CA2562323A1 - Natural gas liquefaction - Google Patents
Natural gas liquefaction Download PDFInfo
- Publication number
- CA2562323A1 CA2562323A1 CA002562323A CA2562323A CA2562323A1 CA 2562323 A1 CA2562323 A1 CA 2562323A1 CA 002562323 A CA002562323 A CA 002562323A CA 2562323 A CA2562323 A CA 2562323A CA 2562323 A1 CA2562323 A1 CA 2562323A1
- Authority
- CA
- Canada
- Prior art keywords
- stream
- receive
- residue gas
- gas fraction
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0057—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0205—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/80—Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
A process for liquefying natural gas in conjunction with producing a liquid stream containing predominantly hydrocarbons heavier than methane is disclosed. In the process, the natural gas stream to be liquefied is partially cooled, expanded to an intermediate pressure, and supplied to a distillation column. The bottom product from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas. The residual gas stream from the distillation column is compressed to a higher intermediate pressure, cooled under pressure to condense it, and then expanded to low pressure to form the liquefied natural gas stream.
Claims (78)
1. In a process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein (a) said natural gas stream is cooled under pressure to condense at least a portion of it and form a condensed stream; and (b) said condensed stream is expanded to lower pressure to form said liquefied natural gas stream;
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps;
(2) said cooled natural gas stream is divided into at least a first gaseous stream and a second gaseous stream;
(3) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(4) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(5) said second gaseous stream is expanded to said intermediate pressure;
(6) said warmed expanded first gaseous stream and said expanded second gaseous stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(7) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(8) said reflux stream is directed into said distillation column as a top feed thereto; and (9) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps;
(2) said cooled natural gas stream is divided into at least a first gaseous stream and a second gaseous stream;
(3) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(4) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(5) said second gaseous stream is expanded to said intermediate pressure;
(6) said warmed expanded first gaseous stream and said expanded second gaseous stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(7) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(8) said reflux stream is directed into said distillation column as a top feed thereto; and (9) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
2. In a process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein (a) said natural gas stream is cooled under pressure to condense at least a portion of it and form a condensed stream; and (b) said condensed stream is expanded to lower pressure to form said liquefied natural gas stream;
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(5) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(6) sand second gaseous stream is expanded to said intermediate pressure;
(7) said liquid stream is expanded to said intermediate pressure;
(8) said warmed expanded first gaseous stream, said expanded second gaseous stream, and said expanded liquid stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(9) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(10) said reflux stream is directed into said distillation column as a top feed thereto; and (11) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(5) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(6) sand second gaseous stream is expanded to said intermediate pressure;
(7) said liquid stream is expanded to said intermediate pressure;
(8) said warmed expanded first gaseous stream, said expanded second gaseous stream, and said expanded liquid stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(9) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(10) said reflux stream is directed into said distillation column as a top feed thereto; and (11) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
3. In a process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein (a) said natural gas stream is cooled under pressure to condense at least a portion of it and form a condensed stream; and (b) said condensed stream is expanded to lower pressure to form said liquefied natural gas stream;
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is combined with at least a portion of said liquid stream, forming thereby a combined stream;
(5) said combined stream, is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(6) said expanded substantially condensed combined stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(7) said second gaseous stream is expanded to said intermediate pressure;
(8) any remaining portion of said liquid stream is expanded to said intermediate pressure;
(9) said warmed expanded combined stream, said expanded second gaseous stream, and said expanded remaining portion of said liquid stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(10) said more volatile vapor distillation stream is cooled by said expanded substantially condensed combined stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(11) said reflux stream is directed into said distillation column as a top feed thereto; and (12) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is combined with at least a portion of said liquid stream, forming thereby a combined stream;
(5) said combined stream, is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(6) said expanded substantially condensed combined stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(7) said second gaseous stream is expanded to said intermediate pressure;
(8) any remaining portion of said liquid stream is expanded to said intermediate pressure;
(9) said warmed expanded combined stream, said expanded second gaseous stream, and said expanded remaining portion of said liquid stream are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(10) said more volatile vapor distillation stream is cooled by said expanded substantially condensed combined stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(11) said reflux stream is directed into said distillation column as a top feed thereto; and (12) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
4. In a process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein (a) said natural gas stream is cooled under pressure to condense at least a portion of it and form a condensed stream; and (b) said condensed stream is expanded to lower pressure to form said liquefied natural gas stream;
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(5) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(6) said second gaseous stream is expanded to said intermediate pressure;
(7) said liquid stream is cooled and thereafter divided into at least a first portion and a second portion;
(8) said first portion is expanded to said intermediate pressure and thereafter warmed;
(9) said second portion is expanded to said intermediate pressure;
