cycle, and the animals were permitted free access to solid feed (Central Lab.
Animal Inc., Seoul, Korea) and water sterilized by irradiation and were acclimated for about 2 weeks. In order to induce wrinkles on the backside of these nude mice, mJ of UVB was irradiated to the mice three times a week for 8 weeks. Then, to the UVB-irradiated back, each of a sample solution and a control solution were applied using a cosmetic brush for 8 weeks. Then, a wrinkle-improving effect was evaluated according to the Donald method (Hyun-Seok Kim et. al, Mech. Ageing Dev. (2005.
8.16 In press)).
The test results are shown in FIGS. 8 and 14. In FIG. 8, the control group (n=3) was not treated with anything, the UVB-control group (n=3) was treated with 20 mJ of UVB to induce only wrinkles, the liposome (n=3) was treated with 20 mJ of UVB to induce wrinkle and was treated with liposome, and the Lipo-hGH group (n=3) was treated with 20 ml of UVB to induce wrinkles and treated with the present Lipo-hGH. As shown in FIGS. 8 and 14, the present Lipo-hGH had the effect of effectively removing the UV-induced wrinkles, which was clearly shown starting from 2 weeks after the topical application of the present Lipo-hGH.
Example X: Analysis of acne treatment effect The acne treatment effect of the present human growth hormone-containing liposome was examined in the following manner.
Sixty 15-40-year-old women were randomly divided into three groups, and then allowed to use each of the hGH-containing liposome formulation B of Example I
(formulation 1), a comparative solution containing only liposome (formulation 2) and a comparative buffer solution (formulation 3) first after face washing two times (morning and evening) a day for 3 weeks. In addition, there was no particular limitation on usually used cosmetics. Then, the improvement of acne was evaluated based on the user's opinion according to the following criteria. The rest results are shown in Table 1 below. Evaluation criteria: +++ (had a very good improvement effect); ++ (had a significant improvement effect); + (had a slight improvement effect); (had no improvement effect, but not became worse); and - (became worse).
Period Formulation 1 Formulation 2 Formulation 3 151 week + t t 2nd week ++ + f 3rd week +++ + f As can be seen in Table 1, the present formulation had a very good effect on the improvement of acne, which started to be clearly shown 2 weeks after the application of the formulation. Furthermore, the present composition did not substantially cause irritation to the skin, for example, erythema or itching.
Example XI: Analysis of dark spot removal effect The dark spot removal effect of the present human growth hormone-containing liposome was tested in the following manner.
Sixty 40-60-year-old women were randomly divided into three groups, and then allowed to use each of the hGH-containing liposome formulation B of Example I
(formulation 1), a comparative solution containing only liposome (formulation 2) and a comparative buffer solution (formulation 3) first after face washing two times (morning and evening) a day for 8 weeks. In addition, there was no particular limitation on usually used cosmetics. The improvement of dark spots was evaluated based on the user's opinion according to the following criteria. The test results are shown in Table 2 below. Evaluation criteria: +++ (had a very good improvement effect); ++ (had a significant improvement effect); + (had a slight improvement effect); (had no improvement effect, but not became worse); and - (became worse).
Period Formulation 1 Formulation 2 Formulation 3 lst week t t f 2nd week t f f 3`d week + t t 4`h week + t t 5th week ++ + t 6th week ++ + t 7th week ++ + t 8th week ++ + t As indicated in Table 2, the present formulation had a significantly excellent effect on the improvement of dark spots, which started to be clearly shown from about 3-5 weeks after the application of the formulation. Furthermore, the present composition did not substantially cause irritation to the skin, for example, erythema or 5 itching.
Example XII: Analysis of localization of nanoliposome formulation Lipo-hGH
and effect thereof on skin The abdominal region of a Sprague Dawley rat was divided into six zones 10 (circles each having a radius of 1 cm) and treated with the following samples: 0.1%
methyl-paraben buffer solution, 0.1% liposome, 0.001 U hGH, 0.0001 U hGH, 0.001 U
Lipo-hGH, and 0.0001 U Lipo-hGH.
