CA2567634C - Vehicle interface - Google Patents
Vehicle interface Download PDFInfo
- Publication number
- CA2567634C CA2567634C CA2567634A CA2567634A CA2567634C CA 2567634 C CA2567634 C CA 2567634C CA 2567634 A CA2567634 A CA 2567634A CA 2567634 A CA2567634 A CA 2567634A CA 2567634 C CA2567634 C CA 2567634C
- Authority
- CA
- Canada
- Prior art keywords
- power supply
- power
- remote devices
- vehicle
- communication system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 claims abstract description 75
- 230000001939 inductive effect Effects 0.000 claims abstract description 61
- 230000004044 response Effects 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 abstract description 14
- 238000004804 winding Methods 0.000 description 17
- 239000003990 capacitor Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F5/00—Coils
- H01F5/02—Coils wound on non-magnetic supports, e.g. formers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/02—Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00036—Charger exchanging data with battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/24—Circuit arrangements in which the lamp is fed by high frequency AC, or with separate oscillator frequency
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/20—Responsive to malfunctions or to light source life; for protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R2011/0042—Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
- B60R2011/0049—Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means for non integrated articles
- B60R2011/0064—Connection with the article
- B60R2011/0075—Connection with the article using a containment or docking space
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/30—Charge provided using DC bus or data bus of a computer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
- H02J7/0044—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Near-Field Transmission Systems (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Selective Calling Equipment (AREA)
Abstract
A vehicle power interface includes an adaptive inductive power supply. The adaptive inductive power supply has a primary within a remote device holder. The adaptive inductive power supply is capable of providing power to remote devices placed within the remote device holder. Communication interface may be provided which can enable communication between the remote device and any data bus within the vehicle.
Description
VEHICLE INTERFACE
BACKGROUND OF THE INVENTION
This invention relates to inductive charging and communication systems and more specifically to inductive changing and communication systems within a vehicle.
People may carry a variety of personal portable electronic equipment such as PDAs (Personal Data Assistants), portable entertainment devices, such as portable music players or portable DVD players, laptop computers, and cellular telephones. The portable electronic devices provide various functionality such as communication, information storage and retrieval, and entertainment. Since the devices are portable, they are often carried and used in vehicles. The devices are usually battery powered and thus tend to run out of power at inconvenient times.
Power adapters for use in a vehicle are available for such devices.
However, each device often has a unique power adapter and chord, requiring that a power adapter for each device either be carried. The power adapter and the attendant chords for attachment to the portable devices are unsightly and clutter the vehicle.
Since the power adapter is commonly plugged into the 12 volt DC (direct current) power by way of a cigarette lighter, it is also difficult to charge more than one device at a time. Chords and adapters are thereby impractical when several portable devices are used within the vehicle.
Recently, there have been proposal to interface the portable devices to the data network within the vehicle. The SAE (Society of Automotive Engineers) has generally recognized the need for such an interface with an ITS (Intelligent Transportation System) standard. Further, Texas Instruments has proposed an ADB-1394 telematics standard based on the 1934 "firewire" communication standard which would allow portable devices to interface with the electrical systems within the vehicle.
There are problems, however. First, due to the numerous types of portable devices, there are many different types of data interfaces required for each portable device. For example, some devices may have a 1394 interface while others have a USB (Universal Serial Bus) interface. Thus, for a vehicle to interface with a plethora of devices, it may be required to supply a plug for each possible device.
Second, due to the number of devices, the number of plugs for each device could be prohibitive as well as the volume of cables required to attach each portable device to the vehicle.
The SAE ITS group has suggested that a wireless network such as the IEEE (Institute of Electrical and Electronic Engineers) 802.1 lb be provided for each vehicle. The problem with such a wireless network is that the power consumed by the wireless portable device would increase, thereby further increasing the likelihood that the battery powering the portable device would be discharged.
Thus a system which would provide a data interface for the portable device as well as providing power to the devices is highly desirable.
SUMMARY OF THE INVENTION
The invention, in a broad aspect, seeks to provide a system for supplying power from a primary coil side to a plurality of remote devices. The system comprises an inductive power supply having a primary coil for supplying power to at least one of the plurality of remote devices, the inductive power supply having a communication system for communicating with the at least one of the plurality of remote devices. A data network includes a controller and the inductive power supply, and the controller is located on the primary coil side and is configured to obtain power usage information for the at least one of the plurality of remote devices, determine whether power can be supplied to the at least one of the plurality of remote devices as a function of the obtained power usage information, and adjust power consumption characteristics of the system in response to a determination that power cannot be supplied to the at least one of the plurality of remote devices.
In a further aspect, the invention provides a vehicle interface for providing power from a primary coil side to at least one of a plurality of remote
BACKGROUND OF THE INVENTION
This invention relates to inductive charging and communication systems and more specifically to inductive changing and communication systems within a vehicle.
People may carry a variety of personal portable electronic equipment such as PDAs (Personal Data Assistants), portable entertainment devices, such as portable music players or portable DVD players, laptop computers, and cellular telephones. The portable electronic devices provide various functionality such as communication, information storage and retrieval, and entertainment. Since the devices are portable, they are often carried and used in vehicles. The devices are usually battery powered and thus tend to run out of power at inconvenient times.
Power adapters for use in a vehicle are available for such devices.
However, each device often has a unique power adapter and chord, requiring that a power adapter for each device either be carried. The power adapter and the attendant chords for attachment to the portable devices are unsightly and clutter the vehicle.
Since the power adapter is commonly plugged into the 12 volt DC (direct current) power by way of a cigarette lighter, it is also difficult to charge more than one device at a time. Chords and adapters are thereby impractical when several portable devices are used within the vehicle.
Recently, there have been proposal to interface the portable devices to the data network within the vehicle. The SAE (Society of Automotive Engineers) has generally recognized the need for such an interface with an ITS (Intelligent Transportation System) standard. Further, Texas Instruments has proposed an ADB-1394 telematics standard based on the 1934 "firewire" communication standard which would allow portable devices to interface with the electrical systems within the vehicle.
There are problems, however. First, due to the numerous types of portable devices, there are many different types of data interfaces required for each portable device. For example, some devices may have a 1394 interface while others have a USB (Universal Serial Bus) interface. Thus, for a vehicle to interface with a plethora of devices, it may be required to supply a plug for each possible device.
Second, due to the number of devices, the number of plugs for each device could be prohibitive as well as the volume of cables required to attach each portable device to the vehicle.
The SAE ITS group has suggested that a wireless network such as the IEEE (Institute of Electrical and Electronic Engineers) 802.1 lb be provided for each vehicle. The problem with such a wireless network is that the power consumed by the wireless portable device would increase, thereby further increasing the likelihood that the battery powering the portable device would be discharged.
Thus a system which would provide a data interface for the portable device as well as providing power to the devices is highly desirable.
SUMMARY OF THE INVENTION
The invention, in a broad aspect, seeks to provide a system for supplying power from a primary coil side to a plurality of remote devices. The system comprises an inductive power supply having a primary coil for supplying power to at least one of the plurality of remote devices, the inductive power supply having a communication system for communicating with the at least one of the plurality of remote devices. A data network includes a controller and the inductive power supply, and the controller is located on the primary coil side and is configured to obtain power usage information for the at least one of the plurality of remote devices, determine whether power can be supplied to the at least one of the plurality of remote devices as a function of the obtained power usage information, and adjust power consumption characteristics of the system in response to a determination that power cannot be supplied to the at least one of the plurality of remote devices.
In a further aspect, the invention provides a vehicle interface for providing power from a primary coil side to at least one of a plurality of remote
2 devices and communicating with the at least one of the plurality of remote devices.
The vehicle interface comprises a holder for containing the at least one of the plurality of remote devices, and an inductive power supply, the inductive power supply having a primary coil, the primary coil placed proximal to the holder. A
communication system is located on the primary coil side for enabling communication with the at least one of the plurality of remote devices. The communication system receives power usage information from the at least one of the plurality of remote devices, and a controller located on the primary coil side is configured to use the power usage information to determine the power requirements of the at least one of the plurality of remote devices, and reconfigure the vehicle interface to power the at least one of the plurality of remote devices as a function of the determined power requirements.
In a still further aspect, the invention comprehends a power supply and communication system for a vehicle for providing power from a primary coil side to at least one of a plurality of remote devices. The power supply and communication system comprises an inductive power supply located on the primary coil side for inductively supplying power to the at least one of the plurality of remote devices, and a communication system located on the primary coil side enabling communications between the at least one of the plurality of remote devices and the vehicle.
The communication system is configured to periodically receive power usage information from the at least one of the plurality of remote devices, determine whether the power usage information has changed, and reconfigure the inductive power supply in response to a determination that the power usage information has changed.
Other aspects and features- will become more evident from the detailed description of the invention which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of data networks in a vehicle.
FIG. 2 shows an inductive vehicle adapter within the console of a vehicle.
FIG. 3 shows a side view of the inductive vehicle adapter.
The vehicle interface comprises a holder for containing the at least one of the plurality of remote devices, and an inductive power supply, the inductive power supply having a primary coil, the primary coil placed proximal to the holder. A
communication system is located on the primary coil side for enabling communication with the at least one of the plurality of remote devices. The communication system receives power usage information from the at least one of the plurality of remote devices, and a controller located on the primary coil side is configured to use the power usage information to determine the power requirements of the at least one of the plurality of remote devices, and reconfigure the vehicle interface to power the at least one of the plurality of remote devices as a function of the determined power requirements.
In a still further aspect, the invention comprehends a power supply and communication system for a vehicle for providing power from a primary coil side to at least one of a plurality of remote devices. The power supply and communication system comprises an inductive power supply located on the primary coil side for inductively supplying power to the at least one of the plurality of remote devices, and a communication system located on the primary coil side enabling communications between the at least one of the plurality of remote devices and the vehicle.
The communication system is configured to periodically receive power usage information from the at least one of the plurality of remote devices, determine whether the power usage information has changed, and reconfigure the inductive power supply in response to a determination that the power usage information has changed.
Other aspects and features- will become more evident from the detailed description of the invention which follows.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of data networks in a vehicle.
FIG. 2 shows an inductive vehicle adapter within the console of a vehicle.
FIG. 3 shows a side view of the inductive vehicle adapter.
3 FIG. 4 shows the inductive vehicle adapter fitted within a windshield visor.
FIG. 5 shows an overhead view of the inductive vehicle adapter.
FIG. 6 shows a general block diagram of the inductive vehicle adapter.
FIG. 7 shows a more detailed block diagram of the inductive vehicle adapter.
FIG. 8 shows a block diagram of a remote device capable of interfacing with the inductive vehicle adapter.
FIG. 9 shows a flow chart of the operation of the inductive vehicle adapter.
FIG. 10 shows a device list.
DETAILED DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the two parallel data networks within a vehicle. The first network is vehicle data bus 10. Vehicle data bus 10 could be a CAN (Controller Automobile Network) or an OEM (Original Equipment Manufacturers) vehicle bus.
Vehicle data bus is generally a low speed data bus for enabling communication between the various controllers within a vehicle. The second network is ADB
(automobile data bus) 12. ADB 12 allows communication between the one or more portable data devices and the vehicle. For example, ADB 12 could be connected with PDA 14, cellular phone 16 or portable entertainment device 18. Gateway controller 20 manages any communication between vehicle data bus 10 and ADB 12. This data can be specifically for the bus and/or contain the encoded signals of voice and audio information.
FIG. 2 shows an inductive vehicle adapter 20 mounted within console 22 of a vehicle. Cellular telephone 24 and PDA 26 may be placed within the inductive vehicle adapter 20 in order to recharge and to be interfaced with ADB 12.
FIG. 3 shows a side view of inductive vehicle adapter 20. Inductive vehicle interface 20 has holder 28, which could be a bowl. Items placed within holder 28 tend to remain within the bowl due to their weight. Holder 28 has perimeter 30.
Within perimeter 30 is a primary. The primary contained within perimeter 30 is
FIG. 5 shows an overhead view of the inductive vehicle adapter.
FIG. 6 shows a general block diagram of the inductive vehicle adapter.
FIG. 7 shows a more detailed block diagram of the inductive vehicle adapter.
FIG. 8 shows a block diagram of a remote device capable of interfacing with the inductive vehicle adapter.
FIG. 9 shows a flow chart of the operation of the inductive vehicle adapter.
FIG. 10 shows a device list.
DETAILED DESCRIPTION OF THE DRAWINGS
FIG. 1 shows the two parallel data networks within a vehicle. The first network is vehicle data bus 10. Vehicle data bus 10 could be a CAN (Controller Automobile Network) or an OEM (Original Equipment Manufacturers) vehicle bus.
Vehicle data bus is generally a low speed data bus for enabling communication between the various controllers within a vehicle. The second network is ADB
(automobile data bus) 12. ADB 12 allows communication between the one or more portable data devices and the vehicle. For example, ADB 12 could be connected with PDA 14, cellular phone 16 or portable entertainment device 18. Gateway controller 20 manages any communication between vehicle data bus 10 and ADB 12. This data can be specifically for the bus and/or contain the encoded signals of voice and audio information.
FIG. 2 shows an inductive vehicle adapter 20 mounted within console 22 of a vehicle. Cellular telephone 24 and PDA 26 may be placed within the inductive vehicle adapter 20 in order to recharge and to be interfaced with ADB 12.
FIG. 3 shows a side view of inductive vehicle adapter 20. Inductive vehicle interface 20 has holder 28, which could be a bowl. Items placed within holder 28 tend to remain within the bowl due to their weight. Holder 28 has perimeter 30.
Within perimeter 30 is a primary. The primary contained within perimeter 30 is
4 coupled to inductive system 32, which is, in turn coupled to DC power source 34.
Inductive system 32 is also coupled to ADB 12. Thus, electronic devices placed within holder 28 can be changed by adaptive inductive power supply 39. A
communication link could be provided by circuitry working in concert with adaptive inductive power supply 39.
FIG. 4 is an overhead view of inductive vehicle interface 20. A remote device, which could be any portable electronic device, is placed within holder 28.
When placed within holder 28, the remote devices could be both charged by vehicle interface 20 and they could also be in communication with ADB 36.
FIG. 5 shows a vehicle visor 35 which is a holder of the remote devices. Primary 38 is contained within visor 35. The remote devices could be placed within bag 37. The remote devices placed within mesh bag 37 could be charged by the inductive vehicle interface and be in communication with ADB
36.
Any mechanism could be used to hold the remote devices within proximity of primary 38, such as Velcro or clips.
The location of primary 38 could be in any convenient location. For example, primary 38 could be included within a bowl located in the trunk of a vehicle, an overhead console, a seat back, a glove compartment or a side door stowage area.
FIG. 6 shows a basic block diagram of inductive vehicle adapter 20.
Remote device 40 has been placed within holder 28 and thus is inductively coupled by way of the primary within the lip of holder 28 to adaptive inductive power supply 39.
Remote device 40 could thus be charged by adaptive inductive power supply 39.
At the same time, remote device 40 is coupled to transceiver 68. Transceiver 68 communicates directly with remote device 40.
Communication interface 70 manages communications between remote device 40 and ADB 36. For example, communication interface 70 may assign an IP
(Internet Protocol) address to remote device 40 or may assign some other address to remote device 40 as required by the protocol of ADB 36. Communication interface 70 could control, establish or monitor the rate of communication between ADB 36 and remote device 40 as well as the various protocols and communication layers.
4a Controller 60 is optional. If present, it could manage the communication between remote device 40 and ADB 36. Alternatively, controller could manage the supply of power to remote device 40 by adaptive inductive power supply 39. Power regulator 50 regulates the power received from DC power source 34. DC power source 34 is supplied by the electrical power system of the vehicle.