(10) said warmed expanded first gaseous stream, said expanded second gaseous stream, said warmed expanded first portion, and said expanded second portion are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflex stream;
(12) said reflex stream is directed into said distillation column as a top feed thereto; and (13) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it and thereafter expanded to an intermediate pressure;
(5) said expanded substantially condensed first gaseous stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(6) said second gaseous stream is expanded to said intermediate pressure;
(7) said liquid stream is cooled and thereafter divided into at least a first portion and a second portion;
(8) said first portion is expanded to said intermediate pressure and thereafter warmed;
(9) said second portion is expanded to said intermediate pressure;
(10) said warmed expanded first gaseous stream, said expanded second gaseous stream, said warmed expanded first portion, and said expanded second portion are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) said more volatile vapor distillation stream is cooled by said expanded substantially condensed first gaseous stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflex stream;
(12) said reflex stream is directed into said distillation column as a top feed thereto; and (13) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
5. In a process for liquefying a natural gas stream containing methane and heavier hydrocarbon components wherein (a) said natural gas stream is cooled under pressure to condense at least a portion of it and form a condensed stream; and (b) said condensed stream is expanded to lower pressure to form said liquefied natural gas stream;
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it;
(5) said liquid stream is cooled and thereafter divided into at least a first portion and a second portion;
(6) said first portion is expanded to an intermediate pressure and thereafter warmed;
(7) said second portion is combined with said substantially condensed first gaseous stream, forming thereby a combined stream, whereupon said combined stream is expanded to said intermediate pressure;
(8) said expanded combined stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(9) said second gaseous stream is expanded to said intermediate pressure;
(10) said warmed expanded combined stream, said expanded second gaseous stream, and said warmed expanded first portion are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) said more volatile vapor distillation stream is cooled by said expanded combined stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(12) said reflux stream is directed into said distillation column as a top feed thereto; and (13) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
the improvement wherein (1) said natural gas stream is treated in one or more cooling steps to partially condense it;
(2) said partially condensed natural gas stream is separated to provide thereby a vapor stream and a liquid stream;
(3) said vapor stream is divided into at least a first gaseous stream and a second gaseous stream;
(4) said first gaseous stream is cooled to condense substantially all of it;
(5) said liquid stream is cooled and thereafter divided into at least a first portion and a second portion;
(6) said first portion is expanded to an intermediate pressure and thereafter warmed;
(7) said second portion is combined with said substantially condensed first gaseous stream, forming thereby a combined stream, whereupon said combined stream is expanded to said intermediate pressure;
(8) said expanded combined stream is directed in heat exchange relation with a more volatile vapor distillation stream which rises from fractionation stages of a distillation column and is thereby warmed;
(9) said second gaseous stream is expanded to said intermediate pressure;
(10) said warmed expanded combined stream, said expanded second gaseous stream, and said warmed expanded first portion are directed into said distillation column wherein said streams are separated into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) said more volatile vapor distillation stream is cooled by said expanded combined stream sufficiently to partially condense it and is thereafter separated to form a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream;
(12) said reflux stream is directed into said distillation column as a top feed thereto; and (13) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
6. The improvement according to claim 1 wherein said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a portion of said tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column.
7. The improvement according to claim 2 wherein said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a portion of said tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column.
8. The improvement according to claim 3 wherein said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a portion of said tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column.
9. The improvement according to claim 4 wherein said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a portion of said tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column.
10. The improvement according to claim 5 wherein said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a portion of said tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column.
11. The improvement according to claim 1 wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a dephlegmator and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows from the dephlegmator to the top fractionation stage of said distillation column.
12. The improvement according to claim 2 wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a dephlegmator and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows from the dephlegmator to the top fractionation stage of said distillation column.
13. The improvement according to claim 3 wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a dephlegmator and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows from the dephlegmator to the top fractionation stage of said distillation column.
14. The improvement according to claim 4 wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a dephlegmator and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows from the dephlegmator to the top fractionation stage of said distillation column.
15. The improvement according to claim 5 wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a dephlegmator and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows from the dephlegmator to the top fractionation stage of said distillation column.
16. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 wherein said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
17. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 wherein said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
18. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
19. The improvement according to claim 16 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and components.
20. The improvement according to claim 17 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and components.
21. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
22. The improvement according to claim 16 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, Ca components, and C3 components.