The animal was treated with each of the samples in an amount of 50 l two times at 24-hour intervals seven times in total. At 24 hours after treatment with the 15 last sample, tissue was extracted from the rat. The extracted tissue was sectioned to a thickness of 40 m and treated with a polyclonal rabbit anti-human growth hormone primary antibody (DAKO, U.S.A.) and then with a biotin-conjugated anti-rabbit secondary antibody (VECTOR. VECTASTAIN ABC kit (RABBIT IgG), U.S.A.) at room temperature for 30 minutes. Next, the sectioned tissue was treated with a 20 VECTASTAIN ABC reagent (VECTOR, U.S.A.) at room temperature for 30 minutes and subjected to a color development reaction with a DAB substrate (Diaminobenzidine, Sigma, USA). The sectioned tissue was dehydrated with 78% ethanol, 85% ethanol and 95% ethanol in order and then treated with xylene for 5 minutes. The tissue was fixed on a slide glass, and then the location of human growth hormone contained in 25 Lipo-hGH was observed.
Example XI: Analysis of dark spot removal effect The dark spot removal effect of the present human growth hormone-containing liposome was tested in the following manner.
Sixty 40-60-year-old women were randomly divided into three groups, and then allowed to use each of the hGH-containing liposome formulation B of Example I
(formulation 1), a comparative solution containing only liposome (formulation 2) and a comparative buffer solution (formulation 3) first after face washing two times (morning and evening) a day for 8 weeks. In addition, there was no particular limitation on usually used cosmetics. The improvement of dark spots was evaluated based on the user's opinion according to the following criteria. The test results are shown in Table 2 below. Evaluation criteria: +++ (had a very good improvement effect); ++ (had a significant improvement effect); + (had a slight improvement effect); (had no improvement effect, but not became worse); and - (became worse).
Period Formulation 1 Formulation 2 Formulation 3 lst week t t f 2nd week t f f 3`d week + t t 4`h week + t t 5th week ++ + t 6th week ++ + t 7th week ++ + t 8th week ++ + t As indicated in Table 2, the present formulation had a significantly excellent effect on the improvement of dark spots, which started to be clearly shown from about 3-5 weeks after the application of the formulation. Furthermore, the present composition did not substantially cause irritation to the skin, for example, erythema or 5 itching.
Example XII: Analysis of localization of nanoliposome formulation Lipo-hGH
and effect thereof on skin The abdominal region of a Sprague Dawley rat was divided into six zones 10 (circles each having a radius of 1 cm) and treated with the following samples: 0.1%
methyl-paraben buffer solution, 0.1% liposome, 0.001 U hGH, 0.0001 U hGH, 0.001 U
Lipo-hGH, and 0.0001 U Lipo-hGH.
The animal was treated with each of the samples in an amount of 50 l two times at 24-hour intervals seven times in total. At 24 hours after treatment with the 15 last sample, tissue was extracted from the rat. The extracted tissue was sectioned to a thickness of 40 m and treated with a polyclonal rabbit anti-human growth hormone primary antibody (DAKO, U.S.A.) and then with a biotin-conjugated anti-rabbit secondary antibody (VECTOR. VECTASTAIN ABC kit (RABBIT IgG), U.S.A.) at room temperature for 30 minutes. Next, the sectioned tissue was treated with a 20 VECTASTAIN ABC reagent (VECTOR, U.S.A.) at room temperature for 30 minutes and subjected to a color development reaction with a DAB substrate (Diaminobenzidine, Sigma, USA). The sectioned tissue was dehydrated with 78% ethanol, 85% ethanol and 95% ethanol in order and then treated with xylene for 5 minutes. The tissue was fixed on a slide glass, and then the location of human growth hormone contained in 25 Lipo-hGH was observed.
As shown in FIG. 10a, the human growth hormone encapsulated in the present Lipo-hGH or the rat growth hormone originally contained in the rat was found at locations considered as the bulge stem cells of hair follicles.
Also, as shown in FIG. 10b, the dermal layer of the rat skin applied with the present Lipo-hGH (containing 0.0001 U hGH) widened, and the number of hair follicles on the dermal layer increased. Furthermore, it can be found in FIG.
12 that, even the hGH aqueous solution was applied to the skin, the hGH reached the location of bulge stem cells in hair follicles, and this finding was very surprising considering the technical level and common sense in the art. This result a possibility of achieving the improvement of skin conditions, even when not only hGH encapsulated in liposome, but also an hGH aqueous solution itself, are applied to the skin.