Adaptive inductive power supply 39 could be either digital or analog.
One type of adaptive inductive power supply is described in U.S. Patent No.
6,436,299, which may be referred to for further details. Alternatively, the adaptive inductive power supply 39 could be of the type described hereinafter.
FIG. 7 shows a block diagram for inductive vehicle interface 20.
Inductive vehicle interface 20 is shown coupled to three remote devices 40, 42, 44.
Power regulator 50 is coupled to external DC (direct current) power source 48. DC power source 48 provides power to inductive vehicle interface 20. DC
power source 48 is supplied by the vehicle, and would usually be around 12 VDC.
Power regulator 50 controls the voltage and current provided by DC
power source 48 to inverter 52. Inverter 52 converts the DC power to AC
(alternating current) power. Inverter 52 acts as an AC power source supplying the AC power to bank circuit 54. Tank circuit 54 is a resonant circuit. Tank circuit 54 is inductively coupled by way of primary winding 56 to the secondary windings within remote devices 40, 42, 44 Primary winding 56 and the secondary windings of remote devices 40, 42, 44 are coreless windings. Dashed line 322 indicates an air gap between remote device 40, 42, 44 and primary winding 56. Primary winding 56 is contained within perimeter 30.
Circuit sensor 58 is coupled to the output of tank circuit 54. Circuit sensor 58 is also coupled to controller 60. Circuit sensor 58 provides information regarding the operation parameters of inverter 52 and tank circuit 54. For example, circuit sensor 58 could be a current sensor, and provide information regarding the phase, frequency and amplitude of the current in tank circuit 54.
Inductive system 32 is also coupled to ADB 12. Thus, electronic devices placed within holder 28 can be changed by adaptive inductive power supply 39. A
communication link could be provided by circuitry working in concert with adaptive inductive power supply 39.
FIG. 4 is an overhead view of inductive vehicle interface 20. A remote device, which could be any portable electronic device, is placed within holder 28.
When placed within holder 28, the remote devices could be both charged by vehicle interface 20 and they could also be in communication with ADB 36.
FIG. 5 shows a vehicle visor 35 which is a holder of the remote devices. Primary 38 is contained within visor 35. The remote devices could be placed within bag 37. The remote devices placed within mesh bag 37 could be charged by the inductive vehicle interface and be in communication with ADB
36.
Any mechanism could be used to hold the remote devices within proximity of primary 38, such as Velcro or clips.
The location of primary 38 could be in any convenient location. For example, primary 38 could be included within a bowl located in the trunk of a vehicle, an overhead console, a seat back, a glove compartment or a side door stowage area.
FIG. 6 shows a basic block diagram of inductive vehicle adapter 20.
Remote device 40 has been placed within holder 28 and thus is inductively coupled by way of the primary within the lip of holder 28 to adaptive inductive power supply 39.
Remote device 40 could thus be charged by adaptive inductive power supply 39.
At the same time, remote device 40 is coupled to transceiver 68. Transceiver 68 communicates directly with remote device 40.
Communication interface 70 manages communications between remote device 40 and ADB 36. For example, communication interface 70 may assign an IP
(Internet Protocol) address to remote device 40 or may assign some other address to remote device 40 as required by the protocol of ADB 36. Communication interface 70 could control, establish or monitor the rate of communication between ADB 36 and remote device 40 as well as the various protocols and communication layers.
4a Controller 60 is optional. If present, it could manage the communication between remote device 40 and ADB 36. Alternatively, controller could manage the supply of power to remote device 40 by adaptive inductive power supply 39. Power regulator 50 regulates the power received from DC power source 34. DC power source 34 is supplied by the electrical power system of the vehicle.
Adaptive inductive power supply 39 could be either digital or analog.
One type of adaptive inductive power supply is described in U.S. Patent No.
6,436,299, which may be referred to for further details. Alternatively, the adaptive inductive power supply 39 could be of the type described hereinafter.
FIG. 7 shows a block diagram for inductive vehicle interface 20.
Inductive vehicle interface 20 is shown coupled to three remote devices 40, 42, 44.
Power regulator 50 is coupled to external DC (direct current) power source 48. DC power source 48 provides power to inductive vehicle interface 20. DC
power source 48 is supplied by the vehicle, and would usually be around 12 VDC.
Power regulator 50 controls the voltage and current provided by DC
power source 48 to inverter 52. Inverter 52 converts the DC power to AC
(alternating current) power. Inverter 52 acts as an AC power source supplying the AC power to bank circuit 54. Tank circuit 54 is a resonant circuit. Tank circuit 54 is inductively coupled by way of primary winding 56 to the secondary windings within remote devices 40, 42, 44 Primary winding 56 and the secondary windings of remote devices 40, 42, 44 are coreless windings. Dashed line 322 indicates an air gap between remote device 40, 42, 44 and primary winding 56. Primary winding 56 is contained within perimeter 30.
Circuit sensor 58 is coupled to the output of tank circuit 54. Circuit sensor 58 is also coupled to controller 60. Circuit sensor 58 provides information regarding the operation parameters of inverter 52 and tank circuit 54. For example, circuit sensor 58 could be a current sensor, and provide information regarding the phase, frequency and amplitude of the current in tank circuit 54.
5 Controller 60 could be any one of a multitude of commonly available microcontrollers programmed to perform the functions hereinafter described, such as the Intel 8051 or the Motorola 6811, or any of the many variants of those microcontrollers. Controller 60 could have a ROM (read only memory) and RAM
(random access memory) on the chip. Controller 60 could have a series of analog and digital outputs for controlling the various functions within the adaptive inductive power supply. The functionality of controller 60 could also be accomplished with a microprocessor and memory chips.
Controller 60 is connected to memory 62. Controller 60 is also coupled to drive circuit 64. Drive circuit 64 regulates the operation of inverter 52.
Drive circuit 64 regulates the frequency and timing of inverter 52. Controller 60 is also coupled to power regulator 50. Controller 60 can manipulate the output voltage of power regulator 60. As is well known, by altering the rail voltage of power regulator 50, the amplitude of the output of inverter 52 is also altered.
Finally, controller 60 is coupled to variable inductor 66 and variable capacitor 68 of tank circuit 54. Controller 60 can modify the inductance of variable inductor 66 or the capacitance of variable capacitor 68. By modifying the inductance of variable inductor 66 and the capacitance of variable capacitor 68, the resonant frequency of tank circuit 54 can be changed.
Tank circuit 54 could have a first resonant frequency and a second resonant frequency. Tank circuit 54 could also have several resonant frequencies. As used herein, the term "resonant frequency" refers to a band of frequencies within which tank circuit 54 will resonate. As is well known, a tank circuit will have a resonant frequency, but will continue to resonate within a range of frequencies near the resonant frequency, but will continue to resonate within a range of frequencies near the resonant frequency. Tank circuit 54 has at least one variable impedance element having a variable impedance. By varying the variable impedance, the resonant frequency of the tank circuit will be varied. The variable impedance element could be variable inductor 66, variable capacitor 68, or both.
(random access memory) on the chip. Controller 60 could have a series of analog and digital outputs for controlling the various functions within the adaptive inductive power supply. The functionality of controller 60 could also be accomplished with a microprocessor and memory chips.
Controller 60 is connected to memory 62. Controller 60 is also coupled to drive circuit 64. Drive circuit 64 regulates the operation of inverter 52.
Drive circuit 64 regulates the frequency and timing of inverter 52. Controller 60 is also coupled to power regulator 50. Controller 60 can manipulate the output voltage of power regulator 60. As is well known, by altering the rail voltage of power regulator 50, the amplitude of the output of inverter 52 is also altered.
Finally, controller 60 is coupled to variable inductor 66 and variable capacitor 68 of tank circuit 54. Controller 60 can modify the inductance of variable inductor 66 or the capacitance of variable capacitor 68. By modifying the inductance of variable inductor 66 and the capacitance of variable capacitor 68, the resonant frequency of tank circuit 54 can be changed.
Tank circuit 54 could have a first resonant frequency and a second resonant frequency. Tank circuit 54 could also have several resonant frequencies. As used herein, the term "resonant frequency" refers to a band of frequencies within which tank circuit 54 will resonate. As is well known, a tank circuit will have a resonant frequency, but will continue to resonate within a range of frequencies near the resonant frequency, but will continue to resonate within a range of frequencies near the resonant frequency. Tank circuit 54 has at least one variable impedance element having a variable impedance. By varying the variable impedance, the resonant frequency of the tank circuit will be varied. The variable impedance element could be variable inductor 66, variable capacitor 68, or both.
6 Variable inductor 66 could be a thyristor controlled variable inductor, a compressible variable inductor, parallel laminated core variable inductor, a series of inductors and switches capable of placing select fixed inductors into tank circuit 54, or any other controllable variable inductor. Variable capacitor 68 could be a switched capacitor array, a series of fixed capacitors and switches capable of placing select fixed capacitors into tank circuit 54, or any other controllable variable capacitor.
Tank circuit 54 includes primary winding 56. Primary winding 56 and variable inductor 66 are shown separate. Alternatively, primary winding 56 and variable inductor 66 could be combined into a single element. Tank circuit 54 is shown as a series resonant tank circuit. A parallel resonant tank circuit could also be used.
Power supply transceiver 68 is also coupled to controller. Power supply transceiver 68 could be simply a receiver for receiving information rather than a device enabling two-way communication. Power supply transceiver 68 communicates with various remote devices 40, 42, 44. Obviously, more or less devices than three could be used with the system.
Inductive vehicle interface 20 also has communication interface 70 for connection 36. Communication interface 70 manages the communications between remote devices 40, 42, 44 and ADB 36. Communication interface 70 may need to perform functions such as translating the communications from one protocol to the next and assigning network addresses to remote devices 40, 42, 44.
Inductive vehicle interface 20 could also have communication controller 72. Communication controller 72 manages data input and output through communication interface 70 and interface transceiver 74. Communication controller performs necessary control functions such as code conversion, protocol conversion, buffering, data compression, error checking, synchronization and route selection as well as collects management information. Communication controller 72 establishes
Tank circuit 54 includes primary winding 56. Primary winding 56 and variable inductor 66 are shown separate. Alternatively, primary winding 56 and variable inductor 66 could be combined into a single element. Tank circuit 54 is shown as a series resonant tank circuit. A parallel resonant tank circuit could also be used.
Power supply transceiver 68 is also coupled to controller. Power supply transceiver 68 could be simply a receiver for receiving information rather than a device enabling two-way communication. Power supply transceiver 68 communicates with various remote devices 40, 42, 44. Obviously, more or less devices than three could be used with the system.
Inductive vehicle interface 20 also has communication interface 70 for connection 36. Communication interface 70 manages the communications between remote devices 40, 42, 44 and ADB 36. Communication interface 70 may need to perform functions such as translating the communications from one protocol to the next and assigning network addresses to remote devices 40, 42, 44.
Inductive vehicle interface 20 could also have communication controller 72. Communication controller 72 manages data input and output through communication interface 70 and interface transceiver 74. Communication controller performs necessary control functions such as code conversion, protocol conversion, buffering, data compression, error checking, synchronization and route selection as well as collects management information. Communication controller 72 establishes
7 communication sessions between remote devices 40, 42, 44 and ADB 36 or any other devices coupled to ADB 36. Communication controller 72 could be a front end communication processor. Depending upon the capabilities of controller 60, communication controller 72 could be a software module running within controller 60.
FIG. 8 shows a block diagram of remote device 100. Remote device 100 is exemplary of remote devices 40, 42, 44. Remote device 100 includes rechargeable battery 102. Rechargeable battery 102 receives power from variable secondary 104. Depending upon the type of rechargeable battery, further circuiting to support recharging rechargeable battery 102 could be included. For example, if a Li-ion (Lithium Ion) LiPoly (lithium-polymer) battery were used, an integrated circuit controlling the charging of the battery such as the Texas Instrument bq240001 or the Texas Instrument UCC3890 could be incorporated into remote device 100. If a NiMh (Nickel Metal Hyrdride) battery were used, a Microchip Technology PS402 battery management integrated circuit could be used.
Variable secondary 104 is coreless, allowing variable secondary 104 to operate over a wider range of frequencies. Variable secondary 104 is shown as a variable inductor, although other types of devices could be used in place of the variable inductor.
Variable secondary 104 could include a multidimensional secondary such as the one shown in U.S. Patent Publication No. 2004/0232845 Al entit-led "Inductive Coil Assembly", published November 25, 20041U.S. Patent No.
7,132,918 B2) and assigned to the assignee of this application.
If variable secondary included such a
FIG. 8 shows a block diagram of remote device 100. Remote device 100 is exemplary of remote devices 40, 42, 44. Remote device 100 includes rechargeable battery 102. Rechargeable battery 102 receives power from variable secondary 104. Depending upon the type of rechargeable battery, further circuiting to support recharging rechargeable battery 102 could be included. For example, if a Li-ion (Lithium Ion) LiPoly (lithium-polymer) battery were used, an integrated circuit controlling the charging of the battery such as the Texas Instrument bq240001 or the Texas Instrument UCC3890 could be incorporated into remote device 100. If a NiMh (Nickel Metal Hyrdride) battery were used, a Microchip Technology PS402 battery management integrated circuit could be used.
Variable secondary 104 is coreless, allowing variable secondary 104 to operate over a wider range of frequencies. Variable secondary 104 is shown as a variable inductor, although other types of devices could be used in place of the variable inductor.
Variable secondary 104 could include a multidimensional secondary such as the one shown in U.S. Patent Publication No. 2004/0232845 Al entit-led "Inductive Coil Assembly", published November 25, 20041U.S. Patent No.
7,132,918 B2) and assigned to the assignee of this application.
If variable secondary included such a
8 multidimensional. winding, remote device 40 would be..able to receive power from primary winding 56 without regard to the physical orientation of remote device 40 relative to primary 'hidingõ 56 a`s 1ong as remote device 40 were proxiynal to.priniaryr winding 56. Thus, a user would be spared the inconvenience of positioning remote device 4.0 in a specific orientation'in order to. charge remote device 40.
Remote ` device. controller 106 controls the inductance. of variable secondary 104.
and the operation of load 108. Remote device controller 106 can alter the inductance of variable secondary 104 or turn on or off load 'I 08. `similar to controller 60, remote device control let 106 couldbe any one of a multitude:of commonly available microcontrollers programmed to perfortin the furictions':heroinafter described, `such as the Intel 8.051 or the Motorola 6811, or, any of:the.many variants of those mrcrocontrollers..
Controller 106 could have a ROM (read only memory) and RAM (random access memory) on the chip.
Controller 106' could. also have. a series of analog'ahd digital outputs for controlling the various functions within the adaptive inductive power supply.
Memory 41 Q. contains, among other things, a device ID (iden(ification) number ,and power irforuiatioh.about remote device 100. Power information "would include the voltage, current and power consumption information for remote device 100.
Memory 110 might include discharge rates and charging rates for battery 1,02.
Remote device 100 also includes remote transceiver 112. Remote transceiver 20. 1.12:receives and transmits information to and from power supply transceiver 68. Remote transceivers 112 and power, supply transceiver 68 could be linked in a myriad of'different ways, such as,WIFI, infrared, blue tooth, radio frequency (Rl~) or cellular.
Additionally, the traiiscoivers could communicate by Way afadditional coils on the primary or secondary, Or, since power in being delivered by power supply 20 to remote devices, 100, any one of many different power line communication systems could be used.