23. The improvement according to claim 17 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
24. An apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, which includes (1) one or more first heat exchange means to receive said natural gas stream and cool it under pressure;
(2) dividing means connected to said first heat exchange means to receive said cooled natural gas stream and divide it into at least a first gaseous stream and a second gaseous stream;
(3) second heat exchange means connected to said dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(4) first expansion means connected to said second heat exchange means to receive said substantially condensed first gaseous stream and expand it to an intermediate pressure;
(5) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(6) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(7) said distillation column being further connected to said third heat exchange means and said second expansion means to receive said heated expanded first gaseous stream and said expanded second gaseous stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(8) separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(9) fourth heat exchange means connected to said separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(10) third expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to forth said liquefied natural gas stream; and (11) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
(2) dividing means connected to said first heat exchange means to receive said cooled natural gas stream and divide it into at least a first gaseous stream and a second gaseous stream;
(3) second heat exchange means connected to said dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(4) first expansion means connected to said second heat exchange means to receive said substantially condensed first gaseous stream and expand it to an intermediate pressure;
(5) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(6) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(7) said distillation column being further connected to said third heat exchange means and said second expansion means to receive said heated expanded first gaseous stream and said expanded second gaseous stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(8) separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(9) fourth heat exchange means connected to said separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(10) third expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to forth said liquefied natural gas stream; and (11) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
25. An apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, which includes (1) one or more first heat exchange means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it;
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(4) second heat exchange means connected to said dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(5) first expansion means connected to said second heat exchange means to receive said substantially condensed first gaseous stream and expand it to an intermediate pressure;
(6) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(7) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(8) third expansion means connected to said first separation means to receive said liquid stream and expand it to said intermediate pressure;
(9) said distillation column being further connected to said third heat exchange means, said second expansion means, and said third expansion means to receive said heated expanded first gaseous stream, said expanded second gaseous stream, and said expanded liquid stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(10) second separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflex stream, said second separation means being further connected to said distillation column to direct said reflex stream into said distillation column as a top feed thereto;
(11) fourth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(12) fourth expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (13) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(4) second heat exchange means connected to said dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(5) first expansion means connected to said second heat exchange means to receive said substantially condensed first gaseous stream and expand it to an intermediate pressure;
(6) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(7) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(8) third expansion means connected to said first separation means to receive said liquid stream and expand it to said intermediate pressure;
(9) said distillation column being further connected to said third heat exchange means, said second expansion means, and said third expansion means to receive said heated expanded first gaseous stream, said expanded second gaseous stream, and said expanded liquid stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(10) second separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflex stream, said second separation means being further connected to said distillation column to direct said reflex stream into said distillation column as a top feed thereto;
(11) fourth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(12) fourth expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (13) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
26. An apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, which includes (1) one or more first heat exchange means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it;
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(4) combining means connected to said dividing means and to said first separation means to receive said first gaseous stream and at least a portion of said liquid stream and form thereby a combined stream;
(5) second heat exchange means connected to said combining means to receive said combined stream and to cool it sufficiently to substantially condense it;
(6) first expansion means connected to said second heat exchange means to receive said substantially condensed combined stream and expand it to an intermediate pressure;
(7) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed combined stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(8) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(9) third expansion means connected to said first separation means to receive any remaining portion of said liquid stream and expand it to said intermediate pressure;
(10) said distillation column being further connected to said third heat exchange means, said second expansion means and said third expansion means to receive said heated expanded combined stream, said expanded second gaseous stream, and said expanded remaining portion of said liquid stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) second separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(12) fourth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(13) fourth expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (14) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(4) combining means connected to said dividing means and to said first separation means to receive said first gaseous stream and at least a portion of said liquid stream and form thereby a combined stream;
(5) second heat exchange means connected to said combining means to receive said combined stream and to cool it sufficiently to substantially condense it;
(6) first expansion means connected to said second heat exchange means to receive said substantially condensed combined stream and expand it to an intermediate pressure;
(7) third heat exchange means connected to said first expansion means to receive said expanded substantially condensed combined stream and heat it, said third heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(8) second expansion means connected to said dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(9) third expansion means connected to said first separation means to receive any remaining portion of said liquid stream and expand it to said intermediate pressure;
(10) said distillation column being further connected to said third heat exchange means, said second expansion means and said third expansion means to receive said heated expanded combined stream, said expanded second gaseous stream, and said expanded remaining portion of said liquid stream, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(11) second separation means connected to said third heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(12) fourth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(13) fourth expansion means connected to said fourth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (14) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
27. An apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, which includes (1) one or more first heat exchange means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it;
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) second heat exchange means connected to said first separation means to receive said liquid stream and cool it;
(4) first dividing means connected to said second heat exchange means to receive said cooled liquid stream and divide it into at least a first portion and a second portion;
(5) first expansion means connected to said first dividing means to receive said first portion and expand it to an intermediate pressure, said first expansion means being further connected to supply said expanded first portion to said second heat exchange means, thereby heating said expanded first portion while cooling said liquid stream;
(6) second dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(7) third heat exchange means connected to said second dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(8) second expansion means connected to said third heat exchange means to receive said substantially condensed first gaseous stream and expand it to said intermediate pressure;
(9) third expansion means connected to said second dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(10) fourth expansion means connected to said first dividing means to receive said second portion and expand it to said intermediate pressure;
(11) fourth heat exchange means connected to said second expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said fourth heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(12) said distillation column being further connected to said fourth heat exchange means, said third expansion means, said fourth expansion means, and said second heat exchange means to receive said heated expanded first gaseous stream, said expanded second gaseous stream, said expanded second portion, and said heated expanded first portion, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(13) second separation means connected to said fourth heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(14) fifth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(15) fifth expansion means connected to said fifth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (16) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less, volatile fraction.