Example XIII: Analysis of effect of nanoliposome formulation Lipo-hGH on mouse skin The effect of the present nanoliposome formulation Lipo-hGH (prepared in Example I) on the skin of ICR mice was analyzed by H&E (Hematoxylin & Eosin) staining. For this purpose, after removing the hairs of the back of ICR mice, the back regions divided with respect to the vertebra were treated with a control group and the present Lipo-hGH at 4-hr intervals for 2 weeks: group 1 (n=3); untreated group (n=3); a group (n=3) treated with liposome/0.1 U of the present Lipo-hGH;
group 3 (n=3) treated with liposome/0.01 U of the present Lipo-hGH; group 4 (n=3) treated with liposome/0.001 U of the present Lipo-hGH. After 2 weeks of the treatment, tissues were extracted from the mice. The extracted tissues were made into paraffin blocks and sectioned to a thickness of 4 m, and the sectioned tissues were placed on a slide glass. Then, the sections were deparaffined and treated with a hematoxylene solution at room temperature for 10 minutes and then with an eosin solution at room temperature for 1 minute. Next, the sections were dehydrated with 78% ethanol, 85% ethanol, 95% ethanol and 100% ethanol in order and then treated with xylene for 5 minutes. The tissues were immobilized, and then the stained tissues were observed under a microscope.
As represented in FIG. 11a, the proliferation of cells in the epidermal layer of the skin treated with the present nanoliposome formulation Lipo-hGH was greatly increased, and the remodeling of connective tissues in the dermal layer occurred to form more compact connective tissues. FIG. 11b is a photograph taken at 400x magnification and clearly shows that the remodeling of connective tissues in the dermal layer occurred.
Example XIV: Analysis of effect of nanoliposome formulation Lipo-hGH on artificial skin Neoderm-EDTM (Tego Science, South Korea) was used to analyze the effect of the present nanoliposome formulation Lipo-hGH on artificial skin. Neoderm-ED TM is a human skin model for in vitro tests and consists of an epidermal and dermal matrix.
Test groups were as follows: group 1 untreated; group 2 treated only with buffer solution; groups 3 and 4 treated with liposome; and groups 5 and 6 treated with 0.001 unit and 0.01 unit, respectively, of the present Lipo-hGH. Paraffin embedding and H&E staining were performed in the same manner as in the above Example.
Finally, the stained tissues were observed under a microscope.
As shown in FIG. 12, the proliferation of cells in the keratinocyte layer of Neoderm-ED TM treated with the present nanoliposome formulation Lipo-hGH was actively made.
Having described specific examples of the present invention, it is to be understood that such examples are only preferred embodiments and should not be construed as limiting the scope of the invention. Therefore, the substantive scope of the invention may be determined by appended claims and their equivalents.
Also, as shown in FIG. 10b, the dermal layer of the rat skin applied with the present Lipo-hGH (containing 0.0001 U hGH) widened, and the number of hair follicles on the dermal layer increased. Furthermore, it can be found in FIG.
12 that, even the hGH aqueous solution was applied to the skin, the hGH reached the location of bulge stem cells in hair follicles, and this finding was very surprising considering the technical level and common sense in the art. This result a possibility of achieving the improvement of skin conditions, even when not only hGH encapsulated in liposome, but also an hGH aqueous solution itself, are applied to the skin.
Example XIII: Analysis of effect of nanoliposome formulation Lipo-hGH on mouse skin The effect of the present nanoliposome formulation Lipo-hGH (prepared in Example I) on the skin of ICR mice was analyzed by H&E (Hematoxylin & Eosin) staining. For this purpose, after removing the hairs of the back of ICR mice, the back regions divided with respect to the vertebra were treated with a control group and the present Lipo-hGH at 4-hr intervals for 2 weeks: group 1 (n=3); untreated group (n=3); a group (n=3) treated with liposome/0.1 U of the present Lipo-hGH;
group 3 (n=3) treated with liposome/0.01 U of the present Lipo-hGH; group 4 (n=3) treated with liposome/0.001 U of the present Lipo-hGH. After 2 weeks of the treatment, tissues were extracted from the mice. The extracted tissues were made into paraffin blocks and sectioned to a thickness of 4 m, and the sectioned tissues were placed on a slide glass. Then, the sections were deparaffined and treated with a hematoxylene solution at room temperature for 10 minutes and then with an eosin solution at room temperature for 1 minute. Next, the sections were dehydrated with 78% ethanol, 85% ethanol, 95% ethanol and 100% ethanol in order and then treated with xylene for 5 minutes. The tissues were immobilized, and then the stained tissues were observed under a microscope.