Remote ` device. controller 106 controls the inductance. of variable secondary 104.
and the operation of load 108. Remote device controller 106 can alter the inductance of variable secondary 104 or turn on or off load 'I 08. `similar to controller 60, remote device control let 106 couldbe any one of a multitude:of commonly available microcontrollers programmed to perfortin the furictions':heroinafter described, `such as the Intel 8.051 or the Motorola 6811, or, any of:the.many variants of those mrcrocontrollers..
Controller 106 could have a ROM (read only memory) and RAM (random access memory) on the chip.
Controller 106' could. also have. a series of analog'ahd digital outputs for controlling the various functions within the adaptive inductive power supply.
Memory 41 Q. contains, among other things, a device ID (iden(ification) number ,and power irforuiatioh.about remote device 100. Power information "would include the voltage, current and power consumption information for remote device 100.
Memory 110 might include discharge rates and charging rates for battery 1,02.
Remote device 100 also includes remote transceiver 112. Remote transceiver 20. 1.12:receives and transmits information to and from power supply transceiver 68. Remote transceivers 112 and power, supply transceiver 68 could be linked in a myriad of'different ways, such as,WIFI, infrared, blue tooth, radio frequency (Rl~) or cellular.
Additionally, the traiiscoivers could communicate by Way afadditional coils on the primary or secondary, Or, since power in being delivered by power supply 20 to remote devices, 100, any one of many different power line communication systems could be used.
9 Alternatively, remote transceiver 112 could be simply a wireless transmitter.for sending information to power transceiver68. For example, remote transceiver 112 could be an.
RFID (Radio Frequency.identifcation) tag.
Load 108 represents -the functional component of remote device`338. For e,.ample,, if remote device 100 werea digital cai era, load 108 could be a microprocessor.
within tho digital camera. It remote device 100 were an,MP3 player., load 108 could bea digital signal processor or a microprocessor and related circuitry for converting 1vfP3 files into, sounds, If'remote device 100 were:aPD'A, then load_108 would be;a microprocessor and relatedcrcuitry providing the functionality ofa PDA. Load 16.8 could access'naemory 1.0 Load 108 is also coupled to secondary device transceiver 1:12. Thus, load could, communicate through secondary device transceiver 112 with .inductive vehicl.6 interface 20, and thereby could communicate with any other devices connected to_ ADB 36.
FI .-9 showsfhe operation,ofone embodiment. oft he adaptive contact ess energy transmission system with communications. capability.
After inductive vehicle interface 20 starts (Step 400), it,pollss alt remote devices by way, of transceiver 68: Step 402. Step 402,could be continuous, where advaincement to Step y if a remote device ispresent. Alternatively, the following steps could be 404 occursonl performed before polling is'repeated, although the operations -Would be.performed with reference ta,a null set, If any remote device is present, t receives power usage information from the remote.device. Step 404.
The ..power usage information could include actual information regarding voltage; current; and power requirements.ffPremote device 40. Alternatively, power usage information could be simply an ID number for remote device 40. If so, controller:60 would receive the ID number and look'.up the power requirement for remote device 40 from astable contained in memory 62.
After all devices.have'-been polled and the power information for each device has been received, inductive vehicle interface,20 then determines whether any device is no longer present 406. If so, then a remote device list is updated. Step 408.
One enibodin ent-oflhe`remote device-list-maintained by controller'60 is shown -5 in FIG. 10. The remote-device' list-could contaiii:for-a devieeID, a.
voltage, a current and a status for each remote- device 4Q 42,.44. The -device.number can be_;assignedby controller 60;
The device ID is received from remote devices 40, 42, 44. If two remote devices are the same type, then:the device ID could be,the:same. -The v6ltage. and current are the.:arountof voltage or. current. required to power the,device; The voltage and current:cou;ld, be.transm:itted discretely by remote devices 40, 42, 44; or'thp y-could b6--.-e .obtained by using the device ID as a key t o A d a tabase of rettiote devices maintained- in memory 62. The status is the current status-of the device- For example, the device status could be '.on', 'off, `charging', etc.
Ne 1 mdUcti;fie vehicle-interface 20. determines whether the status of tinX
has:changed. Step4-10: For -e'xample; remote device 40-could liave-:a.rechargeable batteryor 15: other, charge storage device: When the rechargeable battery. is fully charged, remote.device-40 would no longer need.power. Thus, its status tivould change-from "Charging"
'to "Off." If the status of the device changes, then the remote device list is updated. Step 412.
Inductive:vehicie.:interface 20 then determines if any devices are present.
Step.
41.4 If,so, then the. remote-device:ltst s_updated. Step .416- The remote device list Is then checked. Step 41$. If the list was-not updated,. the system then polls the devices again, and the process restarts: Step 4.02.
Iithe list was updated,..then the power usage by.the remote devices,haschanged, and :thus-the power supplied .by inductive ., vehicle interface-20 must,also change. Controller 60 uses the remote device list'to. determine the power requirements of all the reih6te= devices. It.
2S then determines-if the:system can be reconfigured to, adequately power all the devices, Step, 420.
.If inductive vehicle interface-20 can supply power to all of the remote devices,, then controller 60 calculates the settings-for inverter frequency,.duty cycle, resonant frequency, and rail Voltage. Further,..controller 60 determines the best setting for the variable impedance of secondary winding 104 of remote device 40. Step 422. It then sets the inverter frequency, duty cycle, resonant. frequency,. and rail" voltage. Step 424: It also instructs- remote.dev~ce 40 to setllie-.varia'ble:impedance of secondary-Winding 104 to- the desired level. Step'424.
On the other hand, if-inductive vehicle interface 20 cannot: supply power to-all' of the remote devices;. controller 60 .determines the best possible :power settings for the entire system. Step 426.. It maythen:instruct one oormore of remote devices 40, 42144-to hire off or
RFID (Radio Frequency.identifcation) tag.
Load 108 represents -the functional component of remote device`338. For e,.ample,, if remote device 100 werea digital cai era, load 108 could be a microprocessor.
within tho digital camera. It remote device 100 were an,MP3 player., load 108 could bea digital signal processor or a microprocessor and related circuitry for converting 1vfP3 files into, sounds, If'remote device 100 were:aPD'A, then load_108 would be;a microprocessor and relatedcrcuitry providing the functionality ofa PDA. Load 16.8 could access'naemory 1.0 Load 108 is also coupled to secondary device transceiver 1:12. Thus, load could, communicate through secondary device transceiver 112 with .inductive vehicl.6 interface 20, and thereby could communicate with any other devices connected to_ ADB 36.
FI .-9 showsfhe operation,ofone embodiment. oft he adaptive contact ess energy transmission system with communications. capability.
After inductive vehicle interface 20 starts (Step 400), it,pollss alt remote devices by way, of transceiver 68: Step 402. Step 402,could be continuous, where advaincement to Step y if a remote device ispresent. Alternatively, the following steps could be 404 occursonl performed before polling is'repeated, although the operations -Would be.performed with reference ta,a null set, If any remote device is present, t receives power usage information from the remote.device. Step 404.
The ..power usage information could include actual information regarding voltage; current; and power requirements.ffPremote device 40. Alternatively, power usage information could be simply an ID number for remote device 40. If so, controller:60 would receive the ID number and look'.up the power requirement for remote device 40 from astable contained in memory 62.
After all devices.have'-been polled and the power information for each device has been received, inductive vehicle interface,20 then determines whether any device is no longer present 406. If so, then a remote device list is updated. Step 408.
One enibodin ent-oflhe`remote device-list-maintained by controller'60 is shown -5 in FIG. 10. The remote-device' list-could contaiii:for-a devieeID, a.
voltage, a current and a status for each remote- device 4Q 42,.44. The -device.number can be_;assignedby controller 60;
The device ID is received from remote devices 40, 42, 44. If two remote devices are the same type, then:the device ID could be,the:same. -The v6ltage. and current are the.:arountof voltage or. current. required to power the,device; The voltage and current:cou;ld, be.transm:itted discretely by remote devices 40, 42, 44; or'thp y-could b6--.-e .obtained by using the device ID as a key t o A d a tabase of rettiote devices maintained- in memory 62. The status is the current status-of the device- For example, the device status could be '.on', 'off, `charging', etc.
Ne 1 mdUcti;fie vehicle-interface 20. determines whether the status of tinX
has:changed. Step4-10: For -e'xample; remote device 40-could liave-:a.rechargeable batteryor 15: other, charge storage device: When the rechargeable battery. is fully charged, remote.device-40 would no longer need.power. Thus, its status tivould change-from "Charging"
'to "Off." If the status of the device changes, then the remote device list is updated. Step 412.
Inductive:vehicie.:interface 20 then determines if any devices are present.
Step.
41.4 If,so, then the. remote-device:ltst s_updated. Step .416- The remote device list Is then checked. Step 41$. If the list was-not updated,. the system then polls the devices again, and the process restarts: Step 4.02.
Iithe list was updated,..then the power usage by.the remote devices,haschanged, and :thus-the power supplied .by inductive ., vehicle interface-20 must,also change. Controller 60 uses the remote device list'to. determine the power requirements of all the reih6te= devices. It.
2S then determines-if the:system can be reconfigured to, adequately power all the devices, Step, 420.
.If inductive vehicle interface-20 can supply power to all of the remote devices,, then controller 60 calculates the settings-for inverter frequency,.duty cycle, resonant frequency, and rail Voltage. Further,..controller 60 determines the best setting for the variable impedance of secondary winding 104 of remote device 40. Step 422. It then sets the inverter frequency, duty cycle, resonant. frequency,. and rail" voltage. Step 424: It also instructs- remote.dev~ce 40 to setllie-.varia'ble:impedance of secondary-Winding 104 to- the desired level. Step'424.
On the other hand, if-inductive vehicle interface 20 cannot: supply power to-all' of the remote devices;. controller 60 .determines the best possible :power settings for the entire system. Step 426.. It maythen:instruct one oormore of remote devices 40, 42144-to hire off or
10- bhange its powerconsumption:Controller, 60 determines:the best setting forthe=variable impedance of secondary winding. 1.94-of-remote devices 40, 42,.44. Step 428.
it then sets the inverter frequency, duty cycle, resonant frequency, and rail voltage for the system; Step 430.
'Controller instructs remote devices: 40; 42,441 to set the- variable impedance: of secondary winding'104 at.tl e; desired. level The system-then-returns to polling the devicesand..the.
15: process-repeats. Step 402.
The above description is of thepreferred.embodiment. Various.alterations and changes: can be-made without departing from the spirit and broader aspects ofthe invention as defined.'in the appended claims, which=are to.*be interpreted- in , accordance with: the principles of patent Jr aincluding the doctrine of equivalents: Any "references "to claim elements in the-20 singular, for-example,, using the articles "a," "an,""the," or "said," is not to be construed -as limiting the: elenient,to-the-singular.
it then sets the inverter frequency, duty cycle, resonant frequency, and rail voltage for the system; Step 430.
'Controller instructs remote devices: 40; 42,441 to set the- variable impedance: of secondary winding'104 at.tl e; desired. level The system-then-returns to polling the devicesand..the.
15: process-repeats. Step 402.
The above description is of thepreferred.embodiment. Various.alterations and changes: can be-made without departing from the spirit and broader aspects ofthe invention as defined.'in the appended claims, which=are to.*be interpreted- in , accordance with: the principles of patent Jr aincluding the doctrine of equivalents: Any "references "to claim elements in the-20 singular, for-example,, using the articles "a," "an,""the," or "said," is not to be construed -as limiting the: elenient,to-the-singular.
Claims (21)
1. A system for supplying power from a primary coil side to a plurality of remote devices, the system comprising:
an inductive power supply having a primary coil for supplying power to at least one of the plurality of remote devices, the inductive power supply having a communication system for communicating with the at least one of the plurality of remote devices;
a data network including a controller and the inductive power supply; and wherein the controller is located on the primary coil side and is configured to 1) obtain power usage information for the at least one of the plurality of remote devices;
2) determine whether power can be supplied to the at least one of the plurality of remote devices as a function of the obtained power usage information;
3) adjust power consumption characteristics of the system in response to a determination that power cannot be supplied to the at least one of the plurality of remote devices.
an inductive power supply having a primary coil for supplying power to at least one of the plurality of remote devices, the inductive power supply having a communication system for communicating with the at least one of the plurality of remote devices;
a data network including a controller and the inductive power supply; and wherein the controller is located on the primary coil side and is configured to 1) obtain power usage information for the at least one of the plurality of remote devices;
2) determine whether power can be supplied to the at least one of the plurality of remote devices as a function of the obtained power usage information;
3) adjust power consumption characteristics of the system in response to a determination that power cannot be supplied to the at least one of the plurality of remote devices.
2. The system of claim 1 wherein the power consumption characteristics include an amount of power consumption of one or more of the plurality of remote devices.
3. A vehicle interface for providing power from a primary coil side to at least one of a plurality of remote devices and communicating with the at least one of the plurality of remote devices, the vehicle interface comprising:
a holder for containing the at least one of the plurality of remote devices;
an inductive power supply, the inductive power supply having a primary coil, the primary coil placed proximal to the holder;
a communication system located on the primary coil side for enabling communication with the at least one of the plurality of remote devices, the communication system receives power usage information from the at least one of the plurality of remote devices; and a controller located on the primary coil side configured to use the power usage information to 1) determine the power requirements of the at least one of the plurality of remote devices; and 2) reconfigure the vehicle interface to power the at least one of the plurality of remote devices as a function of the determined power requirements.
a holder for containing the at least one of the plurality of remote devices;
an inductive power supply, the inductive power supply having a primary coil, the primary coil placed proximal to the holder;
a communication system located on the primary coil side for enabling communication with the at least one of the plurality of remote devices, the communication system receives power usage information from the at least one of the plurality of remote devices; and a controller located on the primary coil side configured to use the power usage information to 1) determine the power requirements of the at least one of the plurality of remote devices; and 2) reconfigure the vehicle interface to power the at least one of the plurality of remote devices as a function of the determined power requirements.
4. The vehicle interface of claim 3 where the holder is configured to fit within a console of a vehicle.
5. The vehicle interface of claim 3 where each of the plurality of remote devices are selected from the group comprising a device located in a trunk of the vehicle, a device located in an overhead console of the vehicle, a device located in a seat back of the vehicle, a device located in a glove compartment of the vehicle and a device located in a side door storage area of the vehicle.
6. The vehicle interface of claim 3 where the vehicle has a vehicle data bus, and the vehicle interface is connectable to the vehicle data bus via a gateway controller coupled to the vehicle interface, the gateway controller manages communication between the vehicle interface and the vehicle data bus.
7. The vehicle interface of claim 3 wherein the communication system includes a transceiver for communicating with the plurality of remote devices.
8. The vehicle interface of claim 3 wherein the power usage information is selected from the group comprising:
actual voltage, actual current, power requirements, a device ID or any combination thereof.
actual voltage, actual current, power requirements, a device ID or any combination thereof.
9. A power supply and communication system for a vehicle for providing power from a primary coil side to at least one of a plurality of remote devices, the power supply and communication system comprising:
an inductive power supply located on the primary coil side for inductively supplying power to the at least one of the plurality of remote devices; and a communication system located on the primary coil side enabling communications between the at least one of the plurality of remote devices and the vehicle, wherein the communication system is configured to 1) periodically receive power usage information from the at least one of the plurality of remote devices;
2) determine whether the power usage information has changed; and 3) reconfigure the inductive power supply in response to a determination that the power usage information has changed.
an inductive power supply located on the primary coil side for inductively supplying power to the at least one of the plurality of remote devices; and a communication system located on the primary coil side enabling communications between the at least one of the plurality of remote devices and the vehicle, wherein the communication system is configured to 1) periodically receive power usage information from the at least one of the plurality of remote devices;
2) determine whether the power usage information has changed; and 3) reconfigure the inductive power supply in response to a determination that the power usage information has changed.