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) second heat exchange means connected to said first separation means to receive said liquid stream and cool it;
(4) first dividing means connected to said second heat exchange means to receive said cooled liquid stream and divide it into at least a first portion and a second portion;
(5) first expansion means connected to said first dividing means to receive said first portion and expand it to an intermediate pressure, said first expansion means being further connected to supply said expanded first portion to said second heat exchange means, thereby heating said expanded first portion while cooling said liquid stream;
(6) second dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(7) third heat exchange means connected to said second dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(8) second expansion means connected to said third heat exchange means to receive said substantially condensed first gaseous stream and expand it to said intermediate pressure;
(9) third expansion means connected to said second dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(10) fourth expansion means connected to said first dividing means to receive said second portion and expand it to said intermediate pressure;
(11) fourth heat exchange means connected to said second expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said fourth heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(12) said distillation column being further connected to said fourth heat exchange means, said third expansion means, said fourth expansion means, and said second heat exchange means to receive said heated expanded first gaseous stream, said expanded second gaseous stream, said expanded second portion, and said heated expanded first portion, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(13) second separation means connected to said fourth heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(14) fifth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(15) fifth expansion means connected to said fifth heat exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (16) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less, volatile fraction.
28. An apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, which includes (1) one or more first heat exchange means to receive said natural gas stream and cool it under pressure sufficiently to partially condense it;
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) second heat exchange means connected to said first separation means to receive said liquid stream and cool it;
(4) first dividing means connected to said second heat exchange means to receive said cooled liquid stream and divide it into at least a first portion and a second portion;
(5) first expansion means connected to said first dividing means to receive said first portion and expand it to an intermediate pressure, said first expansion means being further connected to supply said expanded first portion to said second heat exchange means, thereby heating said expanded first portion while cooling said liquid stream;
(6) second dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(7) third heat exchange means connected to said second dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(8) combining means connected to said third heat exchange means and to said first dividing means to receive said substantially condensed first gaseous stream and said second portion and form thereby a combined stream;
(9) second expansion means connected to said combining means to receive said combined stream and expand it to said intermediate pressure;
(10) third expansion means connected to said second dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(11) fourth heat exchange means connected to said second expansion means to receive said expanded combined stream and heat it, said fourth heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(12) said distillation column being further connected to said fourth heat exchange means, said third expansion means, and said second heat exchange means to receive said heated expanded combined stream, said expanded second gaseous stream, and said heated expanded first portion, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(13) second separation means connected to said fourth heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(14) fifth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(15) fourth expansion means connected to said first fifth exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (16) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
(2) first separation means connected to said first heat exchange means to receive said partially condensed natural gas stream and separate it into a vapor stream and a liquid stream;
(3) second heat exchange means connected to said first separation means to receive said liquid stream and cool it;
(4) first dividing means connected to said second heat exchange means to receive said cooled liquid stream and divide it into at least a first portion and a second portion;
(5) first expansion means connected to said first dividing means to receive said first portion and expand it to an intermediate pressure, said first expansion means being further connected to supply said expanded first portion to said second heat exchange means, thereby heating said expanded first portion while cooling said liquid stream;
(6) second dividing means connected to said first separation means to receive said vapor stream and divide it into at least a first gaseous stream and a second gaseous stream;
(7) third heat exchange means connected to said second dividing means to receive said first gaseous stream and to cool it sufficiently to substantially condense it;