As represented in FIG. 11a, the proliferation of cells in the epidermal layer of the skin treated with the present nanoliposome formulation Lipo-hGH was greatly increased, and the remodeling of connective tissues in the dermal layer occurred to form more compact connective tissues. FIG. 11b is a photograph taken at 400x magnification and clearly shows that the remodeling of connective tissues in the dermal layer occurred.
Example XIV: Analysis of effect of nanoliposome formulation Lipo-hGH on artificial skin Neoderm-EDTM (Tego Science, South Korea) was used to analyze the effect of the present nanoliposome formulation Lipo-hGH on artificial skin. Neoderm-ED TM is a human skin model for in vitro tests and consists of an epidermal and dermal matrix.
Test groups were as follows: group 1 untreated; group 2 treated only with buffer solution; groups 3 and 4 treated with liposome; and groups 5 and 6 treated with 0.001 unit and 0.01 unit, respectively, of the present Lipo-hGH. Paraffin embedding and H&E staining were performed in the same manner as in the above Example.
Finally, the stained tissues were observed under a microscope.
As shown in FIG. 12, the proliferation of cells in the keratinocyte layer of Neoderm-ED TM treated with the present nanoliposome formulation Lipo-hGH was actively made.
Having described specific examples of the present invention, it is to be understood that such examples are only preferred embodiments and should not be construed as limiting the scope of the invention. Therefore, the substantive scope of the invention may be determined by appended claims and their equivalents.
Claims (5)
1. A composition formulated for topical administration to skin for improving skin condition, which comprises (a) human growth hormone and (b) a cosmetically or pharmaceutically acceptable carrier, wherein the skin condition is acne, wrinkles, dark spots, poor skin elasticity, poor hair growth, skin aging or poor skin moisture.
2. The composition according to claim 1, wherein the human growth hormone is encapsulated into a liposome.
3. The composition according to claim 2, wherein the liposome is a nanoliposome.
4. The composition according to claim 3, wherein the nanoliposome has a particle size of 50-250 nm.
5. The composition according to claim 1, wherein the composition is a cosmetic or pharmaceutical composition.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2005/003402 WO2007043721A1 (en) | 2005-10-12 | 2005-10-12 | Compositions for improving skin conditions comprising human growth hormones as an active ingredient |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2625806A1 CA2625806A1 (en) | 2007-04-19 |
CA2625806C true CA2625806C (en) | 2011-08-02 |
Family
ID=37942931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2625806A Expired - Fee Related CA2625806C (en) | 2005-10-12 | 2005-10-12 | Compositions for improving skin conditions comprising human growth hormone as an active ingredient |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5649278B2 (en) |
KR (1) | KR100962566B1 (en) |
BR (1) | BRPI0520672B1 (en) |
CA (1) | CA2625806C (en) |
WO (1) | WO2007043721A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100705981B1 (en) | 2005-10-12 | 2007-04-10 | 주식회사 리제론 | Hair loss prevention or hair growth promoting composition containing human growth hormone |
KR102143557B1 (en) * | 2013-08-09 | 2020-08-12 | 주식회사 리제론 | Composition for improving skin conditions comprising a fragment of human heat shock protein 90a as an active ingredient |
WO2016108634A2 (en) | 2014-12-30 | 2016-07-07 | (주)셀트리온 | Hybrid-type multi-lamellar nanostructure of epidermal growth factor and liposome and method for manufacturing same |
FR3034662B1 (en) * | 2015-04-10 | 2020-08-28 | Isp Investments Inc | NEW USES OF HIS-D-TRP-ALA-TRP-D-PHE-LYS-NH2 SEQUENCE PEPTIDE TO DECREASE OR DELAY THE ONEST OF CELL SENESCENCE AND SIGNS OF SKIN AGING |