10. The power supply and communication system of claim 9 where the communication system comprises a transceiver for communicating with the plurality of remote devices.
11. The power supply and communication system of claim 10 further comprising a vehicle data bus and a communication controller for controlling communication between the plurality of remote devices and the vehicle data bus.
12. The power supply and communication system of claim 9 where the communication system comprises a power line communication protocol using the inductive power supply.
13. The power supply and communication system of claim 10 where the transceiver includes an antenna for wireless communication with the remote device.
14. The power supply and communication system of claim 13 where the transceiver communicates with the power supply and communication system by way of a wireless protocol.
15. The power supply and communication system of claim 14 where the inductive power supply includes an inverter and a primary.
16. The power supply and communication system of claim 15 where inductive power supply includes a drive circuit for driving the inverter.
17. The power supply and communication system of claim 16 where a power regulator is coupled to the vehicle power supply and to the inverter.
18. The power supply and communication system of claim 17 further comprising a holder for receiving one of the plurality of remote devices.
19. The power supply and communication system of claim 18 where the holder has a perimeter, and the primary is contained within the perimeter.
20. The power supply and communication system of claim 19 where the primary is adaptable to supply power to the remote device regardless of the orientation of the remote device.
21. The power supply and communication system of claim 20 where the transceiver can communicate with the plurality of remote devices regardless of the orientation of the plurality of remote devices.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/871,420 | 2004-06-18 | ||
US10/871,420 US7612528B2 (en) | 1999-06-21 | 2004-06-18 | Vehicle interface |
PCT/IB2005/051830 WO2005122686A2 (en) | 2004-06-18 | 2005-06-06 | Vehicle interface |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2567634A1 CA2567634A1 (en) | 2005-12-29 |
CA2567634C true CA2567634C (en) | 2012-05-22 |
Family
ID=35510174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2567634A Active CA2567634C (en) | 2004-06-18 | 2005-06-06 | Vehicle interface |
Country Status (12)
Country | Link |
---|---|
US (1) | US7612528B2 (en) |
EP (1) | EP1766753B1 (en) |
JP (1) | JP4695137B2 (en) |
KR (1) | KR101158145B1 (en) |
CN (2) | CN101044664A (en) |
CA (1) | CA2567634C (en) |
HK (1) | HK1140317A1 (en) |
MY (1) | MY141435A (en) |
RU (1) | RU2390904C2 (en) |
TR (1) | TR201907403T4 (en) |
TW (1) | TWI294225B (en) |
WO (1) | WO2005122686A2 (en) |
Families Citing this family (329)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7212414B2 (en) | 1999-06-21 | 2007-05-01 | Access Business Group International, Llc | Adaptive inductive power supply |
US7522878B2 (en) * | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
DE10112699C2 (en) * | 2001-03-16 | 2003-06-18 | Daimler Chrysler Ag | Authorization method for communication with a data bus |
US7065658B1 (en) | 2001-05-18 | 2006-06-20 | Palm, Incorporated | Method and apparatus for synchronizing and recharging a connector-less portable computer system |
US20090072782A1 (en) * | 2002-12-10 | 2009-03-19 | Mitch Randall | Versatile apparatus and method for electronic devices |
GB2414120B (en) | 2004-05-11 | 2008-04-02 | Splashpower Ltd | Controlling inductive power transfer systems |
US20060010763A1 (en) * | 2004-07-13 | 2006-01-19 | Bikini Lures, Inc. | Electronic fishing lure |
US20060028176A1 (en) * | 2004-07-22 | 2006-02-09 | Qingfeng Tang | Cellular telephone battery recharging apparatus |
US7911182B2 (en) * | 2005-05-27 | 2011-03-22 | Savi Technology, Inc. | Method and apparatus for detecting a battery voltage |
US8164307B2 (en) * | 2005-05-27 | 2012-04-24 | Savi Technology, Inc. | Method and apparatus for monitoring the voltage of a battery |
US7386404B2 (en) * | 2005-05-27 | 2008-06-10 | Savi Technology, Inc. | Method and apparatus for monitoring battery discharge state |
US20070013481A1 (en) * | 2005-06-23 | 2007-01-18 | Savi Technology, Inc. | Method and apparatus for battery power conservation in tags |
US7825543B2 (en) | 2005-07-12 | 2010-11-02 | Massachusetts Institute Of Technology | Wireless energy transfer |
EP2306615B1 (en) | 2005-07-12 | 2020-05-27 | Massachusetts Institute of Technology (MIT) | Wireless non-radiative energy transfer |
US20070042729A1 (en) * | 2005-08-16 | 2007-02-22 | Baaman David W | Inductive power supply, remote device powered by inductive power supply and method for operating same |
KR100724962B1 (en) * | 2005-08-18 | 2007-06-04 | 삼성전자주식회사 | Solid state battery charger |
US11201500B2 (en) | 2006-01-31 | 2021-12-14 | Mojo Mobility, Inc. | Efficiencies and flexibilities in inductive (wireless) charging |
US8169185B2 (en) | 2006-01-31 | 2012-05-01 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
US7952322B2 (en) * | 2006-01-31 | 2011-05-31 | Mojo Mobility, Inc. | Inductive power source and charging system |
US11245287B2 (en) | 2006-03-23 | 2022-02-08 | Philips Ip Ventures B.V. | Inductive power supply with device identification |
US7355150B2 (en) * | 2006-03-23 | 2008-04-08 | Access Business Group International Llc | Food preparation system with inductive power |
US7989986B2 (en) | 2006-03-23 | 2011-08-02 | Access Business Group International Llc | Inductive power supply with device identification |
DE102006034128A1 (en) * | 2006-04-12 | 2007-10-18 | Funkwerk Dabendorf Gmbh | Arrangement for receiving a mobile phone within a motor vehicle |
JP4325744B2 (en) * | 2006-05-26 | 2009-09-02 | 株式会社村田製作所 | Data combiner |
US7948208B2 (en) * | 2006-06-01 | 2011-05-24 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
US11329511B2 (en) | 2006-06-01 | 2022-05-10 | Mojo Mobility Inc. | Power source, charging system, and inductive receiver for mobile devices |
JP4855150B2 (en) * | 2006-06-09 | 2012-01-18 | 株式会社トプコン | Fundus observation apparatus, ophthalmic image processing apparatus, and ophthalmic image processing program |
EP1895450B1 (en) | 2006-08-31 | 2014-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and power receiving device |
ATE515045T1 (en) | 2006-09-18 | 2011-07-15 | Koninkl Philips Electronics Nv | DEVICE, SYSTEM AND METHOD FOR ALLOWING ELECTRICAL ENERGY TRANSFER |
US7868585B2 (en) * | 2006-10-03 | 2011-01-11 | Visteon Global Technologies, Inc. | Wireless charging device |
US8682387B2 (en) * | 2006-10-18 | 2014-03-25 | William Frederick Ryann | Mobile device interface platform |
US20080150680A1 (en) * | 2006-12-02 | 2008-06-26 | Casey Stephen J | Remote Portable Access System |
WO2008093334A2 (en) | 2007-01-29 | 2008-08-07 | Powermat Ltd | Pinless power coupling |
PT2154763T (en) | 2007-03-22 | 2021-11-02 | Powermat Tech Ltd | Efficiency monitor for inductive power transmission |
US7728551B2 (en) * | 2007-04-26 | 2010-06-01 | Visteon Global Technologies, Inc. | Wireless power transfer system |
US8805530B2 (en) | 2007-06-01 | 2014-08-12 | Witricity Corporation | Power generation for implantable devices |
US9421388B2 (en) | 2007-06-01 | 2016-08-23 | Witricity Corporation | Power generation for implantable devices |
US7940024B2 (en) * | 2007-07-18 | 2011-05-10 | GM Global Technology Operations LLC | Media portal for vehicle |
US8030888B2 (en) * | 2007-08-13 | 2011-10-04 | Pandya Ravi A | Wireless charging system for vehicles |
GB0716679D0 (en) | 2007-08-28 | 2007-10-03 | Fells J | Inductive power supply |
WO2009038789A1 (en) * | 2007-09-18 | 2009-03-26 | Kevin Peichih Wang | Mobile communication device with charging module |
FI120853B (en) | 2007-09-18 | 2010-03-31 | Powerkiss Oy | Energy transfer device and method |
US10068701B2 (en) | 2007-09-25 | 2018-09-04 | Powermat Technologies Ltd. | Adjustable inductive power transmission platform |
MX2010003273A (en) | 2007-09-25 | 2010-05-13 | Powermat Ltd | Inductive power transmission platform. |
USD572189S1 (en) | 2007-09-28 | 2008-07-01 | Visteon Global Technologies, Inc. | Wireless charging device |
US8283812B2 (en) | 2007-10-09 | 2012-10-09 | Powermat Technologies, Ltd. | Inductive power providing system having moving outlets |
WO2009052167A2 (en) * | 2007-10-17 | 2009-04-23 | Access Business Group International Llc | Laptop and portable electronic device wireless power supply systems |
US8193769B2 (en) | 2007-10-18 | 2012-06-05 | Powermat Technologies, Ltd | Inductively chargeable audio devices |
US8026693B2 (en) * | 2007-10-18 | 2011-09-27 | Wi.U, Llc | Induction charger for portable battery-powered devices |
US8536737B2 (en) | 2007-11-19 | 2013-09-17 | Powermat Technologies, Ltd. | System for inductive power provision in wet environments |
US8633616B2 (en) * | 2007-12-21 | 2014-01-21 | Cynetic Designs Ltd. | Modular pocket with inductive power and data |
US9126514B2 (en) | 2007-12-21 | 2015-09-08 | Cynetic Designs Ltd | Vehicle seat inductive charger and data transmitter |
US9472971B2 (en) | 2007-12-21 | 2016-10-18 | Cynetic Designs Ltd. | Wireless inductive charging of weapon system energy source |
US8791600B2 (en) * | 2007-12-21 | 2014-07-29 | Roger J. Soar | Vehicle seat inductive charger and data transmitter |
WO2009089253A1 (en) * | 2008-01-07 | 2009-07-16 | Access Business Group International Llc | Inductive power supply with duty cycle control |
US8421407B2 (en) * | 2008-02-25 | 2013-04-16 | L & P Property Management Company | Inductively coupled work surfaces |
US8228026B2 (en) * | 2008-02-25 | 2012-07-24 | L & P Property Management Company | Inductively coupled shelving and storage containers |
DE102008011920A1 (en) | 2008-02-29 | 2009-09-10 | Moeller Gmbh | Arrangement for supplying at least one device in a control cabinet, a distribution unit or an installation housing with auxiliary power |
US8855554B2 (en) * | 2008-03-05 | 2014-10-07 | Qualcomm Incorporated | Packaging and details of a wireless power device |
KR101593250B1 (en) * | 2008-03-13 | 2016-02-18 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Inductive power supply system with multiple coil primary |
US9337902B2 (en) | 2008-03-17 | 2016-05-10 | Powermat Technologies Ltd. | System and method for providing wireless power transfer functionality to an electrical device |
US9331750B2 (en) | 2008-03-17 | 2016-05-03 | Powermat Technologies Ltd. | Wireless power receiver and host control interface thereof |
US9960640B2 (en) | 2008-03-17 | 2018-05-01 | Powermat Technologies Ltd. | System and method for regulating inductive power transmission |
US9960642B2 (en) | 2008-03-17 | 2018-05-01 | Powermat Technologies Ltd. | Embedded interface for wireless power transfer to electrical devices |
CN102084442B (en) | 2008-03-17 | 2013-12-04 | 鲍尔马特技术有限公司 | Inductive transmission system |
US8320143B2 (en) | 2008-04-15 | 2012-11-27 | Powermat Technologies, Ltd. | Bridge synchronous rectifier |
US20110050164A1 (en) | 2008-05-07 | 2011-03-03 | Afshin Partovi | System and methods for inductive charging, and improvements and uses thereof |
CA2724341C (en) * | 2008-05-14 | 2016-07-05 | Massachusetts Institute Of Technology | Wireless energy transfer, including interference enhancement |
CA2726552A1 (en) | 2008-06-02 | 2009-12-10 | Powermat Ltd. | Appliance mounted power outlets |
JP4557049B2 (en) * | 2008-06-09 | 2010-10-06 | ソニー株式会社 | Transmission system, power supply apparatus, power reception apparatus, and transmission method |
US8188619B2 (en) | 2008-07-02 | 2012-05-29 | Powermat Technologies Ltd | Non resonant inductive power transmission system and method |
US8981598B2 (en) | 2008-07-02 | 2015-03-17 | Powermat Technologies Ltd. | Energy efficient inductive power transmission system and method |
US11979201B2 (en) | 2008-07-02 | 2024-05-07 | Powermat Technologies Ltd. | System and method for coded communication signals regulating inductive power transmissions |
CA2730194A1 (en) | 2008-07-08 | 2010-01-14 | Powermat Ltd. | Display device |
US8203657B2 (en) * | 2008-07-11 | 2012-06-19 | Audiovox Corporation | Inductively powered mobile entertainment system |
USD640976S1 (en) | 2008-08-28 | 2011-07-05 | Hewlett-Packard Development Company, L.P. | Support structure and/or cradle for a mobile computing device |
CA2738206A1 (en) | 2008-09-23 | 2010-04-01 | Powermat Ltd. | Combined antenna and inductive power receiver |
US8712324B2 (en) | 2008-09-26 | 2014-04-29 | Qualcomm Incorporated | Inductive signal transfer system for computing devices |
US8385822B2 (en) * | 2008-09-26 | 2013-02-26 | Hewlett-Packard Development Company, L.P. | Orientation and presence detection for use in configuring operations of computing devices in docked environments |
US8868939B2 (en) | 2008-09-26 | 2014-10-21 | Qualcomm Incorporated | Portable power supply device with outlet connector |
US8234509B2 (en) * | 2008-09-26 | 2012-07-31 | Hewlett-Packard Development Company, L.P. | Portable power supply device for mobile computing devices |
US8688037B2 (en) * | 2008-09-26 | 2014-04-01 | Hewlett-Packard Development Company, L.P. | Magnetic latching mechanism for use in mating a mobile computing device to an accessory device |
US20110106954A1 (en) * | 2008-09-26 | 2011-05-05 | Manjirnath Chatterjee | System and method for inductively pairing devices to share data or resources |
US8401469B2 (en) * | 2008-09-26 | 2013-03-19 | Hewlett-Packard Development Company, L.P. | Shield for use with a computing device that receives an inductive signal transmission |
US8850045B2 (en) | 2008-09-26 | 2014-09-30 | Qualcomm Incorporated | System and method for linking and sharing resources amongst devices |
US8527688B2 (en) * | 2008-09-26 | 2013-09-03 | Palm, Inc. | Extending device functionality amongst inductively linked devices |