(8) combining means connected to said third heat exchange means and to said first dividing means to receive said substantially condensed first gaseous stream and said second portion and form thereby a combined stream;
(9) second expansion means connected to said combining means to receive said combined stream and expand it to said intermediate pressure;
(10) third expansion means connected to said second dividing means to receive said second gaseous stream and expand it to said intermediate pressure;
(11) fourth heat exchange means connected to said second expansion means to receive said expanded combined stream and heat it, said fourth heat exchange means being further connected to a distillation column to receive a more volatile vapor distillation stream rising from fractionation stages of said distillation column and cool it sufficiently to partially condense it;
(12) said distillation column being further connected to said fourth heat exchange means, said third expansion means, and said second heat exchange means to receive said heated expanded combined stream, said expanded second gaseous stream, and said heated expanded first portion, with said distillation column adapted to separate said streams into said more volatile vapor distillation stream and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(13) second separation means connected to said fourth heat exchange means to receive said cooled partially condensed distillation stream and separate it into a volatile residue gas fraction containing a major portion of said methane and lighter components and a reflux stream, said second separation means being further connected to said distillation column to direct said reflux stream into said distillation column as a top feed thereto;
(14) fifth heat exchange means connected to said second separation means to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby a condensed stream;
(15) fourth expansion means connected to said first fifth exchange means to receive said condensed stream and expand it to lower pressure to form said liquefied natural gas stream; and (16) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
29. The apparatus according to claim 24 wherein (1) said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a section of said fractionation tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column; and (2) said fourth heat exchange means is connected to said fractionation tower to receive said volatile residue gas fraction; with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
30. The apparatus according to claim 25 wherein (1) said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a section of said fractionation tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column; and (2) said fourth heat exchange means is connected to said fractionation tower to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
31. The apparatus according to claim 26 wherein (1) said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a section of said fractionation tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column; and (2) said fourth heat exchange means is connected to said fractionation tower to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
32. The apparatus according to claim 27 wherein (1) said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a section of said fractionation tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column; and (2) said fifth heat exchange means is connected to said fractionation tower to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
33. The apparatus according to claim 28 wherein (1) said distillation column is a lower section of a fractionation tower and wherein said more volatile vapor distillation stream is cooled sufficiently to partially condense it in a section of said fractionation tower above said distillation column and concurrently separated to form said volatile residue gas fraction and said reflux stream, whereupon said reflux stream flows to the top fractionation stage of said distillation column; and (2) said fifth heat exchange means is connected to said fractionation tower to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
34. The apparatus according to claim 24 wherein said apparatus includes (1) a dephlegmator connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said dephlegmator being further connected to said distillation column to receive said more volatile vapor distillation stream and cool it sufficiently to partially condense it and concurrently separate it to form said volatile residue gas fraction and said reflex stream, said dephlegmator being further connected to said distillation column to supply said heated expanded first gaseous stream as a feed thereto and said reflux stream as a top feed thereto; and (2) said fourth heat exchange means connected to said dephlegmator to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
35. The apparatus according to claim 25 wherein said apparatus includes (1) a dephlegmator connected to said first expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said dephlegmator being further connected to said distillation column to receive said more volatile vapor distillation stream and cool it sufficiently to partially condense it and concurrently separate it to form said volatile residue gas fraction and said reflux stream, said dephlegmator being further connected to said distillation column to supply said heated expanded first gaseous stream as a feed thereto and said reflux stream as a top feed thereto; and (2) said fourth heat exchange means connected to said dephlegmator to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