CN106905517A (en) * | 2017-04-20 | 2017-06-30 | 福建中锦新材料有限公司 | A kind of polyamide 6 and its manufacture method for spinning |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001233727A (en) * | 2000-02-22 | 2001-08-28 | Musashino Meneki Kenkyusho:Kk | Cosmetic |
JP2002179528A (en) * | 2000-12-14 | 2002-06-26 | Japan Natural Laboratory Co Ltd | Peeling cosmetic and peeling soap |
JP2002234845A (en) * | 2001-02-09 | 2002-08-23 | Naris Cosmetics Co Ltd | Skin care preparation |
JP2004035573A (en) * | 2003-10-27 | 2004-02-05 | Kyowa Industrial Co Ltd | Gommage cosmetic composition |
-
2005
- 2005-10-12 BR BRPI0520672-3A patent/BRPI0520672B1/en active IP Right Grant
- 2005-10-12 KR KR1020097007068A patent/KR100962566B1/en active IP Right Grant
- 2005-10-12 CA CA2625806A patent/CA2625806C/en not_active Expired - Fee Related
- 2005-10-12 JP JP2008535427A patent/JP5649278B2/en active Active
- 2005-10-12 WO PCT/KR2005/003402 patent/WO2007043721A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CA2625806A1 (en) | 2007-04-19 |
JP2009511574A (en) | 2009-03-19 |
BRPI0520672B1 (en) | 2020-11-10 |
JP5649278B2 (en) | 2015-01-07 |
KR20090042871A (en) | 2009-04-30 |
KR100962566B1 (en) | 2010-06-11 |
BRPI0520672A2 (en) | 2009-05-19 |
WO2007043721A1 (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8846611B2 (en) | Skin conditions using human growth hormone | |
KR100902570B1 (en) | Methods for preparing nanoliposome encapsulating proteins and protein-encapsulated nanoliposome | |
EP1638991B1 (en) | Cosmetic or dermopharmaceutical composition for reducing the signs of cutaneous ageing | |
CA2624362C (en) | Liposomes comprising collagen and their use in improved skin care | |
US20070224150A1 (en) | Growth factor for hair and skin treatment | |
CN109568169B (en) | An active polypeptide with hair growth effect | |
CN103080204A (en) | Topically administered, skin-penetrating glycosaminoglycan formulations suitable for use in cosmetic and pharmaceutical applications | |
KR20060057664A (en) | Hair protection composition containing nanoliposomes stabilized by inclusion of ceramide as an active ingredient | |
CA2625806C (en) | Compositions for improving skin conditions comprising human growth hormone as an active ingredient | |
KR100858628B1 (en) | Cosmetic composition for skin stimulation alleviation comprising soruja extract stabilized with nano liposomes | |
KR101446706B1 (en) | Composition for skin rejuvenation comprising FGF | |
JP5913479B2 (en) | Composition for promoting hair growth comprising human growth hormone as an active ingredient | |
KR100912462B1 (en) | Compositions for improving skin conditions comprising human growth hormone as an active ingredient | |
KR20190062173A (en) | Cosmetic composition for anti-wrinkle and anti-aging comprising protease-activated recepter2(par2) agonist | |
RU2401099C2 (en) | Skin treatment composition containing human growth hormones as active ingredient | |
KR100858626B1 (en) | Cosmetic composition for lip protection containing ceramide and synthetic palmitoylpentapeptide as active ingredients | |
RU2183954C1 (en) | Cosmetic agent for complex skin care and method of its application | |
US20120189687A1 (en) | Compositions and Methods for Topical Application of Growth Factors and Cytokines | |
KR101317872B1 (en) | Compositions for Improving Skin Conditions Comprising Human Placental Lactogen as an Active Ingredient | |
WO2020121017A1 (en) | Cream synthesis from platelet mediators with herbal penetration enhancers to increase the skin's collagen | |
KR20140060842A (en) | Composition for prevention, treatment or improvement of hair loss | |
JP5051471B2 (en) | Resting phase alopecia treatment | |
RU2469699C2 (en) | Cosmetic composition containing acetylhexapeptide-6 and liposomes for local application | |
CN116262098A (en) | A skin anti-aging repair composition and multilayer lipid nanoparticles containing it | |
KR20090115478A (en) | Cosmetic composition containing nanosomes stabilized by inclusion of stem cell culture products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20201013 |