US8933594B2 (en) | 2008-09-27 | 2015-01-13 | Witricity Corporation | Wireless energy transfer for vehicles |
US8476788B2 (en) | 2008-09-27 | 2013-07-02 | Witricity Corporation | Wireless energy transfer with high-Q resonators using field shaping to improve K |
US8569914B2 (en) | 2008-09-27 | 2013-10-29 | Witricity Corporation | Wireless energy transfer using object positioning for improved k |
US8928276B2 (en) | 2008-09-27 | 2015-01-06 | Witricity Corporation | Integrated repeaters for cell phone applications |
US8723366B2 (en) * | 2008-09-27 | 2014-05-13 | Witricity Corporation | Wireless energy transfer resonator enclosures |
US8946938B2 (en) | 2008-09-27 | 2015-02-03 | Witricity Corporation | Safety systems for wireless energy transfer in vehicle applications |
US8497601B2 (en) | 2008-09-27 | 2013-07-30 | Witricity Corporation | Wireless energy transfer converters |
US9093853B2 (en) | 2008-09-27 | 2015-07-28 | Witricity Corporation | Flexible resonator attachment |
EP3179640A1 (en) * | 2008-09-27 | 2017-06-14 | WiTricity Corporation | Wireless energy transfer systems |
US8922066B2 (en) | 2008-09-27 | 2014-12-30 | Witricity Corporation | Wireless energy transfer with multi resonator arrays for vehicle applications |
US9577436B2 (en) | 2008-09-27 | 2017-02-21 | Witricity Corporation | Wireless energy transfer for implantable devices |
US9601261B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8669676B2 (en) | 2008-09-27 | 2014-03-11 | Witricity Corporation | Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor |
US20110074346A1 (en) * | 2009-09-25 | 2011-03-31 | Hall Katherine L | Vehicle charger safety system and method |
US8772973B2 (en) * | 2008-09-27 | 2014-07-08 | Witricity Corporation | Integrated resonator-shield structures |
US8643326B2 (en) | 2008-09-27 | 2014-02-04 | Witricity Corporation | Tunable wireless energy transfer systems |
US8692410B2 (en) * | 2008-09-27 | 2014-04-08 | Witricity Corporation | Wireless energy transfer with frequency hopping |
US8466583B2 (en) | 2008-09-27 | 2013-06-18 | Witricity Corporation | Tunable wireless energy transfer for outdoor lighting applications |
US8461722B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape field and improve K |
US8937408B2 (en) | 2008-09-27 | 2015-01-20 | Witricity Corporation | Wireless energy transfer for medical applications |
US20120248887A1 (en) * | 2008-09-27 | 2012-10-04 | Kesler Morris P | Multi-resonator wireless energy transfer for sensors |
US8947186B2 (en) * | 2008-09-27 | 2015-02-03 | Witricity Corporation | Wireless energy transfer resonator thermal management |
US9065423B2 (en) | 2008-09-27 | 2015-06-23 | Witricity Corporation | Wireless energy distribution system |
US9744858B2 (en) | 2008-09-27 | 2017-08-29 | Witricity Corporation | System for wireless energy distribution in a vehicle |
US9515494B2 (en) | 2008-09-27 | 2016-12-06 | Witricity Corporation | Wireless power system including impedance matching network |
US9601266B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Multiple connected resonators with a single electronic circuit |
US8629578B2 (en) | 2008-09-27 | 2014-01-14 | Witricity Corporation | Wireless energy transfer systems |
US9246336B2 (en) | 2008-09-27 | 2016-01-26 | Witricity Corporation | Resonator optimizations for wireless energy transfer |
US8963488B2 (en) | 2008-09-27 | 2015-02-24 | Witricity Corporation | Position insensitive wireless charging |
US8487480B1 (en) | 2008-09-27 | 2013-07-16 | Witricity Corporation | Wireless energy transfer resonator kit |
US8461720B2 (en) * | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using conducting surfaces to shape fields and reduce loss |
US8912687B2 (en) | 2008-09-27 | 2014-12-16 | Witricity Corporation | Secure wireless energy transfer for vehicle applications |
US8471410B2 (en) | 2008-09-27 | 2013-06-25 | Witricity Corporation | Wireless energy transfer over distance using field shaping to improve the coupling factor |
US8686598B2 (en) | 2008-09-27 | 2014-04-01 | Witricity Corporation | Wireless energy transfer for supplying power and heat to a device |
US8692412B2 (en) * | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
US20110043049A1 (en) * | 2008-09-27 | 2011-02-24 | Aristeidis Karalis | Wireless energy transfer with high-q resonators using field shaping to improve k |
US8901778B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with variable size resonators for implanted medical devices |
US8552592B2 (en) * | 2008-09-27 | 2013-10-08 | Witricity Corporation | Wireless energy transfer with feedback control for lighting applications |
US9160203B2 (en) | 2008-09-27 | 2015-10-13 | Witricity Corporation | Wireless powered television |
US9544683B2 (en) | 2008-09-27 | 2017-01-10 | Witricity Corporation | Wirelessly powered audio devices |
US9105959B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Resonator enclosure |
US8901779B2 (en) | 2008-09-27 | 2014-12-02 | Witricity Corporation | Wireless energy transfer with resonator arrays for medical applications |
US9106203B2 (en) | 2008-09-27 | 2015-08-11 | Witricity Corporation | Secure wireless energy transfer in medical applications |
US8410636B2 (en) | 2008-09-27 | 2013-04-02 | Witricity Corporation | Low AC resistance conductor designs |
US9318922B2 (en) | 2008-09-27 | 2016-04-19 | Witricity Corporation | Mechanically removable wireless power vehicle seat assembly |
US8324759B2 (en) * | 2008-09-27 | 2012-12-04 | Witricity Corporation | Wireless energy transfer using magnetic materials to shape field and reduce loss |
US9035499B2 (en) | 2008-09-27 | 2015-05-19 | Witricity Corporation | Wireless energy transfer for photovoltaic panels |
US8461721B2 (en) | 2008-09-27 | 2013-06-11 | Witricity Corporation | Wireless energy transfer using object positioning for low loss |
US9396867B2 (en) | 2008-09-27 | 2016-07-19 | Witricity Corporation | Integrated resonator-shield structures |
US20120119569A1 (en) * | 2008-09-27 | 2012-05-17 | Aristeidis Karalis | Multi-resonator wireless energy transfer inside vehicles |
US8400017B2 (en) | 2008-09-27 | 2013-03-19 | Witricity Corporation | Wireless energy transfer for computer peripheral applications |
US9601270B2 (en) | 2008-09-27 | 2017-03-21 | Witricity Corporation | Low AC resistance conductor designs |
US20100277121A1 (en) * | 2008-09-27 | 2010-11-04 | Hall Katherine L | Wireless energy transfer between a source and a vehicle |
US8441154B2 (en) | 2008-09-27 | 2013-05-14 | Witricity Corporation | Multi-resonator wireless energy transfer for exterior lighting |
US8304935B2 (en) * | 2008-09-27 | 2012-11-06 | Witricity Corporation | Wireless energy transfer using field shaping to reduce loss |
US8957549B2 (en) * | 2008-09-27 | 2015-02-17 | Witricity Corporation | Tunable wireless energy transfer for in-vehicle applications |
US8587153B2 (en) | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using high Q resonators for lighting applications |
US8587155B2 (en) * | 2008-09-27 | 2013-11-19 | Witricity Corporation | Wireless energy transfer using repeater resonators |
US8482158B2 (en) * | 2008-09-27 | 2013-07-09 | Witricity Corporation | Wireless energy transfer using variable size resonators and system monitoring |
US8598743B2 (en) | 2008-09-27 | 2013-12-03 | Witricity Corporation | Resonator arrays for wireless energy transfer |
US9184595B2 (en) | 2008-09-27 | 2015-11-10 | Witricity Corporation | Wireless energy transfer in lossy environments |
US8907531B2 (en) | 2008-09-27 | 2014-12-09 | Witricity Corporation | Wireless energy transfer with variable size resonators for medical applications |
US8362651B2 (en) * | 2008-10-01 | 2013-01-29 | Massachusetts Institute Of Technology | Efficient near-field wireless energy transfer using adiabatic system variations |
US8446046B2 (en) * | 2008-10-03 | 2013-05-21 | Access Business Group International Llc | Power system |
US9083686B2 (en) * | 2008-11-12 | 2015-07-14 | Qualcomm Incorporated | Protocol for program during startup sequence |
US20110227696A1 (en) * | 2008-12-05 | 2011-09-22 | Kazuhiko Miyata | Operation system |
WO2010078557A2 (en) * | 2009-01-05 | 2010-07-08 | Palm, Inc. | Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment |
JP2012514961A (en) * | 2009-01-05 | 2012-06-28 | エル アンド ピー プロパティ マネジメント カンパニー | Inductive coupling console |
AU2010203795A1 (en) * | 2009-01-06 | 2011-07-14 | Access Business Group International Llc | Wireless charging system with device power compliance |
US8069100B2 (en) | 2009-01-06 | 2011-11-29 | Access Business Group International Llc | Metered delivery of wireless power |
US9132250B2 (en) * | 2009-09-03 | 2015-09-15 | Breathe Technologies, Inc. | Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US8497658B2 (en) | 2009-01-22 | 2013-07-30 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
RU2549873C2 (en) * | 2009-02-27 | 2015-05-10 | Конинклейке Филипс Электроникс Н.В. | Methods, transmitting units and control system for wireless power transmission |
KR101278399B1 (en) * | 2009-03-17 | 2013-06-24 | 후지쯔 가부시끼가이샤 | Wireless power supply system |
EP2417686A1 (en) | 2009-04-08 | 2012-02-15 | Access Business Group International LLC | Selectable coil array |
US8310200B2 (en) * | 2009-04-15 | 2012-11-13 | GM Global Technology Operations LLC | Inductive chargers and inductive charging systems for portable electronic devices |
KR101733403B1 (en) | 2009-05-25 | 2017-05-11 | 코닌클리케 필립스 엔.브이. | Method and device for detecting a device in a wireless power transmission system |
US8275513B2 (en) * | 2009-06-12 | 2012-09-25 | Spx Corporation | Vehicle communications interface and method of operation thereof |
USD611898S1 (en) | 2009-07-17 | 2010-03-16 | Lin Wei Yang | Induction charger |
DE102009033751B4 (en) * | 2009-07-17 | 2012-03-15 | Funkwerk Dabendorf Gmbh | Wireless coupling of an electronic device with radio link, in particular a mobile phone, to devices of a motor vehicle |
US8437695B2 (en) * | 2009-07-21 | 2013-05-07 | Hewlett-Packard Development Company, L.P. | Power bridge circuit for bi-directional inductive signaling |
US9395827B2 (en) * | 2009-07-21 | 2016-07-19 | Qualcomm Incorporated | System for detecting orientation of magnetically coupled devices |
US8954001B2 (en) * | 2009-07-21 | 2015-02-10 | Qualcomm Incorporated | Power bridge circuit for bi-directional wireless power transmission |
JP2011035964A (en) * | 2009-07-30 | 2011-02-17 | Olympus Imaging Corp | Charging apparatus and charging system |
USD611899S1 (en) | 2009-07-31 | 2010-03-16 | Lin Wei Yang | Induction charger |
USD611900S1 (en) | 2009-07-31 | 2010-03-16 | Lin Wei Yang | Induction charger |
US9312728B2 (en) * | 2009-08-24 | 2016-04-12 | Access Business Group International Llc | Physical and virtual identification in a wireless power network |
US8395547B2 (en) | 2009-08-27 | 2013-03-12 | Hewlett-Packard Development Company, L.P. | Location tracking for mobile computing device |
US8755815B2 (en) | 2010-08-31 | 2014-06-17 | Qualcomm Incorporated | Use of wireless access point ID for position determination |
EP2473221B1 (en) | 2009-09-03 | 2020-11-11 | Breathe Technologies, Inc. | Systems for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature |
US8928284B2 (en) * | 2009-09-10 | 2015-01-06 | Qualcomm Incorporated | Variable wireless power transmission |
US8482160B2 (en) * | 2009-09-16 | 2013-07-09 | L & P Property Management Company | Inductively coupled power module and circuit |
MX2010010556A (en) * | 2009-09-24 | 2011-03-23 | R Byrne Norman | Worksurface power transfer. |
US8022775B2 (en) | 2009-10-08 | 2011-09-20 | Etymotic Research, Inc. | Systems and methods for maintaining a drive signal to a resonant circuit at a resonant frequency |
US8460816B2 (en) | 2009-10-08 | 2013-06-11 | Etymotic Research, Inc. | Rechargeable battery assemblies and methods of constructing rechargeable battery assemblies |
US8174233B2 (en) | 2009-10-08 | 2012-05-08 | Etymotic Research, Inc. | Magnetically coupled battery charging system |
US8174234B2 (en) * | 2009-10-08 | 2012-05-08 | Etymotic Research, Inc. | Magnetically coupled battery charging system |
US8237402B2 (en) | 2009-10-08 | 2012-08-07 | Etymotic Research, Inc. | Magnetically coupled battery charging system |
CA2777596C (en) | 2009-10-13 | 2018-05-29 | Cynetic Designs Ltd. | An inductively coupled power and data transmission system |
USD674391S1 (en) | 2009-11-17 | 2013-01-15 | Hewlett-Packard Development Company, L.P. | Docking station for a computing device |
US20110115605A1 (en) * | 2009-11-17 | 2011-05-19 | Strattec Security Corporation | Energy harvesting system |
WO2011090620A2 (en) | 2009-12-28 | 2011-07-28 | Toyoda Gosei Co. Ltd | Recharging or connection tray for portable electronic devices |
JP2011147271A (en) * | 2010-01-14 | 2011-07-28 | Sony Corp | Power supply device, power receiving device, and wireless power supply system |
EP2529469B1 (en) | 2010-01-27 | 2017-06-14 | Cynetic Designs Ltd | Modular pocket with inductive power and data |
KR101104513B1 (en) * | 2010-02-16 | 2012-01-12 | 서울대학교산학협력단 | Multiple Wireless Power Transmission Method and System Using Time Division Method |
KR101821837B1 (en) | 2010-04-08 | 2018-01-24 | 액세스 비지니스 그룹 인터내셔날 엘엘씨 | Point of sale inductive systems and methods |
TWM393916U (en) * | 2010-05-31 | 2010-12-01 | ming-xiang Ye | Wireless charger for vehicle |
US8841881B2 (en) | 2010-06-02 | 2014-09-23 | Bryan Marc Failing | Energy transfer with vehicles |
TWM393921U (en) * | 2010-06-08 | 2010-12-01 | Winharbor Technology Co Ltd | Wireless charging ebook |
EP2580844A4 (en) * | 2010-06-11 | 2016-05-25 | Mojo Mobility Inc | System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith |
US8866495B2 (en) | 2010-06-30 | 2014-10-21 | Access Business Group International Llc | Spatial tracking system and method |
CN103155340B (en) * | 2010-08-04 | 2016-01-20 | 约翰逊控制技术公司 | For the wireless universal charging system of motor vehicle |