36. The apparatus according to claim 26 wherein said apparatus includes (1) a dephlegmator connected to said first expansion means to receive said expanded substantially condensed combined stream and heat it, said dephlegmator being further connected to said distillation column to receive said more volatile vapor distillation stream and cool it sufficiently to partially condense it and concurrently separate it to form said volatile residue gas fraction and said reflex stream, said dephlegmator being further connected to said distillation column to supply said heated expanded combined stream as a feed thereto and said reflex stream as a top feed thereto; and (2) said fourth heat exchange means connected to said dephlegmator to receive said volatile residue gas fraction, with said fourth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
37. The apparatus according to claim 27 wherein said apparatus includes (1) a dephlegmator connected to said second expansion means to receive said expanded substantially condensed first gaseous stream and heat it, said dephlegmator being further connected to said distillation column to receive said more volatile vapor distillation stream and cool it sufficiently to partially condense it and concurrently separate it to form said volatile residue gas fraction and said reflex stream, said dephlegmator being further connected to said distillation column to supply said heated expanded first gaseous stream as a feed thereto and said reflex stream as a top feed thereto; and (2) said fifth heat exchange means connected to said dephlegmator to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
38. The apparatus according to claim 28 wherein said apparatus includes (1) a dephlegmator connected to said second expansion means to receive said expanded combined stream and heat it, said dephlegmator being further connected to said distillation column to receive said more volatile vapor distillation stream and cool it sufficiently to partially condense it and concurrently separate it to form said volatile residue gas fraction and said reflux stream, said dephlegmator being further connected to said distillation column to supply said heated expanded combined stream as a feed thereto and said reflux stream as a top feed thereto; and (2) said fifth heat exchange means connected to said dephlegmator to receive said volatile residue gas fraction, with said fifth heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
39. The apparatus according to claim 24 wherein said apparatus includes (1) compressing means connected to said separating means to receive said volatile residue gas fraction and compress it; and (2) said fourth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
40. The apparatus according to claim 25 or 26 wherein said apparatus includes (1) compressing means connected to said second separating means to receive said volatile residue gas fraction and compress it; and (2) said fourth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
41. The apparatus according to claim 27 or 28 wherein said apparatus includes (1) compressing means connected to said second separating means to receive said volatile residue gas fraction and compress it; and (2) said fifth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
42. The apparatus according to claim 29, 30, or 31 wherein said apparatus includes (1) compressing means connected to said fractionation tower to receive said volatile residue gas fraction and compress it; and (2) said fourth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
43. The apparatus according to claim 32 or 33 wherein said apparatus includes (1) compressing means connected to said fractionation tower to receive said volatile residue gas fraction and compress it; and (2) said fifth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
44. The apparatus according to claim 34, 35, or 36 wherein said apparatus includes (1) compressing means connected to said dephlegmator to receive said volatile residue gas fraction and compress it; and (2) said fourth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
45. The apparatus according to claim 37 or 38 wherein said apparatus includes (1) compressing means connected to said dephlegmator to receive said volatile residue gas fraction and compress it; and (2) said fifth heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
46. The apparatus according to claim 24 wherein said apparatus includes (1) heating means connected to said separation means to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
47. The apparatus according to claim 25 or 26 wherein said apparatus includes (1) heating means connected to said second separation means to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
48. The apparatus according to claim 27 or 28 wherein said apparatus includes (1) heating means connected to said second separation means to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
49. The apparatus according to claim 29, 30, or 31 wherein said apparatus includes (1) heating means connected to said fractionation tower to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
50. The apparatus according to claim 32 or 33 wherein said apparatus includes (1) heating means connected to said fractionation tower to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
51. The apparatus according to claim 34, 35, or 36 wherein said apparatus includes (1) heating means connected to said dephlegmator to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fourth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fourth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
52. The apparatus according to claim 37 or 38 wherein said apparatus includes (1) heating means connected to said dephlegmator to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said fifth heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said fifth heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
53. The apparatus according to claim 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 46 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
54. The apparatus according to claim 40 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
55. The apparatus according to claim 41 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
56. The apparatus according to claim 42 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
57. The apparatus according to claim 43 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
58. The apparatus according to claim 44 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
59. The apparatus according to claim 45 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
60. The apparatus according to claim 47 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
61. The apparatus according to claim 48 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
62. The apparatus according to claim 49 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
63. The apparatus according to claim 50 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
64. The apparatus according to claim 51 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
65. The apparatus according to claim 52 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
66. The apparatus according to claim 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 46 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
67. The apparatus according to claim 40 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
68. The apparatus according to claim 41 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
69. The apparatus according to claim 42 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
70. The apparatus according to claim 43 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
71. The apparatus according to claim 44 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
72. The apparatus according to claim 45 wherein said volatile residue gas fraction contains a mayor portion of said methane, lighter components, C2 components, and C3 components.
73. The apparatus according to claim 47 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
74. The apparatus according to claim 48 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
75. The apparatus according to claim 49 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
76. The apparatus according to claim 50 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
77. The apparatus according to claim 51 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
78. The apparatus according to claim 52 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2004/012792 WO2005114076A1 (en) | 2004-04-26 | 2004-04-26 | Natural gas liquefaction |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2562323A1 true CA2562323A1 (en) | 2005-12-01 |
CA2562323C CA2562323C (en) | 2011-01-04 |
Family
ID=35428468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2562323A Expired - Fee Related CA2562323C (en) | 2004-04-26 | 2004-04-26 | Natural gas liquefaction |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP1740897A4 (en) |
JP (1) | JP4551446B2 (en) |
KR (1) | KR101118830B1 (en) |
CN (1) | CN100473927C (en) |
AR (1) | AR046607A1 (en) |
AU (1) | AU2004319953B2 (en) |
BR (1) | BRPI0418780B1 (en) |
CA (1) | CA2562323C (en) |
EA (1) | EA010538B1 (en) |
EG (1) | EG25056A (en) |
HK (1) | HK1101424A1 (en) |
MX (1) | MXPA06011644A (en) |
MY (1) | MY137287A (en) |
NO (1) | NO20065055L (en) |
PE (1) | PE20051002A1 (en) |
SA (1) | SA05260083B1 (en) |
WO (1) | WO2005114076A1 (en) |
ZA (1) | ZA200607240B (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9254448B2 (en) | 2007-09-13 | 2016-02-09 | Battelle Energy Alliance, Llc | Sublimation systems and associated methods |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
EA022672B1 (en) * | 2009-02-17 | 2016-02-29 | Ортлофф Инджинирс, Лтд. | Hydrocarbon gas processing |
WO2011123253A1 (en) * | 2010-03-31 | 2011-10-06 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
AR076506A1 (en) * | 2009-06-11 | 2011-06-15 | Sme Products Lp | HYDROCARBON GAS PROCESSING |
EA027815B1 (en) * | 2009-06-11 | 2017-09-29 | Ортлофф Инджинирс, Лтд. | Hydrocarbon gas processing |
EA201200006A1 (en) * | 2009-06-11 | 2012-05-30 | Ортлофф Инджинирс, Лтд. | HYDROCARBON GAS PROCESSING |
KR101643796B1 (en) * | 2009-06-11 | 2016-07-29 | 오르트로프 엔지니어스, 리미티드 | Hydrocarbon gas processing |
MX344122B (en) * | 2009-06-11 | 2016-12-06 | Ortloff Engineers Ltd | Hydrocarbon gas processing. |
US20110067441A1 (en) | 2009-09-21 | 2011-03-24 | Ortloff Engineers, Ltd. | Hydrocarbon Gas Processing |
MY160636A (en) * | 2010-03-31 | 2017-03-15 | Ortloff Engineers Ltd | Hydrocarbon gas processing |
KR101714101B1 (en) * | 2010-03-31 | 2017-03-08 | 오르트로프 엔지니어스, 리미티드 | Hydrocarbon gas processing |
GB2486036B (en) * | 2011-06-15 | 2012-11-07 | Anthony Dwight Maunder | Process for liquefaction of natural gas |
US10655911B2 (en) * | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
JP6517251B2 (en) * | 2013-12-26 | 2019-05-22 | 千代田化工建設株式会社 | Natural gas liquefaction system and liquefaction method |
US10436505B2 (en) | 2014-02-17 | 2019-10-08 | Black & Veatch Holding Company | LNG recovery from syngas using a mixed refrigerant |
US10443930B2 (en) | 2014-06-30 | 2019-10-15 | Black & Veatch Holding Company | Process and system for removing nitrogen from LNG |
KR102448446B1 (en) | 2014-09-30 | 2022-09-30 | 다우 글로벌 테크놀로지스 엘엘씨 | Methods for increasing ethylene and propylene yields from propylene plants |