CN101902062A (en) * | 2010-08-06 | 2010-12-01 | 武汉中原电子集团有限公司 | Vehicle-mounted wireless charging device |
KR101358280B1 (en) * | 2010-08-26 | 2014-02-12 | 삼성전자주식회사 | Method and Apparatus |
US9602168B2 (en) | 2010-08-31 | 2017-03-21 | Witricity Corporation | Communication in wireless energy transfer systems |
US8816636B2 (en) * | 2010-09-14 | 2014-08-26 | Toyoda Gosei Co., Ltd. | Console door pocket for electronic devices |
US20120235474A1 (en) * | 2010-09-14 | 2012-09-20 | Joseph Mannino | Windshield embedded power coil for wireless charging |
CN103222319B (en) | 2010-09-29 | 2016-08-10 | 高通股份有限公司 | A kind of method for mobile computing device and mobile computing device |
US9496732B2 (en) | 2011-01-18 | 2016-11-15 | Mojo Mobility, Inc. | Systems and methods for wireless power transfer |
US11342777B2 (en) | 2011-01-18 | 2022-05-24 | Mojo Mobility, Inc. | Powering and/or charging with more than one protocol |
US9356659B2 (en) | 2011-01-18 | 2016-05-31 | Mojo Mobility, Inc. | Chargers and methods for wireless power transfer |
US10115520B2 (en) | 2011-01-18 | 2018-10-30 | Mojo Mobility, Inc. | Systems and method for wireless power transfer |
US9178369B2 (en) | 2011-01-18 | 2015-11-03 | Mojo Mobility, Inc. | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
JP5264974B2 (en) | 2011-02-01 | 2013-08-14 | 本田技研工業株式会社 | Non-contact power transmission device |
JP5710313B2 (en) * | 2011-02-25 | 2015-04-30 | トヨタ自動車株式会社 | Resonance coil, power transmission device, power reception device, and power transmission system |
US8648559B2 (en) * | 2011-03-16 | 2014-02-11 | Deere & Company | System for controlling rotary electric machines to reduce current ripple on a direct current bus |
CN103222149A (en) * | 2011-03-22 | 2013-07-24 | 松下电器产业株式会社 | In-vehicle charger |
JP6074744B2 (en) * | 2011-04-22 | 2017-02-08 | パナソニックIpマネジメント株式会社 | In-vehicle charger and vehicle equipped with the same |
US9350193B2 (en) | 2011-06-01 | 2016-05-24 | Samsung Electronics Co., Ltd. | Method and apparatus for detecting load fluctuation of wireless power transmission |
EP2724442A2 (en) | 2011-06-21 | 2014-04-30 | Powermat Technologies Ltd. | In vehicle inductive power provision system and method |
US9948145B2 (en) | 2011-07-08 | 2018-04-17 | Witricity Corporation | Wireless power transfer for a seat-vest-helmet system |
CA2844062C (en) | 2011-08-04 | 2017-03-28 | Witricity Corporation | Tunable wireless power architectures |
JP5720501B2 (en) * | 2011-08-29 | 2015-05-20 | トヨタ自動車株式会社 | In-vehicle mobile terminal charger |
KR101855432B1 (en) * | 2011-09-07 | 2018-06-14 | 솔라스 파워 인크. | Wireless electric field power transmission system and method |
CN103875159B (en) | 2011-09-09 | 2017-03-08 | WiTricity公司 | Exterior object detection in wireless energy transmission system |
US20130062966A1 (en) | 2011-09-12 | 2013-03-14 | Witricity Corporation | Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems |
EP3166256B1 (en) * | 2011-09-12 | 2020-07-29 | Toyota Jidosha Kabushiki Kaisha | On-vehicle gateway apparatus and communication system for vehicle |
US9318257B2 (en) | 2011-10-18 | 2016-04-19 | Witricity Corporation | Wireless energy transfer for packaging |
US9145110B2 (en) * | 2011-10-27 | 2015-09-29 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
US20130106346A1 (en) * | 2011-10-27 | 2013-05-02 | Ford Global Technologies, Llc | Wireless charging system having sense shutdown and method therefor |
US8667452B2 (en) | 2011-11-04 | 2014-03-04 | Witricity Corporation | Wireless energy transfer modeling tool |
KR101338732B1 (en) * | 2011-11-10 | 2013-12-06 | 엘지이노텍 주식회사 | Apparatus for transmmiting wireless power and apparatus for receiving wireless power and method for transmitting wireless power, method for receiving wireless power, method for transmitting information and method for receiving information |
JP6002931B2 (en) * | 2011-12-07 | 2016-10-05 | パナソニックIpマネジメント株式会社 | Car charger |
JP2015508987A (en) | 2012-01-26 | 2015-03-23 | ワイトリシティ コーポレーションWitricity Corporation | Wireless energy transmission with reduced field |
US9048681B2 (en) | 2012-02-22 | 2015-06-02 | Nxp B.V. | Wireless power and data apparatus, system and method |
JP5273269B1 (en) * | 2012-02-23 | 2013-08-28 | パナソニック株式会社 | On-vehicle charger and automobile equipped with the same |
JP2013183548A (en) * | 2012-03-02 | 2013-09-12 | Toko Inc | Wireless power transmission device |
US9722447B2 (en) | 2012-03-21 | 2017-08-01 | Mojo Mobility, Inc. | System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment |
DE102012206728A1 (en) * | 2012-04-24 | 2013-10-24 | Robert Bosch Gmbh | Akkuinduktivladevorrichtung |
DE102012007922A1 (en) * | 2012-04-24 | 2013-10-24 | Peiker Acustic Gmbh & Co. Kg | Integration device and method for producing a wall of a receiving device |
US8928465B2 (en) * | 2012-05-30 | 2015-01-06 | GM Motors LLC | Aftermarket module arrangement and method for communicating over a vehicle bus |
US9343922B2 (en) | 2012-06-27 | 2016-05-17 | Witricity Corporation | Wireless energy transfer for rechargeable batteries |
JP5504307B2 (en) | 2012-07-04 | 2014-05-28 | 本田技研工業株式会社 | Vehicle power transmission device |
JP2014018021A (en) * | 2012-07-11 | 2014-01-30 | Panasonic Corp | On-vehicle charger, motor vehicle mounted with the same, and communication system using the same |
CN102768519A (en) * | 2012-07-18 | 2012-11-07 | 绍兴文理学院 | A processing platform for networked vehicle instrumentation system |
US9287607B2 (en) | 2012-07-31 | 2016-03-15 | Witricity Corporation | Resonator fine tuning |
US10033225B2 (en) | 2012-09-07 | 2018-07-24 | Solace Power Inc. | Wireless electric field power transmission system, transmitter and receiver therefor and method of wirelessly transferring power |
US9595378B2 (en) | 2012-09-19 | 2017-03-14 | Witricity Corporation | Resonator enclosure |
WO2014055658A2 (en) * | 2012-10-02 | 2014-04-10 | Witricity Corporation | Wireless power transfer |
JP5730262B2 (en) | 2012-10-18 | 2015-06-03 | オムロンオートモーティブエレクトロニクス株式会社 | In-vehicle system, vehicle control method, and vehicle control system |
JP6397417B2 (en) | 2012-10-19 | 2018-09-26 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
TW201416261A (en) * | 2012-10-19 | 2014-05-01 | Primax Electronics Ltd | Wireless charging transferring device |
US9312577B2 (en) * | 2012-11-09 | 2016-04-12 | Battelle Energy Alliance, Llc | Circuits and methods for determination and control of signal transition rates in electrochemical cells |
US9842684B2 (en) | 2012-11-16 | 2017-12-12 | Witricity Corporation | Systems and methods for wireless power system with improved performance and/or ease of use |
DE102013200811A1 (en) | 2013-01-18 | 2014-07-24 | Novero Dabendorf Gmbh | Holding device for a wirelessly coupleable terminal and method for producing a holding device |
TWI482389B (en) * | 2013-03-01 | 2015-04-21 | Luxx Lighting Technology Taiwan Ltd | Inductive power transfer system, and transmitter and receiver devices thereof |
US9197094B2 (en) | 2013-03-07 | 2015-11-24 | Ford Global Technologies, Llc | Wireless charger and charging system with multi-compatibility |
US9837846B2 (en) | 2013-04-12 | 2017-12-05 | Mojo Mobility, Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
KR102091489B1 (en) * | 2013-04-15 | 2020-03-20 | 에스엘 주식회사 | Automotive transmission and controlling method for the same |
CA2912198C (en) | 2013-05-10 | 2021-10-12 | Cynetic Designs Ltd. | Inductively coupled wireless power and data for a garment via a dongle |
DE102014208991A1 (en) * | 2013-05-15 | 2014-11-20 | Ford Global Technologies, Llc | Security system for wireless vehicle charging device |
CN104283238B (en) * | 2013-07-01 | 2017-11-17 | 比亚迪股份有限公司 | Onboard wireless charging system for mobile terminal |
EP3039770B1 (en) | 2013-08-14 | 2020-01-22 | WiTricity Corporation | Impedance tuning |
DE102013216753A1 (en) | 2013-08-23 | 2015-02-26 | Novero Dabendorf Gmbh | Device and method for combined signal transmission or for combined signal and energy transmission |
US10135304B2 (en) | 2013-09-05 | 2018-11-20 | Lg Innotek Co., Ltd. | Supporter |
CA2865457C (en) | 2013-09-30 | 2019-01-22 | Norman R. Byrne | Articles with electrical charging surfaces |
CA2865739C (en) | 2013-09-30 | 2018-12-04 | Norman R. Byrne | Wireless power for portable articles |
US20150091508A1 (en) * | 2013-10-01 | 2015-04-02 | Blackberry Limited | Bi-directional communication with a device under charge |
US10277080B2 (en) | 2014-01-27 | 2019-04-30 | Cummins Inc. | Inductive harness coupling and communication for distributed architectures |
US9780573B2 (en) | 2014-02-03 | 2017-10-03 | Witricity Corporation | Wirelessly charged battery system |
WO2015123614A2 (en) | 2014-02-14 | 2015-08-20 | Witricity Corporation | Object detection for wireless energy transfer systems |
US10664772B1 (en) | 2014-03-07 | 2020-05-26 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
US9716861B1 (en) | 2014-03-07 | 2017-07-25 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
DE102014206379A1 (en) * | 2014-04-03 | 2015-10-08 | Bayerische Motoren Werke Aktiengesellschaft | Provision of vehicle functions in combination with an inductive charging system |
US9842687B2 (en) | 2014-04-17 | 2017-12-12 | Witricity Corporation | Wireless power transfer systems with shaped magnetic components |
US9892849B2 (en) | 2014-04-17 | 2018-02-13 | Witricity Corporation | Wireless power transfer systems with shield openings |
US9837860B2 (en) | 2014-05-05 | 2017-12-05 | Witricity Corporation | Wireless power transmission systems for elevators |
JP2017518018A (en) | 2014-05-07 | 2017-06-29 | ワイトリシティ コーポレーションWitricity Corporation | Foreign object detection in wireless energy transmission systems |
US9766079B1 (en) | 2014-10-03 | 2017-09-19 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
US9380682B2 (en) | 2014-06-05 | 2016-06-28 | Steelcase Inc. | Environment optimization for space based on presence and activities |
US9955318B1 (en) | 2014-06-05 | 2018-04-24 | Steelcase Inc. | Space guidance and management system and method |
US11744376B2 (en) | 2014-06-06 | 2023-09-05 | Steelcase Inc. | Microclimate control systems and methods |
US10614694B1 (en) | 2014-06-06 | 2020-04-07 | Steelcase Inc. | Powered furniture assembly |
US10433646B1 (en) | 2014-06-06 | 2019-10-08 | Steelcaase Inc. | Microclimate control systems and methods |
US9954375B2 (en) | 2014-06-20 | 2018-04-24 | Witricity Corporation | Wireless power transfer systems for surfaces |
US10312746B2 (en) * | 2014-06-23 | 2019-06-04 | Htc Corporation | Power providing equipment, mobile device, operating method of mobile device |
US10574091B2 (en) | 2014-07-08 | 2020-02-25 | Witricity Corporation | Enclosures for high power wireless power transfer systems |
JP6518316B2 (en) | 2014-07-08 | 2019-05-22 | ワイトリシティ コーポレーションWitricity Corporation | Resonator Balancing in Wireless Power Transfer Systems |
JP6730257B2 (en) | 2014-09-05 | 2020-07-29 | ソレース・パワー・インコーポレイテッド | Wireless electric field power transmission system, method, and transmitter and receiver therefor |
RU2608477C2 (en) * | 2014-09-22 | 2017-01-18 | Общество с ограниченной ответственностью "Оригинал Софт" | Method of automotive device with wi-fi module connection and automatic adjustment |
US9852388B1 (en) | 2014-10-03 | 2017-12-26 | Steelcase, Inc. | Method and system for locating resources and communicating within an enterprise |
DE102014225022A1 (en) | 2014-12-05 | 2016-06-09 | Novero Dabendorf Gmbh | Device and method for controlling an inductive charging device in a vehicle |
US9843217B2 (en) | 2015-01-05 | 2017-12-12 | Witricity Corporation | Wireless energy transfer for wearables |
US10241499B1 (en) * | 2015-02-11 | 2019-03-26 | Lightforce Orthodontics, Inc. | Ceramic processing for the direct manufacture of customized labial and lingual orthodontic brackets |
US10181735B2 (en) | 2015-03-11 | 2019-01-15 | Norman R. Byrne | Portable electrical power unit |
US9906066B2 (en) * | 2015-04-13 | 2018-02-27 | Motorola Solutions, Inc. | Visor-mountable wireless charger and method of wireless charging |
US11016581B2 (en) * | 2015-04-21 | 2021-05-25 | Microsoft Technology Licensing, Llc | Base station for use with digital pens |
DE102015208254A1 (en) * | 2015-05-05 | 2016-11-10 | Robert Bosch Gmbh | Akkuinduktivladevorrichtung |
US10733371B1 (en) | 2015-06-02 | 2020-08-04 | Steelcase Inc. | Template based content preparation system for use with a plurality of space types |
DE102015009969A1 (en) * | 2015-07-31 | 2017-02-02 | Basim Uweis | Induction charger for mobile electronic devices |
DE102015215240A1 (en) * | 2015-08-10 | 2017-02-16 | Volkswagen Aktiengesellschaft | Device for coupling a mobile communication device with a motor vehicle |
WO2017037811A1 (en) | 2015-08-28 | 2017-03-09 | Tdk株式会社 | Non-contact power supply device and non-contact power transmission device |
WO2017062647A1 (en) | 2015-10-06 | 2017-04-13 | Witricity Corporation | Rfid tag and transponder detection in wireless energy transfer systems |
JP2018538517A (en) | 2015-10-14 | 2018-12-27 | ワイトリシティ コーポレーションWitricity Corporation | Phase and amplitude detection in wireless energy transfer systems |
WO2017070227A1 (en) | 2015-10-19 | 2017-04-27 | Witricity Corporation | Foreign object detection in wireless energy transfer systems |
CN108781002B (en) | 2015-10-22 | 2021-07-06 | 韦特里西提公司 | Dynamic tuning in wireless energy transfer systems |
US11178486B2 (en) | 2015-11-19 | 2021-11-16 | The Lovesac Company | Modular furniture speaker assembly with reconfigurable transverse members |
US11178487B2 (en) | 2015-11-19 | 2021-11-16 | The Lovesac Company | Electronic furniture systems with integrated induction charger |
US11689856B2 (en) | 2015-11-19 | 2023-06-27 | The Lovesac Company | Electronic furniture systems with integrated induction charger |
US10979241B2 (en) | 2015-11-19 | 2021-04-13 | The Lovesac Company | Electronic furniture systems with integrated artificial intelligence |