CN105444527B (en) * | 2015-12-02 | 2017-10-03 | 中国石油大学(北京) | A kind of natural gas treatment plant and method |
US11946355B2 (en) | 2017-11-14 | 2024-04-02 | 1304338 Alberta Ltd. | Method to recover and process methane and condensates from flare gas systems |
US11268755B2 (en) | 2017-12-15 | 2022-03-08 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
RU2744138C2 (en) * | 2018-11-30 | 2021-03-03 | Андрей Владиславович Курочкин | Installation for natural gas treatment resulting in liquefied natural gas |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4157904A (en) * | 1976-08-09 | 1979-06-12 | The Ortloff Corporation | Hydrocarbon gas processing |
JPH01142382A (en) * | 1987-11-27 | 1989-06-05 | Air Prod And Chem Inc | Recovery and purifying method of c3-c4+hydrocarbon severally using phase separation and dephlegmation |
US4869740A (en) * | 1988-05-17 | 1989-09-26 | Elcor Corporation | Hydrocarbon gas processing |
US4889545A (en) * | 1988-11-21 | 1989-12-26 | Elcor Corporation | Hydrocarbon gas processing |
JPH06159928A (en) * | 1992-11-20 | 1994-06-07 | Chiyoda Corp | Natural gas liquefaction method |
US5615561A (en) * | 1994-11-08 | 1997-04-01 | Williams Field Services Company | LNG production in cryogenic natural gas processing plants |
FR2739916B1 (en) * | 1995-10-11 | 1997-11-21 | Inst Francais Du Petrole | METHOD AND DEVICE FOR LIQUEFACTION AND TREATMENT OF NATURAL GAS |
US6401486B1 (en) * | 2000-05-18 | 2002-06-11 | Rong-Jwyn Lee | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants |
US6712880B2 (en) * | 2001-03-01 | 2004-03-30 | Abb Lummus Global, Inc. | Cryogenic process utilizing high pressure absorber column |
US6526777B1 (en) * | 2001-04-20 | 2003-03-04 | Elcor Corporation | LNG production in cryogenic natural gas processing plants |
UA76750C2 (en) * | 2001-06-08 | 2006-09-15 | Елккорп | Method for liquefying natural gas (versions) |
US6742358B2 (en) * | 2001-06-08 | 2004-06-01 | Elkcorp | Natural gas liquefaction |
-
2004
- 2004-04-26 KR KR1020067022354A patent/KR101118830B1/en not_active Expired - Fee Related
- 2004-04-26 AU AU2004319953A patent/AU2004319953B2/en not_active Ceased
- 2004-04-26 CN CNB2004800428521A patent/CN100473927C/en not_active Expired - Fee Related
- 2004-04-26 EP EP04822020A patent/EP1740897A4/en not_active Withdrawn
- 2004-04-26 WO PCT/US2004/012792 patent/WO2005114076A1/en active Application Filing
- 2004-04-26 CA CA2562323A patent/CA2562323C/en not_active Expired - Fee Related
- 2004-04-26 MX MXPA06011644A patent/MXPA06011644A/en active IP Right Grant
- 2004-04-26 EA EA200601989A patent/EA010538B1/en not_active IP Right Cessation
- 2004-04-26 BR BRPI0418780A patent/BRPI0418780B1/en not_active IP Right Cessation
- 2004-04-26 JP JP2007510667A patent/JP4551446B2/en not_active Expired - Fee Related
- 2004-10-27 AR ARP040103911A patent/AR046607A1/en unknown
- 2004-11-09 PE PE2004001092A patent/PE20051002A1/en not_active Application Discontinuation
-
2005
- 2005-04-09 SA SA05260083A patent/SA05260083B1/en unknown
- 2005-04-19 MY MYPI20051722A patent/MY137287A/en unknown
-
2006
- 2006-08-30 ZA ZA2006/07240A patent/ZA200607240B/en unknown
- 2006-09-13 EG EGNA2006000858 patent/EG25056A/en active
- 2006-11-02 NO NO20065055A patent/NO20065055L/en not_active Application Discontinuation
-
2007
- 2007-06-07 HK HK07106105.2A patent/HK1101424A1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EG25056A (en) | 2011-07-20 |
EP1740897A4 (en) | 2013-01-30 |
AR046607A1 (en) | 2005-12-14 |
ZA200607240B (en) | 2008-03-26 |
MXPA06011644A (en) | 2007-01-23 |
EA010538B1 (en) | 2008-10-30 |
KR101118830B1 (en) | 2012-03-22 |
NO20065055L (en) | 2007-01-12 |
CN1946979A (en) | 2007-04-11 |
PE20051002A1 (en) | 2005-11-26 |
BRPI0418780A (en) | 2007-10-09 |
JP4551446B2 (en) | 2010-09-29 |
CN100473927C (en) | 2009-04-01 |
AU2004319953A1 (en) | 2005-12-01 |
KR20070012814A (en) | 2007-01-29 |
EP1740897A1 (en) | 2007-01-10 |
MY137287A (en) | 2009-01-30 |
JP2007534923A (en) | 2007-11-29 |
BRPI0418780B1 (en) | 2015-12-29 |
CA2562323C (en) | 2011-01-04 |
SA05260083B1 (en) | 2009-02-07 |
HK1101424A1 (en) | 2007-10-18 |
EA200601989A1 (en) | 2007-02-27 |
AU2004319953B2 (en) | 2010-11-18 |
WO2005114076A1 (en) | 2005-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2562907A1 (en) | Natural gas liquefaction | |
CA2562323A1 (en) | Natural gas liquefaction | |
CA2448884A1 (en) | Natural gas liquefaction | |
CA2560554A1 (en) | Hydrocarbon recovery process utilizing enhanced reflux streams | |
KR101172087B1 (en) | Hydrocarbon gas processing for rich gas streams | |
CA2397307C (en) | Hydrocarbon gas processing | |
KR101619563B1 (en) | Hydrocarbon gas processing | |
CA2805272C (en) | Methods and systems for recovering liquified petroleum gas from natural gas | |
CA2800699C (en) | Hydrocarbon gas processing | |
WO2004080936B1 (en) | Residue recycle-high ethane recovery process | |
US8959952B2 (en) | Method for separating a mixture of carbon monoxide, methane, hydrogen and optionally nitrogen by cryogenic distillation | |
CA2513677A1 (en) | Multiple reflux stream hydrocarbon recovery process | |
CA2653610A1 (en) | Liquefied natural gas processing | |
CA2515999A1 (en) | Hydrocarbon gas processing | |
CA2536214A1 (en) | Liquefied natural gas processing | |
NZ599333A (en) | Hydrocarbon gas processing | |
JP2010202875A (en) | Nitrogen removal with iso-pressure open refrigeration natural gas liquids recovery | |
JP2007529712A5 (en) | ||
WO2018039313A1 (en) | Process and apparatus for producing carbon monoxide | |
US6931889B1 (en) | Cryogenic process for increased recovery of hydrogen | |
KR20130018218A (en) | Hydrocarbon gas processing | |
CA2764737A1 (en) | Hydrocarbon gas processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20210426 |