US11832039B2 (en) | 2021-04-12 | 2023-11-28 | The Lovesac Company | Tuning calibration technology for systems and methods for acoustically correcting sound loss through fabric |
US10212519B2 (en) | 2015-11-19 | 2019-02-19 | The Lovesac Company | Electronic furniture systems with integrated internal speakers |
US10075019B2 (en) | 2015-11-20 | 2018-09-11 | Witricity Corporation | Voltage source isolation in wireless power transfer systems |
EP3203604B1 (en) | 2016-02-02 | 2018-11-14 | WiTricity Corporation | Controlling wireless power transfer systems |
US10063104B2 (en) | 2016-02-08 | 2018-08-28 | Witricity Corporation | PWM capacitor control |
MX2017003091A (en) | 2016-03-11 | 2018-08-15 | Norman R Byrne | Furniture-mounted charging station. |
US9849799B2 (en) * | 2016-04-15 | 2017-12-26 | GM Global Technology Operations LLC | Adjustable device positioner |
US9921726B1 (en) | 2016-06-03 | 2018-03-20 | Steelcase Inc. | Smart workstation method and system |
CA2969439C (en) | 2016-06-03 | 2022-11-01 | Norman R. Byrne | Surface-mounted resonators for wireless power |
US20180090966A1 (en) * | 2016-09-27 | 2018-03-29 | Ford Global Technologies, Llc | System And Method For Communicating Dynamic Charging Attributes Of A Charging Station |
US10264213B1 (en) | 2016-12-15 | 2019-04-16 | Steelcase Inc. | Content amplification system and method |
EP3346581B1 (en) * | 2017-01-04 | 2023-06-14 | LG Electronics Inc. | Wireless charger for mobile terminal in vehicle |
WO2019006376A1 (en) | 2017-06-29 | 2019-01-03 | Witricity Corporation | Protection and control of wireless power systems |
US10680392B2 (en) | 2017-07-24 | 2020-06-09 | Norman R. Byrne | Furniture-mounted electrical charging station |
KR102517345B1 (en) | 2017-12-27 | 2023-04-03 | 삼성전자주식회사 | Method and system for charging mobile device in vehicle |
WO2020146790A1 (en) * | 2019-01-10 | 2020-07-16 | Sidewalk Labs LLC | Device installation systems, methods, and media for providing ubiquitous connectivity in outdoor environments |
US11444485B2 (en) | 2019-02-05 | 2022-09-13 | Mojo Mobility, Inc. | Inductive charging system with charging electronics physically separated from charging coil |
JP6963595B2 (en) * | 2019-10-17 | 2021-11-10 | 本田技研工業株式会社 | Vehicle console structure |
JP7207282B2 (en) * | 2019-12-09 | 2023-01-18 | 豊田合成株式会社 | Wireless power supply case |
US12118178B1 (en) | 2020-04-08 | 2024-10-15 | Steelcase Inc. | Wayfinding services method and apparatus |
US11984739B1 (en) | 2020-07-31 | 2024-05-14 | Steelcase Inc. | Remote power systems, apparatus and methods |
US11647840B2 (en) | 2021-06-16 | 2023-05-16 | The Lovesac Company | Furniture console and methods of using the same |
GB2629188A (en) * | 2023-04-20 | 2024-10-23 | Jaguar Land Rover Ltd | A system for charging a mobile device in a vehicle |
Family Cites Families (186)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US602966A (en) | 1898-04-26 | Leopold wallace | ||
US843534A (en) | 1900-04-18 | 1907-02-05 | Cooper Hewitt Electric Co | Method of producing electric light. |
US1137333A (en) | 1914-03-09 | 1915-04-27 | Joseph E Zang | Flexible clamp-joint. |
US1604870A (en) | 1926-05-07 | 1926-10-26 | Walter C Asman | Light fixture |
US1852740A (en) | 1929-08-21 | 1932-04-05 | Miller Co | Lamp |
US1803571A (en) | 1929-11-14 | 1931-05-05 | John J Ulman | Heating and illuminating device for fish aquariums |
US2265475A (en) | 1937-06-03 | 1941-12-09 | Fodor Joseph | Illuminating system |
US2199107A (en) | 1938-04-26 | 1940-04-30 | Clinton H Kibbe | Work assisting magnifying and illuminating device |
US2353063A (en) | 1941-11-06 | 1944-07-04 | Carl W Otis | Ornamental illuminating device |
US2686866A (en) | 1949-12-20 | 1954-08-17 | Duro Test Corp | Color mixing lighting apparatus |
US2731547A (en) | 1951-09-10 | 1956-01-17 | Corning Glass Works | Lamp assembly |
US2726116A (en) | 1951-10-20 | 1955-12-06 | John E Barber | Colored fountains |
US3047765A (en) | 1959-08-20 | 1962-07-31 | Gen Electric | Base assembly for electric lamps |
US3292579A (en) | 1965-06-24 | 1966-12-20 | Beverly J Buchanan | Aquarium power supply |
US3641336A (en) | 1967-05-06 | 1972-02-08 | Giovanni Boin | Electric lamps for emergency and/or for duty under particular environment conditions, and relative improved lamps |
US3551091A (en) | 1968-07-01 | 1970-12-29 | Louis P Veloz | Combination water filter and sterilizer |
US3550682A (en) | 1968-10-18 | 1970-12-29 | Exxon Production Research Co | Method and apparatus for making equipment connections at remote underwater locations and for producing fluids from underwater wells |
US3628086A (en) | 1969-09-11 | 1971-12-14 | Gen Electric | High-frequency lamp-operating circuit |
DE2029468A1 (en) | 1970-06-11 | 1971-12-16 | Schering Ag | Device for contactless electn see energy transfer |
US3746906A (en) | 1971-08-10 | 1973-07-17 | Gen Electric | Adapter base for electric lamp |
FR2154364B1 (en) | 1971-10-01 | 1975-06-06 | Snecma | |
US3867661A (en) | 1973-10-19 | 1975-02-18 | Us Navy | Quick warm-up lamp |
US3885185A (en) | 1974-03-29 | 1975-05-20 | Ralph E Tilley | Incandescent lamp |
US3923663A (en) | 1974-07-22 | 1975-12-02 | William P Reid | Fluid purification device |
US3938018A (en) | 1974-09-16 | 1976-02-10 | Dahl Ernest A | Induction charging system |
US3885211A (en) | 1974-09-16 | 1975-05-20 | Statham Instrument Inc | Rechargeable battery-operated illuminating device |
US4017764A (en) | 1975-01-20 | 1977-04-12 | General Electric Company | Electrodeless fluorescent lamp having a radio frequency gas discharge excited by a closed loop magnetic core |
US4005330A (en) | 1975-01-20 | 1977-01-25 | General Electric Company | Electrodeless fluorescent lamp |
US4010400A (en) | 1975-08-13 | 1977-03-01 | Hollister Donald D | Light generation by an electrodeless fluorescent lamp |
US4038625A (en) | 1976-06-07 | 1977-07-26 | General Electric Company | Magnetic inductively-coupled connector |
US4093893A (en) | 1976-11-22 | 1978-06-06 | General Electric Company | Short arc fluorescent lamp |
US4117378A (en) | 1977-03-11 | 1978-09-26 | General Electric Company | Reflective coating for external core electrodeless fluorescent lamp |
DE2851538C2 (en) | 1977-12-16 | 1985-03-14 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Arrangement for control devices in means of transport |
JPS587026B2 (en) | 1978-06-16 | 1983-02-08 | 株式会社日立製作所 | Simple fluorescent light |
US4300073A (en) | 1979-02-13 | 1981-11-10 | Westinghouse Electric Corp. | Screw-in type lighting unit having a convoluted tridimensional fluorescent lamp |
AU529323B2 (en) | 1979-09-29 | 1983-06-02 | K.K. Toshiba | Fluorescent lamp |
US4320256A (en) * | 1979-11-27 | 1982-03-16 | Freeman Michael J | Verbally interactive telephone interrogation system with selectible variable decision tree |
US4414489A (en) | 1981-11-04 | 1983-11-08 | North American Philips Electric Corp. | Compact electric discharge lamp-and-ballast unit, and plug-in ballast module therefor |
US4556837A (en) * | 1982-03-24 | 1985-12-03 | Terumo Kabushiki Kaisha | Electronic clinical thermometer |
JPS58162822A (en) * | 1982-03-24 | 1983-09-27 | Terumo Corp | Electronic clinical thermometer |
US6075340A (en) | 1985-11-12 | 2000-06-13 | Intermec Ip Corp. | Battery pack having memory |
US4818855A (en) | 1985-01-11 | 1989-04-04 | Indala Corporation | Identification system |
US4584707A (en) | 1985-01-22 | 1986-04-22 | Dataproducts New England, Inc. | Cordless communications system |
US4747158A (en) | 1985-01-22 | 1988-05-24 | Data Products New England, Inc. | Cordless communications system |
DE3503348C1 (en) | 1985-02-01 | 1986-06-19 | Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart | Ferromagnetic multi-shell core for electrical coils |
US4615799A (en) | 1985-05-01 | 1986-10-07 | J. Mortensen & Company Limited | Water purification and sterilization system |
GB2175777A (en) | 1985-05-24 | 1986-12-03 | Still & Sons Ltd W M | Improvements in and relating to water purifiers |
US4637434A (en) | 1985-06-07 | 1987-01-20 | Beloit Corporation | Three-way valve for an attenuator |
US4675573A (en) | 1985-08-23 | 1987-06-23 | Varian Associates, Inc. | Method and apparatus for quickly heating a vacuum tube cathode |
US4752401A (en) | 1986-02-20 | 1988-06-21 | Safe Water Systems International, Inc. | Water treatment system for swimming pools and potable water |
US4968437A (en) | 1986-05-09 | 1990-11-06 | Electrolux Water Systems, Inc. | Fluid purification system |
US4800328A (en) | 1986-07-18 | 1989-01-24 | Inductran Inc. | Inductive power coupling with constant voltage output |
AT388365B (en) | 1986-11-17 | 1989-06-12 | Venturama Ag | DEVICE FOR TREATING WATER |
JPH0831585B2 (en) | 1987-04-20 | 1996-03-27 | オリンパス光学工業株式会社 | Solid-state imaging device |
US5184891A (en) | 1987-06-09 | 1993-02-09 | Amrus Corporation | Connective joint with interlocking ring structures, forming a lamp or portions thereof |
US4838797A (en) | 1987-06-19 | 1989-06-13 | The United States Of America As Represented By The Secretary Of The Navy | Underwater connect and disconnect plug and receptacle |
US4772991A (en) | 1987-07-02 | 1988-09-20 | Coleman Wood | Lamp construction |
US4954756A (en) | 1987-07-15 | 1990-09-04 | Fusion Systems Corporation | Method and apparatus for changing the emission characteristics of an electrodeless lamp |
US4971687A (en) | 1987-11-06 | 1990-11-20 | John B. Knight, Jr. | Apparatus for water treatment |
US4812702A (en) | 1987-12-28 | 1989-03-14 | General Electric Company | Excitation coil for hid electrodeless discharge lamp |
US4816977A (en) | 1988-02-16 | 1989-03-28 | Rcs Industries, Inc. | Lamp with removable bulb capsule |
NL8800584A (en) | 1988-03-09 | 1989-10-02 | Philips Nv | ELECTRESSLESS LOW PRESSURE DISCHARGE LAMP. |
JPH01236737A (en) | 1988-03-16 | 1989-09-21 | Seiko Instr & Electron Ltd | Data gathering system |
US4894591A (en) | 1988-09-06 | 1990-01-16 | General Electric Company | Inverted Excitation coil for HID lamps |
US4854214A (en) | 1988-09-09 | 1989-08-08 | Lowe Donald J | Illuminated wind chime |
JP2820706B2 (en) | 1989-03-02 | 1998-11-05 | 株式会社日本自動車部品総合研究所 | Power supply device having coil for electromagnetic coupling |
US4972120A (en) | 1989-05-08 | 1990-11-20 | General Electric Company | High efficacy electrodeless high intensity discharge lamp |
US5030889A (en) | 1989-12-21 | 1991-07-09 | General Electric Company | Lamp ballast configuration |
US5041763A (en) | 1989-12-22 | 1991-08-20 | Lutron Electronics Co., Inc. | Circuit and method for improved dimming of gas discharge lamps |
US4958266A (en) | 1990-01-02 | 1990-09-18 | Rcs Industries, Inc. | Lamp having an improved bulb mounting member |
JP2548415B2 (en) | 1990-01-08 | 1996-10-30 | シャープ株式会社 | Power supply |
US5039903A (en) | 1990-03-14 | 1991-08-13 | General Electric Company | Excitation coil for an electrodeless high intensity discharge lamp |
CA2081571C (en) * | 1990-05-01 | 1998-09-15 | Nancy A. K. Perkins | Health care services comparison processing |
GB9011970D0 (en) | 1990-05-29 | 1990-07-18 | Leigh Stewart Prod | Electrical control system for,for example,an air spa bath |
US5311028A (en) | 1990-08-29 | 1994-05-10 | Nissin Electric Co., Ltd. | System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions |
DE9012505U1 (en) | 1990-08-31 | 1991-06-27 | Siemens AG, 80333 München | Electronic door locking device |
DE59108752D1 (en) | 1991-01-16 | 1997-07-24 | Erbe Elektromedizin | High frequency surgical device |
US5101332A (en) | 1991-04-30 | 1992-03-31 | Hsia Wang Y | Retractable device for a desk lamp |
US5200688A (en) * | 1991-05-31 | 1993-04-06 | Motorola, Inc. | Vehicular charger |
US5146140A (en) | 1991-06-18 | 1992-09-08 | Gte Products Corporation | Method and apparatus to reduce Hg loss in rf capacitively coupled gas discharges |
US5814900A (en) | 1991-07-30 | 1998-09-29 | Ulrich Schwan | Device for combined transmission of energy and electric signals |
US5450305A (en) | 1991-08-12 | 1995-09-12 | Auckland Uniservices Limited | Resonant power supplies |
US5141325A (en) | 1991-09-10 | 1992-08-25 | Huang James C S | Lamp with collapsible arm |
US5301096A (en) | 1991-09-27 | 1994-04-05 | Electric Power Research Institute | Submersible contactless power delivery system |
US5341280A (en) | 1991-09-27 | 1994-08-23 | Electric Power Research Institute | Contactless coaxial winding transformer power transfer system |
US5158361A (en) | 1991-11-25 | 1992-10-27 | Soddy Huang | Structure of lamp frame assembly |
GB2262634B (en) | 1991-12-18 | 1995-07-12 | Apple Computer | Power connection scheme |
US5216402A (en) | 1992-01-22 | 1993-06-01 | Hughes Aircraft Company | Separable inductive coupler |
US5264997A (en) | 1992-03-04 | 1993-11-23 | Dominion Automotive Industries Corp. | Sealed, inductively powered lamp assembly |
US5229652A (en) | 1992-04-20 | 1993-07-20 | Hough Wayne E | Non-contact data and power connector for computer based modules |
JPH06105471A (en) | 1992-08-06 | 1994-04-15 | Toyota Autom Loom Works Ltd | Electromagentic power supply |
US5300860A (en) | 1992-10-16 | 1994-04-05 | Gte Products Corporation | Capacitively coupled RF fluorescent lamp with RF magnetic enhancement |
US5289085A (en) | 1992-10-16 | 1994-02-22 | Gte Products Corporation | Capacitively driven RF light source having notched electrode for improved starting |
DE4238388C2 (en) | 1992-11-13 | 1997-02-20 | Heidelberger Druckmasch Ag | Electronic circuit arrangement for controlling a UV radiation source |
US5280416A (en) | 1992-11-27 | 1994-01-18 | Eye Design, Inc. | Bookmark light |
US5465025A (en) | 1993-05-10 | 1995-11-07 | Litetronics International, Inc. | Lamp with removable base and replaceable bulb capsule |
US5339233A (en) | 1993-05-12 | 1994-08-16 | Roger Yang | Lamp assembly |
JP3409145B2 (en) | 1993-07-26 | 2003-05-26 | 任天堂株式会社 | Small electrical equipment |
US5455466A (en) * | 1993-07-29 | 1995-10-03 | Dell Usa, L.P. | Inductive coupling system for power and data transfer |
KR950007263A (en) | 1993-08-23 | 1995-03-21 | 사카모토 히데오 | Drive circuit for stepping motor |
US5416388A (en) | 1993-12-09 | 1995-05-16 | Motorola Lighting, Inc. | Electronic ballast with two transistors and two transformers |
JP3663223B2 (en) | 1993-12-10 | 2005-06-22 | ゼネラル・エレクトリック・カンパニイ | Optical coupling device and light distribution device for electrodeless discharge lamp |
US5471382A (en) * | 1994-01-10 | 1995-11-28 | Informed Access Systems, Inc. | Medical network management system and process |
JP3116715B2 (en) | 1994-03-11 | 2000-12-11 | 株式会社安川電機 | FA connector and work pallet using the same |
DE4412957A1 (en) | 1994-04-17 | 1995-10-19 | Schwan Ulrich | Transmission device |
US5553312A (en) | 1994-06-20 | 1996-09-03 | Acs Wireless, Inc. | Data transfer and communication network |
US5680028A (en) | 1994-06-30 | 1997-10-21 | Mceachern; Alexander | Charger for hand-held rechargeable electric apparatus with reduced magnetic field |
JP2671809B2 (en) | 1994-06-30 | 1997-11-05 | 日本電気株式会社 | Non-contact charging device |
US5536979A (en) | 1994-06-30 | 1996-07-16 | Mceachern; Alexander | Charger for hand-held rechargeable electric apparatus with switch for reduced magnetic field |
US5686887A (en) | 1994-12-07 | 1997-11-11 | Schoeferisch Aeusserung Anstalt | Electronic locating device |
DE4446779C2 (en) | 1994-12-24 | 1996-12-19 | Daimler Benz Ag | Arrangement for the contactless inductive transmission of electrical power |
KR19990014897A (en) | 1995-05-18 | 1999-02-25 | 프란시스 에이 월드만 | Near field communication system |
EP0886363B1 (en) | 1995-05-29 | 2004-03-03 | Matsushita Electric Industrial Co., Ltd. | Power source apparatus |
US5706441A (en) * | 1995-06-07 | 1998-01-06 | Cigna Health Corporation | Method and apparatus for objectively monitoring and assessing the performance of health-care providers |
US5716126A (en) | 1995-07-28 | 1998-02-10 | Meyer; Raymond F. | Mobile floor lamp |
US5594304A (en) | 1995-07-31 | 1997-01-14 | Woodhead Industries, Inc. | Portable fluorescent lamp for use in special applications |
US5611918A (en) | 1995-08-02 | 1997-03-18 | Amway Corporation | Electronic driver for water treatment system UV bulb |
US5834905A (en) | 1995-09-15 | 1998-11-10 | Osram Sylvania Inc. | High intensity electrodeless low pressure light source driven by a transformer core arrangement |
US5905343A (en) | 1995-10-10 | 1999-05-18 | Mccamant; Angus J. | Inductively coupled incandescent light bulb |
JPH11514489A (en) | 1995-10-24 | 1999-12-07 | オークランド ユニサーヴィスィス リミテッド | Inductive power supply lighting device |
DE19540854A1 (en) | 1995-11-10 | 1997-05-22 | Karl Heinz Schmall | Electromagnetic multi-way coupler for telecommunications and data transmission systems |
US5924073A (en) * | 1995-11-14 | 1999-07-13 | Beacon Patient Physician Association, Llc | System and method for assessing physician performance using robust multivariate techniques of statistical analysis |
US6020682A (en) | 1996-01-10 | 2000-02-01 | Holzer; Walter | Fluorescent lamp with replaceable lamp part |
GB9600846D0 (en) | 1996-01-16 | 1996-03-20 | Coveley Michael | FPT switchable voltage controlled oscillator |
GB9600982D0 (en) | 1996-01-18 | 1996-03-20 | Central Research Lab Ltd | An oscillator |
US5619182A (en) | 1996-01-18 | 1997-04-08 | Robb; Charles L. R. | Configurable color selection circuit for choosing colors of multi-colored leds in toys and secondary automotive flasher/brake indicators |
US5653531A (en) | 1996-01-31 | 1997-08-05 | Yang; Kuo-Fu | Desk lamp |
DE19607208C2 (en) | 1996-02-26 | 2002-02-21 | Walter Holzer | Fluorescent lamp with replaceable light part |
DE19621076C2 (en) | 1996-05-24 | 2001-06-28 | Siemens Ag | Device and method for the contactless transmission of energy or data |
US6291936B1 (en) | 1996-05-31 | 2001-09-18 | Fusion Lighting, Inc. | Discharge lamp with reflective jacket |
JPH09326736A (en) | 1996-06-03 | 1997-12-16 | Mitsubishi Electric Corp | Secondary side circuit equipment for wireless transmission/reception system and induction coil for wireless transmission/reception system |
JP3456093B2 (en) | 1996-06-25 | 2003-10-14 | 松下電工株式会社 | Non-contact power transmission device |
US5838774A (en) * | 1996-07-01 | 1998-11-17 | Bellsouth Corporation | Telephone polling method |
JPH1023677A (en) | 1996-07-03 | 1998-01-23 | Uniden Corp | Non-contact charging device, charger, cordless device and non-contact charger |
JPH1092673A (en) | 1996-07-26 | 1998-04-10 | Tdk Corp | Non-contact power transmission device |
IT1288972B1 (en) | 1996-08-12 | 1998-09-25 | Pro6Tec Srl | REMOTE RECOGNITION AND READING SYSTEM OF METERS |
KR200167725Y1 (en) | 1996-10-09 | 2000-02-01 | 성덕수 | Bulb-type fluorescent lamps that reduce the strength of electromagnetic fields and emit far infrared rays |
JPH11502391A (en) | 1996-11-04 | 1999-02-23 | フィリップス、エレクトロニクス、ネムローゼ、フェンノートシャップ | Circuit device |
EP0886906A1 (en) | 1996-11-20 | 1998-12-30 | Koninklijke Philips Electronics N.V. | An induction charging apparatus and an electronic device |
JPH10151148A (en) | 1996-11-26 | 1998-06-09 | Matsushita Electric Works Ltd | Washing device |
US6151581A (en) * | 1996-12-17 | 2000-11-21 | Pulsegroup Inc. | System for and method of collecting and populating a database with physician/patient data for processing to improve practice quality and healthcare delivery |
GB2322019A (en) | 1997-02-07 | 1998-08-12 | Central Research Lab Ltd | Gas discharge lamp drive circuit |
US5890779A (en) * | 1997-04-08 | 1999-04-06 | Trw Vehicle Safety Systems Inc. | Apparatus for providing electrical communication between parts of a vehicle |
US6275143B1 (en) | 1997-05-09 | 2001-08-14 | Anatoli Stobbe | Security device having wireless energy transmission |
US5929604A (en) * | 1997-06-18 | 1999-07-27 | Ericsson, Inc. | Battery-discharge-protection system for electronic accessories used in vehicles containing a battery |
US6101241A (en) * | 1997-07-16 | 2000-08-08 | At&T Corp. | Telephone-based speech recognition for data collection |
US5831516A (en) | 1997-08-13 | 1998-11-03 | Jennings; David | Electromechanical chime |
DE19735624C1 (en) | 1997-08-18 | 1998-12-10 | Daimler Benz Ag | Method of inductive transfer of electrical power to several moving loads |
US5980056A (en) | 1997-08-28 | 1999-11-09 | West; Mark | Outdoor lighting fixture providing audio and visual effects |
US5951155A (en) | 1997-09-03 | 1999-09-14 | Prince Corporation | Variable intensity light assembly |
DE19836401A1 (en) | 1997-09-19 | 2000-02-17 | Salcomp Oy Salo | Device for charging accumulators |
JP3840765B2 (en) * | 1997-11-21 | 2006-11-01 | 神鋼電機株式会社 | Primary power supply side power supply device for contactless power transfer system |
US6027225A (en) | 1997-12-24 | 2000-02-22 | Martin; William E. | Battery powered light having solar and inductive charging means |
US6137237A (en) | 1998-01-13 | 2000-10-24 | Fusion Lighting, Inc. | High frequency inductive lamp and power oscillator |
US5943416A (en) * | 1998-02-17 | 1999-08-24 | Genesys Telecommunications Laboratories, Inc. | Automated survey control routine in a call center environment |
JPH11231910A (en) | 1998-02-17 | 1999-08-27 | Canon Inc | Robot system, controlling method and record medium |
ES2253882T3 (en) | 1998-03-30 | 2006-06-01 | Biosense Webster, Inc. | THREE AXLE COIL SENSOR. |
TW342784U (en) | 1998-04-14 | 1998-10-11 | yong-chang Lin | Dynamic decorator |
US6047214A (en) | 1998-06-09 | 2000-04-04 | North Carolina State University | System and method for powering, controlling, and communicating with multiple inductively-powered devices |
DE19837675A1 (en) | 1998-08-19 | 2000-02-24 | Nokia Technology Gmbh | Charging device for accumulators in a mobile electrical device with inductive energy transfer |
US6194828B1 (en) | 1998-10-08 | 2001-02-27 | Federal-Mogul World Wide, Inc. | Electrodeless gas discharge lamp having flat induction coil and dual gas envelopes |
US6181082B1 (en) | 1998-10-15 | 2001-01-30 | Electro-Mag International, Inc. | Ballast power control circuit |
GB9826671D0 (en) | 1998-12-03 | 1999-01-27 | Process Scient Innovations | Filters and active devices |
US6141710A (en) * | 1998-12-15 | 2000-10-31 | Daimlerchrysler Corporation | Interfacing vehicle data bus to intelligent transportation system (ITS) data bus via a gateway module |
AU2930900A (en) | 1999-03-10 | 2000-09-28 | Ea Technology Limited | Battery chargers |
US6218785B1 (en) | 1999-03-19 | 2001-04-17 | Incerti & Simonini Di Incerti Edda & C. S.N.C. | Low-tension lighting device |
US6339296B1 (en) | 1999-05-11 | 2002-01-15 | Jerzy M. Goral | Low profile emergency ballast |
EP1190476B1 (en) | 1999-06-11 | 2010-02-24 | ABB Research Ltd. | System for a machine with a plurality of actuators |
US7522878B2 (en) * | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US6436299B1 (en) | 1999-06-21 | 2002-08-20 | Amway Corporation | Water treatment system with an inductively coupled ballast |
GB9923389D0 (en) | 1999-10-05 | 1999-12-08 | Central Research Lab Ltd | A high frequency power oscillator |
GB9923390D0 (en) | 1999-10-05 | 1999-12-08 | Central Research Lab Ltd | A high frequency power oscillator |
US6150796A (en) * | 1999-10-22 | 2000-11-21 | Motorola, Inc. | Low current vehicular adapter charger |
US6280066B1 (en) | 1999-11-10 | 2001-08-28 | Patrick S. Dolan | Lamp display system |
JP2001190029A (en) | 1999-12-28 | 2001-07-10 | Matsushita Electric Ind Co Ltd | Charger |
US6322226B1 (en) | 2000-01-24 | 2001-11-27 | Daniel Dickson | Adjustable illumination apparatus having pre-focused led and magnification lens |
US6301128B1 (en) | 2000-02-09 | 2001-10-09 | Delta Electronics, Inc. | Contactless electrical energy transmission system |
US20030090239A1 (en) | 2000-04-13 | 2003-05-15 | Kazuyuki Sakakibara | Adapter for battery charger |
JP2003011734A (en) | 2001-04-26 | 2003-01-15 | Denso Corp | Mounting structure of electrical apparatus for vehicle |
WO2003105308A1 (en) * | 2002-01-11 | 2003-12-18 | City University Of Hong Kong | Planar inductive battery charger |
US6906495B2 (en) * | 2002-05-13 | 2005-06-14 | Splashpower Limited | Contact-less power transfer |
AU2003240999A1 (en) * | 2002-05-13 | 2003-11-11 | Splashpower Limited | Improvements relating to the transfer of electromagnetic power |
GB2388715B (en) | 2002-05-13 | 2005-08-03 | Splashpower Ltd | Improvements relating to the transfer of electromagnetic power |
US20030222769A1 (en) | 2002-05-31 | 2003-12-04 | Kevin Mau | System, interface, and method for two-way cellular control of automobile electrical systems |
GB0213023D0 (en) | 2002-06-07 | 2002-07-17 | Zap Wireless Technologies Ltd | Improvements relating to charging of devices |
GB2393860B (en) * | 2002-09-27 | 2006-02-15 | Zap Wireless Technologies Ltd | Improvements relating to retention of rechargeable devices |
-
2004
- 2004-06-18 US US10/871,420 patent/US7612528B2/en not_active Expired - Lifetime
-
2005
- 2005-06-06 CN CNA2005800201207A patent/CN101044664A/en active Pending
- 2005-06-06 WO PCT/IB2005/051830 patent/WO2005122686A2/en active Application Filing
- 2005-06-06 EP EP05744001.8A patent/EP1766753B1/en active Active
- 2005-06-06 CN CN2009101635468A patent/CN101697426B/en active Active
- 2005-06-06 CA CA2567634A patent/CA2567634C/en active Active
- 2005-06-06 RU RU2007101611/09A patent/RU2390904C2/en not_active IP Right Cessation
- 2005-06-06 JP JP2007516086A patent/JP4695137B2/en active Active
- 2005-06-06 KR KR1020067026399A patent/KR101158145B1/en active IP Right Grant
- 2005-06-06 TR TR2019/07403T patent/TR201907403T4/en unknown
- 2005-06-10 MY MYPI20052637A patent/MY141435A/en unknown
- 2005-06-13 TW TW094119456A patent/TWI294225B/en active
-
2010
- 2010-06-25 HK HK10106276.0A patent/HK1140317A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2005122686A3 (en) | 2007-02-08 |
JP4695137B2 (en) | 2011-06-08 |
KR101158145B1 (en) | 2012-06-19 |
CN101697426A (en) | 2010-04-21 |
TW200611507A (en) | 2006-04-01 |
HK1140317A1 (en) | 2010-10-08 |
RU2007101611A (en) | 2008-07-27 |
WO2005122686A2 (en) | 2005-12-29 |
US7612528B2 (en) | 2009-11-03 |
TR201907403T4 (en) | 2019-06-21 |
EP1766753A4 (en) | 2015-04-08 |
US20050007067A1 (en) | 2005-01-13 |
CN101697426B (en) | 2012-12-05 |
CA2567634A1 (en) | 2005-12-29 |
TWI294225B (en) | 2008-03-01 |
MY141435A (en) | 2010-04-30 |
EP1766753B1 (en) | 2019-03-27 |
JP2008503196A (en) | 2008-01-31 |
KR20070030217A (en) | 2007-03-15 |
EP1766753A2 (en) | 2007-03-28 |
CN101044664A (en) | 2007-09-26 |
US20080001572A9 (en) | 2008-01-03 |
RU2390904C2 (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2567634C (en) | Vehicle interface | |
US8901875B2 (en) | Bi-directional wireless charger | |
JP4384657B2 (en) | adapter | |
KR101114428B1 (en) | System for multi node wireless energy transmission using resonance magnetic induction | |
US6528969B2 (en) | Charging device of mobile phone suitable for mobile phones of various types | |
KR101171142B1 (en) | Apparatus, method and system for wireless charging for vehicle using resonance magnetic induction | |
JP2008503196A5 (en) | ||
US20030211871A1 (en) | Wireless headset | |
US11011918B2 (en) | Intelligent charging USB splitter | |
CN101902062A (en) | Vehicle-mounted wireless charging device | |
US20120161721A1 (en) | Power harvesting systems | |
US20030040344A1 (en) | Power caching pan architecture | |
CN108988511A (en) | A kind of efficient wireless charging method and wireless charging device | |
WO2004008649A1 (en) | Modular adaptor assembly for personal digital appliance | |
CN102857274A (en) | Short range wireless communication apparatus | |
CN201860177U (en) | Vehicle-mounted wireless charging device | |
KR20180083830A (en) | Adjustable wireless charger | |
CN203135879U (en) | A vehicle-mounted Bluetooth device | |
KR200399141Y1 (en) | Apparatus for charging battery of cellular phone | |
KR20240141482A (en) | Wireless power supplying apparatus using commercial frequency for electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |