CA2426624A1 - Human cyclic nucleotide binding protein - Google Patents
Human cyclic nucleotide binding protein Download PDFInfo
- Publication number
- CA2426624A1 CA2426624A1 CA002426624A CA2426624A CA2426624A1 CA 2426624 A1 CA2426624 A1 CA 2426624A1 CA 002426624 A CA002426624 A CA 002426624A CA 2426624 A CA2426624 A CA 2426624A CA 2426624 A1 CA2426624 A1 CA 2426624A1
- Authority
- CA
- Canada
- Prior art keywords
- zlmda6
- leu
- lys
- glu
- ile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Polynucleotides that encode human cyclic nucleotide-binding protein (Zlmda6) , Zlmda6 polypeptides and antibodies that selectively bind to Zlmda6 polypeptides.
Description
HUMAN CYCLIC NUCLEOTIDE BINDING PROTEIN
BACKGROUND OF THE INVENTION
Proliferation, maintenance, survival and differentiation of cells of multicellular organisms are controlled by hormones and polypeptide growth factors.
These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair and regenerate damaged tissue.
Examples of hormones and growth factors include the steroid hormones (e.g.
estrogen, testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor (PDGF), epidermal growth factor (EGF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO) and calcitonin.
Hormones and growth factors influence cellular metabolism by binding to proteins. Proteins may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of proteins 2 0 are soluble molecules, such as the~transcription factors.
Of particular interest are cytokines, molecules that promote the proliferation, maintenance, survival or differentiation of cells. Examples of cytokines include erythropoietin (EPO), which stimulates the development of red blood cells;
thrombopoietin (TPO), which stimulates development of cells of the megakaryocyte 2 5 lineage; and granulocyte-colony stimulating factor (G-CSF), which stimulates development of neutrophils. These cytokines are useful in restoring normal blood cell levels in patients suffering from anemia or receiving chemotherapy for cancer.
The demonstrated in vivo activities of these cytokines illustrates the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists.
DESCRIPTION OF THE INVENTION
The present invention fills this need by providing for a new cyclic nucleotide (CAMP, cGMP) binding protein polypeptide termed "Zlmda6".The present invention also provides Zlrnda6 polynucleotides that encode Zlmda6 polypeptides and Zlmda6 fusion proteins.
In particular, the present invention provides isolated polypeptides having an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group consisting of (a) amino acid residues of SEQ m NO: 2, or (b) the amino acid sequence of SEQ ID NO: 2, wherein the isolated polypeptide either specifically binds with an antibody that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO: 2. Examples of such polypeptides include polypeptides comprising the amino acid sequence of either SEQ m NO: 2. The present invention further provides pharmaceutical compositions that comprise such polypeptides, and a pharmaceutically acceptable carrier.
Additional variant human Zlmda6 polypeptides include those in which the amino acid sequence of the variant polypeptide shares an identity with the amino acid sequence of SEQ m NO: 2 selected from the group consisting of at least 90%
identity, at least 95% identity, or greater than 95% identity, and wherein any difference between the amino acid sequence of the variant polypeptide and the amino acid sequence of SEQ m NO: 2 is due to one or more conservative amino acid substitutions.
The present invention further provides isolated nucleic acid molecules that encode SEQ m NO: 2, in particular a nucleotide sequence comprising the 2 0 nucleotide sequence of nucleotides 1 to 1728 of SEQ m NO: 1.
The present invention also provides vectors and expression vectors comprising such nucleic acid molecules, recombinant host cells comprising such vectors and expression vectors, and recombinant viruses comprising such expression vectors. These expression vectors and recombinant host cells can be used to prepare 2 5 Zlmda6 polypeptides. In addition, the present invention provides pharmaceutical compositions, comprising a pharmaceutically acceptable carrier and at least one of such an expression vector or recombinant virus. Preferably, such pharmaceutical compositions comprise a human Zlmda6 gene, or a variant thereof.
The present invention further contemplates antibodies and antibody 3 0 fragments that specifically bind with Zlmda6 polypeptides. Such antibodies include polyclonal antibodies, murine monoclonal antibodies, humanized antibodies derived from murine monoclonal antibodies, and human monoclonal antibodies. Examples of antibody fragments include F(ab')2, F(ab)~, Fab', Fab, Fv, scFv, and minimal recognition units.
3 5 The present invention also provides methods for detecting the presence of Zlmda6 RNA in a biological sample, comprising the steps of (a) contacting an Zlmda6 nucleic acid probe under hybridizing conditions with either (i) test RNA molecules isolated from the biological sample, or (ii) nucleic acid molecules synthesized from the isolated RNA molecules, wherein the probe has a nucleotide sequence comprising a portion of the nucleotide sequence selected from the group consisting of SEQ m NO:1, the complement of SEQ ID
NO:l, and (b) detecting the formation of hybrids of the nucleic acid probe and either the test RNA molecules or the synthesized nucleic acid molecules, wherein the presence of the hybrids indicates the presence of Zlmda6 RNA in the biological sample.
In addition, the presence of Zlmda6 polypeptide in a biological sample can be detected by methods that comprise the steps of (a) contacting the biological sample with an antibody, or an antibody fragment, that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO: 2, wherein the contacting is performed under conditions that allow the binding of the antibody or antibody fragment to the biological sample, and (b) detecting any of the bound antibody or bound antibody fragment.
The present invention also provides kits for detecting Zlmda6 nucleic acid molecules or Zlmda6polypeptides. For example, a kit for detection of Zlrrzda6 2 o nucleic acid molecules may comprise a container that comprises a nucleic acid molecule, wherein the nucleic acid molecule is selected from the group consisting of (a) a nucleic acid molecule comprising the nucleotide sequence of nucleotides 1 to 1728 of SEQ >D NO: 1, (b) a nucleic acid molecule comprising the complement of the nucleotide sequence of SEQ ID NO: 1, (c) a nucleic acid molecule that is a fragment of 2 5 (a) consisting of at least eight nucleotides, (d) a nucleic acid molecule that is a fragment of (b) consisting of at least eight nucleotides, (e) a nucleic acid molecule comprising the nucleotide sequence of nucleotides 1 to 1728 of SEQ m NO: 1, (f) a nucleic acid molecule comprising the complement of the nucleotide sequence of SEQ ID NO: 1, (g) a nucleic acid molecule that is a fragment of (e) consisting of at least eight nucleotides, 3 o and (h) a nucleic acid molecule that is a fragment of (f) consisting of at least eight nucleotides. Such kits may further comprise a second container that comprises one or more reagents capable of indicating the presence of the nucleic acid molecule.
A kit for detection of Zlmda6 polypeptide may comprise a container that comprises an antibody, or an antibody fragment, that specifically binds with a polypeptide having the amino 3 5 acid sequence of SEQ >D NO: 2.
BACKGROUND OF THE INVENTION
Proliferation, maintenance, survival and differentiation of cells of multicellular organisms are controlled by hormones and polypeptide growth factors.
These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair and regenerate damaged tissue.
Examples of hormones and growth factors include the steroid hormones (e.g.
estrogen, testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor (PDGF), epidermal growth factor (EGF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO) and calcitonin.
Hormones and growth factors influence cellular metabolism by binding to proteins. Proteins may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of proteins 2 0 are soluble molecules, such as the~transcription factors.
Of particular interest are cytokines, molecules that promote the proliferation, maintenance, survival or differentiation of cells. Examples of cytokines include erythropoietin (EPO), which stimulates the development of red blood cells;
thrombopoietin (TPO), which stimulates development of cells of the megakaryocyte 2 5 lineage; and granulocyte-colony stimulating factor (G-CSF), which stimulates development of neutrophils. These cytokines are useful in restoring normal blood cell levels in patients suffering from anemia or receiving chemotherapy for cancer.
The demonstrated in vivo activities of these cytokines illustrates the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists.
DESCRIPTION OF THE INVENTION
The present invention fills this need by providing for a new cyclic nucleotide (CAMP, cGMP) binding protein polypeptide termed "Zlmda6".The present invention also provides Zlrnda6 polynucleotides that encode Zlmda6 polypeptides and Zlmda6 fusion proteins.
In particular, the present invention provides isolated polypeptides having an amino acid sequence that is at least 90% identical to an amino acid sequence selected from the group consisting of (a) amino acid residues of SEQ m NO: 2, or (b) the amino acid sequence of SEQ ID NO: 2, wherein the isolated polypeptide either specifically binds with an antibody that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO: 2. Examples of such polypeptides include polypeptides comprising the amino acid sequence of either SEQ m NO: 2. The present invention further provides pharmaceutical compositions that comprise such polypeptides, and a pharmaceutically acceptable carrier.
Additional variant human Zlmda6 polypeptides include those in which the amino acid sequence of the variant polypeptide shares an identity with the amino acid sequence of SEQ m NO: 2 selected from the group consisting of at least 90%
identity, at least 95% identity, or greater than 95% identity, and wherein any difference between the amino acid sequence of the variant polypeptide and the amino acid sequence of SEQ m NO: 2 is due to one or more conservative amino acid substitutions.
The present invention further provides isolated nucleic acid molecules that encode SEQ m NO: 2, in particular a nucleotide sequence comprising the 2 0 nucleotide sequence of nucleotides 1 to 1728 of SEQ m NO: 1.
The present invention also provides vectors and expression vectors comprising such nucleic acid molecules, recombinant host cells comprising such vectors and expression vectors, and recombinant viruses comprising such expression vectors. These expression vectors and recombinant host cells can be used to prepare 2 5 Zlmda6 polypeptides. In addition, the present invention provides pharmaceutical compositions, comprising a pharmaceutically acceptable carrier and at least one of such an expression vector or recombinant virus. Preferably, such pharmaceutical compositions comprise a human Zlmda6 gene, or a variant thereof.
The present invention further contemplates antibodies and antibody 3 0 fragments that specifically bind with Zlmda6 polypeptides. Such antibodies include polyclonal antibodies, murine monoclonal antibodies, humanized antibodies derived from murine monoclonal antibodies, and human monoclonal antibodies. Examples of antibody fragments include F(ab')2, F(ab)~, Fab', Fab, Fv, scFv, and minimal recognition units.
3 5 The present invention also provides methods for detecting the presence of Zlmda6 RNA in a biological sample, comprising the steps of (a) contacting an Zlmda6 nucleic acid probe under hybridizing conditions with either (i) test RNA molecules isolated from the biological sample, or (ii) nucleic acid molecules synthesized from the isolated RNA molecules, wherein the probe has a nucleotide sequence comprising a portion of the nucleotide sequence selected from the group consisting of SEQ m NO:1, the complement of SEQ ID
NO:l, and (b) detecting the formation of hybrids of the nucleic acid probe and either the test RNA molecules or the synthesized nucleic acid molecules, wherein the presence of the hybrids indicates the presence of Zlmda6 RNA in the biological sample.
In addition, the presence of Zlmda6 polypeptide in a biological sample can be detected by methods that comprise the steps of (a) contacting the biological sample with an antibody, or an antibody fragment, that specifically binds with a polypeptide having the amino acid sequence of SEQ ID NO: 2, wherein the contacting is performed under conditions that allow the binding of the antibody or antibody fragment to the biological sample, and (b) detecting any of the bound antibody or bound antibody fragment.
The present invention also provides kits for detecting Zlmda6 nucleic acid molecules or Zlmda6polypeptides. For example, a kit for detection of Zlrrzda6 2 o nucleic acid molecules may comprise a container that comprises a nucleic acid molecule, wherein the nucleic acid molecule is selected from the group consisting of (a) a nucleic acid molecule comprising the nucleotide sequence of nucleotides 1 to 1728 of SEQ >D NO: 1, (b) a nucleic acid molecule comprising the complement of the nucleotide sequence of SEQ ID NO: 1, (c) a nucleic acid molecule that is a fragment of 2 5 (a) consisting of at least eight nucleotides, (d) a nucleic acid molecule that is a fragment of (b) consisting of at least eight nucleotides, (e) a nucleic acid molecule comprising the nucleotide sequence of nucleotides 1 to 1728 of SEQ m NO: 1, (f) a nucleic acid molecule comprising the complement of the nucleotide sequence of SEQ ID NO: 1, (g) a nucleic acid molecule that is a fragment of (e) consisting of at least eight nucleotides, 3 o and (h) a nucleic acid molecule that is a fragment of (f) consisting of at least eight nucleotides. Such kits may further comprise a second container that comprises one or more reagents capable of indicating the presence of the nucleic acid molecule.
A kit for detection of Zlmda6 polypeptide may comprise a container that comprises an antibody, or an antibody fragment, that specifically binds with a polypeptide having the amino 3 5 acid sequence of SEQ >D NO: 2.
The present invention also contemplates anti-idiotype antibodies, or anti-idiotype antibody fragments, that specifically bind with an anti-Zlmda6 antibody or antibody fragment.
The present invention further includes methods for detecting an alteration in chromosome 20. In particular, human Zlmda6nucleotide sequences can be used to examine chromosome 20, for example, in the 20 region. Illustrative chromosomal aberrations at the Zlmda6 gene locus include aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements.
These aberrations can occur within flanking sequences, including upstream promoter and regulatory regions, and can be manifested as physical alterations within a coding sequence or changes in gene expression level. In general, suitable assay methods include molecular genetic techniques known to those in the art, such as restriction fragment length polymorphism analysis, short tandem repeat analysis employing polymerase chain reaction techniques, ligation chain reaction, ribonuclease protection assays, use of single-nucleotide polymorphisms, protein truncation assays, and other genetic linkage techniques known in the art.
In particular, the present invention provides methods for diagnosing an alteration in the Zlmda6gene of an individual, comprising: (a) amplifying nucleic acid molecules that encode Zlmda6 from RNA isolated from a biological sample of the 2 0 individual, and (b) detecting a mutation in the amplified nucleic acid molecules, wherein the presence of a mutation indicates an alteration in the Zlnzda6 gene.
Similarly, methods of detecting a chromosome 20 abnormality in a subject comprise:
(a) amplifying nucleic acid molecules that encode Zlmda6 from RNA isolated from a biological sample of the subject, and (b) detecting a mutation in the amplified nucleic 2 5 acid molecules, wherein the presence of a mutation indicates a chromosome abnormality. In variations of these methods, the detecting step is performed by comparing the nucleotide sequence of the amplified nucleic acid molecules to the nucleotide sequence of SEQ ID NO: 1. Alternatively, the detecting step can be performed by fractionating the amplified nucleic acid molecules and control nucleic 3 0 acid molecules that encode the amino acid sequence of SEQ ID NOs: 2, and comparing the lengths of the fractionated amplified and control nucleic acid molecules.
Exemplary methods for amplification include polymerase chain reaction or reverse transcriptase-polymerase chain reaction.
The present invention also includes methods for detecting a chromosome 3 5 20 abnormality in a subject comprising: (a) amplifying nucleic acid molecules that encode Zlrnda6 from RNA isolated from a biological sample of the subject, (b) transcribing the amplified nucleic acid molecules to express Zlmda6 mRNA, (c) translating Zlmda6 mRNA to produce Zhnda6 polypeptides, and (d) detecting a mutation in the Zlmda6 polypeptides, wherein the presence of a mutation indicates a chromosome 20 abnormality. Tn variations of these methods, the detection step can be performed by fractionating, under denaturing conditions, the Zlmda6 polypeptides and 5 control polypeptides that encode the amino acid sequence of SEQ m NO: 2 or 3, and comparing the sizes of the fractionated amplified and control polypeptides.
Similar methods can be used to detect a mutation of a Zlmda6 gene in an individual.
1. Overview The encoded polypeptide has the amino acid sequence of ~ NO: 2.
2. De,~yzitiofzs In the description that follows, a number of terms are used extensively.
The following definitions are provided to facilitate understanding of the invention.
As used herein, "nucleic acid" or "nucleic acid molecule" refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease 2 0 action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., a-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties andlor in pyrimidine or purine base moieties. Sugar modifications include, for 2 5 example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters.
Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated 3 0 purines or pyrimidines, or other well-known heterocyclic substitutes.
Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages.
Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term "nucleic acid molecule" also includes so-3 5 called "peptide nucleic acids," which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
The term "complement of a nucleic acid molecule" refers to a nucleic acid molecule having a complementary nucleotide sequence and reverse orientation as compared to a reference nucleotide sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.
The term "contig" denotes a nucleic acid molecule that has a contiguous stretch of identical or complementary sequence to another nucleic acid molecule.
Contiguous sequences are said to "overlap" a given stretch of a nucleic acid molecule l 0 either in their entirety or along a partial stretch of the nucleic acid molecule.
The term "degenerate nucleotide sequence" denotes a sequence of nucleotides that includes one or more degenerate codons as compared to a reference nucleic acid molecule that encodes a polypeptide. Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC
l5 triplets each encode Asp).
The term "structural gene" refers to a nucleic acid molecule that is transcribed into messenger RNA (mRNA), which is then translated into a sequence of amino acids characteristic of a specific polypeptide.
An "isolated nucleic acid molecule" is a nucleic acid molecule that is not 2 0 integrated in the genomic DNA of an organism. For example, a DNA molecule that encodes a growth factor that has been separated from the genomic DNA of a cell is an isolated DNA molecule. Another example of an isolated nucleic acid molecule is a chemically-synthesized nucleic acid molecule that is not integrated in the genome of an organism. A nucleic acid molecule that has been isolated from a pa~.-ticular species is 2 5 smaller than the complete DNA molecule of a chromosome from that species.
A "nucleic acid molecule construct" is a nucleic acid molecule, either single- or double-stranded, that has been modified through human intervention to contain segments of nucleic acid combined and juxtaposed in an arrangement not existing in nature.
3 0 "Linear DNA" denotes non-circular DNA molecules having free 5' and 3' ends. Linear DNA can be prepared from closed circular DNA molecules, such as plasmids, by enzymatic digestion or physical disruption.
"Complementary DNA (cDNA)" is a single-stranded DNA molecule that is formed from an mRNA template by the enzyme reverse transcriptase.
Typically, a 3 5 primer complementary to portions of mRNA is employed for the initiation of reverse transcription. Those skilled in the art also use the term "cDNA" to refer to a double-stranded DNA molecule consisting of such a single-stranded DNA molecule and its complementary DNA strand. The term "cDNA" also refers to a clone of a cDNA
molecule synthesized from an RNA template.
A "promoter" is a nucleotide sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5' non-coding region of a gene, proximal to the transcriptional start site of a structural gene. Sequence elements within promoters that function in the initiation of transcription are often characterized by consensus nucleotide sequences. These promoter elements include RNA polymerase binding sites, TATA sequences, CAAT sequences, differentiation-specific elements (DSEs; McGehee et al., Mol. Endocrinol. 7:551 (1993)), cyclic AMP response elements l 0 (CREs), serum response elements (SREs; Treisman, Seminars iiZ Cancer Biol.
1: 47 (1990)), glucocorticoid response elements (GREs), and binding sites for other transcription factors, such as CRE/ATF [O'Reilly et al., J. Biol. Clzeyn.
267:19938 (1992)), AP2 (Ye et al., J. Biol. ClZem. 269:25728 (1994)], SP1, cAMP response element binding protein [CREB; Loeken, GefZe Expr. 3:253 (1993)] and octamer factors l5 [see, in general, Watson et al., eds., Molecular Biology of the Geue, 4th ed. (The Benjamin/Cummings Publishing Company, Inc. 1987), and Lemaigre and Rousseau, Biochem. J. 303:1 (1994)). If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. Tn contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive 2 0 promoter. Repressible promoters are also known.
A "core promoter" contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that may enhance the activity or confer tissue specific activity.
2 5 A "regulatory element" is a nucleotide sequence that modulates the activity of a core promoter. For example, a regulatory element may contain a nucleotide sequence that binds with cellular factors enabling transcription exclusively or preferentially in particular cells, tissues, or organelles. These types of regulatory elements are normally associated with genes that are expressed in a "cell-specific,"
3 0 "tissue-specific," or "organelle-specific" manner. For example, the Zlmda6 regulatory element preferentially induces gene expression in placental, tracheal, and uterine tissues, as opposed to lung, brain, liver, kidney, spleen, thymus, prostate, testis, ovary, small intestine, and pancreas tissues.
An "enhancer" is a type of regulatory element that can increase the 3 5 efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
The present invention further includes methods for detecting an alteration in chromosome 20. In particular, human Zlmda6nucleotide sequences can be used to examine chromosome 20, for example, in the 20 region. Illustrative chromosomal aberrations at the Zlmda6 gene locus include aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements.
These aberrations can occur within flanking sequences, including upstream promoter and regulatory regions, and can be manifested as physical alterations within a coding sequence or changes in gene expression level. In general, suitable assay methods include molecular genetic techniques known to those in the art, such as restriction fragment length polymorphism analysis, short tandem repeat analysis employing polymerase chain reaction techniques, ligation chain reaction, ribonuclease protection assays, use of single-nucleotide polymorphisms, protein truncation assays, and other genetic linkage techniques known in the art.
In particular, the present invention provides methods for diagnosing an alteration in the Zlmda6gene of an individual, comprising: (a) amplifying nucleic acid molecules that encode Zlmda6 from RNA isolated from a biological sample of the 2 0 individual, and (b) detecting a mutation in the amplified nucleic acid molecules, wherein the presence of a mutation indicates an alteration in the Zlnzda6 gene.
Similarly, methods of detecting a chromosome 20 abnormality in a subject comprise:
(a) amplifying nucleic acid molecules that encode Zlmda6 from RNA isolated from a biological sample of the subject, and (b) detecting a mutation in the amplified nucleic 2 5 acid molecules, wherein the presence of a mutation indicates a chromosome abnormality. In variations of these methods, the detecting step is performed by comparing the nucleotide sequence of the amplified nucleic acid molecules to the nucleotide sequence of SEQ ID NO: 1. Alternatively, the detecting step can be performed by fractionating the amplified nucleic acid molecules and control nucleic 3 0 acid molecules that encode the amino acid sequence of SEQ ID NOs: 2, and comparing the lengths of the fractionated amplified and control nucleic acid molecules.
Exemplary methods for amplification include polymerase chain reaction or reverse transcriptase-polymerase chain reaction.
The present invention also includes methods for detecting a chromosome 3 5 20 abnormality in a subject comprising: (a) amplifying nucleic acid molecules that encode Zlrnda6 from RNA isolated from a biological sample of the subject, (b) transcribing the amplified nucleic acid molecules to express Zlmda6 mRNA, (c) translating Zlmda6 mRNA to produce Zhnda6 polypeptides, and (d) detecting a mutation in the Zlmda6 polypeptides, wherein the presence of a mutation indicates a chromosome 20 abnormality. Tn variations of these methods, the detection step can be performed by fractionating, under denaturing conditions, the Zlmda6 polypeptides and 5 control polypeptides that encode the amino acid sequence of SEQ m NO: 2 or 3, and comparing the sizes of the fractionated amplified and control polypeptides.
Similar methods can be used to detect a mutation of a Zlmda6 gene in an individual.
1. Overview The encoded polypeptide has the amino acid sequence of ~ NO: 2.
2. De,~yzitiofzs In the description that follows, a number of terms are used extensively.
The following definitions are provided to facilitate understanding of the invention.
As used herein, "nucleic acid" or "nucleic acid molecule" refers to polynucleotides, such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease 2 0 action. Nucleic acid molecules can be composed of monomers that are naturally-occurring nucleotides (such as DNA and RNA), or analogs of naturally-occurring nucleotides (e.g., a-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have alterations in sugar moieties andlor in pyrimidine or purine base moieties. Sugar modifications include, for 2 5 example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters.
Moreover, the entire sugar moiety can be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated 3 0 purines or pyrimidines, or other well-known heterocyclic substitutes.
Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages.
Analogs of phosphodiester linkages include phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term "nucleic acid molecule" also includes so-3 5 called "peptide nucleic acids," which comprise naturally-occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.
The term "complement of a nucleic acid molecule" refers to a nucleic acid molecule having a complementary nucleotide sequence and reverse orientation as compared to a reference nucleotide sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.
The term "contig" denotes a nucleic acid molecule that has a contiguous stretch of identical or complementary sequence to another nucleic acid molecule.
Contiguous sequences are said to "overlap" a given stretch of a nucleic acid molecule l 0 either in their entirety or along a partial stretch of the nucleic acid molecule.
The term "degenerate nucleotide sequence" denotes a sequence of nucleotides that includes one or more degenerate codons as compared to a reference nucleic acid molecule that encodes a polypeptide. Degenerate codons contain different triplets of nucleotides, but encode the same amino acid residue (i.e., GAU and GAC
l5 triplets each encode Asp).
The term "structural gene" refers to a nucleic acid molecule that is transcribed into messenger RNA (mRNA), which is then translated into a sequence of amino acids characteristic of a specific polypeptide.
An "isolated nucleic acid molecule" is a nucleic acid molecule that is not 2 0 integrated in the genomic DNA of an organism. For example, a DNA molecule that encodes a growth factor that has been separated from the genomic DNA of a cell is an isolated DNA molecule. Another example of an isolated nucleic acid molecule is a chemically-synthesized nucleic acid molecule that is not integrated in the genome of an organism. A nucleic acid molecule that has been isolated from a pa~.-ticular species is 2 5 smaller than the complete DNA molecule of a chromosome from that species.
A "nucleic acid molecule construct" is a nucleic acid molecule, either single- or double-stranded, that has been modified through human intervention to contain segments of nucleic acid combined and juxtaposed in an arrangement not existing in nature.
3 0 "Linear DNA" denotes non-circular DNA molecules having free 5' and 3' ends. Linear DNA can be prepared from closed circular DNA molecules, such as plasmids, by enzymatic digestion or physical disruption.
"Complementary DNA (cDNA)" is a single-stranded DNA molecule that is formed from an mRNA template by the enzyme reverse transcriptase.
Typically, a 3 5 primer complementary to portions of mRNA is employed for the initiation of reverse transcription. Those skilled in the art also use the term "cDNA" to refer to a double-stranded DNA molecule consisting of such a single-stranded DNA molecule and its complementary DNA strand. The term "cDNA" also refers to a clone of a cDNA
molecule synthesized from an RNA template.
A "promoter" is a nucleotide sequence that directs the transcription of a structural gene. Typically, a promoter is located in the 5' non-coding region of a gene, proximal to the transcriptional start site of a structural gene. Sequence elements within promoters that function in the initiation of transcription are often characterized by consensus nucleotide sequences. These promoter elements include RNA polymerase binding sites, TATA sequences, CAAT sequences, differentiation-specific elements (DSEs; McGehee et al., Mol. Endocrinol. 7:551 (1993)), cyclic AMP response elements l 0 (CREs), serum response elements (SREs; Treisman, Seminars iiZ Cancer Biol.
1: 47 (1990)), glucocorticoid response elements (GREs), and binding sites for other transcription factors, such as CRE/ATF [O'Reilly et al., J. Biol. Clzeyn.
267:19938 (1992)), AP2 (Ye et al., J. Biol. ClZem. 269:25728 (1994)], SP1, cAMP response element binding protein [CREB; Loeken, GefZe Expr. 3:253 (1993)] and octamer factors l5 [see, in general, Watson et al., eds., Molecular Biology of the Geue, 4th ed. (The Benjamin/Cummings Publishing Company, Inc. 1987), and Lemaigre and Rousseau, Biochem. J. 303:1 (1994)). If a promoter is an inducible promoter, then the rate of transcription increases in response to an inducing agent. Tn contrast, the rate of transcription is not regulated by an inducing agent if the promoter is a constitutive 2 0 promoter. Repressible promoters are also known.
A "core promoter" contains essential nucleotide sequences for promoter function, including the TATA box and start of transcription. By this definition, a core promoter may or may not have detectable activity in the absence of specific sequences that may enhance the activity or confer tissue specific activity.
2 5 A "regulatory element" is a nucleotide sequence that modulates the activity of a core promoter. For example, a regulatory element may contain a nucleotide sequence that binds with cellular factors enabling transcription exclusively or preferentially in particular cells, tissues, or organelles. These types of regulatory elements are normally associated with genes that are expressed in a "cell-specific,"
3 0 "tissue-specific," or "organelle-specific" manner. For example, the Zlmda6 regulatory element preferentially induces gene expression in placental, tracheal, and uterine tissues, as opposed to lung, brain, liver, kidney, spleen, thymus, prostate, testis, ovary, small intestine, and pancreas tissues.
An "enhancer" is a type of regulatory element that can increase the 3 5 efficiency of transcription, regardless of the distance or orientation of the enhancer relative to the start site of transcription.
"Heterologous DNA" refers to a DNA molecule, or a population of DNA molecules, that does not exist naturally within a given host cell. DNA
molecules heterologous to a particular host cell may contain DNA derived from the host cell species (i. e., endogenous DNA) so long as that host DNA is combined with non-host DNA (i. e., exogenous DNA). For example, a DNA molecule containing a non-host DNA segment encoding a polypeptide operably linked to a host DNA segment comprising a transcription promoter is considered to be a heterologous DNA
molecule.
Conversely, a heterologous DNA molecule can comprise an endogenous gene operably linked with an exogenous promoter. As another illustration, a DNA molecule comprising a gene derived from a wild-type cell is considered to be heterologous DNA
if that DNA molecule is introduced into a mutant cell that lacks the wild-type gene.
A "polypeptide" is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as "peptides."
A "protein" is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell.
Proteins are defined herein in terms of their amino acid backbone structures;
2 0 substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
A peptide or polypeptide encoded by a non-host DNA molecule is a "heterologous" peptide or polypeptide.
An "integrated genetic element" is a segment of DNA that has been 2 5 incorporated into a chromosome of a host cell after that element is introduced into the cell through human manipulation. Within the present invention, integrated genetic elements are most commonly derived from linearized plasmids that are introduced into the cells by electroporation or other techniques. Integrated genetic elements are passed from the original host cell to its progeny.
3 0 A "cloning vector" is a nucleic acid molecule, such as a plasmid, cosmid, or bacteriophage that has the capability of replicating autonomously in a host cell.
Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites that allow insertion of a nucleic acid molecule in a determinable fashion without loss of an essential biological function of the vector, as well as nucleotide 3 5 sequences encoding a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance or ampicillin resistance.
molecules heterologous to a particular host cell may contain DNA derived from the host cell species (i. e., endogenous DNA) so long as that host DNA is combined with non-host DNA (i. e., exogenous DNA). For example, a DNA molecule containing a non-host DNA segment encoding a polypeptide operably linked to a host DNA segment comprising a transcription promoter is considered to be a heterologous DNA
molecule.
Conversely, a heterologous DNA molecule can comprise an endogenous gene operably linked with an exogenous promoter. As another illustration, a DNA molecule comprising a gene derived from a wild-type cell is considered to be heterologous DNA
if that DNA molecule is introduced into a mutant cell that lacks the wild-type gene.
A "polypeptide" is a polymer of amino acid residues joined by peptide bonds, whether produced naturally or synthetically. Polypeptides of less than about 10 amino acid residues are commonly referred to as "peptides."
A "protein" is a macromolecule comprising one or more polypeptide chains. A protein may also comprise non-peptidic components, such as carbohydrate groups. Carbohydrates and other non-peptidic substituents may be added to a protein by the cell in which the protein is produced, and will vary with the type of cell.
Proteins are defined herein in terms of their amino acid backbone structures;
2 0 substituents such as carbohydrate groups are generally not specified, but may be present nonetheless.
A peptide or polypeptide encoded by a non-host DNA molecule is a "heterologous" peptide or polypeptide.
An "integrated genetic element" is a segment of DNA that has been 2 5 incorporated into a chromosome of a host cell after that element is introduced into the cell through human manipulation. Within the present invention, integrated genetic elements are most commonly derived from linearized plasmids that are introduced into the cells by electroporation or other techniques. Integrated genetic elements are passed from the original host cell to its progeny.
3 0 A "cloning vector" is a nucleic acid molecule, such as a plasmid, cosmid, or bacteriophage that has the capability of replicating autonomously in a host cell.
Cloning vectors typically contain one or a small number of restriction endonuclease recognition sites that allow insertion of a nucleic acid molecule in a determinable fashion without loss of an essential biological function of the vector, as well as nucleotide 3 5 sequences encoding a marker gene that is suitable for use in the identification and selection of cells transformed with the cloning vector. Marker genes typically include genes that provide tetracycline resistance or ampicillin resistance.
An "expression vector" is a nucleic acid molecule encoding a gene that is expressed in a host cell. Typically, an expression vector comprises a transcription promoter, a gene, and a transcription terminator. Gene expression is usually placed under the control of a promoter, and such a gene is said to be "operably linked to"
the promoter.
Similarly, a regulatory element and a core promoter are operably linked if the regulatory element modulates the activity of the core promoter.
A "recombinant host" is a cell that contains a heterologous nucleic acid molecule, such as a cloning vector or expression vector. In the present context, an example of a recombinant host is a cell that produces Zlmda6from an expression vector.
In contrast, Zlmda6 can be produced by a cell that is a "natural source" of Zlmda6, and that lacks an expression vector.
"Integrative transformants" are recombinant host cells, in which heterologous DNA has become integrated into the genomic DNA of the cells.
A "fusion protein" is a hybrid protein expressed by a nucleic acid molecule comprising nucleotide sequences of at least two genes. For example, a fusion protein can comprise at least part of a Zlmda6 polypeptide fused with a polypeptide that binds an affinity matrix. Such a fusion protein provides a means to isolate large quantities of Zlmda6 using affinity chromatography.
The term "receptor" denotes a cell-associated protein that binds to a 2 0 bioactive molecule termed a "ligand." This interaction mediates the effect of the ligand on the cell. Receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF
receptor, erythropoietin receptor and IL-6 receptor). Membrane-bound receptors are 2 5 characterized by a mufti-domain structure comprising an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction. In certain membrane-bound receptors, the extracellular ligand-binding domain and the intracellular effector domain are located in separate polypeptides that comprise the complete functional receptor.
3 0 In general, the binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecules) in the cell, which in turn leads to an alteration in the metabolism of the cell.
Metabolic events that are often linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP
production, 3 5 mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids.
The term "secretory signal sequence" denotes a DNA sequence that encodes a peptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory 5 peptide during transit through the secretory pathway.
An "isolated polypeptide" is a polypeptide that is essentially free from contaminating cellular components, such as carbohydrate, lipid, or other proteinaceous impurities associated with the polypeptide in nature. Typically, a preparation of isolated polypeptide contains the polypeptide in a highly purified form, i.e., at least about 80%
the promoter.
Similarly, a regulatory element and a core promoter are operably linked if the regulatory element modulates the activity of the core promoter.
A "recombinant host" is a cell that contains a heterologous nucleic acid molecule, such as a cloning vector or expression vector. In the present context, an example of a recombinant host is a cell that produces Zlmda6from an expression vector.
In contrast, Zlmda6 can be produced by a cell that is a "natural source" of Zlmda6, and that lacks an expression vector.
"Integrative transformants" are recombinant host cells, in which heterologous DNA has become integrated into the genomic DNA of the cells.
A "fusion protein" is a hybrid protein expressed by a nucleic acid molecule comprising nucleotide sequences of at least two genes. For example, a fusion protein can comprise at least part of a Zlmda6 polypeptide fused with a polypeptide that binds an affinity matrix. Such a fusion protein provides a means to isolate large quantities of Zlmda6 using affinity chromatography.
The term "receptor" denotes a cell-associated protein that binds to a 2 0 bioactive molecule termed a "ligand." This interaction mediates the effect of the ligand on the cell. Receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF
receptor, erythropoietin receptor and IL-6 receptor). Membrane-bound receptors are 2 5 characterized by a mufti-domain structure comprising an extracellular ligand-binding domain and an intracellular effector domain that is typically involved in signal transduction. In certain membrane-bound receptors, the extracellular ligand-binding domain and the intracellular effector domain are located in separate polypeptides that comprise the complete functional receptor.
3 0 In general, the binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecules) in the cell, which in turn leads to an alteration in the metabolism of the cell.
Metabolic events that are often linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP
production, 3 5 mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids.
The term "secretory signal sequence" denotes a DNA sequence that encodes a peptide (a "secretory peptide") that, as a component of a larger polypeptide, directs the larger polypeptide through a secretory pathway of a cell in which it is synthesized. The larger polypeptide is commonly cleaved to remove the secretory 5 peptide during transit through the secretory pathway.
An "isolated polypeptide" is a polypeptide that is essentially free from contaminating cellular components, such as carbohydrate, lipid, or other proteinaceous impurities associated with the polypeptide in nature. Typically, a preparation of isolated polypeptide contains the polypeptide in a highly purified form, i.e., at least about 80%
10 pure, at least about 90% pure, at least about 95% pure, greater than 95%
pure, or greater than 99% pure. One way to show that a particular protein preparation contains an isolated polypeptide is by the appearance of a single band following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the protein preparation and Coomassie Brilliant Blue staining of the gel. However, the term "isolated"
does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.
The terms "amino-terminal or N-terminal" and "carboxyl-terminal or C-terminal" are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a 2 0 polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.
The term "expression" refers to the biosynthesis of a gene product. For 2 5 example, in the case of a structural gene, expression involves transcription of the structural gene into mRNA and the translation of mRNA into one or more polypeptides.
The term "splice variant" is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly 3 0 between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a polypeptide encoded by a splice variant of an mRNA transcribed from a gene.
As used herein, the term "immunomodulator" includes cytokines, stem 3 5 cell growth factors, lymphotoxins, co-stimulatory molecules, hematopoietic factors, and synthetic analogs of these molecules.
pure, or greater than 99% pure. One way to show that a particular protein preparation contains an isolated polypeptide is by the appearance of a single band following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of the protein preparation and Coomassie Brilliant Blue staining of the gel. However, the term "isolated"
does not exclude the presence of the same polypeptide in alternative physical forms, such as dimers or alternatively glycosylated or derivatized forms.
The terms "amino-terminal or N-terminal" and "carboxyl-terminal or C-terminal" are used herein to denote positions within polypeptides. Where the context allows, these terms are used with reference to a particular sequence or portion of a 2 0 polypeptide to denote proximity or relative position. For example, a certain sequence positioned carboxyl-terminal to a reference sequence within a polypeptide is located proximal to the carboxyl terminus of the reference sequence, but is not necessarily at the carboxyl terminus of the complete polypeptide.
The term "expression" refers to the biosynthesis of a gene product. For 2 5 example, in the case of a structural gene, expression involves transcription of the structural gene into mRNA and the translation of mRNA into one or more polypeptides.
The term "splice variant" is used herein to denote alternative forms of RNA transcribed from a gene. Splice variation arises naturally through use of alternative splicing sites within a transcribed RNA molecule, or less commonly 3 0 between separately transcribed RNA molecules, and may result in several mRNAs transcribed from the same gene. Splice variants may encode polypeptides having altered amino acid sequence. The term splice variant is also used herein to denote a polypeptide encoded by a splice variant of an mRNA transcribed from a gene.
As used herein, the term "immunomodulator" includes cytokines, stem 3 5 cell growth factors, lymphotoxins, co-stimulatory molecules, hematopoietic factors, and synthetic analogs of these molecules.
The term "complement/anti-complement pair" denotes non-identical moieties that form a non-covalently associated, stable pair under appropriate conditions.
For instance, biotin and avidin (or streptavidin) are prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/ligand pairs, antibody/antigen (or hapten or epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation of the complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of less than 109 M-1.
An "anti-idiotype antibody" is an antibody that binds with the variable region domain of an immunoglobulin. In the present context, an anti-idiotype antibody binds with the variable region of an anti-Zlmda6 antibody, and thus, an anti-idiotype antibody mimics an epitope of Zlmda6.
An "antibody fragment" is a portion of an antibody such as F(ab')2, F(ab)2, Fab', Fab, and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody. For example, an anti-Zlmda6 monoclonal antibody fragment binds with an epitope of Zlmda6.
The term "antibody fragment" also includes a synthetic or a genetically engineered polypeptide that binds to a specific antigen, such as polypeptides consisting of the light chain variable region, "Fv" fragments consisting of the variable regions of the 2 0 heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy variable regions are connected by a peptide linker ("scFv proteins"), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region.
A "chimeric antibody" is a recombinant protein that contains the variable 2 5 domains and complementary determining regions derived from a rodent antibody, while the remainder of the antibody molecule is derived from a human antibody.
"Humanized antibodies" are recombinant proteins in which murine complementarity determining regions of a monoclonal antibody have been transferred from heavy and light variable chains of the murine immunoglobulin into a human variable 3 0 domain.
As used herein, a "therapeutic agent" is a molecule or atom that is conjugated to an antibody moiety to produce a conjugate that is useful for therapy.
Examples of therapeutic agents include drugs, toxins, immunomodulators, chelators, boron compounds, photoactive agents or dyes, and radioisotopes.
3 5 A "detectable label" is a molecule or atom that can be conjugated to an antibody moiety to produce a molecule useful for diagnosis. Examples of detectable labels include chelators, photoactive agents, radioisotopes, fluorescent agents, paramagnetic ions, or other marker moieties.
The term "affinity tag" is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A (Nilsson et al., EMBO J. 4:1075 (1985); Nilsson et al., Methods Enzymol. 198:3 (1991)), glutathione S transferase (Smith and Johnson, Gezze 67:31 (1988)), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad.
Sci. USA
82:7952 (1985)), substance P, FLAG peptide (Hope et al., Bioteclzzzology 6:1204 (1988)), streptavidin binding peptide, or other antigenic epitope or binding domain.
See, in general, Ford et al., Protei~z Expression azzd Purification 2:95 (1991). DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).
A "naked antibody" is an entire antibody, as opposed to an antibody fragment, which is not conjugated with a therapeutic agent. Naked antibodies include both polyclonal and monoclonal antibodies, as well as certain recombinant antibodies, such as chimeric and humanized antibodies.
2 0 As used herein, the term "antibody component" includes both an entire antibody and an antibody fragment.
An "immunoconjugate" is a conjugate of an antibody component with a therapeutic agent or a detectable label.
As used herein, the term "antibody fusion protein" refers to a 2 5 recombinant molecule that comprises an antibody component and a therapeutic agent.
Examples of therapeutic agents suitable for such fusion proteins include immunomodulators ("antibody-immunomodulator fusion protein") and toxins ("antibody-toxin fusion protein").
A "tumor associated antigen" is a protein normally not expressed, or 3 0 expressed at lower levels, by a normal counterpart cell. Examples of tumor associated antigens include alpha-fetoprotein, carcinoembryonic antigen, and Her-2/neu.
Many other illustrations of tumor-associated antigens are known. See, for example, Urban et al., A~z.yz. Rev. Imrrzunol. 10:617 (1992).
As used herein, an "infectious agent" denotes both microbes and 3 5 parasites. A "microbe" includes viruses, bacteria, rickettsia, mycoplasma, protozoa, fungi and like microorganisms. A "parasite" denotes infectious, generally microscopic or very small multicellular invertebrates, or ova or juvenile forms thereof, which are susceptible to immune-mediated clearance or lytic or phagocytic destruction, such as malarial parasites, spirochetes, and the like.
An "infectious agent antigen" is an antigen associated with an infectious agent.
A "target polypeptide" or a "target peptide" is an amino acid sequence that comprises at least one epitope, and that is expressed on a target cell, such as a tumor cell, or a cell that carries an infectious agent antigen. T cells recognize peptide epitopes presented by a major histocompatibility complex molecule to a target polypeptide or target peptide and typically lyse the target cell or recruit other immune l 0 cells to the site of the target cell, thereby killing the target cell.
An "antigenic peptide" is a peptide that will bind a major histocompatibility complex molecule to form an MHC-peptide complex, which is recognized by a T cell, thereby inducing a cytotoxic lymphocyte response upon presentation to the T cell. Thus, antigenic peptides are capable of binding to an appropriate major histocompatibility complex molecule and inducing a cytotoxic T
cells response, such as cell lysis or specific cytokine release against the target cell that binds or expresses the antigen. The antigenic peptide can be bound in the context of a class I or class II major histocompatibility complex molecule, on an antigen presenting cell or on a target cell.
2 0 In eukaryotes, RNA polymerase II catalyzes the transcription of a structural gene to produce mRNA. A nucleic acid molecule can be designed to contain an RNA polymerase II template in which the RNA transcript has a sequence that is complementary to that of a specific mRNA. The RNA transcript is termed an "anti-sense RNA" and a nucleic acid molecule that encodes the anti-sense RNA is termed an 2 5 "anti-sense gene." Anti-sense RNA molecules are capable of binding to mRNA
molecules, resulting in an inhibition of mRNA translation.
An "anti-sense oligonucleotide specific for Zlmda6" or a "Zlmda6 anti-sense oligonucleotide" is an oligonucleotide having a sequence (a) capable of forming a stable triplex with a portion of the Zlnada6 gene, or (b) capable of forming a stable 3 0 duplex with a portion of an mRNA transcript of the Zlmda6 gene.
A "ribozyme" is a nucleic acid molecule that contains a catalytic center.
The term includes RNA enzymes, self splicing RNAs, self cleaving RNAs, and nucleic acid molecules that perform these catalytic functions. A nucleic acid molecule that encodes a ribozyme is termed a "ribozyme gene."
3 5 An "external guide sequence" is a nucleic acid molecule that directs the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, resulting in the cleavage of the mRNA by RNase P. A nucleic acid molecule that encodes an external guide sequence is termed an "external guide sequence gene."
The term "variant human Zl~rzda6 gene" refers to nucleic acid molecules that encode a polypeptide having an amino acid sequence that is a modification of SEQ
m NO: 2. Such variants include naturally-occurring polymorphisms of Zlmda6 genes, as well as synthetic genes that contain conservative amino acid substitutions of the amino acid sequence of SEQ m NO: 2. Additional variant forms of Zlmda6 genes are nucleic acid molecules that contain insertions or deletions of the nucleotide sequences described herein. A variant Zlmda6 gene can be identified by determining whether the gene hybridizes with a nucleic acid molecule having the nucleotide sequence of SEQ ID
NO: 1, or its complement, under stringent conditions.
Alternatively, variant Zlrzzda6genes can be identified by sequence comparison. Two amino acid sequences have "100% amino acid sequence identity"
if the amino acid residues of the two amino acid sequences are the same when aligned for maximal correspondence. Similarly, two nucleotide sequences have "100%
nucleotide sequence identity" if the nucleotide residues of the two nucleotide sequences are the same when aligned for maximal correspondence. Sequence comparisons can be performed using standard software programs such as those included in the LASERGENE bioinformatics computing suite, which is produced by DNASTAR
2 0 (Madison, Wisconsin). Other methods for comparing two nucleotide or amino acid sequences by determining optimal alignment are well-known to those of skill in the art (see, for example, Peruski and Peruski, The Iz2ternet azzd the New Biology:
Tools for Geyzomic az2d Molecular Research (ASM Press, Inc. 1997), Wu et al. (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins,"
2 5 in Methods ih Gene Biotechzzology, pages 123-151 (CRC Press, Inc. 1997), and Bishop (ed.), Guide to Human Geuom.e Computi>zg, 2nd Edition (Academic Press, Inc.
1998)).
Particular methods for determining sequence identity are described below.
Regardless of the particular method used to identify a variant Zlrnda6 gene or variant Zlmda6 polypeptide, a variant gene or polypeptide encoded by a variant 3 0 gene is functionally characterized by its ability to bind specifically to an anti-Zlmda6 antibody.
The term "allelic variant" is used herein to denote any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within 3 5 populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.
The term "ortholog" denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.
"Paralogs" are distinct but structurally related proteins made by an 5 organism. Paralogs are believed to arise through gene duplication. For example, oc-globin, [3-globin, and myoglobin are paralogs of each other.
Due to the imprecision of standard analytical methods, molecular weights and lengths of polymers are understood to be approximate values. When such a value is expressed as "about" X or "approximately" X, the stated value of X
will be 1 o understood to be accurate to ~10%.
3. Production of the Humau Zlmda6 Gene Polynucleotides, generally a cDNA sequence, of the present invention encode the described polypeptides herein. A cDNA sequence that encodes a 15 polypeptide of the present invention is comprised of a series of codons, each amino acid residue of the polypeptide being encoded by a codon and each codon being comprised of three nucleotides. The amino acid residues are encoded by their respective codons as follows.
2 0 Alanine (Ala) is encoded by GCA, GCC, GCG or GCT;
Cysteine (Cys) is encoded by TGC or TGT;
Aspartic acid (Asp) is encoded by GAC or GAT;
Glutamic acid (Glu) is encoded by GAA or GAG;
Phenylalanine (Phe) is encoded by TTC or TTT;
2 5 Glycine (Gly) is encoded by GGA, GGC, GGG or GGT;
Histidine (His) is encoded by CAC or CAT;
Isoleucine (Ile) is encoded by ATA, ATC or ATT;
Lysine (Lys) is encoded by AAA, or AAG;
Leucine (Leu) is encoded by TTA, TTG, CTA, CTC, CTG or CTT;
3 0 Methionine (Met) is encoded by ATG;
Asparagine (Asn) is encoded by AAC or AAT;
Proline (Pro) is encoded by CCA, CCC, CCG or CCT;
Glutamine (Gln) is encoded by CAA or CAG;
For instance, biotin and avidin (or streptavidin) are prototypical members of a complement/anti-complement pair. Other exemplary complement/anti-complement pairs include receptor/ligand pairs, antibody/antigen (or hapten or epitope) pairs, sense/antisense polynucleotide pairs, and the like. Where subsequent dissociation of the complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of less than 109 M-1.
An "anti-idiotype antibody" is an antibody that binds with the variable region domain of an immunoglobulin. In the present context, an anti-idiotype antibody binds with the variable region of an anti-Zlmda6 antibody, and thus, an anti-idiotype antibody mimics an epitope of Zlmda6.
An "antibody fragment" is a portion of an antibody such as F(ab')2, F(ab)2, Fab', Fab, and the like. Regardless of structure, an antibody fragment binds with the same antigen that is recognized by the intact antibody. For example, an anti-Zlmda6 monoclonal antibody fragment binds with an epitope of Zlmda6.
The term "antibody fragment" also includes a synthetic or a genetically engineered polypeptide that binds to a specific antigen, such as polypeptides consisting of the light chain variable region, "Fv" fragments consisting of the variable regions of the 2 0 heavy and light chains, recombinant single chain polypeptide molecules in which light and heavy variable regions are connected by a peptide linker ("scFv proteins"), and minimal recognition units consisting of the amino acid residues that mimic the hypervariable region.
A "chimeric antibody" is a recombinant protein that contains the variable 2 5 domains and complementary determining regions derived from a rodent antibody, while the remainder of the antibody molecule is derived from a human antibody.
"Humanized antibodies" are recombinant proteins in which murine complementarity determining regions of a monoclonal antibody have been transferred from heavy and light variable chains of the murine immunoglobulin into a human variable 3 0 domain.
As used herein, a "therapeutic agent" is a molecule or atom that is conjugated to an antibody moiety to produce a conjugate that is useful for therapy.
Examples of therapeutic agents include drugs, toxins, immunomodulators, chelators, boron compounds, photoactive agents or dyes, and radioisotopes.
3 5 A "detectable label" is a molecule or atom that can be conjugated to an antibody moiety to produce a molecule useful for diagnosis. Examples of detectable labels include chelators, photoactive agents, radioisotopes, fluorescent agents, paramagnetic ions, or other marker moieties.
The term "affinity tag" is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A (Nilsson et al., EMBO J. 4:1075 (1985); Nilsson et al., Methods Enzymol. 198:3 (1991)), glutathione S transferase (Smith and Johnson, Gezze 67:31 (1988)), Glu-Glu affinity tag (Grussenmeyer et al., Proc. Natl. Acad.
Sci. USA
82:7952 (1985)), substance P, FLAG peptide (Hope et al., Bioteclzzzology 6:1204 (1988)), streptavidin binding peptide, or other antigenic epitope or binding domain.
See, in general, Ford et al., Protei~z Expression azzd Purification 2:95 (1991). DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).
A "naked antibody" is an entire antibody, as opposed to an antibody fragment, which is not conjugated with a therapeutic agent. Naked antibodies include both polyclonal and monoclonal antibodies, as well as certain recombinant antibodies, such as chimeric and humanized antibodies.
2 0 As used herein, the term "antibody component" includes both an entire antibody and an antibody fragment.
An "immunoconjugate" is a conjugate of an antibody component with a therapeutic agent or a detectable label.
As used herein, the term "antibody fusion protein" refers to a 2 5 recombinant molecule that comprises an antibody component and a therapeutic agent.
Examples of therapeutic agents suitable for such fusion proteins include immunomodulators ("antibody-immunomodulator fusion protein") and toxins ("antibody-toxin fusion protein").
A "tumor associated antigen" is a protein normally not expressed, or 3 0 expressed at lower levels, by a normal counterpart cell. Examples of tumor associated antigens include alpha-fetoprotein, carcinoembryonic antigen, and Her-2/neu.
Many other illustrations of tumor-associated antigens are known. See, for example, Urban et al., A~z.yz. Rev. Imrrzunol. 10:617 (1992).
As used herein, an "infectious agent" denotes both microbes and 3 5 parasites. A "microbe" includes viruses, bacteria, rickettsia, mycoplasma, protozoa, fungi and like microorganisms. A "parasite" denotes infectious, generally microscopic or very small multicellular invertebrates, or ova or juvenile forms thereof, which are susceptible to immune-mediated clearance or lytic or phagocytic destruction, such as malarial parasites, spirochetes, and the like.
An "infectious agent antigen" is an antigen associated with an infectious agent.
A "target polypeptide" or a "target peptide" is an amino acid sequence that comprises at least one epitope, and that is expressed on a target cell, such as a tumor cell, or a cell that carries an infectious agent antigen. T cells recognize peptide epitopes presented by a major histocompatibility complex molecule to a target polypeptide or target peptide and typically lyse the target cell or recruit other immune l 0 cells to the site of the target cell, thereby killing the target cell.
An "antigenic peptide" is a peptide that will bind a major histocompatibility complex molecule to form an MHC-peptide complex, which is recognized by a T cell, thereby inducing a cytotoxic lymphocyte response upon presentation to the T cell. Thus, antigenic peptides are capable of binding to an appropriate major histocompatibility complex molecule and inducing a cytotoxic T
cells response, such as cell lysis or specific cytokine release against the target cell that binds or expresses the antigen. The antigenic peptide can be bound in the context of a class I or class II major histocompatibility complex molecule, on an antigen presenting cell or on a target cell.
2 0 In eukaryotes, RNA polymerase II catalyzes the transcription of a structural gene to produce mRNA. A nucleic acid molecule can be designed to contain an RNA polymerase II template in which the RNA transcript has a sequence that is complementary to that of a specific mRNA. The RNA transcript is termed an "anti-sense RNA" and a nucleic acid molecule that encodes the anti-sense RNA is termed an 2 5 "anti-sense gene." Anti-sense RNA molecules are capable of binding to mRNA
molecules, resulting in an inhibition of mRNA translation.
An "anti-sense oligonucleotide specific for Zlmda6" or a "Zlmda6 anti-sense oligonucleotide" is an oligonucleotide having a sequence (a) capable of forming a stable triplex with a portion of the Zlnada6 gene, or (b) capable of forming a stable 3 0 duplex with a portion of an mRNA transcript of the Zlmda6 gene.
A "ribozyme" is a nucleic acid molecule that contains a catalytic center.
The term includes RNA enzymes, self splicing RNAs, self cleaving RNAs, and nucleic acid molecules that perform these catalytic functions. A nucleic acid molecule that encodes a ribozyme is termed a "ribozyme gene."
3 5 An "external guide sequence" is a nucleic acid molecule that directs the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, resulting in the cleavage of the mRNA by RNase P. A nucleic acid molecule that encodes an external guide sequence is termed an "external guide sequence gene."
The term "variant human Zl~rzda6 gene" refers to nucleic acid molecules that encode a polypeptide having an amino acid sequence that is a modification of SEQ
m NO: 2. Such variants include naturally-occurring polymorphisms of Zlmda6 genes, as well as synthetic genes that contain conservative amino acid substitutions of the amino acid sequence of SEQ m NO: 2. Additional variant forms of Zlmda6 genes are nucleic acid molecules that contain insertions or deletions of the nucleotide sequences described herein. A variant Zlmda6 gene can be identified by determining whether the gene hybridizes with a nucleic acid molecule having the nucleotide sequence of SEQ ID
NO: 1, or its complement, under stringent conditions.
Alternatively, variant Zlrzzda6genes can be identified by sequence comparison. Two amino acid sequences have "100% amino acid sequence identity"
if the amino acid residues of the two amino acid sequences are the same when aligned for maximal correspondence. Similarly, two nucleotide sequences have "100%
nucleotide sequence identity" if the nucleotide residues of the two nucleotide sequences are the same when aligned for maximal correspondence. Sequence comparisons can be performed using standard software programs such as those included in the LASERGENE bioinformatics computing suite, which is produced by DNASTAR
2 0 (Madison, Wisconsin). Other methods for comparing two nucleotide or amino acid sequences by determining optimal alignment are well-known to those of skill in the art (see, for example, Peruski and Peruski, The Iz2ternet azzd the New Biology:
Tools for Geyzomic az2d Molecular Research (ASM Press, Inc. 1997), Wu et al. (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins,"
2 5 in Methods ih Gene Biotechzzology, pages 123-151 (CRC Press, Inc. 1997), and Bishop (ed.), Guide to Human Geuom.e Computi>zg, 2nd Edition (Academic Press, Inc.
1998)).
Particular methods for determining sequence identity are described below.
Regardless of the particular method used to identify a variant Zlrnda6 gene or variant Zlmda6 polypeptide, a variant gene or polypeptide encoded by a variant 3 0 gene is functionally characterized by its ability to bind specifically to an anti-Zlmda6 antibody.
The term "allelic variant" is used herein to denote any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within 3 5 populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.
The term "ortholog" denotes a polypeptide or protein obtained from one species that is the functional counterpart of a polypeptide or protein from a different species. Sequence differences among orthologs are the result of speciation.
"Paralogs" are distinct but structurally related proteins made by an 5 organism. Paralogs are believed to arise through gene duplication. For example, oc-globin, [3-globin, and myoglobin are paralogs of each other.
Due to the imprecision of standard analytical methods, molecular weights and lengths of polymers are understood to be approximate values. When such a value is expressed as "about" X or "approximately" X, the stated value of X
will be 1 o understood to be accurate to ~10%.
3. Production of the Humau Zlmda6 Gene Polynucleotides, generally a cDNA sequence, of the present invention encode the described polypeptides herein. A cDNA sequence that encodes a 15 polypeptide of the present invention is comprised of a series of codons, each amino acid residue of the polypeptide being encoded by a codon and each codon being comprised of three nucleotides. The amino acid residues are encoded by their respective codons as follows.
2 0 Alanine (Ala) is encoded by GCA, GCC, GCG or GCT;
Cysteine (Cys) is encoded by TGC or TGT;
Aspartic acid (Asp) is encoded by GAC or GAT;
Glutamic acid (Glu) is encoded by GAA or GAG;
Phenylalanine (Phe) is encoded by TTC or TTT;
2 5 Glycine (Gly) is encoded by GGA, GGC, GGG or GGT;
Histidine (His) is encoded by CAC or CAT;
Isoleucine (Ile) is encoded by ATA, ATC or ATT;
Lysine (Lys) is encoded by AAA, or AAG;
Leucine (Leu) is encoded by TTA, TTG, CTA, CTC, CTG or CTT;
3 0 Methionine (Met) is encoded by ATG;
Asparagine (Asn) is encoded by AAC or AAT;
Proline (Pro) is encoded by CCA, CCC, CCG or CCT;
Glutamine (Gln) is encoded by CAA or CAG;
Arginine (Arg) is encoded by AGA, AGG, CGA, CGC, CGG or CGT;
Serine (Ser) is encoded by AGC, AGT, TCA, TCC, TCG or TCT;
Threonine (Thr) is encoded by ACA, ACC, ACG or ACT;
Valine (Val) is encoded by GTA, GTC, GTG or GTT;
Tryptophan (Trp) is encoded by TGG; and Tyrosine (Tyr) is encoded by TAC or TAT.
It is to be recognized that according to the present invention, when a polynucleotide is claimed as described herein, it is understood that what is claimed are both the sense strand, the anti-sense strand, and the DNA as double-stranded having both the sense and anti-sense strand annealed together by their respective hydrogen bonds. Also claimed is the messenger RNA (mRNA) that encodes the polypeptides of the president invention, and which mRNA is encoded by the cDNA described herein.
Messenger RNA (mRNA) will encode a polypeptide using the same codons as those defined herein, with the exception that each thymine nucleotide (T) is replaced by a uracil nucleotide (U).
Nucleic acid molecules encoding a human Zlmda6gene can be obtained by screening a human cDNA or genomic library using polynucleotide probes based upon SEQ ID NO: 1. These techniques are standard and well established.
2 0 As an illustration, a nucleic acid molecule that encodes a human Zlmda6gene can be isolated from a human cDNA library. In this case, the first step would be to prepare the cDNA library by isolating RNA mammary epithelial tissue. In general, RNA isolation techniques must provide a method for breaking cells, a means of inhibiting RNase-directed degradation of RNA, and a method of separating RNA
from 2 5 DNA, protein, and polysaccharide contaminants. For example, total RNA can be isolated by freezing tissue in liquid nitrogen, grinding the frozen tissue with a mortar and pestle to lyse the cells, extracting the ground tissue with a solution of phenol/chloroform to remove proteins, and separating RNA from the remaining impurities by selective precipitation with lithium chloride (see, for example, Ausubel et al. (eds.), Short Protocols in 3 0 Molecular Biology, 3'd Editiofz, pages 4-1 to 4-6 (John Wiley & Sons 1995) ["Ausubel (1995)"]; Wu et al., Methods in Gene Biotechnology, pages 33-41 (CRC Press, Inc. 1997) ["Wu (1997)"]).
Alternatively, total RNA can be isolated from mammary epithelial tissue by extracting ground tissue with guanidinium isothiocyanate, extracting with organic solvents, and separating RNA from contaminants using differential centrifugation (see, for example, Chirgwin et al., Biochemistry 18:52 (1979); Ausubel (1995) at pages 4-1 to 4-6; Wu (1997) at pages 33-41).
In order to construct a cDNA library, poly(A)+ RNA must be isolated from a total RNA preparation. Poly(A)+ RNA can be isolated from total RNA using the standard technique of oligo(dT)-cellulose chromatography (see, for example, Aviv and Leder, Proc. Nat'l Acad. Sci. USA 69:1408 (1972); Ausubel (1995) at pages 4-11 to 4-12).
Double-stranded cDNA molecules are synthesized from poly(A)+ RNA
using techniques well-known to those in the art. (see, for example, Wu (1997) at pages 41-46). Moreover, commercially available kits can be used to synthesize double-stranded cDNA molecules. For example, such kits are available from Life Technologies, Inc. (Gaithersburg, MD), CLONTECH Laboratories, Inc. (Palo Alto, CA), Promega Corporation (Madison, Wn and STRATAGENE (La Jolla, CA).
Various cloning vectors are appropriate for the construction of a cDNA
library. For example, a cDNA library can be prepared in a vector derived from bacteriophage, such as a ~,gtl0 vector. See, for example, Huynh et al., "Constructing and Screening cDNA Libraries in ~,gtl0 and ~,gtll," in DNA Cloyzihg: A
Practical Approach Vol. I, Glover (ed.), page 49 (IRL Press, 1985); Wu (1997) at pages 47-52.
2 0 Alternatively, double-stranded cDNA molecules can be inserted into a plasmid vector, such as a PBLUESCR1PT vector (STRATAGENE; La Jolla, CA), a LAMDAGEM-4 (Promega Corp.) or other commercially available vectors. Suitable cloning vectors also can be obtained from the American Type Culture Collection (Manassas, VA).
2 5 To amplify the cloned cDNA molecules, the cDNA library is inserted into a prokaryotic host, using standard techniques. For example, a cDNA library can be introduced into competent E. coli DH5 cells, which can be obtained, for example, from Life Technologies, Inc. (Gaithersburg, MD).
A human genomic library can be prepared by means well known in the art 3 0 (see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327).
Genomic DNA can be isolated by lysing tissue with the detergent Sarkosyl, digesting the lysate with proteinase K, clearing insoluble debris from the lysate by centrifugation, precipitating nucleic acid from the lysate using isopropanol, and purifying resuspended DNA on a cesium chloride density gradient.
3 5 DNA fragments that are suitable for the production of a genomic library can be obtained by the random shearing of genomic DNA or by the partial digestion of genomic DNA with restriction endonucleases. Genomic DNA fragments can be inserted into a vector, such as a bacteriophage or cosmid vector, in accordance with conventional techniques, such as the use of restriction enzyme digestion to provide appropriate termini, the use of alkaline phosphatase treatment to avoid undesirable joining of DNA
molecules, and ligation with appropriate ligases. Techniques for such manipulation are well known in the art [see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327].
Nucleic acid molecules that encode a human Zlrnda6 gene can also be obtained using the polymerase chain reaction (PCR) with oligonucleotide primers having nucleotide sequences that are based upon the nucleotide sequences of the human Zlmda6 gene, as described herein. General methods for screening libraries with PCR
are provided by, for example, Yu et al., "Use of the Polymerase Chain Reaction to Screen Phage Libraries," in Methods ih Molecular Biology, Vol. 1 S: PCR
Protocols:
Current Methods and Applications, White (ed.), pages 211-215 (Humana Press, Inc.
1993). Moreover, techniques for using PCR to isolate related genes are described by, for example, Preston, "Use of Degenerate Oligonucleotide Primers and the Polymerase Chain Reaction to Clone Gene Family Members," in Methods in Molecular Biology, Vol. I5: PCR Protocols: Curreyat Methods afZd Applications, White (ed.), pages 337 (Humana Press, Inc. 1993).
Alternatively, human genomic libraries can be obtained from commercial 2 0 sources such as Research Genetics (Huntsville, AL) and the American Type Culture Collection (Manassas, VA).
A libra~.y containing cDNA or genomic clones can be screened with one or more polynucleotide probes based upon SEQ m NO: 1, using standard methods [see, for example, Ausubel (1995) at pages 6-1 to 6-11].
2 5 Anti-Zlmda6 antibodies, produced as described below, can also be used to isolate DNA sequences that encode human ZlnZda6genes from cDNA libraries.
For example, the antibodies can be used to screen ~,gtl l expression libraries, or the antibodies can be used for immunoscreening following hybrid selection and translation (see, for example, Ausubel (1995) at pages 6-12 to 6-16; Margolis et al., "Screening ~, 3 0 expression libraries with antibody and protein probes," in DNA Cloning 2:
Expression Systems, 2nd Editio~a, Glover et al. (eds.), pages 1-14 (Oxford University Press 1995)).
As an alternative, a Zlmda6gene can be obtained by synthesizing nucleic acid molecules using mutually priming long oligonucleotides and the nucleotide sequences described herein (see, for example, Ausubel (1995) at pages 8-8 to 8-9).
3 5 Established techniques using the polymerase chain reaction provide the ability to synthesize DNA molecules at least two kilobases in length (Adang et al., Plant Molec.
Biol. 21:1131 (1993), Bambot et al., PCR Methods arid Applications 2:266 (1993), Dillon et al., "Use of the Polymerase Chain Reaction for the Rapid Construction of Synthetic Genes," in Methods in Molecular Biology, Vol. I5: PCR Protocols:
Current Methods and Applications, White (ed.), pages 263-26~, (Humana Press, Inc.
1993), and Holowachuk et al., PCR Methods Appl. 4:299 (1995)).
The nucleic acid molecules of the present invention can also be synthesized with "gene machines" using protocols such as the phosphoramidite method.
If chemically synthesized double stranded DNA is required for an application such as the synthesis of a gene or a gene fragment, then each complementary strand is made separately. The production of short genes (60 to 80 base pairs) is technically straightforward and can be accomplished by synthesizing the complementary strands and then annealing them. For the production of longer genes (>300 base pairs), however, special strategies may be required, because the coupling efficiency of each cycle during chemical DNA synthesis is seldom 100%. To overcome this problem, synthetic genes (double-stranded) are assembled in modular form from single-stranded fragments that are from 20 to 100 nucleotides in length.
One method for building a synthetic gene requires the initial production of a set of overlapping, complementary oligonucleotides, each of which is between 20 to 60 nucleotides long. The sequences of the strands are planned so that, after annealing, the two end segments of the gene are aligned to give blunt ends.
Each 2 0 internal section of the gene has complementary 3' and 5' terminal extensions that are designed to base pair precisely with an adjacent section. Thus, after the gene is assembled, the only remaining requirement to complete the process is to seal the nicks along the backbones of the two strands with T4 DNA ligase. In addition to the protein coding sequence, synthetic genes can be designed with terminal sequences that facilitate 2 5 insertion into a restriction endonuclease sites of a cloning vector and other sequences should also be added that contain signals for the proper initiation and termination of transcription and translation.
An alternative way to prepare a full-size gene is to synthesize a specified set of overlapping oligonucleotides (40 to 100 nucleotides). After the 3' and 5' 3 0 extensions (6 to 10 nucleotides) are annealed, large gaps still remain, but the base-paired regions are both long enough and stable enough to hold the structure together.
The duplex is completed and the gaps filled by enzymatic DNA synthesis with E.
coli DNA polymerase I. This enzyme uses the 3'-hydroxyl groups as replication initiation points and the single-stranded regions as templates. After the enzymatic synthesis is 3 5 completed, the nicks are sealed with T4 DNA ligase. For larger genes, the complete gene sequence is usually assembled from double-stranded fragments that are each put together by joining four to six overlapping oligonucleotides (20 to 60 base pairs each).
If there is a sufficient amount of the double-stranded fragments after each synthesis and annealing step, they are simply joined to one another. Otherwise, each fragment is cloned into a vector to amplify the amount of DNA available. In both cases, the double-stranded constructs are sequentially linked to one another to form the entire gene 5 sequence. Each double-stranded fragment and the complete sequence should be characterized by DNA sequence analysis to verify that the chemically synthesized gene has the correct nucleotide sequence. For reviews on polynucleotide synthesis, see, for example, Glick and Pasternak, Molecular Bi.otechzzology, Prizzciples azzd Applicatiozzs of Reconzbihant DNA (ASM Press 1994), Itakura et al., Anhu. Rev. Biochezn.
53:323 10 (1984), and Climie et al., Proc. Nat'l Acad. Sci. USA 87:633 (1990).
The sequence of a Zlzzzda6cDNA or Zlznda6 genomic fragment can be determined using standard methods. Moreover, the identification of genomic fragments containing a Zlmda6 promoter or regulatory element can be achieved using well-established techniques, such as deletion analysis (see, generally, Ausubel (1995)).
15 Cloning of 5' flanking sequences also facilitates production of Zlmda6 proteins by "gene activation," following the methods disclosed in U.S. Patent No.
5,641,670. Briefly, expression of an endogenous Zlmda6gene in a cell is altered by introducing into the Zlznda6locus a DNA construct comprising at least a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site.
The 2 0 targeting sequence is a Zlmda6 5' non-coding sequence that permits homologous recombination of the construct with the endogenous Zlmda6 locus, whereby the sequences within the construct become operably linked with the endogenous Zlz~zda6 coding sequence. In this way, an endogenous Zlznda6promoter can be replaced or supplemented with other regulatory sequences to provide enhanced, tissue-specific, or 2 5 otherwise regulated expression.
4. Production of Zlmda6 Gefze Variants The present invention provides a variety of nucleic acid molecules, including DNA and RNA molecules that encode the Zlmda6 polypeptides disclosed herein. Those skilled in the art will readily recognize that, in view of the degeneracy of 3 0 the genetic code, considerable sequence variation is possible among these polynucleotide molecules. Table 1 sets forth the one-letter codes used within SEQ ID
NOs:3, 6, and 25 to denote degenerate nucleotide positions. "Resolutions" are the nucleotides denoted by a code letter. "Complement" indicates the code for the complementary nucleotide(s). For example, the code Y denotes either C or T, and its 3 5 complement R denotes A or G, A being complementary to T, and G being complementary to C.
Table 1 NucleotideResolutionComplement Resolution A A T T
C C G G
G G C C
T T A A
R A~G Y C~T
Y C~T R A~G
M ABC K G~T
K G!T M A~C
S CMG S C~G
W A~T W ACT
H A~C~T D A~G~T
B C~G~T V A~C~G
V A~C~G B C~G~T
D A~G~T H A~C~T
N A~C~G~T N A~C~G~T
The degenerate codons encompassing all possible codons for a given amino acid, are set forth in Table 2.
Table 2 One Letter Degenerate Amino AcidCode Codons Codon Cys C TGC TGT TGY
Ser S AGC AGT TCA TCC TCG TCT WSN
Thr T ACA ACC ACG ACT ACN
Pro P CCA CCC CCG CCT CCN
Ala A GCA GCC GCG GCT GCN
Gly G GGA GGC GGG GGT GGN
Asn N AAC AAT AAY
Asp D GAC GAT GAY
Glu E GAA GAG GAR
Gln Q CAA CAG CAR
His H CAC CAT CAY
Arg R AGA AGG CGA CGC CGG CGT MGN
Lys K AAA AAG AAR
Met M ATG ATG
Ile I ATA ATC ATT ATH
Leu L CTA CTC CTG CTT TTA TTG YTN
Val V GTA GTC GTG GTT GTN
Phe F TTC TTT TTY
Tyr Y TAC TAT TAY
Trp W TGG TGG
Ter . TAA TAG TGA TRR
Asn~Asp B RAY
Glu~Gln Z SAR
Any X NNN
One of ordinary skill in the art will appreciate that some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding an amino acid. For example, the degenerate codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). A similar relationship exists between codons encoding phenylalanine and leucine. Thus, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO: 2. Variant sequences can be readily tested for functionality as described herein.
Different species can exhibit "preferential codon usage." In general, see, Grantham et al., Nuc. Acids Res. 8:1893 (1980), Haas et al. Curr. Biol. 6:315 (1996), Wain-Hobson et al., Geyae 13:355 (1981), Grosjean and Fiers, Gene 18:199 (1982), Holm, Nuc. Acids Res. 14:3075 (1986), lkemura, J. Mol. Biol. 158:573 (1982), Sharp and Matassi, Curr. Opin. Genet. Dev. 4:851 (1994), Kane, Curr. Opih.
Biotechhol.
6:494 (1995), and Makrides, Microbiol. Rev. 60:512 (1996). As used herein, the term "preferential codon usage" or "preferential codons" is a term of art referring to protein translation codons that are most frequently used in cells of a certain species, thus favoring one or a few representatives of the possible codons encoding each amino acid 2 0 (See Table 2). For example, the amino acid Threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon;
in other species, for example, insect cells, yeast, viruses or bacteria, different Thr codons may be preferential. Preferential codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods 2 5 known in the art. Introduction of preferential codon sequences into recombinant DNA
can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species.
The present invention further provides variant polypeptides and nucleic acid molecules that represent counterparts from other species (orthologs).
These 3 0 species include, but are not limited to mammalian, avian, amphibian, reptile, fish, insect and other vertebrate and invertebrate species. Of particular interest are Zlmda6 polypeptides from other mammalian species, including murine, porcine, ovine, bovine, canine, feline, equine, and other primate polypeptides. Orthologs of human Zlmda6 can be cloned using information and compositions provided by the present invention in 3 5 combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses Zlmda6~
as disclosed herein. Suitable sources of mRNA can be identified by probing northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line.
A Zlmda6-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction with primers designed from the representative human Zlmda6 sequences disclosed herein. Within an additional method, the cDNA
library can be used to transform or transfect host cells, and expression of the cDNA
of interest can be detected with an antibody to Zlmda6 polypeptide. Similar techniques can also be applied to the isolation of genomic clones, and to the isolation of nucleic molecules that encode murine Zlmda6.
Those skilled in the art will recognize that the sequence disclosed in SEQ ~ NO: 1 represents a single allele of human Zlmda6, and that allelic variation and alternative splicing are expected to occur. Allelic variants of this sequence can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures. Allelic variants of the nucleotide sequence shown in SEQ
m NO: 1, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ m NO: 2. cDNA molecules generated from 2 0 alternatively spliced mRNAs, which retain the properties of the Zlmda6 polypeptide are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals or tissues according to standard procedures known in the art.
2 5 Within preferred embodiments of the invention, isolated nucleic acid molecules that encode human Zlmda6 can hybridize to nucleic acid molecules having the nucleotide sequence of SEQ m NO: 1, or a sequence complementary thereto, under "stringent conditions." In general, stringent conditions are selected to be about 5°C
lower than the thermal melting point (Tm) for the specific sequence at a defined ionic 3 0 strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
As an illustration, a nucleic acid molecule encoding a variant Zlmda6 polypeptide can be hybridized with a nucleic acid molecule having the nucleotide sequence of SEQ m NO: 1 (or its complement) at 42°C overnight in a solution 35 comprising 50% formamide, 5xSSC (lxSSC: 0.15 M sodium chloride and 15 mM
sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution (100x Denhardt's solution: 2% (w/v) Ficoll 400, 2% (w/v) polyvinylpyrrolidone, and 2%
(w/v) bovine serum albumin), 10% dextran sulfate, and 20 ~,g/ml denatured, sheared salmon sperm DNA. One of skill in the art can devise variations of these hybridization conditions. For example, the hybridization mixture can be incubated at a higher temperature, such as about 65°C, in a solution that does not contain formamide.
5 Moreover, premixed hybridization solutions are available (e.g., EXPRESSHYB
Hybridization Solution from CLONTECH Laboratories, Inc.), and hybridization can be performed according to the manufacturer's instructions.
Following hybridization, the nucleic acid molecules can be washed to remove non-hybridized nucleic acid molecules under stringent conditions, or under 10 highly stringent conditions. Typical stringent washing conditions include washing in a solution of O.Sx - 2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 55 -65°C. That is, nucleic acid molecules encoding a variant Zlmda6s polypeptide hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO:1 (or its complement) under stringent washiiag conditions, in which the wash stringency is 15 equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 - 65°C, including 0.5x SSC with 0.1% SDS at 55°C, or 2xSSC with 0.1% SDS at 65°C. One of skill in the art can readily devise equivalent conditions, for example, by substituting SSPE for SSC in the wash solution.
Typical highly stringent washing conditions include washing in a 2 0 solution of 0.1x - 0.2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 50 -65°C. In other words, nucleic acid molecules encoding a variant Zlmda6 polypeptide hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO:1 (or its complement) under highly stringent washing conditions, in which the wash stringency is equivalent to O.lx - 0.2x SSC with 0.1% SDS at 50 - 65°C, including O.lx SSC with 25 0.1% SDS at 50°C, or 0.2xSSC with 0.1% SDS at 65°C.
The present invention also provides isolated Zlmda6 polypeptides that have a substantially similar sequence identity to the polypeptides of SEQ m NO: 2, or its orthologs. The term "substantially similar sequence identity" is used herein to denote polypeptides having at least at least 90%, at least 95% or greater sequence 3 0 identity to the sequences shown in SEQ m NO: 2, or its orthologs.
The present invention also contemplates Zlmda6 variant nucleic acid molecules that can be identified using two criteria: a determination of the similarity between the encoded polypeptide with the amino acid sequence of SEQ ~ NO: 2, and a hybridization assay, as described above. Such Zlmda6 variants include nucleic acid molecules (1) that hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO: 1 (or its complement) under stringent washing conditions, in which the wash stringency is equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 -65°C, and (2) that encode a polypeptide having at least 70%, at least 80%, at least 90%, at least 95% or greater than 95% sequence identity to the amino acid sequence of SEQ m NO: 2. Alternatively, Zlmda6 variants can be characterized as nucleic acid molecules (1) that hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ
ID NO: 1 (or its complement) under highly stringent washing conditions, in which the wash stringency is equivalent to O.lx - 0.2x SSC with 0.1% SDS at 50 -65°C, and (2) that encode a polypeptide having at least 95% or greater than 95% sequence identity to the amino acid sequence of SEQ m NO: 2.
The present invention also contemplates human Zlmda6 variant nucleic acid molecules identified by at least one of hybridization analysis and sequence identity determination, with reference to SEQ ID NOs: 1 and 2.
Percent sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48:603 (1986), and Henikoff and Henikoff, Proc. Natl. Acad. Sci. ZISA 89:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of l, and the "BLOSUM 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes). The percent identity is then calculated as: ([Total number of identical matches]l [length of the longer sequence plus the number of gaps introduced into the 2 0 longer sequence in order to align the two sequences])(100).
w-E-~ ,--, N
M
' V1tn N N
O
P-'d. ,~ M N
N
' d' wl~ ,~ M N
~ ' ~ ~
' ~ d- N N M ,-i ~n O N ' ,~ ,-i '-i ' ' ,-, ,-, M
' N
~' M ' O ' N
d- N N O M N ~
, ' r' ,-' N ~ ~
,~ , O M N ,-i ' d. N M ~ M
N
~
N N M
(~0o M r; ~ N '~ N
M ,~ ' vp N .d. d- N , M N O N
w ~ N O M M ,~ N M ,~ O ,-' O N
' M ~ O ,-, ' i N N O ~,,~ N ,~ N
U ' r N
~ M d- M M ~ ~ M N .--i i N M ~ ,~
i ~
\O M O N ~ ~ M d' ~ M M ~ O ,_., ' M
~ M
N ~
~O ' N
M O O O ~ M M O M
M N ,~ O
~n O N cn ~ O N O M N N ;' cn m N
N ,~ ,-, M
~ ' -. ' ' , '" ' cn N N p ~ ,-i, O ( ~1 ~ , ~, ~-~ ~ N
, N ~ .-' O O
~xzr~Uawc~x~a~~wa~~H ~~~
M
N
H
tn o Lf7 0 --' ._..' rW
Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The "FASTA" similarity search algorithm of Pearson and Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative Zlmda6 variant. The FASTA algorithm is described by Pearson and Lipman, Proc. Nat'l Acad. Sci. LISA 85:2444 (1988), and by Pearson, Meth. Enzymol. 183:63 (1990). Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence (e.g., SEQ ID
N0:2) and a test sequence that have either the highest density of identities (if the letup variable is 1) or pairs of identities (if letup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then re-scored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are "trimmed"
to include only those residues that contribute to the highest score. If there are several regions with scores greater than the "cutoff" value (calculated by a predetermined formula based upon the length of the sequence and the letup value), then the trimmed initial regions are examined to determine whether the regions can be joined to form an approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the Needleman-Wunsch-Sellers 2 0 algorithm (Needleman and Wunsch, J. Mol. Biol. 48:444 ( 1970); Sellers, SIAM J. Appl.
Math. 26:787 (1974)), which allows for amino acid insertions and deletions.
lllustrative parameters for FASTA analysis are: letup=1, gap opening penalty=10, gap extension penalty=1, and substitution matrix=BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file ("SMATRIX"), as explained in Appendix 2 of Pearson, Metla. Ejazymol. 183:63 (1990).
FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, the letup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as described above.
3 0 The present invention includes nucleic acid molecules that encode a polypeptide having a conservative amino acid change, compared with the amino acid sequence of SEQ ID NO: 2. That is, variants can be obtained that contain one or more amino acid substitutions of SEQ ID NO: 2, in which an alkyl amino acid is substituted for an alkyl amino acid in an Zlmda6 amino acid sequence, an aromatic amino acid is 3 5 substituted for an aromatic amino acid in an Zlmda6 amino acid sequence, a sulfur-containing amino acid is substituted for a sulfur-containing amino acid in an Zlmda6 amino acid sequence, a hydroxy-containing amino acid is substituted for a hydroxy-containing amino acid in an Zlmda6 amino acid sequence, an acidic amino acid is substituted for an acidic amino acid in an Zlmda6 amino acid sequence, a basic amino acid is substituted for a basic amino acid in an Zlmda6 amino acid sequence, or a dibasic monocarboxylic amino acid is substituted for a dibasic monocarboxylic amino acid in an Zlmda6 amino acid sequence.
Among the common amino acids, for example, a "conservative amino acid substitution" is illustrated by a substitution among amino acids within each of the following groups: (1) glycine, alanine, valine, leucine, and isoleucine, (2) phenylalanine, tyrosine, and tryptophan, (3) serine and threonine, (4) aspartate and glutamate, (5) glutamine and asparagine, and (6) lysine, arginine and histidine.
The BLOSUM62 table is an amino acid substitution matrix derived from about 2,000 local multiple alignments of protein sequence segments, representing highly conserved regions of more than 500 groups of related proteins (Henikoff and Henikoff, Proc. Nat'l Acad. Sci. USA 89:10915 (1992)). Accordingly, the substitution frequencies can be used to define conservative amino acid substitutions that may be introduced into the amino acid sequences of the present invention.
Although it is possible to design amino acid substitutions based solely upon chemical properties (as discussed above), the language "conservative amino acid substitution"
preferably refers to a substitution represented by a BLOSUM62 value of greater than -1. For example, 2 0 an amino acid substitution is conservative if the substitution is characterized by a BLOSUM62 value of 0, l, 2, or 3. According to this system, preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 1 (e.g., l, 2 or 3), while more preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 2 (e.g., 2 or 3).
2 5 Conservative amino acid changes in an Zlnada6 gene can be introduced by substituting nucleotides for the nucleotides recited in SEQ ID NO: 1. Such "conservative amino acid" variants can be obtained, for example, by oligonucleotide-directed mutagenesis, linker-scanning mutagenesis, mutagenesis using the polymerase chain reaction, and the like (see Ausubel (1995) at pages 8-10 to 8-22; and McPherson 3 0 (ed.), Directed Mutageraesis: A Practical Approach (IRL Press 1991)). The ability of such variants to promote anti-viral or anti-proliferative activity can be determined using a standard method, such as the assay described herein. Alternatively, a variant Zlmda6 polypeptide can be identified by the ability to specifically bind anti-Zlmda6 antibodies.
The proteins of the present invention can also comprise non-naturally 3 5 occurring amino acid residues. Non-naturally occurring amino acids include, without limitation, traps-3-methylproline, 2,4-methanoproline, cis-4-hydroxyproline, traps-4-hydroxyproline, N methylglycine, allo-threonine, methylthreonine, hydroxyethylcysteine, hydroxyethylhomocysteine, nitroglutamine, homoglutamine, pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 3- and 4-methylproline, 3,3-dimethylproline, tert-leucine, norvaline, 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, and 4-fluorophenylalanine. Several methods are known in the art for 5 incorporating non-naturally occurring amino acid residues into proteins. For example, an ifz vitro system can be employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids containing nonsense mutations is typically carried out in a cell-free system 10 comprising an E. coli S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. See, for example, Robertson et al., J. Ana. Chem. Soc. 113:2722 (1991), Ellman et al., Methods Enzytnol. 202:301 (1991), Chung et al., Science 259:806 (1993), and Chung et al., Proc. Nat'L Acad. Sci.
USA
90:10145 (1993).
15 In a second method, translation is carried out in Xenopus oocytes by microinjection of mutated mRNA and chemically aminoacylated suppressor tRNAs [Turcatti et al., J. Biol. Cherra. 271:19991 (1996)]. Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acids) 2 0 (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, I~oide et al., Biochem.
33:7470 (1994).
Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro chemical modification. Chemical modification can be combined 2 5 with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. 2:395 (1993)).
A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for Zlmda6 amino acid residues.
3 0 Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081 (1989), Bass et al., Proc. Nat'l Acad. Sci. USA 88:4498 (1991), Coombs and Corey, "Site-Directed Mutagenesis and Protein Engineering," in Proteif2s: Analysis and Desigfa, 3 5 Angeletti (ed.), pages 259-311 (Academic Press, Inc. 1998)). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity as disclosed below to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., J. Biol. Ch.em. 271:4699 (1996).
Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer [Science 241:53 (1988)] or Bowie and Sauer [Proc. Nat'l Acad. Sci. USA
86:2152 (1989)]. Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display [e.g., Lowman et al., BioclZefn. 30:10832 (1991), Ladner et al., U.S. Patent No. 5,223,409, Huse, international publication No. WO 92/06204, and region-directed mutagenesis (Derbyshire et al., Gehe 46:145 (1986), and Ner et al., DNA 7:127, (1988)].
Variants of the disclosed Zlmda6nucleotide and polypeptide sequences can also be generated through DNA shuffling as disclosed by Stemmer, Nature 370:389 (1994), Stemmer, Proc. Nat'l Acad. Sci. LISA 91:10747 (1994), and international publication No. WO 97/20078. Briefly, variant DNAs are generated by in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations. This 2 0 technique can be modified by using a fannily of parent DNAs, such as allelic variants or DNAs from different species, to introduce additional variability into the process.
Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.
2 5 Mutagenesis methods as disclosed herein can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode biologically active polypeptides, or polypeptides that bind with anti-Zlmda6 antibodies, can be recovered from the host cells and rapidly sequenced using modern equipment. These methods 3 0 allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.
The present invention also includes "functional fragments" of Zlmda6 polypeptides and nucleic acid molecules encoding such functional fragments.
Routine deletion analyses of nucleic acid molecules can be performed to obtain functional 3 5 fragments of a nucleic acid molecule that encodes a Zlmda6 polypeptide.
The present invention also provides polypeptide fragments or peptides comprising an epitope-bearing portion of a Zlmda6 polypeptide described herein. Such fragments or peptides may comprise an "immunogenic epitope," which is a part of a protein that elicits an antibody response when the entire protein is used as an immunogen. Immunogenic epitope-bearing peptides can be identified using standard methods (see, for example, Geysen et al., Proc. Nat'L Acad. Sci. USA 81:3998 ( 1983)).
In contrast, polypeptide fragments or peptides may comprise an "antigenic epitope," which is a region of a protein molecule to which an antibody can specifically bind. Certain epitopes consist of a linear or contiguous stretch of amino acids, and the antigenicity of such an epitope is not disrupted by denaturing agents. It is known in the art that relatively short synthetic peptides that can mimic epitopes of a protein can be used to stimulate the production of antibodies against the protein (see, for example, Sutcliffe et al., Science 219:660 (1983)). Accordingly, antigenic epitope-bearing peptides and polypeptides of the present invention are useful to raise antibodies that bind with the polypeptides described herein.
Antigenic epitope-bearing peptides and polypeptides preferably contain at least four to ten amino acids, at least ten to fifteen amino acids, or about 15 to about 30 amino acids of SEQ ID NO: 2. Such epitope-bearing peptides and polypeptides can be produced by fragmenting a Zlmda6 polypeptide, or by chemical peptide synthesis, as described herein. Moreover, epitopes can be selected by phage display of random peptide libraries (see, for example, Lane and Stephen, Curr. Opin. Immufzol.
5:268 2 0 (1993), and Cortese et al., Curr. Opih. Biotechuol. 7:616 (1996)).
Standard methods for identifying epitopes and producing antibodies from small peptides that comprise an epitope are described, for example, by Mole, "Epitope Mapping," in Methods in Molecular Biology, Vol. 10, Manson (ed.), pages 105-116 (The Humana Press, Inc.
1992), Price, "Production and Characterization of Synthetic Peptide-Derived 2 5 Antibodies," in Monoclonal Antibodies: Productio~a, Eragifaeerifzg, arid Clifzical Application, Ritter and Ladyman (eds.), pages 60-84 (Cambridge University Press 1995), and Coligan et al. (eds.), Current Protocols in ImmmZOlogy, pages 9.3.1 - 9.3.5 and pages 9.4.1 - 9.4.11 (John Wiley & Sons 1997). Examples of such epitope-bearing polypeptides are polypeptides comprised of SEQ ID NOs: 3-40.
3 0 For any Zlmda6 polypeptide, including variants and fusion proteins, one of ordinary skill in the art can readily generate a fully degenerate polynucleotide sequence encoding that variant using the information set forth in Tables 1 and 2 above.
Moreover, those of skill in the art can use standard software to devise Zlmda6 variants based upon the nucleotide and amino acid sequences described herein.
Accordingly, 3 5 the present invention includes a computer-readable medium encoded with a data structure that provides at least one of the following sequences: SEQ ID NOs: 1-40.
Suitable forms of computer-readable media include magnetic media and optically-readable media. Examples of magnetic media include a hard or fixed drive, a random access memory (RAM) chip, a floppy disk, digital linear tape (DLT), a disk cache, and a ZIP disk. Optically readable media are exemplified by compact discs (e.g., CD-read only memory (ROM), CD-rewritable (RW), and CD-recordable), and digital versatile/video discs (DVD) (e.g., DVD-ROM, DVD-RAM, and DVD+RW).
5. Production of Zlmda6 Fusion Proteins and Conjugates Fusion proteins of Zlmda6 can be used to express Zlmda6 in a recombinant host, and to isolate expressed Zlmda6. As described below, particular Zlmda6 fusion proteins also have uses in diagnosis and therapy.
One type of fusion protein comprises a peptide that guides a Zlmda6 polypeptide from a recombinant host cell. To direct a Zlmda6 polypeptide into the secretory pathway of a eukaryotic host cell, a secretory signal sequence (also known as a signal peptide, a leader sequence, prepro sequence or pre sequence) is provided in the Zlmda6 expression vector. While the secretory signal sequence may be derived from Zlmda6, a suitable signal sequence may also be derived from another secreted protein or synthesized de s2ovo. The secretory signal sequence is operably linked to a Zlmda6-encoding sequence such that the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of 2 0 the host cell. Secretory signal sequences are commonly positioned 5' to the nucleotide sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the nucleotide sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No.
5,143,830).
Although the secretory signal sequence of Zlmda6 or another protein produced by mammalian cells (e.g., tissue-type plasminogen activator signal sequence, as described, for example, in U.S. Patent No. 5,641,655) is useful for expression of Zlmda6 in recombinant mammalian hosts, a yeast signal sequence is preferred for expression in yeast cells. Examples of suitable yeast signal sequences are those derived from yeast mating phermone oc-factor (encoded by the MFal gene), invertase (encoded 3 0 by the SUC2 gene), or acid phosphatase (encoded by the PHOS gene). See, for example, Romanos et al., "Expression of Cloned Genes in Yeast," in DNA
Cloraiyig 2: A
Practical Approach, 2°d Edition, Glover and Hames (eds.), pages 123-167 (Oxford University Press 1995).
In bacterial cells, it is often desirable to express a heterologous protein 3 5 as a fusion protein to decrease toxicity, increase stability, and to enhance recovery of the expressed protein. For example, Zlmda6 can be expressed as a fusion protein comprising a glutathione S-transferase polypeptide. Glutathione S-transferease fusion proteins are typically soluble, and easily purifiable from E. coli lysates on immobilized glutathione columns. In similar approaches, a Zlmda6 fusion protein comprising a maltose binding protein polypeptide can be isolated with an amylose resin column, while a fusion protein comprising the C-terminal end of a truncated Protein A
gene can be purified using IgG-Sepharose. Established techniques for expressing a heterologous polypeptide as a fusion protein in a bacterial cell are described, for example, by Williams et al., "Expression of Foreign Proteins in E. coli Using Plasmid Vectors and Purification of Specific Polyclonal Antibodies," in DNA Clorzitzg 2: A
Practical Approach, 2"d Edition, Glover and Hames (Eds.), pages 15-58 (Oxford University Press 1995). In addition, commercially available expression systems are available.
For example, the PINPOINT Xa protein purification system (Promega Corporation;
Madison, WI) provides a method for isolating a fusion protein comprising a polypeptide that becomes biotinylated during expression with a resin that comprises avidin.
Peptide tags that are useful for isolating heterologous polypeptides expressed by either prokaryotic or eukaryotic cells include polyHistidine tags (which have an affinity for nickel-chelating resin), c-myc tags, calmodulin binding protein (isolated with calmodulin affinity chromatography), substance P, the RYIRS tag (which binds with anti-RYIRS antibodies), the Glu-Glu tag, and the FLAG tag (which binds 2 0 with anti-FLAG antibodies). See, for example, Luo et al., Arch. Bioclzem.
Br.'ophys.
329:215 (1996), Morganti et al., Biotechzzol. Appl. Biochem. 23:67 (1996), and Zheng et al., GeiZe 186:55 (1997). Nucleic acid molecules encoding such peptide tags are available, for example, from Sigma-Aldrich Corporation (St. Louis, MO).
Another form of fusion protein comprises a Zlmda6 polypeptide and an 2 5 immunoglobulin heavy chain constant region, typically an Fc fragment, which contains two or three constant region domains and a hinge region but lacks the variable region.
As an illustration, Chang et al., U.S. Patent No. 5,723,125, describe a fusion protein comprising a human interferon and a human immunoglobulin Fc fragment. The C-terminal of the interferon is linked to the N-terminal of the Fc fragment by a peptide 3 0 linker moiety. An example of a peptide linker is a peptide comprising primarily a T cell inert sequence, which is immunologically inert. An exemplary peptide linker has the amino acid sequence: GGSGG SGGGG SGGGG S (SEQ ID NO: 41). In this fusion protein, a preferred Fc moiety is a human y4 chain, which is stable in solution and has little or no complement activating activity. Accordingly, the present invention 3 5 contemplates an Zlmda6 fusion protein that comprises an Zlmda6 moiety and a human Fc fragment, wherein the C-terminus of the Zlmda6~ moiety is attached to the N-terminus of the Fc fragment via a peptide linker. The Zlmda6 moiety can be a Zlmda6 molecule or a fragment thereof.
In another variation, an Zlmda6 fusion protein comprises an IgG
sequence, an Zlmda6 moiety covalently joined to the aminotermunal end of the IgG
5 sequence, and a signal peptide that is covalently joined to the aminoterminal of the Zlmda6 moiety, wherein the IgG sequence consists of the following elements in the following order: a hinge region, a CH2 domain, and a CH3 domain. Accordingly, the IgG sequence lacks a CHl domain. This general approach to producing fusion proteins that comprise both antibody and nonantibody portions has been described by 10 LaRochelle et al., EP 742830 (WO 95/21258).
Fusion proteins comprising a Zlmda6 moiety and an Fc moiety can be used, for example, as an in vitro assay tool. For example, the presence of a Zlmda6 receptor in a biological sample can be detected using a Zlmda6-immunoglobulin fusion protein, in which the Zlmda6 moiety is used to target the cognate receptor, and a 15 macromolecule, such as Protein A or anti-Fc antibody, is used to detect the bound fusion protein-receptor complex. Moreover, such fusion proteins can be used to identify agonists and antagonists that interfere with the binding of Zlmda6 to its receptor.
In addition, antibody-Zlmda6 fusion proteins, comprising antibody 2 0 variable domains, are useful as therapeutic proteins, in which the antibody moiety binds with a target antigen, such as a tumor associated antigen. Methods of making antibody-cytokine fusion proteins are known to those of skill in the art. For example, antibody fusion proteins comprising an interleukin-2 moiety are described by Boleti et al., Azz>z.
Ozzcol. 6:945 (1995), Nicolet et al., CazZCer Gez2e Ther. 2:161 (1995), Becker et al., Proc.
2 5 Nat'l Acad. Sci. USA 93:7826 (1996), Hank et al., Clizz. Cancer Res.
2:1951 (1996), and Hu et al.., Cancer Res. 56:4998 (1996). Moreover, Yang et al., Huzn.
Azztibodies Hybridozzzas 6:129 (1995), and Xiang et al., J. Biotechnol. 53:3 (1997), describe fusion proteins that include an F(ab')2 fragment and a tumor necrosis factor alpha moiety.
Additional cytokine-antibody fusion proteins include IL-8, IL-12, or Zlmda6as the 3 0 cytokine moiety (Holzer et al., Cytokiize 8:214 (1996); Gillies et al., J.
Iznznunol.
160:6195 (1998); Xiang et al., Hum. Ayztibodies Hybridorrzas 7:2 (1996)). Also see, Gillies, U.S. Patent No. 5,650,150.
Moreover, using methods described in the art, hybrid Zlmda6 proteins can be constructed using regions or domains of the inventive (see, for example, Picard, 3 5 Cur. Opizz. Biology 5:511 (1994)). These methods allow the determination of the biological importance of larger domains or regions in a polypeptide of interest. Such hybrids may alter reaction kinetics, binding, constrict or expand the substrate specificity, or alter tissue and cellular localization of a polypeptide, and can be applied to polypeptides of unknown structure. Fusion proteins can be prepared by methods known to those skilled in the art by preparing each component of the fusion protein and chemically conjugating them. Alternatively, a polynucleotide encoding both components of the fusion protein in the proper reading frame can be generated using known techniques and expressed by the methods described herein. Moreover, such fusion proteins may exhibit other properties as disclosed herein. General methods for enzymatic and chemical cleavage of fusion proteins are described, for example, by Ausubel (1995) at pages 16-19 to 16-25.
The present invention also contemplates chemically modified Zlmda6 compositions, in which a Zlmda6 polypeptide is linked with a polymer.
Typically, the polymer is water-soluble so that the Zlmda6 conjugate does not precipitate in an aqueous environment, such as a physiological environment. An example of a suitable polymer is one that has been modified to have a single reactive group, such as an active ester for acylation, or an aldehyde for alkylation. In this way, the degree of polymerization can be controlled. An example of a reactive aldehyde is polyethylene glycol propionaldehyde, or mono-(C1-C10) alkoxy, or aryloxy derivatives thereof (see, for example, Harris, et al., U.S. Patent No. 5,252,714). The polymer may be branched or unbranched. Moreover, a mixture of polymers can be used to produce Zlmda6 2 0 conjugates.
Zlmda6 conjugates used for therapy should preferably comprise pharmaceutically acceptable water-soluble polymer moieties. Conjugation of interferons with water-soluble polymers has been shown to enhance the circulating half life of the interferon, and to reduce the immunogenicity of the polypeptide [see, for example, Nieforth et al., Clin. Pha~snacol. Tlaer. 59:636 (1996), and Monkarsh et al., Anal. Bioclzem. 247:434 (1997)].
Suitable water-soluble polymers include polyethylene glycol (PEG), monomethoxy-PEG, mono-(C1-C10)alkoxy-PEG, aryloxy-PEG, poly-(N-vinyl pyrrolidone)PEG, tresyl monomethoxy PEG, PEG propionaldehyde, bis-succinimidyl 3 0 carbonate PEG, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, dextran, cellulose, or other carbohydrate-based polymers. Suitable PEG may have a molecular weight from about 600 to about 60,000, including, for example, 5,000, 12,000, 20,000 and 25,000. A Zlmda6 conjugate can also comprise a mixture of such water-soluble 3 5 polymers.
One example of a Zlmda6 conjugate comprises a Zlmda6 moiety and a polyalkyl oxide moiety attached to the N terminus of the Zlmda6 moiety. PEG is one suitable polyalkyl oxide. As an illustration, Zlmda6 can be modified with PEG, a process known as "PEGylation." PEGylation of Zlmda6 can be carried out by any of the PEGylation reactions known in the art [see, for example, EP 0 154 316, Delgado et al., Critical Reviews in Therapeutic Drug Carrier Systems 9:249 (1992), Duncan and Spreafico, Cli~c. Pharmacokinet. 27:290 (1994), and Francis et al., Iht J
Hematol 68:1 (1998)]. For example, PEGylation can be performed by an acylation reaction or by an alkylation reaction with a reactive polyethylene glycol molecule. In an alternative approach, Zlmda6 conjugates are formed by condensing activated PEG, in which a terminal hydroxy or amino group of PEG has been replaced by an activated linker (see, for example, Karasiewicz et al., U.S. Patent No. 5,382,657).
PEGylation by acylation typically requires reacting an active ester derivative of PEG with a Zlmda6 polypeptide. An example of an activated PEG
ester is PEG esterified to N hydroxysuccinimide. As used herein, the term "acylation"
includes the following types of linkages between Zlmda6 and a water-soluble polymer:
amide, carbamate, urethane, and the like. Methods for preparing PEGylated Zlmda6 by acylation will typically comprise the steps of (a) reacting an Zlmda6 polypeptide with PEG (such as a reactive ester of an aldehyde derivative of PEG) under conditions whereby one or more PEG groups attach to Zlmda6, and (b) obtaining the reaction product(s). Generally, the optimal reaction conditions for acylation reactions will be 2 0 determined based upon known parameters and desired results. For example, the larger the ratio of PEG: Zlmda6, the greater the percentage of polyPEGylated Zlmda6 product.
The product of PEGylation by acylation is typically a polyPEGylated Zlmda6 product, wherein the lysine ~-amino groups are PEGylated via an aryl linking group. An example of a connecting linkage is an amide. Typically, the resulting Zlmda6 will be at least 95% mono-, di-, or tri-pegylated, although some species with higher degrees of PEGylation may be formed depending upon the reaction conditions.
PEGylated species can be separated from unconjugated Zlmda6 polypeptides using standard purification methods, such as dialysis, ultrafiltration, ion exchange chromatography, affinity chromatography, and the like.
3 0 PEGylation by alkylation generally involves reacting a terminal aldehyde derivative of PEG with Zlmda6 in the presence of a reducing agent. PEG groups are preferably attached to the polypeptide via a -CH2-NH group.
Derivatization via reductive alkylation to produce a monoPEGylated product takes advantage of the differential reactivity of different types of primary amino 3 5 groups available for derivatization. Typically, the reaction is performed at a pH that allows one to take advantage of the pKa differences between the ~-amino groups of the lysine residues and the oc-amino group of the N terminal residue of the protein. By such selective derivatization, attachment of a water-soluble polymer that contains a reactive group such as an aldehyde, to a protein is controlled. The conjugation with the polymer occurs predominantly at the N terminus of the protein without significant modification of other reactive groups such as the lysine side chain amino groups. The present invention provides a substantially homogenous preparation of Zlmda6 monopolymer conjugates.
Reductive alkylation to produce a substantially homogenous population of monopolymer Zlmda6 conjugate molecule can comprise the steps of: (a) reacting an Zlmda6 polypeptide with a reactive PEG under reductive alkylation conditions at a pH
suitable to permit selective modification of the a,-amino group at the amino terminus of the Zlmda6, and (b) obtaining the reaction product(s). The reducing agent used for reductive alkylation should be stable in aqueous solution and preferably be able to reduce only the Schiff base formed in the initial process of reductive alkylation.
Preferred reducing agents include sodium borohydride, sodium cyanoborohydride, dimethylamine borane, trimethylamine borane, and pyridine borane.
For a substantially homogenous population of monopolymer Zlmda6 conjugates, the reductive alkylation reaction conditions are those that permit the selective attachment of the water-soluble polymer moiety to the N terminus of Zlmda6.
Such reaction conditions generally provide for pKa differences between the lysine 2 0 amino groups and the oc-amino group at the N terminus. The pH also affects the ratio of polymer to protein to be used. In general, if the pH is lower, a larger excess of polymer to protein will be desired because the less reactive the N terminal oc-group, the more polymer is needed to achieve optimal conditions. If the pH is higher, the polymer:Zlmda6 need not be as large because more reactive groups are available.
2 5 Typically, the pH will fall within the range of 3 - 9, or 3 - 6.
Another factor to consider is the molecular weight of the water-soluble polymer. Generally, the higher the molecular weight of the polymer, the fewer number of polymer molecules which may be attached to the protein. For PEGylation reactions, the typical molecular weight is about 2 kDa to about 100 kDa, about 5 kDa to about 50 3 0 kDa, or about 12 kDa to about 25 kDa. The molar ratio of water-soluble polymer to Zlmda6 will generally be in the range of 1:1 to 100:1. Typically, the molar ratio of water-soluble polymer to Zlmda6 will be 1:1 to 20:1 for polyPEGylation, and 1:1 to 5:1 for monoPEGylation.
General methods for producing conjugates comprising interferon and 3 5 water-soluble polymer moieties are known in the art. See, for example, Karasiewicz et al., U.S. Patent No. 5,382,657, Greenwald et al., U.S. Patent No. 5,738, 846, Nieforth et al., Clin. Pharmacol. Ther. 59:636 (1996), Monkarsh et al., Ayzal.
Biochezn. 247:434 (1997).
6. Production of Zlmda6 Polypeptides in Cultured Cells The polypeptides of the present invention, including full-length polypeptides, functional fragments, and fusion proteins, can be produced in recombinant host cells following conventional techniques. To express a Zlnzda6 gene, a nucleic acid molecule encoding the polypeptide must be operably linked to regulatory sequences that control transcriptional expression in an expression vector and then, introduced into a host cell. In addition to transcriptional regulatory sequences, such as promoters and enhancers, expression vectors can include translational regulatory sequences and a marker gene suitable for selection of cells that carry the expression vector.
Expression vectors that are suitable for production of a foreign protein in eukaryotic cells typically contain (1) prokaryotic DNA elements coding for a bacterial replication origin and an antibiotic resistance marker to provide for the growth and selection of the expression vector in a bacterial host; (2) eukaryotic DNA
elements that control initiation of transcription, such as a promoter; and (3) DNA elements that control the processing of transcripts, such as a transcription termination/polyadenylation sequence. As discussed above, expression vectors can also include nucleotide 2 0 sequences encoding a secretory sequence that directs the heterologous polypeptide into the secretory pathway of a host cell. For example, a Zlmda6 expression vector may comprise a Zlmda6 gene and a secretory sequence derived from a Zlmda6 gene or another secreted gene.
Zlmda6 proteins of the present invention may be expressed in 2 5 mammalian cells. Examples of suitable mammalian host cells include African green monkey kidney cells (Vero; ATCC CRL 1587), human embryonic kidney cells (293-HEK; ATCC CRL 1573), baby hamster kidney cells (BHK-21, BHK-570; ATCC CRL
8544, ATCC CRL 10314), canine kidney cells (MDCK; ATCC CCL 34), Chinese hamster ovary cells (CHO-Kl; ATCC CCL61; CHO DG44 [Chasm et al., Som. Cell.
3 0 Molec. Genet. 12:555 (1986)]], rat pituitary cells (GHl; ATCC CCL82), HeLa S3 cells (ATCC CCL2.2), rat hepatoma cells (H-4-II-E; ATCC CRL 1548) SV40-transformed monkey kidney cells (COS-1; ATCC CRL 1650) and murine embryonic cells (NIH-3T3; ATCC CRL 1658).
For a mammalian host, the transcriptional and translational regulatory 3 5 signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, simian virus, or the like, in which the regulatory signals are associated with a particular gene which has a high level of expression. Suitable transcriptional and translational regulatory sequences also can be obtained from mammalian genes, such as actin, collage, myosin, and naetallothioheih genes.
Transcriptional regulatory sequences include a promoter region 5 sufficient to direct the initiation of RNA synthesis. Suitable eukaryotic promoters include the promoter of the mouse metallothiohein I gene [Hamer et al., J.
Molec. Appl.
Get2et. 1:273 (1982)], the TK promoter of Herpes virus [McKnight, Cell 31:355 (1982)], the SV40 early promoter [Benoist et al., Nature 290:304 (1981)], the Rous sarcoma virus promoter (Gorman et al., Proc. Nat'l Acad. Sci. USA 79:6777 (1982)), 10 the cytomegalovirus promoter [Foecking et al., Gene 45:101 (1980)], and the mouse mammary tumor virus promoter [see, generally, Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture," in Protein Eagiheeri~zg: Principles ar2d Practice, Cleland et al. (eds.), pages 163-181 (John Wiley & Sons, Inc. 1996)].
Alternatively, a prokaryotic promoter, such as the bacteriophage T3 15 RNA polymerase promoter, can be used to control Zlf~ada6 gene expression in mammalian cells if the prokaryotic promoter is regulated by a eukaryotic promoter [Zhou et al., Mol. Cell. Biol. 10:4529 (1990), and Kaufman et al., Nucl. Acids Res.
19:4485 (1991)].
An expression vector can be introduced into host cells using a variety of 2 0 standard techniques including calcium phosphate transfection, liposome-mediated transfection, microprojectile-mediated delivery, electroporation, and the like. Preferably, the transfected cells are selected and propagated to provide recombinant host cells that comprise the expression vector stably integrated in the host cell genome.
Techniques for introducing vectors into eukaryotic cells and techniques for selecting such stable 2 5 transformants using a dominant selectable marker are described, for example, by Ausubel (1995) and by Murray (ed.), Gene Transfer afzd Expression Protocols (Humana Press 1991).
For example, one suitable selectable marker is a gene that provides resistance to the antibiotic neomycin. In this case, selection is carried out in the 3 0 presence of a neomycin-type drug, such as G-418 or the like. Selection systems can also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the 3 5 introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g., hygromycin resistance, mufti-drug resistance, puromycin acetyltransferase) can also be used. Alternatively, markers that introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CDB, Class I MHC, placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.
Zlmda6 polypeptides can also be produced by cultured mammalian cells using a viral delivery system. Exemplary viruses for this purpose include adenovirus, herpesvirus, vaccinia virus and adeno-associated virus (AAV). Adenovirus, a double-stranded DNA virus, is currently the best studied gene transfer vector for delivery of heterologous nucleic acid [for a review, see Becker et al., Meth. Cell Biol.
43:161 (1994), and Douglas and Curiel, Science & Medicine 4:44 (1997)]. Advantages of the adenovirus system include the accommodation of relatively large DNA inserts, the ability to grow to high-titer, the ability to infect a broad range of mammalian cell types, and flexibility that allows use with a large number of available vectors containing different promoters.
By deleting portions of the adenovirus genome, larger inserts (up to 7 kb) of heterologous DNA can be accommodated. These inserts can be incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. An option is to delete the essential EI gene from the viral vector, which results in the inability to replicate unless the El gene is provided by the host cell.
2 0 Adenovirus vector-infected human 293 cells (ATCC Nos. CRL-1573, 45504, 45505), for example, can be grown as adherent cells or in suspension culture at relatively high cell density to produce significant amounts of protein [see Gamier et al., Cytotechnol.
15:145 (1994)].
Zlmda6 genes may also be expressed in other higher eukaryotic cells, 2 5 such as avian, fungal, insect, yeast, or plant cells. The baculovirus system provides an efficient means to introduce cloned Zlmda6 genes into insect cells. Suitable expression vectors are based upon the Autographs californica multiple nuclear polyhedrosis virus (AcMNPV), and contain well-known promoters such as Drosophila heat shock protein (hsp) 70 promoter, Autographs californica nuclear polyhedrosis virus immediate-early 3 0 gene promoter (ie-1 ) and the delayed early 39K promoter, baculovirus p10 promoter, and the Drosoplzila rnetallotlzionein promoter. A second method of making recombinant baculovirus utilizes a transposon-based system described by Luckow (Luckow, et al., J.
Virol. 67:4566 (1993)). This system, which utilizes transfer vectors, is sold in the BAC-to-BAC kit (Life Technologies, Rockville, MD). This system utilizes a transfer 3 5 vector, PFASTBAC (Life Technologies) containing a Tn7 transposon to move the DNA
encoding the Zlmda6~ polypeptide into a baculovirus genome maintained in E.
coli as a large plasmid called a "bacmid." See, Hill-Perkins and Possee, J. Gen. Virol.
71:971 (1990), Bonning, et al., J. Geh. Virol. 75:1551 (1994), and Chazenbalk, and Rapoport, J. Biol. Chen2. 270:1543 (1995). In addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag at the C- or N-ternunus of the expressed Zlmda6 polypeptide, for example, a Glu-Glu epitope tag (Grussenmeyer et al., Proc.
Nat'l Acad. Sci. 82:7952 (1985)). Using a technique known in the art, a transfer vector containing a Zlmda6 gene is transformed into E. coli, and screened for bacmids that contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is then isolated using common techniques.
The illustrative PFASTBAC vector can be modified to a considerable degree. For example, the polyhedrin promoter can be removed and substituted with the baculovirus basic protein promoter (also known as Pcor, p6.9 or MP promoter) which is expressed earlier in the baculovirus infection, and has been shown to be advantageous for expressing secreted proteins (see, for example, Hill-Perkins and Possee, J. Gerc.
Virol. 71:971 (1990), Bonning, et al., J. Geh. Virol. 75:1551 (1994), and Chazenbalk and Rapoport, J. Biol. Chern. 270:1543 (1995). In such transfer vector constructs, a short or long version of the basic protein promoter can be used. Moreover, transfer vectors can be constructed that replace the native Zlmda6 secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory 2 0 signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen Corporation; Carlsbad, CA), or baculovirus gp67 (PharMingen: San Diego, CA) can be used in constructs to replace the native Zlmda6 secretory signal sequence.
The recombinant virus or bacmid is used to transfect host cells. Suitable insect host cells include cell lines derived from IPLB-Sf 21, a Spodoptera frugiperda 2 5 pupal ovarian cell line, such as Sf 9 (ATCC CRL 1711 ), Sf21 AE, and SfZ 1 (Invitrogen Corporation; San Diego, CA), as well as Drosophila Schneider-2 cells, and the HIGH
FIVEO cell line (Invitrogen) derived from Trichoplusia hi (U.S. Patent No.
5,300,435).
Commercially available serum-free media can be used to grow and to maintain the cells. Suitable media are Sf900 IIT"" (Life Technologies) or ESF 921T""
(Expression 3 0 Systems) for the Sf9 cells; and Ex-ce110405T"" (JRH Biosciences, Lenexa, KS) or Express FiveOT"~ (Life Technologies) for the T. ni cells. When recombinant virus is used, the cells are typically grown up from an inoculation density of approximately 2-5 x 105 cells to a density of 1-2 x 106 cells at which time a recombinant viral stock is added at a multiplicity of infection (M01) of 0.1 to 10, more typically near 3.
3 5 Established techniques for producing recombinant proteins in baculovirus systems are provided by Bailey et al., "Manipulation of Baculovirus Vectors," in Methods in Molecular Biology, Volume 7: Gene Trafzsfer ahd Expressioya Protocols, Murray (ed.), pages 147-168 (The Humana Press, Inc. 1991), by Patel et al., "The baculovirus expression system," in DNA Cloning 2: Expression Systems, 2nd Edition, Glover et al. (eds.), pages 205-244 (Oxford University Press 1995), by Ausubel (1995) at pages 16-37 to 16-57, by Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc. 1995), and by Lucknow, "Insect Cell Expression Technology,"
in Protein Ercgir~eering: Principles and Practice, Cleland et al. (eds.), pages 183-218 (John Wiley & Sons, Inc. 1996).
Fungal cells, including yeast cells, can also be used to express the genes described herein. Yeast species of particular interest in this regard include Saccharomyces cerevisiae, Pichia pastoris, and Pichia metha~aolica. Suitable promoters for expression in yeast include promoters from GALL (galactose), PGK
(phosphoglycerate kinase), ADH (alcohol dehydrogenase), AOXl (alcohol oxidase), HIS4 (histidinol dehydrogenase), and the like. Many yeast cloning vectors have been designed and are readily available. These vectors include YIp-based vectors, such as YIpS, YRp vectors, such as YRp 17, YEp vectors such as YEp 13 and YCp vectors, such as YCpl9. Methods for transforming S. cerevisiae cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311, Kawasaki et al., U.S. Patent No.
4,931,373, Brake, U.S. Patent No. 4,870,008, Welch et al., U.S. Patent No. 5,037,743, and Murray 2 0 et al., U.S. Patent No. 4,845,075. Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector system for use in Saccharomyces cerevisiae is the POTI vector system disclosed by Kawasaki et al.
(U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in 2 5 glucose-containing media. Additional suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S.
Patent No.
4,599,311, Kingsman et al., U.S. Patent No. 4,615,974, and Bitter, U.S. Patent No.
4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos.
4,990,446, 5,063,154, 5,139,936, and 4,661,454.
3 0 Transformation systems for other yeasts, including Hanseyiula polymorpha, Schizosaccharomyces pombe, Kluyverorrayces lactis, Kluyveromyces fragilis, Ilstilago fnaydis, Piclzia pastoris, Pichia metharcolica, Pichia guillermoiZdii and Cafzdida nzaltosa are known in the art. See, for example, Gleeson et al., J. Gere.
Microbiol. 132:3459 (1986), and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells 3 5 may be utilized according to the methods of McKnight et al., U.S. Patent No.
4,935,349. Methods for transforming Acremoniuna chrysogenufn are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533.
For example, the use of Piclaia methauolica as host for the production of recombinant proteins is disclosed by Raymond, U.S. Patent No. 5,716,808, Raymond, U.S. Patent No. 5,736,383, Raymond et al., Yeast 14:11-23 (1998), and in international publication Nos. WO 97/17450, WO 97/17451, WO 98/02536, and WO 98/02565.
DNA molecules for use in transforming P. methaholica will commonly be prepared as double-stranded, circular plasmids, which are preferably linearized prior to transformation. For polypeptide production in P. metha~colica, it is preferred that the promoter and terminator in the plasmid be that of a P. methaholica gene, such as a P.
metha~eolica alcohol utilization gene (AIJGl or AIIG2). Other useful promoters include those of the dihydroxyacetone synthase (DHAS), formate dehydrogenase (FMD), and catalase (CAT) genes. To facilitate integration of the DNA into the host chromosome, it is preferred to have the entire expression segment of the plasmid flanked at both ends by host DNA sequences. A preferred selectable marker for use in Pichia metharcolica is a P. methaholica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole carboxylase (AIRC; EC 4.1.1.21), and which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the use of methanol, it is preferred to use host cells in which both methanol 2 0 utilization genes (AUGl and AUG2) are deleted. For production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRBI ) are preferred.
Electroporation is used to facilitate the introduction of a plasmid containing DNA
encoding a polypeptide of interest into P. metha~zolica cells. P. methanolica cells can be transformed by electroporation using an exponentially decaying, pulsed electric field 2 5 having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (t) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.
Expression vectors can also be introduced into plant protoplasts, intact plant tissues, or isolated plant cells. Methods for introducing expression vectors into plant tissue include the direct infection or co-cultivation of plant tissue with 3 0 Agrobacterium tuf~zefaciefzs, microprojectile-mediated delivery, DNA
injection, electroporation, and the like. See, for example, Horsch et al., Science 227:1229 (1985), I~lein et al., Biotechnology 10:268 (1992), and Miki et al., "Procedures for Introducing Foreign DNA into Plants," in Methods ifz Plant Molecular Biology arad Biotechnology, Glick et al. (eds.), pages 67-88 (CRC Press, 1993).
3 5 Alternatively, Zlmda6 genes can be expressed in prokaryotic host cells.
Suitable promoters that can be used to express Zlmda6 polypeptides in a prokaryotic host are well-known to those of skill in the art and include promoters capable of recognizing the T4, T3, Sp6 and T7 polymerases, the PR and PL promoters of bacteriophage lambda, the trp, recA, heat shock, lacUVS, tac, lpp-lacSpr, phoA, and lacZ promoters of E. coli, promoters of B. subtilis, the promoters of the bacteriophages of Bacillus, Streptomyces promoters, the iht promoter of bacteriophage lambda, the bla 5 promoter of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters have been reviewed by Glick, J. hzd. Microbiol.
1:277 (1987), Watson et al., Molecular Biology of the Gerce, 4th Ed. (Benjamin Cummins 1987), and by Ausubel et al. (1995).
Preferred prokaryotic hosts include E. coli and Bacillus subtilus.
10 Suitable strains of E. coli include BL21(DE3), BL21(DE3)pLysS, BL21(DE3)pLysE, DH1, DH4I, DHS, DHSI, DH5IF', DH5IMCR, DH10B, DHl0Blp3, DH11S, C600, HB101, JM101, JM105, JM109, JM110, K38, RRl, Y1088, Y1089, CSH18, ER1451, and ER1647 (see, for example, Brown (ed.), Molecular Biology Labfax [Academic Press 1991)). Suitable strains of Bacillus subtilus include BR151, YB886, MI119, 15 MI120, and B170 (see, for example, Hardy, "Bacillus Cloning Methods," in DNA
Cloning: A Practical Approach, Glover (ed.) (IRL Press 1985)].
When expressing a Zlmda6 polypeptide in bacteria such as E. coli, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, 2 0 the cells are lysed, and the granules are recovered and denatured using, for example, guanidine isothiocyanate or urea. The denatured polypeptide can then be refolded and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of reduced and oxidized glutathione, followed by dialysis against a buffered saline solution. In the latter case, the polypeptide can be recovered from the 2 5 periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein, thereby obviating the need for denaturation and refolding.
Methods for expressing proteins in prokaryotic hosts are well-known to those of skill in the art (see, for example, Williams et al., "Expression of foreign 3 0 proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies," in DNA Clouiug 2: Expression Systems, 2yad Edition, Glover et al.
(eds.), page 15 (Oxford University Press 1995), Ward et al., "Genetic Manipulation and Expression of Antibodies," in Monoclonal A~Ztibodies: Principles and Applications, page 137 (Wiley-Liss, Inc. 1995), and Georgiou, "Expression of Proteins in Bacteria,"
3 5 in Protein Erlgineeriyng: Principles and Practice, Cleland et al. (eds.), page 101 [John Wiley & Sons, Inc. 1996)].
Standard methods for introducing expression vectors into bacterial, yeast, insect, and plant cells are provided, for example, by Ausubel (1995).
General methods for expressing and recovering foreign protein produced by a mammalian cell system are provided by, for example, Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture," in Protein Engineering:
Principles arid Practice, Cleland et al. (eds.), pages 163 (Wiley-Liss, Inc. 1996). Standard techniques for recovering protein produced by a bacterial system is provided by, for example, Grisshammer et al., "Purification of over-produced proteins from E. coli cells," in DNA
Clohiyag 2: Expression Systems, 2nd Editio~z, Glover et al. (eds.), pages 59-92 (Oxford University Press 1995). Established methods for isolating recombinant proteins from a baculovirus system are described by Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc. 1995).
7. Isolation of Zlfnda6 Polypeptides It is preferred to purify the polypeptides of the present invention to at least about 80% purity, more preferably to at least about 90% purity, even more preferably to at least about 95% purity, or even greater than 95% purity with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents. The polypeptides of the present invention may also 2 0 be purified to a pharmaceutically pure state, which is greater than 99.9%
pure.
Preferably, a purified polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin.
Fractionation and/or conventional purification methods can be used to obtain preparations of Zlmda6 purified from natural sources (e.g., coronary artery 2 5 smooth muscle tissue, placental tissue, uterine tissue, or tracheal tissue), and recombinant Zlmda6 polypeptides and fusion Zlmda6 polypeptides purified from recombinant host cells. In general, ammonium sulfate precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high 3 0 performance liquid chromatography. Suitable chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like.
PEI, DEAF, QAE and Q derivatives are preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), 3 5 Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties.
Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries.
These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Selection of a particular method for polypeptide isolation and purification is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affizzity Chromatography:
Priyzciples & Metlzods (Pharmacia LKB Biotechnology 1988), and Doonan, Protein Purificatiozz Protocols (The Humana Press 1996).
Additional variations in Zlmda6 isolation and purification can be devised by those of skill in the art. For example, anti-Zlmda6 antibodies, obtained as described below, can be used to isolate large quantities of protein by immunoaffinity purification. The use of monoclonal antibody columns to purify interferons from recombinant cells and from natural sources has been described, for example, by 2 0 Staehelin et al., J. Biol. Chem. 256:9750 (1981), and by Adolf et al., J.
Biol. Chezzz.
265:9290 (1990). Moreover, methods for binding ligands, such as Zlmda6, to receptor polypeptides bound to support media are well known in the art.
The polypeptides of the present invention can also be isolated by exploitation of particular properties. For example, immobilized metal ion adsorption 2 5 (IMAC) chromatography can be used to purify histidine-rich proteins, including those comprising polyhistidine tags. Briefly, a gel is first charged with divalent metal ions to form a chelate [Sulkowski, Treads in Biochem. 3:1 (1985)]. Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating 3 0 agents. Other methods of purification include purification of glycosylated proteins by lectin affinity chromatography and ion exchange chromatography [M. Deutscher, (ed.), Meth. Enzymol. 182:529 (1990)]. Zlmda6 polypeptides or fragments thereof may also be prepared through chemical synthesis, as described below. Zlmda6 polypeptides may be monomers or multimers; glycosylated or non-glycosylated; PEGylated or non-3 5 PEGylated; and may or may not include an initial methionine amino acid residue.
8. Chemical Synthesis of Zlmda6 Polypeptides Zlmda6 polypeptides of the present invention can also be synthesized by exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis, for example as described by MeiTifield, J. Am. Chem. Soc.
85:2149 (1963). The synthesis is carried out with amino acids that are protected at the alpha-amino terminus. Trifunctional amino acids with labile side-chains are also protected with suitable groups to prevent undesired chemical reactions from occurring during the assembly of the polypeptides. The alpha-amino protecting group is selectively removed to allow subsequent reaction to take place at the amino-terminus. The conditions for the removal of the alpha-amino protecting group do not remove the side-chain protecting groups.
See Stewart et al., "Solid Phase Peptide Synthesis" (2nd Edition), (Pierce Chemical Co. 1984), Bayer and Rapp, Chem. Pept. Prot. 3:3 (1986), Atherton et al., Solid Phase Peptide Synthesis: A Practical Approach (IRL Press 1989), and by Lloyd-Williams et al., Chemical Approaches to the Synthesis of Peptides and Proteins (CRC Press, Inc. 1997), Kaiser et al., Anal. Bioclzezn. 34:595 (1970). The coupling reactions can be performed automatically with commercially available instruments such as ABI model 430A, 431A and 433A peptide synthesizers.
2 0 The "native chemical ligation" approach to producing polypeptides is one variation of total chemical synthesis strategy (see, for example, Dawson et al., Science 266:776 (1994), Hackeng et al., Proc. Nat'L Acad. Sci. USA 94:7845 (1997), and Dawson, Methods Ehzymol. 287: 34 (1997)). According to this method, an N-terminal cysteine-containing peptide is chemically ligated to a peptide having a C-2 5 terminal thioester group to form a normal peptide bond at the ligation site.
The "expressed protein ligation" method is a semi-synthesis variation of the ligation approach (see, for example, Muir et al, Proc. Nat'l Acad. Sci.
USA 95:6705 (1998); Severinov and Muir, J. Biol. Clzezn. 273:16205 (1998)). Here, synthetic peptides and protein cleavage fragments are linked to form the desired protein product.
3 0 This method is particularly useful for the site-specific incorporation of unnatural amino acids (e.g., amino acids comprising biophysical or biochemical probes) into proteins.
In an approach illustrated by Muir et al, Proc. Nat'L Acad. Sci. USA
95:6705 (1998), a gene or gene fragment is cloned into the PCYB2-IMPACT vector (New England Biolabs, Inc.; Beverly, MA) using the NdeI and SmaI restriction sites.
3 5 As a result, the gene or gene fragment is expressed in frame fused with a chitin binding domain sequence, and a Pro-Gly is appended to the native C terminus of the protein of interest. The presence of a C-terminal glycine reduces the chance of side reactions, because the glycine residue accelerates native chemical ligation. Affinity chromatography with a chitin resin is used to purify the expressed fusion protein, and the chemical ligation step is initiated by incubating the resin-bound protein with thiophenol and synthetic peptide in buffer. This mixture produces the iu situ generation of a highly reactive phenyl °'thioester derivative of the protein that rapidly ligates with the synthetic peptide to produce the desired semi-synthetic protein.
9. Assays for Zlmda6, Its Afzalogs, and the Zlmda6 Receptor As described above, the disclosed polypeptides can be used to construct Zlmda6 variants. A Zlmda6 variant will possess a Zlmda6 biological activity, as determined by the in vitro assays described below. A polypeptide produced by a Zlmda6 variant gene is considered to be a Zlmda6 agonist if the polypeptide exhibits a biological activity On the other hand, a Zlmda6 variant gene product that lacks biological activity may be a Zlmda6~ antagonist. These biologically inactive Zlmda6 variants can be initially identified on the basis of hybridization analysis, sequence identity determination, or by the ability to specifically bind anti-Zlmda6 antibody. A
Zlmda6 antagonist can be further characterized by its ability to inhibit the biological response induced by Zlmda6 or by a Zlmda6 agonist. This inhibitory effect may result, for 2 0 example, from the competitive or non-competitive binding of the antagonist to the Zlmda6 receptor.
Zhnda6, its agonists and antagonists are valuable in both in vivo and in vitro uses. As an illustration, cytokines can be used as components of defined cell culture media, alone or in combination with other cytokines and hormones, to replace 2 5 serum that is commonly used in cell culture. Antagonists are also useful as research reagents for characterizing sites of interaction between Zlmda6 and its receptor. In a therapeutic setting, pharmaceutical compositions comprising Zlmda6 antagonists can be used to inhibit Zlmda6 activity.
One general class of Zlmda6 analogs are agonists or antagonists having 3 0 an amino acid sequence that is a mutation of the amino acid sequences disclosed herein.
Another general class of Zlmda6 analogs is provided by anti-idiotype antibodies, and fragments thereof, as described below. Moreover, recombinant antibodies comprising anti-idiotype variable domains can be used as analogs (see, for example, Monfardini et al., Proc. Assoc. Anz. Plzysiciarzs 108:420 (1996)). Since the variable domains of anti-3 5 idiotype Zlmda6E antibodies mimic Zlmda6, these domains can provide either Zlmda6 agonist or antagonist activity.
A third approach to identifying Zlmda6 analogs is provided by the use of combinatorial libraries. Methods for constructing and screening phage display and other combinatorial libraries are provided, for example, by Kay et al., Phage Display of Peptides and Proteins (Academic Press 1996), Verdine, U.S. Patent No.
5,783,384, 5 Kay, et. al., U.S. Patent No. 5,747,334, and Kauffman et al., U.S. Patent No. 5,723,323.
Zlmda6, its analogs, and anti-iodiotype Zlmda6 antibodies can be used to identify and to isolate Zlmda6 receptors. For example, proteins and peptides of the present invention can be immobilized on a column and used to bind receptor proteins from membrane preparations that are run over the column (Hermanson et al.
(eds.), 10 I»znzobilized Affizzity Ligarzd Techniques, pages 195-202 (Academic Press 1992)).
Radiolabeled or affinity labeled Zlmda6 polypeptides can also be used to identify or to localize Zlmda6 receptors in a biological sample (see, for example, Deutscher (ed.), Methods i>2 Ezzzymol., vol. 182, pages 721-37 (Academic Press 1990); Brunner et al., Azah. Rev. Biochem. 62:483 (1993); Fedan et al., Biochem. Pl2armacol. 33:1167 (1984)).
15 Also see, Varthakavi and Minocha, J. Gerz. Virol. 77:1875 (1996), who describe the use of anti-idiotype antibodies for receptor identification.
In addition, a solid phase system can be used to identify a Zlmda6 receptor, or an agonist or antagonist of a Zlmda6 receptor. For example, a Zlmda6 polypeptide or Zlmda6 fusion protein can be immobilized onto the surface of a receptor 2 0 chip of a commercially available biosensor instrument (BIACORE, Biacore AB;
Uppsala, Sweden). The use of this instrument is disclosed, for example, by Karlsson, Immunol. Methods 145:229 (1991), and Cunningham and Wells, J. Mol. Biol.
234:554 (1993).
As an illustration, a Zlmda6 polypeptide or fusion protein is covalently 2 5 attached, using amine or sulfhydryl chemistry, to dextran fibers that are attached to gold film within a flow cell. A test sample is then passed through the cell. If a receptor is present in the sample, it will bind to the immobilized polypeptide or fusion protein, causing a change in the refractive index of the medium, which is detected as a change in surface plasmon resonance of the gold film. This system allows the determination of 3 0 on- and off rates, from which binding affinity can be calculated, and assessment of stoichiometry of binding. This system can also be used to examine antibody-antigen interactions, and the interactions of other complement/anti-complement pairs.
10. Production of Antibodies to Zlfnda6 Proteins 3 5 Antibodies to Zlmda6 can be obtained, for example, using the product of a Zlmda6 expression vector or Zlmda6 isolated from a natural source as an antigen.
Particularly useful anti-Zlmda6 antibodies "bind specifically" with Zlmda6.
Antibodies are considered to be specifically binding if the antibodies exhibit at least one of the following two properties: (1) antibodies bind to Zlmda6 with a threshold level of binding activity, and (2) antibodies do not significantly cross-react with polypeptides related to Zlmda6.
With regard to the first characteristic, antibodies specifically bind if they bind to a Zlmda6 polypeptide, peptide or epitope with a binding affinity (Ka) of 106 M-1 or greater, preferably 107 M-1 or greater, more preferably l Og M-1 or greater, and most preferably 109 M-1 or greater. The binding affinity of an antibody can be readily -10 determined by one of ordinary skill in the art, for example, by Scatchard analysis (Scatchard, Aizfz. NYAcad. Sci. 51:660 (1949)). With regard to the second characteristic, antibodies do not significantly cross-react with related polypeptide molecules, for example, if they detect Zlmda6, but not known related polypeptides using a standard Western blot analysis. Examples of known related polypeptides are orthologs and proteins from the same species that are members of a protein family.
Anti-Zlmda6 antibodies can be produced using antigenic Zlmda6s epitope-bearing peptides and polypeptides. Antigenic epitope-bearing peptides and polypeptides of the present invention contain a sequence of at least nine, preferably between 15 to about 30 amino acids contained within SEQ ID NO: 2. However, 2 0 peptides or polypeptides comprising a larger portion of an amino acid sequence of the invention, containing from 30 to 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are useful for inducing antibodies that bind with Zlmda6. It is desirable that the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues, while hydrophobic residues are preferably avoided). Moreover, amino acid sequences containing proline residues may be also be desirable for antibody production.
As an illustration, potential antigenic sites in human Zlmda6 were identified using the Jameson-Wolf method, Jameson and Wolf, CABIOS 4:181, (1988), 3 0 as implemented by the PROTEAN program (version 3.14) of LASERGENE
(DNASTAR; Madison, WI). Default parameters were used in this analysis.
The Jameson-Wolf method predicts potential antigenic determinants by combining six major subroutines for protein structural prediction. Briefly, the Hopp-Woods method, Hopp et al., Proc. Nat'l Acad. Sci. USA 78:3824 (1981), was first used 3 5 to identify amino acid sequences representing areas of greatest local hydrophilicity (parameter: seven residues averaged). In the second step, Emini's method, Emini et al., J. Virology 55:836 (1985), was used to calculate surface probabilities (parameter:
surface decision threshold (0.6) = 1). Third, the Karplus-Schultz method, Karplus and Schultz, Naturwissehschafteh 72:212 (1985), was used to predict backbone chain flexibility (parameter: flexibility threshold (0.2) = 1). In the fourth and fifth steps of the analysis, secondary structure predictions were applied to the data using the methods of Chou-Fasman, Chou, "Prediction of Protein Structural Classes from Amino Acid Composition," in Prediction of Protein Structure a~zd the Pf°iuciples of Protein Couformatiorc, Fasman (ed.), pages 549-586 (Plenum Press 1990), and Gamier-Robson, Gamier et al., J. Mol. Biol. 120:97 (1978) (Chou-Fasman parameters:
conformation table = 64 proteins; a region threshold = 103; (3 region threshold = 105;
Garnier-Robson parameters: a and (3 decision constants = 0). In the sixth subroutine, flexibility parameters and hydropathy/solvent accessibility factors were combined to determine a surface contour value, designated as the "antigenic index." Finally, a peak broadening function was applied to the antigenic index, which broadens major surface peaks by adding 20, 40, 60, or 80°Io of the respective peak value to account for additional free energy derived from the mobility of surface regions relative to interior regions. This calculation was not applied, however, to any major peak that resides in a helical region, since helical regions tend to be less flexible.
The results of this analysis indicated that the following amino acid sequences of SEQ m NO: 2 would provide suitable antigenic peptides: amino acids 14 2 0 to 45 of SEQ m NO: 2 (SEQ )D NO: 3), amino acids 37 to 69 (SEQ m NO: 4), 63 to 87 (SEQ ID NO: 5), amino acids 80 to 103 (SEQ ID NO: 6), amino acids 80 to 119 (SEQ lD NO: 7), amino acids 93 to 125 (SEQ ID NO: 8), amino acids 115 to 151 (SEQ
ID NO: 9), amino acids 135 to 168 (SEQ ID NO: 10), amino acids 165 to 217 (SEQ
ll~
NO: 11), amino acids 214 to 251 (SEQ m NO: 12), amino acids 249 to 279 (SEQ m 2 5 NO: 13), amino acids 249 to 289 (SEQ ID NO: 14), amino acids 272 to 304 (SEQ ID
NO: 15), amino acids 299 to 333 (SEQ m NO: 16), amino acids 314 to 376 (SEQ ID
NO: 17), amino acids 337 to 376 (SEQ ID NO: 18), amino acids 365 to 388 (SEQ m NO: 19), amino acids 365 to 405 (SEQ ID NO: 20), 374 to 440 (SEQ ID NO: 21), amino acids 430 to 483 (SEQ ID NO: 22), amino acids 478 to 528 (SEQ ID NO:
23), 3 o amino acids 507 to 559 (SEQ ID NO: 24), amino acids 515 to 559 (SEQ ID NO:
25), amino acids 538 to 573 (SEQ ID NO: 26), amino acids 14 to 125 (SEQ ID NO: 27), amino acids 84 to 199 (SEQ I~ NO: 28), amino acids 135 to 276 (SEQ ID NO: 29), amino acids 175 to 304 (SEQ ID NO: 30), amino acids 272 to 388 (SEQ ID NO:
31), amino acids 314 to 405 (SEQ ID NO: 32), amino acids 365 to 528 (SEQ >D NO:
33), 3 5 amino acids 430 to 573 (SEQ ID NO: 34), amino acids 15 to 272 (SEQ ID NO:
35), amino acids 90 to 332 (SEQ m NO: 36), 285 to 528 (SEQ m NO: 37), amino acids 398 to 544 (SEQ ID NO: 38), amino acids 430 to 573 (SEQ 1D NO: 39), and amino acids 101 to 304 (SEQ m NO: 40). The present invention contemplates the use of any one of antigenic polypeptides to generate antibodies to Zlmda6.
Polyclonal antibodies to recombinant Zlmda6 protein or to Zlmda6 isolated from natural sources can be prepared using methods well known to those of skill in the art. See, for example, Green et al., "Production of Polyclonal Antisera," in Imnzunoclzefnical Protocols (Manson, ed.), pages 1-5 (Humana Press 1992), and Williams et al., "Expression of foreign proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies," in DNA Cloning 2: Expression Systems, 2ud Edition, Glover et al. (eds.), page 15 (Oxford University Press 1995). The immunogenicity of a Zlmda6 polypeptide can be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such as fusions of Zlmda6 or a portion thereof with an immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "hapten-like," such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.
Although polyclonal antibodies are typically raised in animals such as horses, cows, dogs, chicken, rats, mice, rabbits, guinea pigs, goats, or sheep, an anti-2 0 Zlmda6 antibody of the present invention may also be derived from a subhuman primate antibody. General techniques for raising diagnostically and therapeutically useful antibodies in baboons may be found, for example, in Goldenberg et al., international patent publication No. WO 91/11465, and in Losman et al., Int.
J. Cancer 46:310 (1990).
2 5 Alternatively, monoclonal anti-Zlmda6 antibodies can be generated.
Rodent monoclonal antibodies to specific antigens may be obtained by methods known to those skilled in the art [see, for example, Kohler et al., Nature 256:495 (1975), Coligan et al. (eds.), Current Protocols in Irrzmunology, Vol. 1, pages 2.5.1-2.6.7 (John Wiley & Sons 1991) ("Coligan")], Picksley et al., "Production of monoclonal 3 0 antibodies against proteins expressed in E. coli," in DNA Cloning 2:
Expression Systems, 2nd Edztion, Glover et al. (eds.), page 93 (Oxford University Press 1995)].
Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising an Zlnzda6 gene product, verifying the presence of antibody production by removing a serum sample, removing the spleen to obtain B-lymphocytes, 3 5 fusing the B-lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones which produce antibodies to the antigen, culturing the clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures.
In addition, an anti-Zlmda6 antibody of the present invention may be derived from a human monoclonal antibody. Human monoclonal antibodies are obtained from transgenic mice that have been engineered to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain locus are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy chain and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens, and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described, for example, by Green et al., Nature Genet. 7:13 (1994), Lonberg et al., Nature 368:856 (1994), and Taylor et al., Int. IrnmusZ. 6:579 (1994).
Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography [see, for example, Coligan at pages 2.7.1-2.7.12 and pages 2.9.1-2.9.3; Barnes et al., "Purification of Tmmunoglobulin G (IgG)," in Methods in Molecular Biology, Vol. 10, pages 79-104 (The Humana Press, Inc. 1992)].
2 0 For particular uses, it may be desirable to prepare fragments of anti-Zlmda6 antibodies. Such antibody fragments can be obtained, for example, by proteolytic hydrolysis of the antibody. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. As an illustration, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to 2 5 provide a SS fragment denoted F(ab')2. This fragment can be further cleaved using a thiol reducing agent to produce 3.55 Fab' monovalent fragments. Optionally, the cleavage reaction can be performed using a blocking group for the sulfhydryl groups that result from cleavage of disulfide linkages. As an alternative, an enzymatic cleavage using pepsin produces two monovalent Fab fragments and an Fc fragment 3 0 directly. These methods are described, for example, by Goldenberg, U.S.
patent No.
4,331,647, Nisonoff et al., Arch Biochem. Bioplzys. 89:230 (1960), Porter, Bioclaem. J.
73:119 (1959), Edelman et al., in Methods ifZ Efzzymology Vol. 1, page 422 (Academic Press 1967), and by Coligan at pages 2.8.1-2.8.10 and 2.10.-2.10.4.
Other methods of cleaving antibodies, such as separation of heavy chains 3 5 to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.
For example, Fv fragments comprise an association of VH and VL chains.
This association can be noncovalent, as described by mbar et al., Proc. Nat'l Acad. Sci.
USA 69:2659 (1972). Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde (see, 5 for example, Sandhu, Crit. Rev. Biotech. 12:437 (1992)).
The Fv fragments may comprise VH and VL chains which are connected by a peptide linker. These single-chain antigen binding proteins (scFv) are prepared by constructing a structural gene comprising DNA sequences encoding the VH and VL
domains which are connected by an oligonucleotide. The structural gene is inserted 10 into an expression vector, which is subsequently introduced into a host cell, such as E.
coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing scFvs are described, for example, by Whitlow et. al., Methods: A Companion to Methods irz Ef2zyjzzology 2:97 (1991) (also see, Bird et al., Science 242:423 (1988), Ladner et al., U.S.
Patent No.
15 4,946,778, Pack et al., Biol!'ech>zology 11:1271 (1993), and Sandhu, supra).
As an illustration, a scFV can be obtained by exposing lymphocytes to Zlmda6~ polypeptide irz vitro, and selecting antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled Zlmda6 protein or peptide). Genes encoding polypeptides having potential Zlmda6 polypeptide-binding 2 0 domains can be obtained by screening random peptide libraries displayed on phage (phage display) or on bacteria, such as E. coli. Nucleotide sequences encoding the polypeptides can be obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. These random peptide display libraries can be used to screen for peptides that interact with a known target which can be a protein or 2 5 polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, or organic or inorganic substances. Techniques for creating and screening such random peptide display libraries are known in the art [(Ladner et al., U.S. Patent No. 5,223,409, Ladner et al., U.S. Patent No. 4,946,778, Ladner et al., U.S. Patent No.
5,403,484, Ladner et al., U.S. Patent No. 5,571,698, and Kay et al., Phage Dr.'splay of Peptides azed 3 0 Proteins (Academic Press, Inc. 1996)] and random peptide display libraries and kits for screening such libraries are available commercially, for instance from CLONTECH
Laboratories, Inc. (Palo Alto, CA), Invitrogen Inc. (San Diego, CA), New England Biolabs, Inc. (Beverly, MA), and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ).
Random peptide display libraries can be screened using the Zlmda6 sequences 3 5 disclosed herein to identify proteins that bind to Zlmda6.
Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells [see, for example, Larrick et al., Methods: A Compazzio>z to Methods izz Ezzzynzology 2:106 (1991), Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," in Moyzoclozzal Antibodies: Productio>z, Ehgizzeerirzg az2d Clinical Application, Ritter et al.
(eds.), page 166 (Cambridge University Press 1995), and Ward et al., "Genetic Manipulation and Expression of Antibodies," in Mozzoclozzal Antibodies:
Principles and Applicatiozzs, Birch et al., (eds.), page I37 (Wiley-Liss, Inc. 1995)].
Alternatively, an anti-Zlmda6 antibody may be derived from a "humanized" monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementary determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain.
Typical residues of human antibodies are then substituted in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi et al., Proc. Nat'l Acad. Sci.
USA 86:3833 (1989). Techniques for producing humanized monoclonal antibodies are 2 0 described, for example, by Jones et al., Nature 321:522 (1986), Carter et al., Proc. Nat'l Acad. Sci. USA 89:4285 (1992), Sandhu, Crit. Rev. Biotech. 12:437 (1992), Singer et al., J. Imzzzurz. 150:2844 (1993), Sudhir (ed.), Azztibody Ezzgizzeerizcg Protocols (Humana Press, Inc. 1995), Kelley, "Engineering Therapeutic Antibodies," in Proteizz Engiyzeeriszg: Principles arid Practice, Cleland et al. (eds.), pages 399-434 (John Wiley 2 5 & Sons, Inc. 1996), and by Queen et al., U.S. Patent No. 5,693,762 (1997).
Polyclonal anti-idiotype antibodies can be prepared by immunizing animals with anti-Zlmda6 antibodies or antibody fragments, using standard techniques.
See, for example, Green et al., "Production of Polyclonal Antisera," in Methods Izz Molecular Biology: Iznnzuzzochemical Protocols, Manson (ed.), pages 1-12 (Humana 3 0 Press 1992). Also, sea Coligan at pages 2.4.1-2.4.7. Alternatively, monoclonal anti-idiotype antibodies can be prepared using anti-Zlmda6 antibodies or antibody fragments as immunogens with the techniques, described above. As another alternative, humanized anti-idiotype antibodies or subhuman primate anti-idiotype antibodies can be prepared using the above-described techniques. Methods for producing anti-idiotype 35 antibodies are described, for example, by Irie, U.S. Patent No. 5,208,146, Greene, et.
al., U.S. Patent No. 5,637,677, and Varthakavi and Minocha, J. Gezz. Virol.
77:1875 (1996).
11. Diagnostic Application of Zlmda6 Nucleotide Seque~zces Nucleic acid molecules can be used to detect the expression of an Zlmda6 gene in a biological sample. Although such probe molecules can include murine Zlmda6 encoding sequences, preferred probe molecules include double-stranded nucleic acid molecules comprising the nucleotide sequence of SEQ ID NO: 1, or a fragment thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ ID NO: 1 or a fragment thereof.
Probe molecules may be DNA, RNA, oligonucleotides, and the like.
In a basic assay, a single-stranded probe molecule is incubated with RNA, isolated from a biological sample, under conditions of temperature and ionic strength that promote base pairing between the probe and target Zlmda6 RNA
species.
After separating unbound probe from hybridized molecules, the amount of hybrids is detected. lllustrative biological samples include blood, urine, saliva, tissue biopsy, and autopsy material.
Well-established hybridization methods of RNA detection include northern analysis and dot/slot blot hybridization (see, for example, Ausubel (1995) at pages 4-1 to 4-27, and Wu et al. (eds.), "Analysis of Gene Expression at the RNA
Level," in Methods izz Gezze Biotechnology, pages 225-239 (CRC Press, Inc.
1997)).
2 0 Nucleic acid probes can be detectably labeled with radioisotopes such as 32P or 355.
Alternatively, Zlmda6 RNA can be detected with a nonradioactive hybridization method (see, for example, Isaac (ed.), Protocols for Nucleic Acid Analysis by Nozzradioactive Probes (Humana Press, Inc. 1993)). Typically, nonradioactive detection is achieved by enzymatic conversion of chromogenic or chemiluminescent substrates.
lllustrative 2 5 nonradioactive moieties include biotin, fluorescein, and digoxigenin.
Zlnzda6oligonucleotide probes are also useful for in vivo diagnosis. As an illustration, 18F-labeled oligonucleotides can be administered to a subject and visualized by positron emission tomography [Tavitian et al., Nature Medicine 4:467 (1998)].
Numerous diagnostic procedures take advantage of the polymerase chain 3 0 reaction (PCR) to increase sensitivity of detection methods. Standard techniques for performing PCR are well-known [see, generally, Mathew (ed.), Protocols in Humazz Molecular Genetics (Humana Press, Inc. 1991), White (ed.), PCR Protocols:
Current Methods and Applications (Humana Press, Inc. 1993), Cotter (ed.), Molecular Diagnosis of Cancer (Humana Press, Inc. 1996), Hanausek and Walaszek (eds.), Turzzor 3 5 Marker Protocols (Humana Press, Inc. 1998), Lo (ed.), Clinical Applications of PCR
(Humana Press, Inc. 1998), and Meltzer (ed.), PCR in Bioanalysis (Humana Press, Inc.
1998)].
One variation of PCR for diagnostic assays is reverse transcriptase-PCR
(RT-PCR). In the RT-PCR technique, RNA is isolated from a biological sample, reverse transcribed to cDNA, and the cDNA is incubated with Zlmda6 primers [see, for example, Wu et al. (eds.), "Rapid Isolation of Specific cDNAs or Genes by PCR," in Methods i~c Gene Biotechnology, pages 15-28 (CRC Press, Inc. 1997)]. PCR is then performed and the products are analyzed using standard techniques.
As an illustration, RNA is isolated from biological sample using, for example, the gunadinium-thiocyanate cell lysis procedure described above.
Alternatively, a solid-phase technique can be used to isolate mRNA from a cell lysate.
A reverse transcription reaction can be primed with the isolated RNA using random oligonucleotides, short homopolymers of dT, or Zlmda6anti-sense oligomers.
Oligo-dT
primers offer the advantage that various mRNA nucleotide sequences are amplified that can provide control target sequences. Zlmda6 sequences are amplified by the polymerise chain reaction using two flanking oligonucleotide primers that are typically bases in length.
PCR amplification products can be detected using a variety of approaches. For example, PCR products can be fractionated by gel electrophoresis, and 2 0 visualized by ethidium bromide staining. Alternatively, fractionated PCR
products can be transferred to a membrane, hybridized with a detectably-labeled Zlmda6 probe, and examined by autoradiography. Additional alternative approaches include the use of digoxigenin-labeled deoxyribonucleic acid triphosphates to provide chemiluminescence detection, and the C-TRAM colorimetric assay.
2 5 Another approach for detection of Zlmda6 expression is cycling probe technology (CPT), in which a single-stranded DNA target binds with an excess of DNA-RNA-DNA chirneric probe to form a complex, the RNA portion is cleaved with RNAase H, and the presence of cleaved chimeric probe is detected [see, for example, Beggs et al., J. Clifz. Microbiol. 34:2985 (1996), Bekkaoui et al., Biotechniques 20:240 3 0 (1996)]. Alternative methods for detection of Zlmda6 sequences can utilize approaches such as nucleic acid sequence-based amplification (NASBA), cooperative amplification of templates by cross-hybridization (CATCH), and the ligase chain reaction (LCR) (see, for example, Marshall et al., U.S. Patent No. 5,686,272 (1997), Dyer et al., J. Virol.
Methods 60:161 (1996), Ehricht et al., Eur. J. Biochefn. 243:358 (1997), and Chadwick 3 5 et al., J. Virol. Methods 70:59 (1998)). Other standard methods are known to those of skill in the art.
Zlnzda6 probes and primers can also be used to detect and to localize Zlnzda6 gene expression in tissue samples. Methods for such in situ hybridization are well-known to those of skill in the art (see, for example, Choo (ed.), In Situ Hybridizatioyz Protocols (Humana Press, Inc. 1994), Wu et al. (eds.), "Analysis of Cellular DNA or Abundance of mRNA by Radioactive In Situ Hybridization IRISH),"
in Methods in Gene Biotechnology, pages 259-278 (CRC Press, Inc. 1997), and Wu et al.
(eds.), "Localization of DNA or Abundance of mRNA by Fluorescence Irz Situ Hybridization IRISH)," in Methods in Gene Bioteclznology, pages 279-289 (CRC
Press, Inc. 1997)). Various additional diagnostic approaches are well-known to those of skill in the art (see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Coleman and Tsongalis, Molecular Diagnostics (Humana Press, Inc. 1996), and Elles, Molecular Diagnosis of Genetic Diseases (Humana Press, Inc., 1996)).
Nucleic acid molecules comprising Zlmda6 nucleotide sequences can also be used to determine whether a subject's chromosomes contain a mutation in the Zlnzda6 gene. Detectable chromosomal aberrations at the Zlrnda6 gene locus include, but are not limited to, aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements. Of particular interest are genetic alterations that inactivate the Zlmda6 gene.
2 0 Aberrations associated with the Zlmda6 locus can be detected using nucleic acid molecules of the present invention by employing molecular genetic techniques, such as restriction fragment length polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, amplification-refractory mutation system analysis (ARMS), single-strand conformation polymorphism (SSCP) 2 5 detection, RNase cleavage methods, denaturing gradient gel electrophoresis, fluorescence-assisted mismatch analysis (FAMA), and other genetic analysis techniques known in the art [see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Marian, Clzest 108:255 (1995), Coleman and Tsongalis, Molecular Diagnostics (Human Press, Inc. 1996), Elles (ed.) Molecular 3 0 Diagnosis of Genetic Diseases (Humana Press, Inc. 1996), Landegren (ed.), Laboratory Protocols for Mutation Detection (Oxford University Press 1996), Birren et al.
(eds.), Genome Analysis, Vol. 2: Detectiyzg Genes (Cold Spring Harbor Laboratory Press 1998), Dracopoli et al. (eds.), Current Protocols in Human Genetics (John Wiley &
Sons 1998), and Richards and Ward, "Molecular Diagnostic Testing," in Principles of 3 5 Molecular Medicine, pages 83-88 (Humana Press, Inc. 1998)].
The protein truncation test is also useful for detecting the inactivation of a gene in which translation-terminating mutations produce only portions of the encoded protein [see, for example, Stoppa-Lyonnet et al., Blood 91:3920 (1998)].
According to this approach, RNA is isolated from a biological sample, and used to synthesize cDNA.
PCR is then used to amplify the Zlmda6 target sequence and to introduce an RNA
polymerase promoter, a translation initiation sequence, and an in-frame ATG
triplet.
5 PCR products are transcribed using an RNA polymerase, and the transcripts are translated ih vitro with a T7-coupled reticulocyte lysate system. The translation products are then fractionated by SDS-PAGE to determine the lengths of the translation products. The protein truncation test is described, for example, by Dracopoli et al.
(eds.), Curreyzt Protocols iiz Human Geizetics, pages 9.11.1 - 9.11.18 (John Wiley &
l0 Sons 1998).
In a related approach, Zlmda6 protein is isolated from a subject, the molecular weight of the isolated Zlmda6 protein is determined, and then compared with the molecular weight a normal Zlmda6 protein, such as a protein having the amino acid sequence of SEQ m NO: 2. A substantially lower molecular weight for the isolated 15 Zlmda6 protein is indicative that the protein is truncated. In this context, "substantially lower molecular weight" refers to at least about 10 percent lower, and preferably, at least about 25 percent lower. The Zlmda6 protein may be isolated by various procedures known in the art including immunoprecipitation, solid phase radioimmunoassay, enzyme-linked immunosorbent assay, or Western blotting. The 2 0 molecular weight of the isolated Zlmda6 protein can be determined using standard techniques, such as SDS-polyacrylamide gel electrophoresis.
The present invention also contemplates kits for performing a diagnostic assay for Zlffada6 gene expression or to detect mutations in the Zlrnda6gene.
Such kits comprise nucleic acid probes, such as double-stranded nucleic acid molecules 2 5 comprising the nucleotide sequence of SEQ m NO: 1, or a fragment thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ m NO: 1, or a fragment thereof. Probe molecules may be DNA, RNA, oligonucleotides, and the like. Kits may comprise nucleic acid primers for performing PCR.
3 0 Preferably, such a kit contains all the necessary elements to perform a nucleic acid diagnostic assay described above. A kit will comprise at least one container comprising a Zlmda6 probe or primer. The kit may also comprise a second container comprising one or more reagents capable of indicating the presence of Zlmda6 sequences. Examples of such indicator reagents include detectable labels such 3 5 as radioactive labels, fluorochromes, chemiluminescent agents, and the like. A kit may also comprise a means for conveying to the user that the Zlmda6 probes and primers are used to detect Zlmda6 gene expression. For example, written instructions may state that the enclosed nucleic acid molecules can be used to detect either a nucleic acid molecule that encodes Zlmda6, or a nucleic acid molecule having a nucleotide sequence that is complementary to a Zlmda6-encoding nucleotide sequence. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.
12. Diagnostic Application of Anti-Zlfnda6 Antibodies The present invention contemplates the use of anti-Zlmda6 antibodies to screen biological samples in vitro for the presence of Zlmda6. In one type of in vitro assay, anti-Zlmda6 antibodies are used in liquid phase. For example, the presence of Zlmda6 in a biological sample can be tested by mixing the biological sample with a trace amount of labeled Zlmda6 and an anti-Zlmda6 antibody under conditions that promote binding between Zlmda6 and its antibody. Complexes of Zlmda6 and anti-Zlmda6 in the sample can be separated from the reaction mixture by contacting the complex with an immobilized protein which binds with the antibody, such as an Fc antibody or Staphylococcus protein A. The concentration of Zlmda6 in the biological sample will be inversely proportional to the amount of labeled Zlmda6 bound to the antibody and directly related to the amount of free-labeled Zlmda6. Illustrative biological samples include blood, urine, saliva, tissue biopsy, and autopsy material.
2 0 Alternatively, in vitro assays can be performed in which anti-Zlmda6 antibody is bound to a solid-phase carrier. For example, antibody can be attached to a polymer, such as aminodextran, in order to link the antibody to an insoluble support such as a polymer-coated bead, a plate or a tube. Other suitable in vitro assays will be readily apparent to those of skill in the art.
2 5 Tn another approach, anti-Zlmda6 antibodies can be used to detect Zlmda6s in tissue sections prepared from a biopsy specimen. Such immunochemical detection can be used to determine the relative abundance of Zlmda6 and to determine the distribution of Zlmda6 in the examined tissue. General immunochemistry techniques are well established [see, for example, Ponder, "Cell Marking Techniques and Their 3 0 Application," in Mammalian. Development: A Practical. Approach, Monk (ed.), pages 115-38 (IRL Press 1987), Coligan at pages 5.8.1-5.8.8, Ausubel (1995) at pages 14.6.1 to 14.6.13 (Wiley Interscience 1990), and Manson (ed.), Methods In Molecular Biology, Vol.
10: Imf~aur~oclzemical Protocols (The Humana Press, Ins. 1992)].
Immunochemical detection can be performed by contacting a biological 3 5 sample with an anti-Zlmda6 antibody, and then contacting the biological sample with a detestably labeled molecule that binds to the antibody. For example, the detestably labeled molecule can comprise an antibody moiety that binds to anti-Zlmda6 antibody.
Alternatively, the anti-Zlmda6 antibody can be conjugated with avidin/streptavidin (or biotin) and the detestably labeled molecule can comprise biotin (or avidin/streptavidin).
Alternatively, an anti-Zlmda6 antibody can be conjugated with a detectable label to form an anti-Zlmda6 immunoconjugate. Suitable detectable labels include, for example, a radioisotope, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label or colloidal gold. Methods of making and detecting such detestably labeled immunoconjugates are described in more detail below.
The detectable label can be a radioisotope that is detected by autoradiography. Isotopes that are particularly useful for the purpose of the present invention are 3H, lash i3ih ass and 14C.
Anti-Zlmda6 immunoconjugates can also be labeled with a fluorescent compound. The presence of a fluorescently labeled antibody is determined by exposing the imrnunoconjugate to light of the proper wavelength and detecting the resultant fluorescence. Fluorescent labeling compounds include fluorescein isothiocyanate, rhoda-mine, phycoerytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.
Alternatively, anti-Zlmda6 immunoconjugates can be detestably labeled by coupling an antibody component to a chemiluminescent compound. The presence of the chemiluminescent-tagged immunoconjugate is determined by detecting the presence 2 0 of luminescence that arises during the course of a chemical reaction.
Examples of chemi-luminescent labeling compounds include luminol, isoluminol, an aromatic acridinium ester, an imidazole, an acridinium salt and an oxalate ester.
Similarly, a bioluminescent compound can be used to label anti-Zlmda6 immunoconjugates of the present invention. Bioluminescence is a type of 2 5 chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Bioluminescent compounds that are useful for labeling include luciferin, luciferase and aequorin.
Alternatively, anti-Zlmda6 immunoconjugates can be detestably labeled 3 0 by linking an anti-Zlmda6 antibody component to an enzyme. When the anti-Zlmda6-enzyme conjugate is incubated in the presence of the appropriate substrate, the enzyme moiety reacts with the substrate to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorometric or visual means. Examples of enzymes that can be used to detestably label polyspecific immunoconjugates include (3-galactosidase, 3 5 glucose oxidase, peroxidase and alkaline phosphatase.
The binding of marker moieties to anti-Zlmda6 antibodies can be accomplished using standard techniques. Typical methodology in this regard is described by Kennedy et al., Cliz~. Chim. Acta 70:1 (1976), Schurs et al., Cliza. Chizn.
Acta 81:1 (1977), Shih et al., Iht'l J. Cancer 46:1101 (1990), Stein et al., Ca>zcer Res. 50:1330 (1990), and Coligan, supra.
Moreover, the convenience and versatility of immunochemical detection can be enhanced by using anti-Zlmda6 antibodies that have been conjugated with avidin, streptavidin, and biotin (see, for example, Wilchek et al. (eds.), "Avidin-Biotin Technology," Methods Irz Ehzymology, vol. 184 (Academic Press 1990), and Bayer et al., "Immunochemical Applications of Avidin-Biotin Technology," in Methods In Molecular Biology, vol. 10, Manson (ed.), pages 149-162 (The Humana Press, Inc. 1992).
Methods for performing immunoassays are illustrated in the following:
Cook and Self, "Monoclonal Antibodies in Diagnostic Immunoassays," in Monoclozzal Antibodies: Production, Eyzgifzeerizzg, and Clinical Applicatiozz, Ritter and Ladyman (eds.), pages 180-208, (Cambridge University Press, 1995), Perry, "The Role of Monoclonal Antibodies in the Advancement of Tmmunoassay Technology," in Monoclonal AiZtibodies: Principles and Applications, Birch and Lennox (eds.), pages 107-120 (Wiley-Liss, Inc. 1995), and Diamandis, Izzzmurzoassay (Academic Press, Inc.
1996).
In a related approach, biotin- or FITC-labeled Zlmda6 can be used to identify cells that bind Zlmda6. Such can binding can be detected, for example, using 2 0 flow cytometry.
The present invention also contemplates kits for performing an immunological diagnostic assay for Zlmda6 gene expression. Such kits comprise at least one container comprising an anti-Zlmda6 antibody, or antibody fragment. A kit may also comprise a second container comprising one or more reagents capable of indicating 2 5 the presence of Zlmda6 antibody or antibody fragments. Examples of such indicator reagents include detectable labels such as a radioactive label, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label, colloidal gold, and the like. A kit may also comprise a means for conveying to the user that Zlmda6 antibodies or antibody fragments are used to detect Zlmda6 protein. For example, written 3 0 instructions may state that the enclosed antibody or antibody fragment can be used to detect Zlmda6. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.
13. Therapeutic l7ses of Polypeptides Having ZZmda6Activity 3 5 Generally, the dosage of administered Zlmda6 (or Zlmda6 analog or fusion protein) will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition and previous medical history.
Typically, it is desirable to provide the recipient with a dosage of Zlmda6 that is in the range of from about 1 pg/kg to 10 mg/kg (amount of agent/body weight of patient), although a lower or higher dosage also may be administered as circumstances dictate.
Administration of a molecule having Zlmda6 activity to a subject can be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, by perfusion through a regional catheter, or by direct intralesional injection.
When administering therapeutic proteins by injection, the administration may be by continuous infusion or by single or multiple boluses. Alternatively, Zlmda6 can be administered as a controlled release formulation. Additional routes of administration include oral, dermal, mucosal-membrane, pulmonary, and transcutaneous. Oral delivery is suitable for polyester microspheres, zero microspheres, proteinoid microspheres, polycyanoacrylate microspheres, and lipid-based systems [see, for example, DiBase and Morrel, "Oral Delivery of Microencapsulated Proteins," in Protein Delivery: Physical Systems, Sanders and Hendren (eds.), pages 255-288 (Plenum Press 1997)]. The feasibility of an intranasal delivery is exemplified by such a mode of insulin administration [see, for example, Hinchcliffe and Illum, Adv.
Drug Deliv. Rev. 35:199 (1999)]. Dry or liquid particles comprising Zlmda6 can be prepared and inhaled with the aid of dry-powder dispersers, liquid aerosol generators, or 2 0 nebulizers [e.g., Pettit and Gombotz, TIBTECH 16:343 (1998); Patton et al., Adv. Drug Deliv. Rev. 35:235 (1999)]. This approach is illustrated by the AERX diabetes management system, which is a hand-held electronic inhaler that delivers aerosolized insulin into the lungs. Studies have shown that proteins as large as 48,000 kDa have been delivered across skin at therapeutic concentrations with the aid of low-frequency 2 5 ultrasound, which illustrates the feasibility of trascutaneous administration [Mitragotri et al., Science 269:850 (1995)]. Transdermal delivery using electroporation provides another means to administer Zlmda6 [Putts et al., Pharm. Biotechnol. 10:213 (1997)].
A pharmaceutical composition comprising a protein, polypeptide, or peptide having Zlmda6 activity can be formulated according to known methods to 3 0 prepare pharmaceutically useful compositions, whereby the therapeutic proteins are combined in a mixture with a pharmaceutically acceptable carrier. A
composition is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient patient. Sterile phosphate-buffered saline is one example of a pharmaceutically acceptable carrier. Other suitable carriers are well known to those in 3 5 the art. See, for example, Gennaro (ed.), Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company 1995).
For purposes of therapy, molecules having Zlmda6 activity and a pharmaceutically acceptable carrier are administered to a patient in a therapeutically effective amount. A combination of a protein, polypeptide, or peptide having Zlmda6 activity and a pharmaceutically acceptable carrier is said to be administered in a 5 "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient. A pharmaceutical composition comprising molecules having Zlmda6activity can be furnished in liquid form, in an aerosol, or in solid form. Proteins having Zlmda6 activity, such as human or murine 10 Zlmda6, can be administered as a conjugate with a pharmaceutically acceptable water-soluble polymer moiety, as described above. - Liquid forms, including liposome-encapsulated formulations, are illustrated by injectable solutions and oral suspensions.
Exemplary solid forms include capsules, tablets, and controlled-release forms, such as a miniosmotic pump or an implant. Other dosage forms can be devised by those skilled 15 in the art, as shown, for example, by Ansel and Popovich, Pharmaceutical Dosage Forms aizd Drug Delivery Systems, 5t1' Edition (Lea & Febiger 1990), Gennaro (ed.), Remingtoh's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company 1995), and by Ranade and Hollinger, Drug Delivery Systems (CRC Press 1996).
As an illustration, Zlmda6 pharmaceutical compositions may be supplied 2 0 as a kit comprising a container that comprises Zlmda6, a Zlmda6 agonist, or a Zlmda6 antagonist (e.g., an anti-Zlmda6 antibody or antibody fragment). Zlmda6 can be provided in the form of an injectable solution for single or multiple doses, or as a sterile powder that will be reconstituted before injection. Alternatively, such a kit can include a dry-powder dispenser, liquid aerosol generator, or nebulizer for administration of a 2 5 therapeutic polypeptide. Such a kit may further comprise written information on indications and usage of the pharmaceutical composition. Moreover, such information may include a statement that the Zlmda6 composition is contraindicated in patients with known hypersensitivity to Zlmda6.
3 0 14. Therapeutic Uses of Zlfrzda6 Nucleotide Sequences Immunomodulator genes can be introduced into a subject to enhance immunological responses. As an illustration "immunomodulator gene therapy" has been examined in model systems using vectors that express IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-15, tumor necrosis factor-a, or granulocyte-macrophage colony-3 5 stimulating factor (see, for example, Cao et al., J. Gastroeraterol.
Hepatol. 11:1053 (1996), Tahara et al., Ann. N. Y. Acad. Sci. 795:275 (1996), Rakhmilevich et al., Hum.
Gefze Ther. 8:1303 (1997), and Cao et al., Transplaretatio~2 65:325 (1998)).
In addition, a therapeutic expression vector can be provided that inhibits Zlfnda6 gene expression, such as an anti-sense molecule, a ribozyme, or an external guide sequence molecule.
There are numerous approaches to introduce an Zlmda6 gene to a subject, including the use of recombinant host cells that express Zlmda6, delivery of naked nucleic acid encoding Zlmda6, use of a cationic lipid carrier with a nucleic acid molecule that encodes Zlmda6, and the use of viruses that express Zlmda6, such as recombinant retroviruses, recombinant adeno-associated viruses, recombinant adenoviruses, and recombinant Herpes simplex viruses [HSV] [see, for example, l0 Mulligan, Science 260:926 (1993), Rosenberg et al., Science 242:1575 (1988), LaSalle et al., Sciezcce 259:988 (1993), Wolff et al., Scierzce 247:1465 (1990), Breakfield and Deluca, The New Biologist 3:203 (1991)]. In an ex vivo approach, for example, cells are isolated from a subject, transfected with a vector that expresses a Zlmda6 gene, and then transplanted into the subject.
In order to effect expression of a Zlmda6 gene, an expression vector is constructed in which a nucleotide sequence encoding a Zlmda6 gene is operably linked to a core promoter, and optionally a regulatory element, to control gene transcription. The general requirements of an expression vector are described above. .
Alternatively, a Zlmda6gene can be delivered using recombinant viral 2 0 vectors, including for example, adenoviral vectors [e.g., Kass-Eisler et al., Proc. Nat'l Acad. Sci. USA 90:11498 (1993), Kolls et al., Proc. Nat'l Acad. Sci. USA
91:215 (1994), Li et al., Hum. Gene Ther. 4:403 (1993), Vincent et al., Nat. Gezzet.
5:130 (1993), and Zabner et al., Cell 75:207 (1993)], adenovirus-associated viral vectors (Flotte et al., Proc. Nat'l Acad. Sci. USA 90:10613 (1993)], alphaviruses such as Semliki Forest Virus and Sindbis Virus [Hertz and Huang, J. Vir. 66:857 (1992), Raju and Huang, J. Vir. 65:2501 (1991), and Xiong et al., Science 243:1188 (1989)], herpes viral vectors [e.g., U.S. Patent Nos. 4,769,331, 4,859,587, 5,288,641 and 5,328,688), parvovirus vectors (Koering et al., Hum. Gerze Therap. 5:457 (1994)], pox virus vectors [Ozaki et al., Biochem. Biophys. Res. Conun. 193:653 (1993), Panicali and Paoletti, 3 0 Pz-oc. Nat'l Acad. Sci. USA 79:4927 (1982)], pox viruses, such as canary pox virus or vaccinia virus [Fisher-Hoch et al., Proc. Nat'L Acad. Sci. USA 86:317 (1989), and Flexner et al., Afzn. N. Y. Acad. Sci. 569:86 (1989)], and retroviruses [e.g., Baba et al., J.
Neurosurg 79:729 (1993), Ram et al., Cancer Res. 53:83 (1993), Takamiya et al., J.
Neurosci. Res 33:493 (1992), Vile and Hart, Cancer Res. 53:962 (1993), Vile and Hart, 3 5 Cancer Res. 53:3860 (1993), and Anderson et al., U.S. Patent No.
5,399,346]. Within various embodiments, either the viral vector itself, or a viral particle which contains the viral vector may be utilized in the methods and compositions described below.
As an illustration of one system, adenovirus, a double-stranded DNA
virus, is a well-characterized gene transfer vector for delivery of a heterologous nucleic acid molecule [for a review, see Becker et al., Meth. Cell Biol. 43:161 (1994); Douglas and Curiel, Science & Medicine 4:44 (1997)]. The adenovirus system offers several advantages including: (i) the ability to accommodate relatively large DNA
inserts, (ii) the ability to be grown to high-titer, (iii) the ability to infect a broad range of mammalian cell types, and (iv) the ability to be used with many different promoters including ubiquitous, tissue specific, and regulatable promoters. In addition, adenoviruses can be administered by intravenous injection, because the viruses are stable in the bloodstream.
Using adenovirus vectors where portions of the adenovirus genome are deleted, inserts are incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. In an exemplary system, the essential E1 gene is deleted from the viral vector, and the virus will not replicate unless the E1 gene is provided by the host cell. When intravenously administered to intact animals, adenovirus primarily targets the liver. Although an adenoviral delivery system with an E1 gene deletion cannot replicate in the host cells, the host's tissue will express and process an encoded heterologous protein. Host cells will also secrete the heterologous protein if the corresponding gene includes a secretory signal sequence.
Secreted 2 0 proteins will enter the circulation from tissue that expresses the heterologous gene (e.g., the highly vascularized liver).
Moreover, adenoviral vectors containing various deletions of viral genes can be used to reduce or eliminate immune responses to the vector. Such adenoviruses are E1-deleted, and in addition, contain deletions of E2A or E4 [Lusky et al., J. Virol.
72:2022 (1998); Raper et al., Hurrah GefZe Therapy 9:671 (1998)]. The deletion of E2b has also been reported to reduce immune responses [Amalfitano et al., J.
Virol. 72:926 (1998)]. By deleting the entire adenovirus genome, very large inserts of heterologous DNA can be accommodated. Generation of so called "gutless" adenoviruses, where all viral genes are deleted, are particularly advantageous for insertion of large inserts of 3 0 heterologous DNA [for a review, see Yeh. and Perricaudet, FASEB J. 11:615 (1997)].
High titer stocks of recombinant viruses capable of expressing a therapeutic gene can be obtained from infected mammalian cells using standard methods. For example, recombinant HSV can be prepared in Vero cells, as described by Brandt et al., J. Gefa. Virol. 72:2043 (1991), Herold et al., J. Gen.
Virol. 75:1211 3 5 (1994), Visalli and Brandt, Virology 185:419 (1991), Grau et al., Invest.
Ophthalmol.
Vis. Sci. 30:2474 (1989), Brandt et al., J. Virol. Metlz. 36:209 (1992), and by Brown and MacLean (eds.), HSV Virus Protocols (Humana Press 1997).
Alternatively, an expression vector comprising a Zlmda6 gene can be introduced into a subject's cells by lipofection in vivo using liposomes.
Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of a gene encoding a marker [Felgner et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987);
Mackey et al., Proc. Nat'l Acad. Sci. USA 85:8027 (1988)]. The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages.
Liposomes can be used to direct transfection to particular cell types, which is particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides (e.g., hormones or neurotransmitters), proteins such as antibodies, or non-peptide molecules can be coupled to liposomes chemically.
Electroporation is another alternative mode of administration. For example, Aihara and Miyazaki, Nature Biotechnology 16:867 (1998), have demonstrated the use of izz vivo electroporation for gene transfer into muscle.
In an alternative approach to gene therapy, a therapeutic gene may encode a Zlmda6 anti-sense RNA that inhibits the expression of Zlmda6.
Suitable sequences for anti-sense molecules can be derived from the nucleotide sequences of Zlmda6~ disclosed herein.
Alternatively, an expression vector can be constructed in which a 2 0 regulatory element is operably linked to a nucleotide sequence that encodes a ribozyme.
Ribozymes can be designed to express endonuclease activity that is directed to a certain target sequence in a mRNA molecule (see, for example, Draper and Macejak, U.S.
Patent No. 5,496,698, McSwiggen, U.S. Patent No. 5,525,468, Chowrira and McSwiggen, U.S. Patent No. 5,631,359, and Robertson and Goldberg, U.S. Patent No.
2 5 5,225,337). In the context of the present invention, ribozymes include nucleotide sequences that bind with Zlmda6 mRNA.
In another approach, expression vectors can be constructed in which a regulatory element directs the production of RNA transcripts capable of promoting RNase P-mediated cleavage of mRNA molecules that encode an Zlrrada6 gene. According to this 3 0 approach, an external guide sequence can be constructed for directing the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, which is subsequently cleaved by the cellular ribozyme (see, for example, Altman et al., U.S. Patent No.
5,168,053, Yuan et al., Science 263:1269 (1994), Pace et al., international publication No. WO 96/18733, George et al., international publication No. WO 96/21731, and 3 5 Werner et al., international publication No. WO 97/33991). Preferably, the external guide sequence comprises a ten to fifteen nucleotide sequence complementary to Zlmda6 mRNA, and a 3'-NCCA nucleotide sequence, wherein N is preferably a purine. The external guide sequence transcripts bind to the targeted mRNA species by the formation of base pairs between the mRNA and the complementary external guide sequences, thus promoting cleavage of mRNA by RNase P at the nucleotide located at the 5'-side of the base-paired region.
In general, the dosage of a composition comprising a therapeutic vector having a Zlmda6 nucleotide acid sequence, such as a recombinant virus, will vary depending upon such factors as the subject's age, weight, height, sex, general medical condition and previous medical history. Suitable routes of administration of therapeutic vectors include intravenous injection, intraarterial injection, intraperitoneal injection, and intramuscular injection.
A composition comprising viral vectors, non-viral vectors, or a combination of viral and non-viral vectors of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby vectors or viruses are combined in a mixture with a pharmaceutically acceptable carrier.
As noted above, a composition such as phosphate-buffered saline is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient subject. Other suitable carriers are well-known to those in the art [see, for example, Reznington's Pharmaceutical Sciefzces, 19th Ed. (Mack Publishing Co.
1995), and Gilman's the Pharmacological Basis of Therapeutics, 7th Ed. (MacMillan 2 0 Publishing Co. 1985)].
For purposes of therapy, a therapeutic gene expression vector, or a recombinant virus comprising such a vector, and a pharmaceutically acceptable carrier are administered to a subject in a therapeutically effective amount. A
combination of an expression vector (or virus) and a pharmaceutically acceptable carrier is said to be 2 5 administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient subject When the subject treated with a therapeutic gene expression vector or a recombinant virus is a human, then the therapy is preferably somatic cell gene therapy.
3 0 That is, the preferred treatment of a human with a therapeutic gene expression vector or a recombinant virus does not entail introducing into cells a nucleic acid molecule that can form part of a human germ line and be passed onto successive generations (i.e., human germ line gene therapy).
I5. Production of Transgenic Mice Transgenic mice can be engineered to over-express the human or murine Zlmda6gene in all tissues or under the control of a tissue-specific or tissue-preferred regulatory element. These over-producers of Zlmda6 can be used to characterize the 5 phenotype that results from over-expression, and the transgenic animals can serve as models for human disease caused by excess Zlmda6. Transgenic mice that over-express Zlmda6 also provide model bioreactors for production of Zlmda6 in the milk or blood of larger animals. Methods for producing transgenic mice are well-known to those of skill in the art [see, for example, Jacob, "Expression and Knockout of Interferons in 10 Transgenic Mice," in Overexpressiou and Kfaockout of Cytokiues in Trafzsgenic Mice, Jacob (ed.), pages 111-124 (Academic Press, Ltd. 1994), Monastersky and Robl (eds.), Strategies ire Trarcsgeuic Animal Science (ASM Press 1995), and Abbud and Nilson, "Recombinant Protein Expression in Transgenic Mice," in Gene Expression Systems:
Using Nature for the Art of Expression, Fernandez and Hoeffler (eds.), pages 15 (Academic Press, Inc. 1999)].
For example, a method for producing a transgenic mouse that expresses a Zlnada6 gene can begin with adult, fertile males (studs) [B6C3f1, 2-8 months of age (Taconic Farms, Germantown, NY)], vasectomized males (duds) [B6D2f1, 2-8 months, (Taconic Farms)], prepubescent fertile females (donors) [B6C3f1, 4-5 weeks, (Taconic 2 0 Farms)] and adult fertile females (recipients) [B6D2f1, 2-4 months, (Taconic Farms)].
The donors are acclimated for one week and then injected with approximately 8 IU/mouse of Pregnant Mare's Serum gonadotrophin (Sigma Chemical Company; St.
Louis, MO) LP., and 46-47 hours later, 8 ILJ/mouse of human Chorionic Gonadotropin (hCG (Sigma)) LP. to induce superovulation. Donors are mated with studs subsequent 2 5 to hormone injections. Ovulation generally occurs within 13 hours of hCG
injection.
Copulation is confirmed by the presence of a vaginal plug the morning following mating.
Fertilized eggs are collected under a surgical scope. The oviducts are collected and eggs are released into urinanalysis slides containing hyaluronidase 3 0 (Sigma). Eggs are washed once in hyaluronidase, and twice in Whitten's W640 medium [described, for example, by Menino and O'Claray, Biol. Reprod. 77:159 (1986), and Dienhart and Downs, Zygote 4:129 (1996)] that has been incubated with 5% C02, 5%
02, and 90% NZ at 37°C. The eggs are then stored in a 37°C/5%
C02 incubator until microinjection.
3 5 Ten to twenty micrograms of plasmid DNA containing a Zlmda6 encoding sequence is linearized, gel-purified, and resuspended in 10 mM Tris-HCl (pH
7.4), 0.25 mM EDTA (pH 8.0), at a final concentration of 5-10 nanograms per microliter for microinjection. Plasmid DNA is microinjected into harvested eggs contained in a drop of W640 medium overlaid by warm, CO2 equilibrated mineral oil.
The DNA is drawn into an injection needle (pulled from a 0.75mm m, lmm OD
borosilicate glass capillary), and injected into individual eggs. Each egg is penetrated with the injection needle, into one or both of the haploid pronuclei.
Picoliters of DNA
are injected into the pronuclei, and the injection needle withdrawn without coming into contact with the nucleoli. The procedure is repeated until all the eggs are injected.
Successfully microinjected eggs are transferred into an organ tissue-culture dish with pre-gassed W640 medium for storage overnight in a 37°C/5% C02 incubator.
The following day, two-cell embryos are transferred into pseudopregnant recipients. The recipients are identified by the presence of copulation plugs, after copulating with vasectomized duds. Recipients are anesthetized and shaved on the dorsal left side and transferred to a surgical microscope. A small incision is made in the skin and through the muscle wall in the middle of the abdominal area outlined by the ribcage, the saddle, and the hind leg, midway between knee and spleen. The reproductive organs are exteriorized onto a small surgical drape. The fat pad is stretched out over the surgical drape, and a baby serrefine (Roboz, Rockville, MD) is attached to the fat pad and left hanging over the back of the mouse, preventing the organs from sliding back in.
2 0 With a fine transfer pipette containing mineral oil followed by alternating W640 and air bubbles, 12-17 healthy two-cell embryos from the previous day's injection are transferred into the recipient. The swollen ampulla is located and holding the oviduct between the ampulla and the bursa, a nick in the oviduct is made with a 28 g needle close to the bursa, making sure not to tear the ampulla or the bursa.
2 5 The pipette is transferred into the nick in the oviduct, and the embryos are blown in, allowing the first air bubble to escape the pipette. The fat pad is gently pushed into the peritoneum, and the reproductive organs allowed to slide in. The peritoneal wall is closed with one suture and the skin closed with a wound clip. The mice recuperate on a 37°C slide warmer for a minimum of four hours. The recipients are returned to cages in 3 o pairs, and allowed 19-21 days gestation. After birth, 19-21 days postpartum is allowed before weaning. The weanlings are sexed and placed into separate sex cages, and a 0.5 cm biopsy (used for genotyping) is snipped off the tail with clean scissors.
Genomic DNA is prepared from the tail snips using, for example, a QIAGEN DNEASY kit following the manufacturer's instructions. Genomic DNA is 3 5 analyzed by PCR using primers designed to amplify a Zlmda6 gene or a selectable marker gene that was introduced in the same plasmid. After animals are confirmed to be transgenic, they are back-crossed into an inbred strain by placing a transgenic female with a wild-type male, or a transgenic male with one or two wild-type female(s). As pups are born and weaned, the sexes are separated, and their tails snipped for genotyping. To check for expression of a transgene in a live animal, a partial hepatectomy is performed. A surgical prep is made of the upper abdomen directly below the zyphoid process. Using sterile technique, a small 1.5-2 cm incision is made below the sternum and the left lateral lobe of the liver exteriorized. Using 4-0 silk, a tie is made around the lower lobe securing it outside the body cavity. An atraumatic clamp is used to hold the tie while a second loop of absorbable Dexon (American Cyanamid;
Wayne, N.J.) is placed proximal to the first tie. A distal cut is made from the Dexon tie and approximately 100 mg of the excised liver tissue is placed in a sterile petri dish.
The excised liver section is transferred to a 14 ml polypropylene round bottom tube and snap frozen in liquid nitrogen and then stored on dry ice. The surgical site is closed with suture and wound clips, and the animal's cage placed on a 37°C
heating pad for 24 hours post operatively. The animal is checked daily post operatively and the wound clips removed 7-10 days after surgery. The expression level of Zlmda6 mRNA is examined for each transgenic mouse using an RNA solution hybridization assay or polyrnerase chain reaction.
In addition to producing transgenic mice that over-express Zlmda6, it is useful to engineer transgenic mice with either abnormally low or no expression of the 2 0 gene. Such transgenic mice provide useful models for diseases associated with a lack of Zlmda6. As discussed above, Zlmda6 gene expression can be inhibited using anti-sense genes, ribozyme genes, or external guide sequence genes. To produce transgenic mice that under-express the Zlmda6 gene, such inhibitory sequences are targeted to marine Zlmda6 mRNA. Methods for producing transgenic mice that have abnormally 2 5 low expression of a particular gene are known to those in the art [see, for example, Wu et al., "Gene Underexpression in Cultured Cells and Animals by Antisense DNA
and RNA Strategies," in Methods irz Gefae Biotechnology, pages 205-224 (CRC Press 1997)].
An alternative approach to producing transgenic mice that have little or 3 0 no Zlrnda6 gene expression is to generate mice having at least one normal Zlmda6 allele replaced by a nonfunctional Zlmda6 gene. One method of designing a nonfunctional Zlr~ada6 gene is to insert another gene, such as a selectable marker gene, within a nucleic acid molecule that encodes marine Zlmda6. Standard methods for producing these so-called "knockout mice" are known to those skilled in the art [see, 3 5 for example, Jacob, "Expression and Knockout of Interferons in Transgenic Mice," in Overexpression and Knockout of Cytokines ira Trarasge>zic Mice, Jacob (ed.), pages 111-124 (Academic Press, Ltd. 1994), and Wu et al., "New Strategies for Gene Knockout,"
in Methods in Gene Biotechnology, pages 339-365 (CRC Press 1997)].
I5. EDUCATIONAL KIT UTILITY OF ZLMDA6 POLYPEPTIDES, POLYNUCLEOTIDES AND ANTIBODIES.
Polynucleotides and polypeptides of the present invention will additionally find use as educational tools as a laboratory practicum kits for courses related to genetics and molecular biology, protein chemistry and antibody production and analysis.
Due to its unique polynucleotide and polypeptide sequence molecules of Zlmda6 can be used as standards or as "unknowns" for testing purposes. For example, Zlmda6 polynucleotides can be used as an aid, such as, for example, to teach a student how to prepare expression constructs for bacterial, viral, andlor mammalian expression, including fusion constructs, wherein Zlmda6 is the gene to be expressed; for determining the restriction endonuclease cleavage sites of the polynucleotides;
determining mRNA and DNA localization of Zlmda6 polynucleotides in tissues (i.e., by Northern and Southern blotting as well as polymerase chain reaction); and for identifying related polynucleotides and polypeptides by nucleic acid hybridization.
Zlmda6 polypeptides can be used educationally as an aid to teach preparation of antibodies; identifying proteins by Western blotting; protein purification;
2 0 determining the weight of expressed Zlmda6 polypeptides as a ratio to total protein expressed; identifying peptide cleavage sites; coupling amino and carboxyl terminal tags; amino acid sequence analysis, as well as, but not limited to monitoring biological activities of both the native and tagged protein (i.e., receptor binding, signal transduction, proliferation, and differentiation) in vitro and i.zz vivo.
Zlmda6 2 5 polypeptides can also be used to teach analytical skills such as mass spectrometry, circular dichroism to determine conformation, especially of the four alpha helices, x-ray crystallography to determine the three-dimensional structure in atomic detail, nuclear magnetic resonance spectroscopy to reveal the structure of proteins in solution. For example, a kit containing the Zlmda6 can be given to the student to analyze.
Since the 3 0 amino acid sequence would be known by the professor, the protein can be given to the student as a test to determine the skills or develop the skills of the student, the teacher would then know whether or not the student has correctly analyzed the polypeptide.
Since every polypeptide is unique, the educational utility of Zlmda6 would be unique unto itself.
The antibodies that bind specifically to Zlmda6 can be used as a teaching aid to instruct students how to prepare affinity chromatography columns to purify Zlmda6, cloning and sequencing the polynucleotide that encodes an antibody and thus as a practicum for teaching a student how to design humanized antibodies. The Zlmda6 gene, polypeptide or antibody would then be packaged by reagent companies and sold to universities so that the students gain skill in art of molecular biology.
Because each gene and protein is unique, each gene and protein creates unique challenges and learning experiences for students in a lab practicum. Such educational kits, containing the Zlmda6 gene, polypeptide or antibody, are considered within the scope of the present invention.
From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
SEQUENCE LISTING
<110> ZymoGenetics, Inc.
<120> Human cyclic nucleotide binding-protein <130> 00-97PC
<150> 60/241,513 <151> 2000-10-18 <160> 41 <170> FastSEQ for Windows Version 3.0 <210>1 <211>1792 <212>DNA
<213>Homo Sapiens <220>
<221> CDS
<222> (1)...(1731) <400> 1 atg agg aga cat atg gta act tat gcc tgg cag ctc ctg aag aag gaa 48 Met Arg Arg His Met Ual Thr Tyr Ala Trp Gln Leu Leu Lys Lys Glu ctg gga ctg tac cag ctc gcc atg gat atc atc ata atg atc cga gtg 96 Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Val tgt aaa atg ttc cgc caa ggc ctc agg gga ttc cgg gaa tat caa atc 144 Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile att gag act get cac tgg aag cac cct atc ttc tcc ttc tgg gat aaa 192 Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys aag atg caa agc cga gtc aca ttt gat acc atg gac ttc att gca gag 240 Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu gag ggt cac ttt cct cca aag gcc att cag atc atg cag aag aag cct 288 Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro tcc tgg aga'aca gag gat gag atc cag gcc gtc tgt aac atc ttg cag 336 Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln gtt ctg gat agc tat cgg aac tac gca gag ccc ctg cag ctg ctc ctg 384 Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu .
gcc aaa gtc atg cgc ttt gaa cgg ttt ggt cgc agg cgt gtg atc atc 432 Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile aag aag ggg cag aag ggc aac agc ttt tat ttc atc tac ctg ggc aca 480 Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr gtt gca ata acc aag gac gag gat ggc agc agt gcc ttc cta gat ccc 528 Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro cac ccg aaa ttg ctg cac aag ggt agc tgt ttt ggg gaa atg gac gtt 576 His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual ctg cat get tca gtg agg agg tcc acc atc gtc tgt atg gaa gaa acg 624 Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr gag ttc ctg gtt gtt gac cgg gag gac ttc ttt get aat aag ctg gac 672 Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp cag gaa gtt cag aag gat get cag tat cgg ttt gaa ttt ttt agg aag 720 Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys atg gag ctg ttt gca tca tgg tct gat gag aag ctc tgg cag ctg gta 768 Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Val gcc atg gcg aag ata gag agg ttc tcg tat ggg cag ctg atc tca aaa 816 Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys gat ttt gga gag tca ccc ttc atc atg ttt atc agc aag ggc agc tgt 864 Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys gaa gtc ctg cgg ctg ttg gac ctt ggg gcc tcc cct tcc tac cgt aga 912 Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg tgg atc tgg cag cac ctg gag ctg ata gat ggc aga cct ctg aag acc 960 Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr cac ctg agt gaa tac tct cct atg gaa aga ttt aag gaa ttc cag atc 1008 His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile aaa tca tat cct ctg caa gac ttt agc tcc ttg aaa ctt cca cat ctc 1056 Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu aaa aaa gcc tgg ggg cta cag ggg aca agc ttc agc agg aag atc aga 1104 Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg acc tca gga gac act ctc ccc aag atg ctg ggc ccg aag atc caa tcc 1152 Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser agg cct get cag tcg atc aaa tgt gcc atg atc aat atc aag cct ggt 1200 Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Tle Asn Ile Lys Pro Gly gag ctc ccc aag gag get gca gtg ggg gcc tac gtg aag gtg cac act 1248 Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr 405 ~ 410 415 gtg gag cag gga gaa att ttg ggt ctt cac cag gcc ttc ctt cca gag 1296 Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu ggt gaa tgc gac aca cga ccc ttg atc ctg atg agc ctg gga aat gag 1344 Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu ttg ata cgg ata agg aag gaa ata ttt tat gaa ctg att gac aat gat 1392 Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp gac gag atg ata aaa aag ttg tta aag ctc aat att gca ttc ccc agt 1440 Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser gat gaa gat atg tgc cag aag ttc ctc cag cag aac agc tgg aat atc 1488 Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile ttt cgg aag gac ctg ttg cag ctg ctc gtg gag cct tgc caa agt caa 1536 Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln ctg ttc act cca aac cgg ccc aag aag aga gag atc tac aac cct aag 1584 Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys tct gtg gtc ctg gat ttg tgc agc atc aac aag acg act aaa cct cgt 1632 Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg tat cct att ttt atg gca ccc cag aaa tac ctc ccc cca ttg agg att 1680 Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile gtc caa gcc atc aaa gca cct cgg tac aaa atc cga gaa ctc ttg get 1728 Ual Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu Leu Leu Ala tag tgtaagagca caggggtcct tatttaggac aaataaagga tggtggattg 1781 ggaaaaaaaa a 1792 <210>2 <211>576 <212>PRT
<213>Homo Sapiens <400> 2 Met Arg Arg His Met Ual Thr Tyr Ala Trp Gln Leu Leu Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Tle Ile Met Ile Arg Ual Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met A1a Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln Nis Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile Ual Gln Ala Tle Lys Ala Pro Arg Tyr Lys Ile Arg Glu Leu Leu Ala <210> 3 <211> 32 .
<212> PRT
<213> Homo sapiens <400> 3 Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp.Ile Ile Ile Met Ile Arg Val Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu <210>4 <211>33 <212>PRT
<213>Homo Sapiens <400> 4 Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg <210>5 <211>25 <212>PRT
<213>Homo sapiens <400> 5 Asp Lys Lys Met Gln Ser Arg Val Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys <210>6 <211>24 <212>PRT
<213>Homo sapiens <400> 6 Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu <210>7 <211>40 <212>PRT
<213>Homo Sapiens <400> 7 Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn <210>8 <211>33 <212>PRT
<213>Homo sapiens <400> 8 Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln <210>9 <211>37 <212>PRT
<213>Homo Sapiens <400> 9 Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn <210>10 <211>34 <212>PRT
<213>Homo sapiens <400> 10 Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp <210>11 <211>53 <212>PRT
<213>Homo Sapiens <400> 11 LysAsp GluAspGly Ser Ser PheLeuAsp Pro Pro Lys Ala His Leu LeuHis LysGlySer Cys Phe GluMetAsp Ual His Ala Gly Leu Ser UalArg ArgSerThr Ile Ual MetGluGlu Thr Phe Leu Cys Glu Ual UalAsp ArgGluAsp 50 ., <210>12 <211>38 <212>PRT
<213>Homo Sapiens <400> 12 Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys <210>13 <211>31 <212>PRT
<213>Homo Sapiens <400> 13 Asp G1u Lys Leu Trp Gln Leu Val Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe <210>14 <211>41 <212>PRT
<213>Homo sapiens <400> 14 AspGlu LeuTrp Gln Leu Ala Met Ala Lys Ile Glu Lys Val Arg Phe SerTyr GlnLeu Ile Ser Asp Phe Gly Glu Ser Pro Gly Lys Phe Ile MetPhe SerLys Gly Ser Glu Ile Cys <210>15 <211>33 <212>PRT
<213>Homo sapiens <400> 15 Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>16 <211>35 <212>PRT
<213>Homo sapiens <400> 16 Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu <210>17 <211>63 <212>PRT
<213>Homo sapiens <400> 17 Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys <210>18 <211>40 <212>PRT
<213>Homo sapiens <400> 18 Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu l 5 10 15 Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys <210>19 <211>24 <212>PRT
<213>Homo sapiens <400> 19 Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln i <210>20 <211>41 <212>PRT
<213>Homo sapiens <400> 20 ArgLys ArgThr Ser Gly Thr Leu Pro Lys Met Leu Ile Asp Gly Pro LysIle SerArg Pro Ala Ser Ile Lys Cys Ala Met Gln Gln Ile Asn IleLys GlyGlu Leu Pro Glu Pro Lys <210>21 <211>67 <212>PRT
<213>Homo sapiens <400> 21 Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Val Gly Ala Tyr Val Lys Val His Thr Val Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu <210>22 <211>54 <212>PRT
<213>Homo sapiens <400> 22 Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp <210>23 <211>51 <212>PRT
<213>Nomo sapiens <400> 23 Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>24 <211>53 <212>PRT
<213>Homo Sapiens <400> 24 Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg <210>25 <211>45 <212>PRT
<213>Homo Sapiens <400> 25 Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg <210>26 <211>36 <212>PRT
<213>Homo Sapiens <400> 26 Asn Lys.Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys 1 5 10 1.5 Tyr Leu Pro Pro Leu Arg Ile Val Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu <210>27 <211>112 <212>PRT
<213>Homo Sapiens <400> 27 ' Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Val Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu 20 25 ~ 30 Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Val Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Val Cys Asn Ile Leu Gln Val Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln <210> 28 <211> 116 <212> PRT
<213> Homo sapiens <400> 28 PhePro ProLysAla IleGlnIle MetGlnLys LysProSer TrpArg ThrGlu AspGluIle GlnAlaUal CysAsnIle LeuGlnUal LeuAsp SerTyr ArgAsnTyr AlaGluPro LeuGlnLeu LeuLeuAla LysUal MetArg PheGluArg PheGlyArg ArgArgUal IleIleLys LysGly GlnLys GlyAsnSer ,PheTyrPhe IleTyrLeu GlyThrUal AlaIle ThrLys AspGluAsp GlySerSer AlaPheLeu AspProHis ProLys LeuLeu HisLysGly SerCysPhe GlyGluMet AspUalLeu HisAla SerUal ArgArg <210> 29 <211> 142 <212> PRT
<213> Homo sapiens <400> 29 GluArg PheGlyArg ArgArgUal IleIleLys LysGlyGln LysGly AsnSer PheTyrPhe IleTyrLeu GlyThrUal AlaIleThr LysAsp GluAsp GlySerSer AlaPheLeu AspProHis ProLysLeu LeuHis LysGly SerCysPhe GlyGluMet AspUalLeu HisAlaSer UalArg ArgSer ThrIleUal CysMetGlu GluThrGlu PheLeuUal UalAsp ArgGlu AspPhePhe AlaAsnLys LeuAspGln GluUalGln LysAsp AlaGln TyrArgPhe GluPhePhe ArgLysMet GluLeuPhe AlaSer TrpSer AspGluLys LeuTrpGln LeuUalAla MetAlaLys IleGlu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu <210>30 <211>130 <212>PRT
<213>Homo Sapiens <400> 30 Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Val Leu His Ala Ser Val Arg Arg Ser Thr Ile Val Cys Met Glu Glu Thr Glu Phe Leu Val Val Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Val Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu LyS Leu Trp Gln Leu Val Ala Met Ala Lys Ile Glu Arg Phe, Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>31 <211>117 <212>PRT
<213>Homo Sapiens <400> 31 Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln <210>32 <211>92 <212>PRT
<213>Homo Sapiens <400> 32 Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met 50 55 ' 60 Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu <210>33 <211>164 <212>PRT
<213>Homo Sapiens <400> 33 Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Val Gly Ala Tyr Val Lys Val His Thr Val Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>34 <211>144 <212>PRT
<213>Homo sapiens <400> 34 Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu 1 5 10 l5 Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Tle Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile Val Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu <210> 35 <211> 258 <212> PRT
<213> Homo sapiens <400> 35 Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Ual Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys <210>36 <211>243 <212>PRT
<213>Homo sapiens <400> 36 Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr .Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gin Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys <210>37 <211>244 <212>PRT
<213>Homo sapiens <400> 37 Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys~ Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Tle Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>38 <211>147 <212>PRT
<213>Homo Sapiens <400> 38 Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg <210>39 <211>144 <212>PRT
<213>Homo Sapiens <400> 39 LeuPro GluGlyGlu CysAspThr ArgProLeu IleLeuMet SerLeu GlyAsn GluLeuIle ArgIleArg LysGluIle PheTyrGlu LeuIle AspAsn AspAspGlu MetIleLys LysLeuLeu LysLeuAsn IleAla PhePro SerAspGlu AspMetCys GlnLysPhe LeuGlnGln AsnSer TrpAsn IlePheArg LysAspLeu LeuGlnLeu LeuUalGlu ProCys GlnSer GlnLeuPhe ThrProAsn ArgProLys LysArgGlu IleTyr AsnPro LysSerUal UalLeuAsp LeuCysSer IleAsnLys ThrThr LysPro ArgTyrPro IlePheMet AlaProGln LysTyrLeu ProPro 115 120 l25 LeuArg IleUalGln AlaIleLys AlaProArg TyrLysIle ArgGlu <210>40 <211>204 <212>PRT
<213>Homo sapiens <400> 40 Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>41 <211>16 <212>DNA
<213>Homo Sapiens <400> 41 ggsggsgggg sggggs 16
Serine (Ser) is encoded by AGC, AGT, TCA, TCC, TCG or TCT;
Threonine (Thr) is encoded by ACA, ACC, ACG or ACT;
Valine (Val) is encoded by GTA, GTC, GTG or GTT;
Tryptophan (Trp) is encoded by TGG; and Tyrosine (Tyr) is encoded by TAC or TAT.
It is to be recognized that according to the present invention, when a polynucleotide is claimed as described herein, it is understood that what is claimed are both the sense strand, the anti-sense strand, and the DNA as double-stranded having both the sense and anti-sense strand annealed together by their respective hydrogen bonds. Also claimed is the messenger RNA (mRNA) that encodes the polypeptides of the president invention, and which mRNA is encoded by the cDNA described herein.
Messenger RNA (mRNA) will encode a polypeptide using the same codons as those defined herein, with the exception that each thymine nucleotide (T) is replaced by a uracil nucleotide (U).
Nucleic acid molecules encoding a human Zlmda6gene can be obtained by screening a human cDNA or genomic library using polynucleotide probes based upon SEQ ID NO: 1. These techniques are standard and well established.
2 0 As an illustration, a nucleic acid molecule that encodes a human Zlmda6gene can be isolated from a human cDNA library. In this case, the first step would be to prepare the cDNA library by isolating RNA mammary epithelial tissue. In general, RNA isolation techniques must provide a method for breaking cells, a means of inhibiting RNase-directed degradation of RNA, and a method of separating RNA
from 2 5 DNA, protein, and polysaccharide contaminants. For example, total RNA can be isolated by freezing tissue in liquid nitrogen, grinding the frozen tissue with a mortar and pestle to lyse the cells, extracting the ground tissue with a solution of phenol/chloroform to remove proteins, and separating RNA from the remaining impurities by selective precipitation with lithium chloride (see, for example, Ausubel et al. (eds.), Short Protocols in 3 0 Molecular Biology, 3'd Editiofz, pages 4-1 to 4-6 (John Wiley & Sons 1995) ["Ausubel (1995)"]; Wu et al., Methods in Gene Biotechnology, pages 33-41 (CRC Press, Inc. 1997) ["Wu (1997)"]).
Alternatively, total RNA can be isolated from mammary epithelial tissue by extracting ground tissue with guanidinium isothiocyanate, extracting with organic solvents, and separating RNA from contaminants using differential centrifugation (see, for example, Chirgwin et al., Biochemistry 18:52 (1979); Ausubel (1995) at pages 4-1 to 4-6; Wu (1997) at pages 33-41).
In order to construct a cDNA library, poly(A)+ RNA must be isolated from a total RNA preparation. Poly(A)+ RNA can be isolated from total RNA using the standard technique of oligo(dT)-cellulose chromatography (see, for example, Aviv and Leder, Proc. Nat'l Acad. Sci. USA 69:1408 (1972); Ausubel (1995) at pages 4-11 to 4-12).
Double-stranded cDNA molecules are synthesized from poly(A)+ RNA
using techniques well-known to those in the art. (see, for example, Wu (1997) at pages 41-46). Moreover, commercially available kits can be used to synthesize double-stranded cDNA molecules. For example, such kits are available from Life Technologies, Inc. (Gaithersburg, MD), CLONTECH Laboratories, Inc. (Palo Alto, CA), Promega Corporation (Madison, Wn and STRATAGENE (La Jolla, CA).
Various cloning vectors are appropriate for the construction of a cDNA
library. For example, a cDNA library can be prepared in a vector derived from bacteriophage, such as a ~,gtl0 vector. See, for example, Huynh et al., "Constructing and Screening cDNA Libraries in ~,gtl0 and ~,gtll," in DNA Cloyzihg: A
Practical Approach Vol. I, Glover (ed.), page 49 (IRL Press, 1985); Wu (1997) at pages 47-52.
2 0 Alternatively, double-stranded cDNA molecules can be inserted into a plasmid vector, such as a PBLUESCR1PT vector (STRATAGENE; La Jolla, CA), a LAMDAGEM-4 (Promega Corp.) or other commercially available vectors. Suitable cloning vectors also can be obtained from the American Type Culture Collection (Manassas, VA).
2 5 To amplify the cloned cDNA molecules, the cDNA library is inserted into a prokaryotic host, using standard techniques. For example, a cDNA library can be introduced into competent E. coli DH5 cells, which can be obtained, for example, from Life Technologies, Inc. (Gaithersburg, MD).
A human genomic library can be prepared by means well known in the art 3 0 (see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327).
Genomic DNA can be isolated by lysing tissue with the detergent Sarkosyl, digesting the lysate with proteinase K, clearing insoluble debris from the lysate by centrifugation, precipitating nucleic acid from the lysate using isopropanol, and purifying resuspended DNA on a cesium chloride density gradient.
3 5 DNA fragments that are suitable for the production of a genomic library can be obtained by the random shearing of genomic DNA or by the partial digestion of genomic DNA with restriction endonucleases. Genomic DNA fragments can be inserted into a vector, such as a bacteriophage or cosmid vector, in accordance with conventional techniques, such as the use of restriction enzyme digestion to provide appropriate termini, the use of alkaline phosphatase treatment to avoid undesirable joining of DNA
molecules, and ligation with appropriate ligases. Techniques for such manipulation are well known in the art [see, for example, Ausubel (1995) at pages 5-1 to 5-6; Wu (1997) at pages 307-327].
Nucleic acid molecules that encode a human Zlrnda6 gene can also be obtained using the polymerase chain reaction (PCR) with oligonucleotide primers having nucleotide sequences that are based upon the nucleotide sequences of the human Zlmda6 gene, as described herein. General methods for screening libraries with PCR
are provided by, for example, Yu et al., "Use of the Polymerase Chain Reaction to Screen Phage Libraries," in Methods ih Molecular Biology, Vol. 1 S: PCR
Protocols:
Current Methods and Applications, White (ed.), pages 211-215 (Humana Press, Inc.
1993). Moreover, techniques for using PCR to isolate related genes are described by, for example, Preston, "Use of Degenerate Oligonucleotide Primers and the Polymerase Chain Reaction to Clone Gene Family Members," in Methods in Molecular Biology, Vol. I5: PCR Protocols: Curreyat Methods afZd Applications, White (ed.), pages 337 (Humana Press, Inc. 1993).
Alternatively, human genomic libraries can be obtained from commercial 2 0 sources such as Research Genetics (Huntsville, AL) and the American Type Culture Collection (Manassas, VA).
A libra~.y containing cDNA or genomic clones can be screened with one or more polynucleotide probes based upon SEQ m NO: 1, using standard methods [see, for example, Ausubel (1995) at pages 6-1 to 6-11].
2 5 Anti-Zlmda6 antibodies, produced as described below, can also be used to isolate DNA sequences that encode human ZlnZda6genes from cDNA libraries.
For example, the antibodies can be used to screen ~,gtl l expression libraries, or the antibodies can be used for immunoscreening following hybrid selection and translation (see, for example, Ausubel (1995) at pages 6-12 to 6-16; Margolis et al., "Screening ~, 3 0 expression libraries with antibody and protein probes," in DNA Cloning 2:
Expression Systems, 2nd Editio~a, Glover et al. (eds.), pages 1-14 (Oxford University Press 1995)).
As an alternative, a Zlmda6gene can be obtained by synthesizing nucleic acid molecules using mutually priming long oligonucleotides and the nucleotide sequences described herein (see, for example, Ausubel (1995) at pages 8-8 to 8-9).
3 5 Established techniques using the polymerase chain reaction provide the ability to synthesize DNA molecules at least two kilobases in length (Adang et al., Plant Molec.
Biol. 21:1131 (1993), Bambot et al., PCR Methods arid Applications 2:266 (1993), Dillon et al., "Use of the Polymerase Chain Reaction for the Rapid Construction of Synthetic Genes," in Methods in Molecular Biology, Vol. I5: PCR Protocols:
Current Methods and Applications, White (ed.), pages 263-26~, (Humana Press, Inc.
1993), and Holowachuk et al., PCR Methods Appl. 4:299 (1995)).
The nucleic acid molecules of the present invention can also be synthesized with "gene machines" using protocols such as the phosphoramidite method.
If chemically synthesized double stranded DNA is required for an application such as the synthesis of a gene or a gene fragment, then each complementary strand is made separately. The production of short genes (60 to 80 base pairs) is technically straightforward and can be accomplished by synthesizing the complementary strands and then annealing them. For the production of longer genes (>300 base pairs), however, special strategies may be required, because the coupling efficiency of each cycle during chemical DNA synthesis is seldom 100%. To overcome this problem, synthetic genes (double-stranded) are assembled in modular form from single-stranded fragments that are from 20 to 100 nucleotides in length.
One method for building a synthetic gene requires the initial production of a set of overlapping, complementary oligonucleotides, each of which is between 20 to 60 nucleotides long. The sequences of the strands are planned so that, after annealing, the two end segments of the gene are aligned to give blunt ends.
Each 2 0 internal section of the gene has complementary 3' and 5' terminal extensions that are designed to base pair precisely with an adjacent section. Thus, after the gene is assembled, the only remaining requirement to complete the process is to seal the nicks along the backbones of the two strands with T4 DNA ligase. In addition to the protein coding sequence, synthetic genes can be designed with terminal sequences that facilitate 2 5 insertion into a restriction endonuclease sites of a cloning vector and other sequences should also be added that contain signals for the proper initiation and termination of transcription and translation.
An alternative way to prepare a full-size gene is to synthesize a specified set of overlapping oligonucleotides (40 to 100 nucleotides). After the 3' and 5' 3 0 extensions (6 to 10 nucleotides) are annealed, large gaps still remain, but the base-paired regions are both long enough and stable enough to hold the structure together.
The duplex is completed and the gaps filled by enzymatic DNA synthesis with E.
coli DNA polymerase I. This enzyme uses the 3'-hydroxyl groups as replication initiation points and the single-stranded regions as templates. After the enzymatic synthesis is 3 5 completed, the nicks are sealed with T4 DNA ligase. For larger genes, the complete gene sequence is usually assembled from double-stranded fragments that are each put together by joining four to six overlapping oligonucleotides (20 to 60 base pairs each).
If there is a sufficient amount of the double-stranded fragments after each synthesis and annealing step, they are simply joined to one another. Otherwise, each fragment is cloned into a vector to amplify the amount of DNA available. In both cases, the double-stranded constructs are sequentially linked to one another to form the entire gene 5 sequence. Each double-stranded fragment and the complete sequence should be characterized by DNA sequence analysis to verify that the chemically synthesized gene has the correct nucleotide sequence. For reviews on polynucleotide synthesis, see, for example, Glick and Pasternak, Molecular Bi.otechzzology, Prizzciples azzd Applicatiozzs of Reconzbihant DNA (ASM Press 1994), Itakura et al., Anhu. Rev. Biochezn.
53:323 10 (1984), and Climie et al., Proc. Nat'l Acad. Sci. USA 87:633 (1990).
The sequence of a Zlzzzda6cDNA or Zlznda6 genomic fragment can be determined using standard methods. Moreover, the identification of genomic fragments containing a Zlmda6 promoter or regulatory element can be achieved using well-established techniques, such as deletion analysis (see, generally, Ausubel (1995)).
15 Cloning of 5' flanking sequences also facilitates production of Zlmda6 proteins by "gene activation," following the methods disclosed in U.S. Patent No.
5,641,670. Briefly, expression of an endogenous Zlmda6gene in a cell is altered by introducing into the Zlznda6locus a DNA construct comprising at least a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site.
The 2 0 targeting sequence is a Zlmda6 5' non-coding sequence that permits homologous recombination of the construct with the endogenous Zlmda6 locus, whereby the sequences within the construct become operably linked with the endogenous Zlz~zda6 coding sequence. In this way, an endogenous Zlznda6promoter can be replaced or supplemented with other regulatory sequences to provide enhanced, tissue-specific, or 2 5 otherwise regulated expression.
4. Production of Zlmda6 Gefze Variants The present invention provides a variety of nucleic acid molecules, including DNA and RNA molecules that encode the Zlmda6 polypeptides disclosed herein. Those skilled in the art will readily recognize that, in view of the degeneracy of 3 0 the genetic code, considerable sequence variation is possible among these polynucleotide molecules. Table 1 sets forth the one-letter codes used within SEQ ID
NOs:3, 6, and 25 to denote degenerate nucleotide positions. "Resolutions" are the nucleotides denoted by a code letter. "Complement" indicates the code for the complementary nucleotide(s). For example, the code Y denotes either C or T, and its 3 5 complement R denotes A or G, A being complementary to T, and G being complementary to C.
Table 1 NucleotideResolutionComplement Resolution A A T T
C C G G
G G C C
T T A A
R A~G Y C~T
Y C~T R A~G
M ABC K G~T
K G!T M A~C
S CMG S C~G
W A~T W ACT
H A~C~T D A~G~T
B C~G~T V A~C~G
V A~C~G B C~G~T
D A~G~T H A~C~T
N A~C~G~T N A~C~G~T
The degenerate codons encompassing all possible codons for a given amino acid, are set forth in Table 2.
Table 2 One Letter Degenerate Amino AcidCode Codons Codon Cys C TGC TGT TGY
Ser S AGC AGT TCA TCC TCG TCT WSN
Thr T ACA ACC ACG ACT ACN
Pro P CCA CCC CCG CCT CCN
Ala A GCA GCC GCG GCT GCN
Gly G GGA GGC GGG GGT GGN
Asn N AAC AAT AAY
Asp D GAC GAT GAY
Glu E GAA GAG GAR
Gln Q CAA CAG CAR
His H CAC CAT CAY
Arg R AGA AGG CGA CGC CGG CGT MGN
Lys K AAA AAG AAR
Met M ATG ATG
Ile I ATA ATC ATT ATH
Leu L CTA CTC CTG CTT TTA TTG YTN
Val V GTA GTC GTG GTT GTN
Phe F TTC TTT TTY
Tyr Y TAC TAT TAY
Trp W TGG TGG
Ter . TAA TAG TGA TRR
Asn~Asp B RAY
Glu~Gln Z SAR
Any X NNN
One of ordinary skill in the art will appreciate that some ambiguity is introduced in determining a degenerate codon, representative of all possible codons encoding an amino acid. For example, the degenerate codon for serine (WSN) can, in some circumstances, encode arginine (AGR), and the degenerate codon for arginine (MGN) can, in some circumstances, encode serine (AGY). A similar relationship exists between codons encoding phenylalanine and leucine. Thus, some polynucleotides encompassed by the degenerate sequence may encode variant amino acid sequences, but one of ordinary skill in the art can easily identify such variant sequences by reference to the amino acid sequence of SEQ ID NO: 2. Variant sequences can be readily tested for functionality as described herein.
Different species can exhibit "preferential codon usage." In general, see, Grantham et al., Nuc. Acids Res. 8:1893 (1980), Haas et al. Curr. Biol. 6:315 (1996), Wain-Hobson et al., Geyae 13:355 (1981), Grosjean and Fiers, Gene 18:199 (1982), Holm, Nuc. Acids Res. 14:3075 (1986), lkemura, J. Mol. Biol. 158:573 (1982), Sharp and Matassi, Curr. Opin. Genet. Dev. 4:851 (1994), Kane, Curr. Opih.
Biotechhol.
6:494 (1995), and Makrides, Microbiol. Rev. 60:512 (1996). As used herein, the term "preferential codon usage" or "preferential codons" is a term of art referring to protein translation codons that are most frequently used in cells of a certain species, thus favoring one or a few representatives of the possible codons encoding each amino acid 2 0 (See Table 2). For example, the amino acid Threonine (Thr) may be encoded by ACA, ACC, ACG, or ACT, but in mammalian cells ACC is the most commonly used codon;
in other species, for example, insect cells, yeast, viruses or bacteria, different Thr codons may be preferential. Preferential codons for a particular species can be introduced into the polynucleotides of the present invention by a variety of methods 2 5 known in the art. Introduction of preferential codon sequences into recombinant DNA
can, for example, enhance production of the protein by making protein translation more efficient within a particular cell type or species.
The present invention further provides variant polypeptides and nucleic acid molecules that represent counterparts from other species (orthologs).
These 3 0 species include, but are not limited to mammalian, avian, amphibian, reptile, fish, insect and other vertebrate and invertebrate species. Of particular interest are Zlmda6 polypeptides from other mammalian species, including murine, porcine, ovine, bovine, canine, feline, equine, and other primate polypeptides. Orthologs of human Zlmda6 can be cloned using information and compositions provided by the present invention in 3 5 combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses Zlmda6~
as disclosed herein. Suitable sources of mRNA can be identified by probing northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line.
A Zlmda6-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human cDNA or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction with primers designed from the representative human Zlmda6 sequences disclosed herein. Within an additional method, the cDNA
library can be used to transform or transfect host cells, and expression of the cDNA
of interest can be detected with an antibody to Zlmda6 polypeptide. Similar techniques can also be applied to the isolation of genomic clones, and to the isolation of nucleic molecules that encode murine Zlmda6.
Those skilled in the art will recognize that the sequence disclosed in SEQ ~ NO: 1 represents a single allele of human Zlmda6, and that allelic variation and alternative splicing are expected to occur. Allelic variants of this sequence can be cloned by probing cDNA or genomic libraries from different individuals according to standard procedures. Allelic variants of the nucleotide sequence shown in SEQ
m NO: 1, including those containing silent mutations and those in which mutations result in amino acid sequence changes, are within the scope of the present invention, as are proteins which are allelic variants of SEQ m NO: 2. cDNA molecules generated from 2 0 alternatively spliced mRNAs, which retain the properties of the Zlmda6 polypeptide are included within the scope of the present invention, as are polypeptides encoded by such cDNAs and mRNAs. Allelic variants and splice variants of these sequences can be cloned by probing cDNA or genomic libraries from different individuals or tissues according to standard procedures known in the art.
2 5 Within preferred embodiments of the invention, isolated nucleic acid molecules that encode human Zlmda6 can hybridize to nucleic acid molecules having the nucleotide sequence of SEQ m NO: 1, or a sequence complementary thereto, under "stringent conditions." In general, stringent conditions are selected to be about 5°C
lower than the thermal melting point (Tm) for the specific sequence at a defined ionic 3 0 strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
As an illustration, a nucleic acid molecule encoding a variant Zlmda6 polypeptide can be hybridized with a nucleic acid molecule having the nucleotide sequence of SEQ m NO: 1 (or its complement) at 42°C overnight in a solution 35 comprising 50% formamide, 5xSSC (lxSSC: 0.15 M sodium chloride and 15 mM
sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution (100x Denhardt's solution: 2% (w/v) Ficoll 400, 2% (w/v) polyvinylpyrrolidone, and 2%
(w/v) bovine serum albumin), 10% dextran sulfate, and 20 ~,g/ml denatured, sheared salmon sperm DNA. One of skill in the art can devise variations of these hybridization conditions. For example, the hybridization mixture can be incubated at a higher temperature, such as about 65°C, in a solution that does not contain formamide.
5 Moreover, premixed hybridization solutions are available (e.g., EXPRESSHYB
Hybridization Solution from CLONTECH Laboratories, Inc.), and hybridization can be performed according to the manufacturer's instructions.
Following hybridization, the nucleic acid molecules can be washed to remove non-hybridized nucleic acid molecules under stringent conditions, or under 10 highly stringent conditions. Typical stringent washing conditions include washing in a solution of O.Sx - 2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 55 -65°C. That is, nucleic acid molecules encoding a variant Zlmda6s polypeptide hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO:1 (or its complement) under stringent washiiag conditions, in which the wash stringency is 15 equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 - 65°C, including 0.5x SSC with 0.1% SDS at 55°C, or 2xSSC with 0.1% SDS at 65°C. One of skill in the art can readily devise equivalent conditions, for example, by substituting SSPE for SSC in the wash solution.
Typical highly stringent washing conditions include washing in a 2 0 solution of 0.1x - 0.2x SSC with 0.1% sodium dodecyl sulfate (SDS) at 50 -65°C. In other words, nucleic acid molecules encoding a variant Zlmda6 polypeptide hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO:1 (or its complement) under highly stringent washing conditions, in which the wash stringency is equivalent to O.lx - 0.2x SSC with 0.1% SDS at 50 - 65°C, including O.lx SSC with 25 0.1% SDS at 50°C, or 0.2xSSC with 0.1% SDS at 65°C.
The present invention also provides isolated Zlmda6 polypeptides that have a substantially similar sequence identity to the polypeptides of SEQ m NO: 2, or its orthologs. The term "substantially similar sequence identity" is used herein to denote polypeptides having at least at least 90%, at least 95% or greater sequence 3 0 identity to the sequences shown in SEQ m NO: 2, or its orthologs.
The present invention also contemplates Zlmda6 variant nucleic acid molecules that can be identified using two criteria: a determination of the similarity between the encoded polypeptide with the amino acid sequence of SEQ ~ NO: 2, and a hybridization assay, as described above. Such Zlmda6 variants include nucleic acid molecules (1) that hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ m NO: 1 (or its complement) under stringent washing conditions, in which the wash stringency is equivalent to 0.5x - 2x SSC with 0.1% SDS at 55 -65°C, and (2) that encode a polypeptide having at least 70%, at least 80%, at least 90%, at least 95% or greater than 95% sequence identity to the amino acid sequence of SEQ m NO: 2. Alternatively, Zlmda6 variants can be characterized as nucleic acid molecules (1) that hybridize with a nucleic acid molecule having the nucleotide sequence of SEQ
ID NO: 1 (or its complement) under highly stringent washing conditions, in which the wash stringency is equivalent to O.lx - 0.2x SSC with 0.1% SDS at 50 -65°C, and (2) that encode a polypeptide having at least 95% or greater than 95% sequence identity to the amino acid sequence of SEQ m NO: 2.
The present invention also contemplates human Zlmda6 variant nucleic acid molecules identified by at least one of hybridization analysis and sequence identity determination, with reference to SEQ ID NOs: 1 and 2.
Percent sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48:603 (1986), and Henikoff and Henikoff, Proc. Natl. Acad. Sci. ZISA 89:10915 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of l, and the "BLOSUM 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 3 (amino acids are indicated by the standard one-letter codes). The percent identity is then calculated as: ([Total number of identical matches]l [length of the longer sequence plus the number of gaps introduced into the 2 0 longer sequence in order to align the two sequences])(100).
w-E-~ ,--, N
M
' V1tn N N
O
P-'d. ,~ M N
N
' d' wl~ ,~ M N
~ ' ~ ~
' ~ d- N N M ,-i ~n O N ' ,~ ,-i '-i ' ' ,-, ,-, M
' N
~' M ' O ' N
d- N N O M N ~
, ' r' ,-' N ~ ~
,~ , O M N ,-i ' d. N M ~ M
N
~
N N M
(~0o M r; ~ N '~ N
M ,~ ' vp N .d. d- N , M N O N
w ~ N O M M ,~ N M ,~ O ,-' O N
' M ~ O ,-, ' i N N O ~,,~ N ,~ N
U ' r N
~ M d- M M ~ ~ M N .--i i N M ~ ,~
i ~
\O M O N ~ ~ M d' ~ M M ~ O ,_., ' M
~ M
N ~
~O ' N
M O O O ~ M M O M
M N ,~ O
~n O N cn ~ O N O M N N ;' cn m N
N ,~ ,-, M
~ ' -. ' ' , '" ' cn N N p ~ ,-i, O ( ~1 ~ , ~, ~-~ ~ N
, N ~ .-' O O
~xzr~Uawc~x~a~~wa~~H ~~~
M
N
H
tn o Lf7 0 --' ._..' rW
Those skilled in the art appreciate that there are many established algorithms available to align two amino acid sequences. The "FASTA" similarity search algorithm of Pearson and Lipman is a suitable protein alignment method for examining the level of identity shared by an amino acid sequence disclosed herein and the amino acid sequence of a putative Zlmda6 variant. The FASTA algorithm is described by Pearson and Lipman, Proc. Nat'l Acad. Sci. LISA 85:2444 (1988), and by Pearson, Meth. Enzymol. 183:63 (1990). Briefly, FASTA first characterizes sequence similarity by identifying regions shared by the query sequence (e.g., SEQ ID
N0:2) and a test sequence that have either the highest density of identities (if the letup variable is 1) or pairs of identities (if letup=2), without considering conservative amino acid substitutions, insertions, or deletions. The ten regions with the highest density of identities are then re-scored by comparing the similarity of all paired amino acids using an amino acid substitution matrix, and the ends of the regions are "trimmed"
to include only those residues that contribute to the highest score. If there are several regions with scores greater than the "cutoff" value (calculated by a predetermined formula based upon the length of the sequence and the letup value), then the trimmed initial regions are examined to determine whether the regions can be joined to form an approximate alignment with gaps. Finally, the highest scoring regions of the two amino acid sequences are aligned using a modification of the Needleman-Wunsch-Sellers 2 0 algorithm (Needleman and Wunsch, J. Mol. Biol. 48:444 ( 1970); Sellers, SIAM J. Appl.
Math. 26:787 (1974)), which allows for amino acid insertions and deletions.
lllustrative parameters for FASTA analysis are: letup=1, gap opening penalty=10, gap extension penalty=1, and substitution matrix=BLOSUM62. These parameters can be introduced into a FASTA program by modifying the scoring matrix file ("SMATRIX"), as explained in Appendix 2 of Pearson, Metla. Ejazymol. 183:63 (1990).
FASTA can also be used to determine the sequence identity of nucleic acid molecules using a ratio as disclosed above. For nucleotide sequence comparisons, the letup value can range between one to six, preferably from three to six, most preferably three, with other parameters set as described above.
3 0 The present invention includes nucleic acid molecules that encode a polypeptide having a conservative amino acid change, compared with the amino acid sequence of SEQ ID NO: 2. That is, variants can be obtained that contain one or more amino acid substitutions of SEQ ID NO: 2, in which an alkyl amino acid is substituted for an alkyl amino acid in an Zlmda6 amino acid sequence, an aromatic amino acid is 3 5 substituted for an aromatic amino acid in an Zlmda6 amino acid sequence, a sulfur-containing amino acid is substituted for a sulfur-containing amino acid in an Zlmda6 amino acid sequence, a hydroxy-containing amino acid is substituted for a hydroxy-containing amino acid in an Zlmda6 amino acid sequence, an acidic amino acid is substituted for an acidic amino acid in an Zlmda6 amino acid sequence, a basic amino acid is substituted for a basic amino acid in an Zlmda6 amino acid sequence, or a dibasic monocarboxylic amino acid is substituted for a dibasic monocarboxylic amino acid in an Zlmda6 amino acid sequence.
Among the common amino acids, for example, a "conservative amino acid substitution" is illustrated by a substitution among amino acids within each of the following groups: (1) glycine, alanine, valine, leucine, and isoleucine, (2) phenylalanine, tyrosine, and tryptophan, (3) serine and threonine, (4) aspartate and glutamate, (5) glutamine and asparagine, and (6) lysine, arginine and histidine.
The BLOSUM62 table is an amino acid substitution matrix derived from about 2,000 local multiple alignments of protein sequence segments, representing highly conserved regions of more than 500 groups of related proteins (Henikoff and Henikoff, Proc. Nat'l Acad. Sci. USA 89:10915 (1992)). Accordingly, the substitution frequencies can be used to define conservative amino acid substitutions that may be introduced into the amino acid sequences of the present invention.
Although it is possible to design amino acid substitutions based solely upon chemical properties (as discussed above), the language "conservative amino acid substitution"
preferably refers to a substitution represented by a BLOSUM62 value of greater than -1. For example, 2 0 an amino acid substitution is conservative if the substitution is characterized by a BLOSUM62 value of 0, l, 2, or 3. According to this system, preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 1 (e.g., l, 2 or 3), while more preferred conservative amino acid substitutions are characterized by a BLOSUM62 value of at least 2 (e.g., 2 or 3).
2 5 Conservative amino acid changes in an Zlnada6 gene can be introduced by substituting nucleotides for the nucleotides recited in SEQ ID NO: 1. Such "conservative amino acid" variants can be obtained, for example, by oligonucleotide-directed mutagenesis, linker-scanning mutagenesis, mutagenesis using the polymerase chain reaction, and the like (see Ausubel (1995) at pages 8-10 to 8-22; and McPherson 3 0 (ed.), Directed Mutageraesis: A Practical Approach (IRL Press 1991)). The ability of such variants to promote anti-viral or anti-proliferative activity can be determined using a standard method, such as the assay described herein. Alternatively, a variant Zlmda6 polypeptide can be identified by the ability to specifically bind anti-Zlmda6 antibodies.
The proteins of the present invention can also comprise non-naturally 3 5 occurring amino acid residues. Non-naturally occurring amino acids include, without limitation, traps-3-methylproline, 2,4-methanoproline, cis-4-hydroxyproline, traps-4-hydroxyproline, N methylglycine, allo-threonine, methylthreonine, hydroxyethylcysteine, hydroxyethylhomocysteine, nitroglutamine, homoglutamine, pipecolic acid, thiazolidine carboxylic acid, dehydroproline, 3- and 4-methylproline, 3,3-dimethylproline, tert-leucine, norvaline, 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, and 4-fluorophenylalanine. Several methods are known in the art for 5 incorporating non-naturally occurring amino acid residues into proteins. For example, an ifz vitro system can be employed wherein nonsense mutations are suppressed using chemically aminoacylated suppressor tRNAs. Methods for synthesizing amino acids and aminoacylating tRNA are known in the art. Transcription and translation of plasmids containing nonsense mutations is typically carried out in a cell-free system 10 comprising an E. coli S30 extract and commercially available enzymes and other reagents. Proteins are purified by chromatography. See, for example, Robertson et al., J. Ana. Chem. Soc. 113:2722 (1991), Ellman et al., Methods Enzytnol. 202:301 (1991), Chung et al., Science 259:806 (1993), and Chung et al., Proc. Nat'L Acad. Sci.
USA
90:10145 (1993).
15 In a second method, translation is carried out in Xenopus oocytes by microinjection of mutated mRNA and chemically aminoacylated suppressor tRNAs [Turcatti et al., J. Biol. Cherra. 271:19991 (1996)]. Within a third method, E. coli cells are cultured in the absence of a natural amino acid that is to be replaced (e.g., phenylalanine) and in the presence of the desired non-naturally occurring amino acids) 2 0 (e.g., 2-azaphenylalanine, 3-azaphenylalanine, 4-azaphenylalanine, or 4-fluorophenylalanine). The non-naturally occurring amino acid is incorporated into the protein in place of its natural counterpart. See, I~oide et al., Biochem.
33:7470 (1994).
Naturally occurring amino acid residues can be converted to non-naturally occurring species by in vitro chemical modification. Chemical modification can be combined 2 5 with site-directed mutagenesis to further expand the range of substitutions (Wynn and Richards, Protein Sci. 2:395 (1993)).
A limited number of non-conservative amino acids, amino acids that are not encoded by the genetic code, non-naturally occurring amino acids, and unnatural amino acids may be substituted for Zlmda6 amino acid residues.
3 0 Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, Science 244:1081 (1989), Bass et al., Proc. Nat'l Acad. Sci. USA 88:4498 (1991), Coombs and Corey, "Site-Directed Mutagenesis and Protein Engineering," in Proteif2s: Analysis and Desigfa, 3 5 Angeletti (ed.), pages 259-311 (Academic Press, Inc. 1998)). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for biological activity as disclosed below to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., J. Biol. Ch.em. 271:4699 (1996).
Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening, such as those disclosed by Reidhaar-Olson and Sauer [Science 241:53 (1988)] or Bowie and Sauer [Proc. Nat'l Acad. Sci. USA
86:2152 (1989)]. Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display [e.g., Lowman et al., BioclZefn. 30:10832 (1991), Ladner et al., U.S. Patent No. 5,223,409, Huse, international publication No. WO 92/06204, and region-directed mutagenesis (Derbyshire et al., Gehe 46:145 (1986), and Ner et al., DNA 7:127, (1988)].
Variants of the disclosed Zlmda6nucleotide and polypeptide sequences can also be generated through DNA shuffling as disclosed by Stemmer, Nature 370:389 (1994), Stemmer, Proc. Nat'l Acad. Sci. LISA 91:10747 (1994), and international publication No. WO 97/20078. Briefly, variant DNAs are generated by in vitro homologous recombination by random fragmentation of a parent DNA followed by reassembly using PCR, resulting in randomly introduced point mutations. This 2 0 technique can be modified by using a fannily of parent DNAs, such as allelic variants or DNAs from different species, to introduce additional variability into the process.
Selection or screening for the desired activity, followed by additional iterations of mutagenesis and assay provides for rapid "evolution" of sequences by selecting for desirable mutations while simultaneously selecting against detrimental changes.
2 5 Mutagenesis methods as disclosed herein can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides in host cells. Mutagenized DNA molecules that encode biologically active polypeptides, or polypeptides that bind with anti-Zlmda6 antibodies, can be recovered from the host cells and rapidly sequenced using modern equipment. These methods 3 0 allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.
The present invention also includes "functional fragments" of Zlmda6 polypeptides and nucleic acid molecules encoding such functional fragments.
Routine deletion analyses of nucleic acid molecules can be performed to obtain functional 3 5 fragments of a nucleic acid molecule that encodes a Zlmda6 polypeptide.
The present invention also provides polypeptide fragments or peptides comprising an epitope-bearing portion of a Zlmda6 polypeptide described herein. Such fragments or peptides may comprise an "immunogenic epitope," which is a part of a protein that elicits an antibody response when the entire protein is used as an immunogen. Immunogenic epitope-bearing peptides can be identified using standard methods (see, for example, Geysen et al., Proc. Nat'L Acad. Sci. USA 81:3998 ( 1983)).
In contrast, polypeptide fragments or peptides may comprise an "antigenic epitope," which is a region of a protein molecule to which an antibody can specifically bind. Certain epitopes consist of a linear or contiguous stretch of amino acids, and the antigenicity of such an epitope is not disrupted by denaturing agents. It is known in the art that relatively short synthetic peptides that can mimic epitopes of a protein can be used to stimulate the production of antibodies against the protein (see, for example, Sutcliffe et al., Science 219:660 (1983)). Accordingly, antigenic epitope-bearing peptides and polypeptides of the present invention are useful to raise antibodies that bind with the polypeptides described herein.
Antigenic epitope-bearing peptides and polypeptides preferably contain at least four to ten amino acids, at least ten to fifteen amino acids, or about 15 to about 30 amino acids of SEQ ID NO: 2. Such epitope-bearing peptides and polypeptides can be produced by fragmenting a Zlmda6 polypeptide, or by chemical peptide synthesis, as described herein. Moreover, epitopes can be selected by phage display of random peptide libraries (see, for example, Lane and Stephen, Curr. Opin. Immufzol.
5:268 2 0 (1993), and Cortese et al., Curr. Opih. Biotechuol. 7:616 (1996)).
Standard methods for identifying epitopes and producing antibodies from small peptides that comprise an epitope are described, for example, by Mole, "Epitope Mapping," in Methods in Molecular Biology, Vol. 10, Manson (ed.), pages 105-116 (The Humana Press, Inc.
1992), Price, "Production and Characterization of Synthetic Peptide-Derived 2 5 Antibodies," in Monoclonal Antibodies: Productio~a, Eragifaeerifzg, arid Clifzical Application, Ritter and Ladyman (eds.), pages 60-84 (Cambridge University Press 1995), and Coligan et al. (eds.), Current Protocols in ImmmZOlogy, pages 9.3.1 - 9.3.5 and pages 9.4.1 - 9.4.11 (John Wiley & Sons 1997). Examples of such epitope-bearing polypeptides are polypeptides comprised of SEQ ID NOs: 3-40.
3 0 For any Zlmda6 polypeptide, including variants and fusion proteins, one of ordinary skill in the art can readily generate a fully degenerate polynucleotide sequence encoding that variant using the information set forth in Tables 1 and 2 above.
Moreover, those of skill in the art can use standard software to devise Zlmda6 variants based upon the nucleotide and amino acid sequences described herein.
Accordingly, 3 5 the present invention includes a computer-readable medium encoded with a data structure that provides at least one of the following sequences: SEQ ID NOs: 1-40.
Suitable forms of computer-readable media include magnetic media and optically-readable media. Examples of magnetic media include a hard or fixed drive, a random access memory (RAM) chip, a floppy disk, digital linear tape (DLT), a disk cache, and a ZIP disk. Optically readable media are exemplified by compact discs (e.g., CD-read only memory (ROM), CD-rewritable (RW), and CD-recordable), and digital versatile/video discs (DVD) (e.g., DVD-ROM, DVD-RAM, and DVD+RW).
5. Production of Zlmda6 Fusion Proteins and Conjugates Fusion proteins of Zlmda6 can be used to express Zlmda6 in a recombinant host, and to isolate expressed Zlmda6. As described below, particular Zlmda6 fusion proteins also have uses in diagnosis and therapy.
One type of fusion protein comprises a peptide that guides a Zlmda6 polypeptide from a recombinant host cell. To direct a Zlmda6 polypeptide into the secretory pathway of a eukaryotic host cell, a secretory signal sequence (also known as a signal peptide, a leader sequence, prepro sequence or pre sequence) is provided in the Zlmda6 expression vector. While the secretory signal sequence may be derived from Zlmda6, a suitable signal sequence may also be derived from another secreted protein or synthesized de s2ovo. The secretory signal sequence is operably linked to a Zlmda6-encoding sequence such that the two sequences are joined in the correct reading frame and positioned to direct the newly synthesized polypeptide into the secretory pathway of 2 0 the host cell. Secretory signal sequences are commonly positioned 5' to the nucleotide sequence encoding the polypeptide of interest, although certain secretory signal sequences may be positioned elsewhere in the nucleotide sequence of interest (see, e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No.
5,143,830).
Although the secretory signal sequence of Zlmda6 or another protein produced by mammalian cells (e.g., tissue-type plasminogen activator signal sequence, as described, for example, in U.S. Patent No. 5,641,655) is useful for expression of Zlmda6 in recombinant mammalian hosts, a yeast signal sequence is preferred for expression in yeast cells. Examples of suitable yeast signal sequences are those derived from yeast mating phermone oc-factor (encoded by the MFal gene), invertase (encoded 3 0 by the SUC2 gene), or acid phosphatase (encoded by the PHOS gene). See, for example, Romanos et al., "Expression of Cloned Genes in Yeast," in DNA
Cloraiyig 2: A
Practical Approach, 2°d Edition, Glover and Hames (eds.), pages 123-167 (Oxford University Press 1995).
In bacterial cells, it is often desirable to express a heterologous protein 3 5 as a fusion protein to decrease toxicity, increase stability, and to enhance recovery of the expressed protein. For example, Zlmda6 can be expressed as a fusion protein comprising a glutathione S-transferase polypeptide. Glutathione S-transferease fusion proteins are typically soluble, and easily purifiable from E. coli lysates on immobilized glutathione columns. In similar approaches, a Zlmda6 fusion protein comprising a maltose binding protein polypeptide can be isolated with an amylose resin column, while a fusion protein comprising the C-terminal end of a truncated Protein A
gene can be purified using IgG-Sepharose. Established techniques for expressing a heterologous polypeptide as a fusion protein in a bacterial cell are described, for example, by Williams et al., "Expression of Foreign Proteins in E. coli Using Plasmid Vectors and Purification of Specific Polyclonal Antibodies," in DNA Clorzitzg 2: A
Practical Approach, 2"d Edition, Glover and Hames (Eds.), pages 15-58 (Oxford University Press 1995). In addition, commercially available expression systems are available.
For example, the PINPOINT Xa protein purification system (Promega Corporation;
Madison, WI) provides a method for isolating a fusion protein comprising a polypeptide that becomes biotinylated during expression with a resin that comprises avidin.
Peptide tags that are useful for isolating heterologous polypeptides expressed by either prokaryotic or eukaryotic cells include polyHistidine tags (which have an affinity for nickel-chelating resin), c-myc tags, calmodulin binding protein (isolated with calmodulin affinity chromatography), substance P, the RYIRS tag (which binds with anti-RYIRS antibodies), the Glu-Glu tag, and the FLAG tag (which binds 2 0 with anti-FLAG antibodies). See, for example, Luo et al., Arch. Bioclzem.
Br.'ophys.
329:215 (1996), Morganti et al., Biotechzzol. Appl. Biochem. 23:67 (1996), and Zheng et al., GeiZe 186:55 (1997). Nucleic acid molecules encoding such peptide tags are available, for example, from Sigma-Aldrich Corporation (St. Louis, MO).
Another form of fusion protein comprises a Zlmda6 polypeptide and an 2 5 immunoglobulin heavy chain constant region, typically an Fc fragment, which contains two or three constant region domains and a hinge region but lacks the variable region.
As an illustration, Chang et al., U.S. Patent No. 5,723,125, describe a fusion protein comprising a human interferon and a human immunoglobulin Fc fragment. The C-terminal of the interferon is linked to the N-terminal of the Fc fragment by a peptide 3 0 linker moiety. An example of a peptide linker is a peptide comprising primarily a T cell inert sequence, which is immunologically inert. An exemplary peptide linker has the amino acid sequence: GGSGG SGGGG SGGGG S (SEQ ID NO: 41). In this fusion protein, a preferred Fc moiety is a human y4 chain, which is stable in solution and has little or no complement activating activity. Accordingly, the present invention 3 5 contemplates an Zlmda6 fusion protein that comprises an Zlmda6 moiety and a human Fc fragment, wherein the C-terminus of the Zlmda6~ moiety is attached to the N-terminus of the Fc fragment via a peptide linker. The Zlmda6 moiety can be a Zlmda6 molecule or a fragment thereof.
In another variation, an Zlmda6 fusion protein comprises an IgG
sequence, an Zlmda6 moiety covalently joined to the aminotermunal end of the IgG
5 sequence, and a signal peptide that is covalently joined to the aminoterminal of the Zlmda6 moiety, wherein the IgG sequence consists of the following elements in the following order: a hinge region, a CH2 domain, and a CH3 domain. Accordingly, the IgG sequence lacks a CHl domain. This general approach to producing fusion proteins that comprise both antibody and nonantibody portions has been described by 10 LaRochelle et al., EP 742830 (WO 95/21258).
Fusion proteins comprising a Zlmda6 moiety and an Fc moiety can be used, for example, as an in vitro assay tool. For example, the presence of a Zlmda6 receptor in a biological sample can be detected using a Zlmda6-immunoglobulin fusion protein, in which the Zlmda6 moiety is used to target the cognate receptor, and a 15 macromolecule, such as Protein A or anti-Fc antibody, is used to detect the bound fusion protein-receptor complex. Moreover, such fusion proteins can be used to identify agonists and antagonists that interfere with the binding of Zlmda6 to its receptor.
In addition, antibody-Zlmda6 fusion proteins, comprising antibody 2 0 variable domains, are useful as therapeutic proteins, in which the antibody moiety binds with a target antigen, such as a tumor associated antigen. Methods of making antibody-cytokine fusion proteins are known to those of skill in the art. For example, antibody fusion proteins comprising an interleukin-2 moiety are described by Boleti et al., Azz>z.
Ozzcol. 6:945 (1995), Nicolet et al., CazZCer Gez2e Ther. 2:161 (1995), Becker et al., Proc.
2 5 Nat'l Acad. Sci. USA 93:7826 (1996), Hank et al., Clizz. Cancer Res.
2:1951 (1996), and Hu et al.., Cancer Res. 56:4998 (1996). Moreover, Yang et al., Huzn.
Azztibodies Hybridozzzas 6:129 (1995), and Xiang et al., J. Biotechnol. 53:3 (1997), describe fusion proteins that include an F(ab')2 fragment and a tumor necrosis factor alpha moiety.
Additional cytokine-antibody fusion proteins include IL-8, IL-12, or Zlmda6as the 3 0 cytokine moiety (Holzer et al., Cytokiize 8:214 (1996); Gillies et al., J.
Iznznunol.
160:6195 (1998); Xiang et al., Hum. Ayztibodies Hybridorrzas 7:2 (1996)). Also see, Gillies, U.S. Patent No. 5,650,150.
Moreover, using methods described in the art, hybrid Zlmda6 proteins can be constructed using regions or domains of the inventive (see, for example, Picard, 3 5 Cur. Opizz. Biology 5:511 (1994)). These methods allow the determination of the biological importance of larger domains or regions in a polypeptide of interest. Such hybrids may alter reaction kinetics, binding, constrict or expand the substrate specificity, or alter tissue and cellular localization of a polypeptide, and can be applied to polypeptides of unknown structure. Fusion proteins can be prepared by methods known to those skilled in the art by preparing each component of the fusion protein and chemically conjugating them. Alternatively, a polynucleotide encoding both components of the fusion protein in the proper reading frame can be generated using known techniques and expressed by the methods described herein. Moreover, such fusion proteins may exhibit other properties as disclosed herein. General methods for enzymatic and chemical cleavage of fusion proteins are described, for example, by Ausubel (1995) at pages 16-19 to 16-25.
The present invention also contemplates chemically modified Zlmda6 compositions, in which a Zlmda6 polypeptide is linked with a polymer.
Typically, the polymer is water-soluble so that the Zlmda6 conjugate does not precipitate in an aqueous environment, such as a physiological environment. An example of a suitable polymer is one that has been modified to have a single reactive group, such as an active ester for acylation, or an aldehyde for alkylation. In this way, the degree of polymerization can be controlled. An example of a reactive aldehyde is polyethylene glycol propionaldehyde, or mono-(C1-C10) alkoxy, or aryloxy derivatives thereof (see, for example, Harris, et al., U.S. Patent No. 5,252,714). The polymer may be branched or unbranched. Moreover, a mixture of polymers can be used to produce Zlmda6 2 0 conjugates.
Zlmda6 conjugates used for therapy should preferably comprise pharmaceutically acceptable water-soluble polymer moieties. Conjugation of interferons with water-soluble polymers has been shown to enhance the circulating half life of the interferon, and to reduce the immunogenicity of the polypeptide [see, for example, Nieforth et al., Clin. Pha~snacol. Tlaer. 59:636 (1996), and Monkarsh et al., Anal. Bioclzem. 247:434 (1997)].
Suitable water-soluble polymers include polyethylene glycol (PEG), monomethoxy-PEG, mono-(C1-C10)alkoxy-PEG, aryloxy-PEG, poly-(N-vinyl pyrrolidone)PEG, tresyl monomethoxy PEG, PEG propionaldehyde, bis-succinimidyl 3 0 carbonate PEG, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (e.g., glycerol), polyvinyl alcohol, dextran, cellulose, or other carbohydrate-based polymers. Suitable PEG may have a molecular weight from about 600 to about 60,000, including, for example, 5,000, 12,000, 20,000 and 25,000. A Zlmda6 conjugate can also comprise a mixture of such water-soluble 3 5 polymers.
One example of a Zlmda6 conjugate comprises a Zlmda6 moiety and a polyalkyl oxide moiety attached to the N terminus of the Zlmda6 moiety. PEG is one suitable polyalkyl oxide. As an illustration, Zlmda6 can be modified with PEG, a process known as "PEGylation." PEGylation of Zlmda6 can be carried out by any of the PEGylation reactions known in the art [see, for example, EP 0 154 316, Delgado et al., Critical Reviews in Therapeutic Drug Carrier Systems 9:249 (1992), Duncan and Spreafico, Cli~c. Pharmacokinet. 27:290 (1994), and Francis et al., Iht J
Hematol 68:1 (1998)]. For example, PEGylation can be performed by an acylation reaction or by an alkylation reaction with a reactive polyethylene glycol molecule. In an alternative approach, Zlmda6 conjugates are formed by condensing activated PEG, in which a terminal hydroxy or amino group of PEG has been replaced by an activated linker (see, for example, Karasiewicz et al., U.S. Patent No. 5,382,657).
PEGylation by acylation typically requires reacting an active ester derivative of PEG with a Zlmda6 polypeptide. An example of an activated PEG
ester is PEG esterified to N hydroxysuccinimide. As used herein, the term "acylation"
includes the following types of linkages between Zlmda6 and a water-soluble polymer:
amide, carbamate, urethane, and the like. Methods for preparing PEGylated Zlmda6 by acylation will typically comprise the steps of (a) reacting an Zlmda6 polypeptide with PEG (such as a reactive ester of an aldehyde derivative of PEG) under conditions whereby one or more PEG groups attach to Zlmda6, and (b) obtaining the reaction product(s). Generally, the optimal reaction conditions for acylation reactions will be 2 0 determined based upon known parameters and desired results. For example, the larger the ratio of PEG: Zlmda6, the greater the percentage of polyPEGylated Zlmda6 product.
The product of PEGylation by acylation is typically a polyPEGylated Zlmda6 product, wherein the lysine ~-amino groups are PEGylated via an aryl linking group. An example of a connecting linkage is an amide. Typically, the resulting Zlmda6 will be at least 95% mono-, di-, or tri-pegylated, although some species with higher degrees of PEGylation may be formed depending upon the reaction conditions.
PEGylated species can be separated from unconjugated Zlmda6 polypeptides using standard purification methods, such as dialysis, ultrafiltration, ion exchange chromatography, affinity chromatography, and the like.
3 0 PEGylation by alkylation generally involves reacting a terminal aldehyde derivative of PEG with Zlmda6 in the presence of a reducing agent. PEG groups are preferably attached to the polypeptide via a -CH2-NH group.
Derivatization via reductive alkylation to produce a monoPEGylated product takes advantage of the differential reactivity of different types of primary amino 3 5 groups available for derivatization. Typically, the reaction is performed at a pH that allows one to take advantage of the pKa differences between the ~-amino groups of the lysine residues and the oc-amino group of the N terminal residue of the protein. By such selective derivatization, attachment of a water-soluble polymer that contains a reactive group such as an aldehyde, to a protein is controlled. The conjugation with the polymer occurs predominantly at the N terminus of the protein without significant modification of other reactive groups such as the lysine side chain amino groups. The present invention provides a substantially homogenous preparation of Zlmda6 monopolymer conjugates.
Reductive alkylation to produce a substantially homogenous population of monopolymer Zlmda6 conjugate molecule can comprise the steps of: (a) reacting an Zlmda6 polypeptide with a reactive PEG under reductive alkylation conditions at a pH
suitable to permit selective modification of the a,-amino group at the amino terminus of the Zlmda6, and (b) obtaining the reaction product(s). The reducing agent used for reductive alkylation should be stable in aqueous solution and preferably be able to reduce only the Schiff base formed in the initial process of reductive alkylation.
Preferred reducing agents include sodium borohydride, sodium cyanoborohydride, dimethylamine borane, trimethylamine borane, and pyridine borane.
For a substantially homogenous population of monopolymer Zlmda6 conjugates, the reductive alkylation reaction conditions are those that permit the selective attachment of the water-soluble polymer moiety to the N terminus of Zlmda6.
Such reaction conditions generally provide for pKa differences between the lysine 2 0 amino groups and the oc-amino group at the N terminus. The pH also affects the ratio of polymer to protein to be used. In general, if the pH is lower, a larger excess of polymer to protein will be desired because the less reactive the N terminal oc-group, the more polymer is needed to achieve optimal conditions. If the pH is higher, the polymer:Zlmda6 need not be as large because more reactive groups are available.
2 5 Typically, the pH will fall within the range of 3 - 9, or 3 - 6.
Another factor to consider is the molecular weight of the water-soluble polymer. Generally, the higher the molecular weight of the polymer, the fewer number of polymer molecules which may be attached to the protein. For PEGylation reactions, the typical molecular weight is about 2 kDa to about 100 kDa, about 5 kDa to about 50 3 0 kDa, or about 12 kDa to about 25 kDa. The molar ratio of water-soluble polymer to Zlmda6 will generally be in the range of 1:1 to 100:1. Typically, the molar ratio of water-soluble polymer to Zlmda6 will be 1:1 to 20:1 for polyPEGylation, and 1:1 to 5:1 for monoPEGylation.
General methods for producing conjugates comprising interferon and 3 5 water-soluble polymer moieties are known in the art. See, for example, Karasiewicz et al., U.S. Patent No. 5,382,657, Greenwald et al., U.S. Patent No. 5,738, 846, Nieforth et al., Clin. Pharmacol. Ther. 59:636 (1996), Monkarsh et al., Ayzal.
Biochezn. 247:434 (1997).
6. Production of Zlmda6 Polypeptides in Cultured Cells The polypeptides of the present invention, including full-length polypeptides, functional fragments, and fusion proteins, can be produced in recombinant host cells following conventional techniques. To express a Zlnzda6 gene, a nucleic acid molecule encoding the polypeptide must be operably linked to regulatory sequences that control transcriptional expression in an expression vector and then, introduced into a host cell. In addition to transcriptional regulatory sequences, such as promoters and enhancers, expression vectors can include translational regulatory sequences and a marker gene suitable for selection of cells that carry the expression vector.
Expression vectors that are suitable for production of a foreign protein in eukaryotic cells typically contain (1) prokaryotic DNA elements coding for a bacterial replication origin and an antibiotic resistance marker to provide for the growth and selection of the expression vector in a bacterial host; (2) eukaryotic DNA
elements that control initiation of transcription, such as a promoter; and (3) DNA elements that control the processing of transcripts, such as a transcription termination/polyadenylation sequence. As discussed above, expression vectors can also include nucleotide 2 0 sequences encoding a secretory sequence that directs the heterologous polypeptide into the secretory pathway of a host cell. For example, a Zlmda6 expression vector may comprise a Zlmda6 gene and a secretory sequence derived from a Zlmda6 gene or another secreted gene.
Zlmda6 proteins of the present invention may be expressed in 2 5 mammalian cells. Examples of suitable mammalian host cells include African green monkey kidney cells (Vero; ATCC CRL 1587), human embryonic kidney cells (293-HEK; ATCC CRL 1573), baby hamster kidney cells (BHK-21, BHK-570; ATCC CRL
8544, ATCC CRL 10314), canine kidney cells (MDCK; ATCC CCL 34), Chinese hamster ovary cells (CHO-Kl; ATCC CCL61; CHO DG44 [Chasm et al., Som. Cell.
3 0 Molec. Genet. 12:555 (1986)]], rat pituitary cells (GHl; ATCC CCL82), HeLa S3 cells (ATCC CCL2.2), rat hepatoma cells (H-4-II-E; ATCC CRL 1548) SV40-transformed monkey kidney cells (COS-1; ATCC CRL 1650) and murine embryonic cells (NIH-3T3; ATCC CRL 1658).
For a mammalian host, the transcriptional and translational regulatory 3 5 signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, simian virus, or the like, in which the regulatory signals are associated with a particular gene which has a high level of expression. Suitable transcriptional and translational regulatory sequences also can be obtained from mammalian genes, such as actin, collage, myosin, and naetallothioheih genes.
Transcriptional regulatory sequences include a promoter region 5 sufficient to direct the initiation of RNA synthesis. Suitable eukaryotic promoters include the promoter of the mouse metallothiohein I gene [Hamer et al., J.
Molec. Appl.
Get2et. 1:273 (1982)], the TK promoter of Herpes virus [McKnight, Cell 31:355 (1982)], the SV40 early promoter [Benoist et al., Nature 290:304 (1981)], the Rous sarcoma virus promoter (Gorman et al., Proc. Nat'l Acad. Sci. USA 79:6777 (1982)), 10 the cytomegalovirus promoter [Foecking et al., Gene 45:101 (1980)], and the mouse mammary tumor virus promoter [see, generally, Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture," in Protein Eagiheeri~zg: Principles ar2d Practice, Cleland et al. (eds.), pages 163-181 (John Wiley & Sons, Inc. 1996)].
Alternatively, a prokaryotic promoter, such as the bacteriophage T3 15 RNA polymerase promoter, can be used to control Zlf~ada6 gene expression in mammalian cells if the prokaryotic promoter is regulated by a eukaryotic promoter [Zhou et al., Mol. Cell. Biol. 10:4529 (1990), and Kaufman et al., Nucl. Acids Res.
19:4485 (1991)].
An expression vector can be introduced into host cells using a variety of 2 0 standard techniques including calcium phosphate transfection, liposome-mediated transfection, microprojectile-mediated delivery, electroporation, and the like. Preferably, the transfected cells are selected and propagated to provide recombinant host cells that comprise the expression vector stably integrated in the host cell genome.
Techniques for introducing vectors into eukaryotic cells and techniques for selecting such stable 2 5 transformants using a dominant selectable marker are described, for example, by Ausubel (1995) and by Murray (ed.), Gene Transfer afzd Expression Protocols (Humana Press 1991).
For example, one suitable selectable marker is a gene that provides resistance to the antibiotic neomycin. In this case, selection is carried out in the 3 0 presence of a neomycin-type drug, such as G-418 or the like. Selection systems can also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the 3 5 introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g., hygromycin resistance, mufti-drug resistance, puromycin acetyltransferase) can also be used. Alternatively, markers that introduce an altered phenotype, such as green fluorescent protein, or cell surface proteins such as CD4, CDB, Class I MHC, placental alkaline phosphatase may be used to sort transfected cells from untransfected cells by such means as FACS sorting or magnetic bead separation technology.
Zlmda6 polypeptides can also be produced by cultured mammalian cells using a viral delivery system. Exemplary viruses for this purpose include adenovirus, herpesvirus, vaccinia virus and adeno-associated virus (AAV). Adenovirus, a double-stranded DNA virus, is currently the best studied gene transfer vector for delivery of heterologous nucleic acid [for a review, see Becker et al., Meth. Cell Biol.
43:161 (1994), and Douglas and Curiel, Science & Medicine 4:44 (1997)]. Advantages of the adenovirus system include the accommodation of relatively large DNA inserts, the ability to grow to high-titer, the ability to infect a broad range of mammalian cell types, and flexibility that allows use with a large number of available vectors containing different promoters.
By deleting portions of the adenovirus genome, larger inserts (up to 7 kb) of heterologous DNA can be accommodated. These inserts can be incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. An option is to delete the essential EI gene from the viral vector, which results in the inability to replicate unless the El gene is provided by the host cell.
2 0 Adenovirus vector-infected human 293 cells (ATCC Nos. CRL-1573, 45504, 45505), for example, can be grown as adherent cells or in suspension culture at relatively high cell density to produce significant amounts of protein [see Gamier et al., Cytotechnol.
15:145 (1994)].
Zlmda6 genes may also be expressed in other higher eukaryotic cells, 2 5 such as avian, fungal, insect, yeast, or plant cells. The baculovirus system provides an efficient means to introduce cloned Zlmda6 genes into insect cells. Suitable expression vectors are based upon the Autographs californica multiple nuclear polyhedrosis virus (AcMNPV), and contain well-known promoters such as Drosophila heat shock protein (hsp) 70 promoter, Autographs californica nuclear polyhedrosis virus immediate-early 3 0 gene promoter (ie-1 ) and the delayed early 39K promoter, baculovirus p10 promoter, and the Drosoplzila rnetallotlzionein promoter. A second method of making recombinant baculovirus utilizes a transposon-based system described by Luckow (Luckow, et al., J.
Virol. 67:4566 (1993)). This system, which utilizes transfer vectors, is sold in the BAC-to-BAC kit (Life Technologies, Rockville, MD). This system utilizes a transfer 3 5 vector, PFASTBAC (Life Technologies) containing a Tn7 transposon to move the DNA
encoding the Zlmda6~ polypeptide into a baculovirus genome maintained in E.
coli as a large plasmid called a "bacmid." See, Hill-Perkins and Possee, J. Gen. Virol.
71:971 (1990), Bonning, et al., J. Geh. Virol. 75:1551 (1994), and Chazenbalk, and Rapoport, J. Biol. Chen2. 270:1543 (1995). In addition, transfer vectors can include an in-frame fusion with DNA encoding an epitope tag at the C- or N-ternunus of the expressed Zlmda6 polypeptide, for example, a Glu-Glu epitope tag (Grussenmeyer et al., Proc.
Nat'l Acad. Sci. 82:7952 (1985)). Using a technique known in the art, a transfer vector containing a Zlmda6 gene is transformed into E. coli, and screened for bacmids that contain an interrupted lacZ gene indicative of recombinant baculovirus. The bacmid DNA containing the recombinant baculovirus genome is then isolated using common techniques.
The illustrative PFASTBAC vector can be modified to a considerable degree. For example, the polyhedrin promoter can be removed and substituted with the baculovirus basic protein promoter (also known as Pcor, p6.9 or MP promoter) which is expressed earlier in the baculovirus infection, and has been shown to be advantageous for expressing secreted proteins (see, for example, Hill-Perkins and Possee, J. Gerc.
Virol. 71:971 (1990), Bonning, et al., J. Geh. Virol. 75:1551 (1994), and Chazenbalk and Rapoport, J. Biol. Chern. 270:1543 (1995). In such transfer vector constructs, a short or long version of the basic protein promoter can be used. Moreover, transfer vectors can be constructed that replace the native Zlmda6 secretory signal sequences with secretory signal sequences derived from insect proteins. For example, a secretory 2 0 signal sequence from Ecdysteroid Glucosyltransferase (EGT), honey bee Melittin (Invitrogen Corporation; Carlsbad, CA), or baculovirus gp67 (PharMingen: San Diego, CA) can be used in constructs to replace the native Zlmda6 secretory signal sequence.
The recombinant virus or bacmid is used to transfect host cells. Suitable insect host cells include cell lines derived from IPLB-Sf 21, a Spodoptera frugiperda 2 5 pupal ovarian cell line, such as Sf 9 (ATCC CRL 1711 ), Sf21 AE, and SfZ 1 (Invitrogen Corporation; San Diego, CA), as well as Drosophila Schneider-2 cells, and the HIGH
FIVEO cell line (Invitrogen) derived from Trichoplusia hi (U.S. Patent No.
5,300,435).
Commercially available serum-free media can be used to grow and to maintain the cells. Suitable media are Sf900 IIT"" (Life Technologies) or ESF 921T""
(Expression 3 0 Systems) for the Sf9 cells; and Ex-ce110405T"" (JRH Biosciences, Lenexa, KS) or Express FiveOT"~ (Life Technologies) for the T. ni cells. When recombinant virus is used, the cells are typically grown up from an inoculation density of approximately 2-5 x 105 cells to a density of 1-2 x 106 cells at which time a recombinant viral stock is added at a multiplicity of infection (M01) of 0.1 to 10, more typically near 3.
3 5 Established techniques for producing recombinant proteins in baculovirus systems are provided by Bailey et al., "Manipulation of Baculovirus Vectors," in Methods in Molecular Biology, Volume 7: Gene Trafzsfer ahd Expressioya Protocols, Murray (ed.), pages 147-168 (The Humana Press, Inc. 1991), by Patel et al., "The baculovirus expression system," in DNA Cloning 2: Expression Systems, 2nd Edition, Glover et al. (eds.), pages 205-244 (Oxford University Press 1995), by Ausubel (1995) at pages 16-37 to 16-57, by Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc. 1995), and by Lucknow, "Insect Cell Expression Technology,"
in Protein Ercgir~eering: Principles and Practice, Cleland et al. (eds.), pages 183-218 (John Wiley & Sons, Inc. 1996).
Fungal cells, including yeast cells, can also be used to express the genes described herein. Yeast species of particular interest in this regard include Saccharomyces cerevisiae, Pichia pastoris, and Pichia metha~aolica. Suitable promoters for expression in yeast include promoters from GALL (galactose), PGK
(phosphoglycerate kinase), ADH (alcohol dehydrogenase), AOXl (alcohol oxidase), HIS4 (histidinol dehydrogenase), and the like. Many yeast cloning vectors have been designed and are readily available. These vectors include YIp-based vectors, such as YIpS, YRp vectors, such as YRp 17, YEp vectors such as YEp 13 and YCp vectors, such as YCpl9. Methods for transforming S. cerevisiae cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311, Kawasaki et al., U.S. Patent No.
4,931,373, Brake, U.S. Patent No. 4,870,008, Welch et al., U.S. Patent No. 5,037,743, and Murray 2 0 et al., U.S. Patent No. 4,845,075. Transformed cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector system for use in Saccharomyces cerevisiae is the POTI vector system disclosed by Kawasaki et al.
(U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in 2 5 glucose-containing media. Additional suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S.
Patent No.
4,599,311, Kingsman et al., U.S. Patent No. 4,615,974, and Bitter, U.S. Patent No.
4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos.
4,990,446, 5,063,154, 5,139,936, and 4,661,454.
3 0 Transformation systems for other yeasts, including Hanseyiula polymorpha, Schizosaccharomyces pombe, Kluyverorrayces lactis, Kluyveromyces fragilis, Ilstilago fnaydis, Piclzia pastoris, Pichia metharcolica, Pichia guillermoiZdii and Cafzdida nzaltosa are known in the art. See, for example, Gleeson et al., J. Gere.
Microbiol. 132:3459 (1986), and Cregg, U.S. Patent No. 4,882,279. Aspergillus cells 3 5 may be utilized according to the methods of McKnight et al., U.S. Patent No.
4,935,349. Methods for transforming Acremoniuna chrysogenufn are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S. Patent No. 4,486,533.
For example, the use of Piclaia methauolica as host for the production of recombinant proteins is disclosed by Raymond, U.S. Patent No. 5,716,808, Raymond, U.S. Patent No. 5,736,383, Raymond et al., Yeast 14:11-23 (1998), and in international publication Nos. WO 97/17450, WO 97/17451, WO 98/02536, and WO 98/02565.
DNA molecules for use in transforming P. methaholica will commonly be prepared as double-stranded, circular plasmids, which are preferably linearized prior to transformation. For polypeptide production in P. metha~colica, it is preferred that the promoter and terminator in the plasmid be that of a P. methaholica gene, such as a P.
metha~eolica alcohol utilization gene (AIJGl or AIIG2). Other useful promoters include those of the dihydroxyacetone synthase (DHAS), formate dehydrogenase (FMD), and catalase (CAT) genes. To facilitate integration of the DNA into the host chromosome, it is preferred to have the entire expression segment of the plasmid flanked at both ends by host DNA sequences. A preferred selectable marker for use in Pichia metharcolica is a P. methaholica ADE2 gene, which encodes phosphoribosyl-5-aminoimidazole carboxylase (AIRC; EC 4.1.1.21), and which allows ade2 host cells to grow in the absence of adenine. For large-scale, industrial processes where it is desirable to minimize the use of methanol, it is preferred to use host cells in which both methanol 2 0 utilization genes (AUGl and AUG2) are deleted. For production of secreted proteins, host cells deficient in vacuolar protease genes (PEP4 and PRBI ) are preferred.
Electroporation is used to facilitate the introduction of a plasmid containing DNA
encoding a polypeptide of interest into P. metha~zolica cells. P. methanolica cells can be transformed by electroporation using an exponentially decaying, pulsed electric field 2 5 having a field strength of from 2.5 to 4.5 kV/cm, preferably about 3.75 kV/cm, and a time constant (t) of from 1 to 40 milliseconds, most preferably about 20 milliseconds.
Expression vectors can also be introduced into plant protoplasts, intact plant tissues, or isolated plant cells. Methods for introducing expression vectors into plant tissue include the direct infection or co-cultivation of plant tissue with 3 0 Agrobacterium tuf~zefaciefzs, microprojectile-mediated delivery, DNA
injection, electroporation, and the like. See, for example, Horsch et al., Science 227:1229 (1985), I~lein et al., Biotechnology 10:268 (1992), and Miki et al., "Procedures for Introducing Foreign DNA into Plants," in Methods ifz Plant Molecular Biology arad Biotechnology, Glick et al. (eds.), pages 67-88 (CRC Press, 1993).
3 5 Alternatively, Zlmda6 genes can be expressed in prokaryotic host cells.
Suitable promoters that can be used to express Zlmda6 polypeptides in a prokaryotic host are well-known to those of skill in the art and include promoters capable of recognizing the T4, T3, Sp6 and T7 polymerases, the PR and PL promoters of bacteriophage lambda, the trp, recA, heat shock, lacUVS, tac, lpp-lacSpr, phoA, and lacZ promoters of E. coli, promoters of B. subtilis, the promoters of the bacteriophages of Bacillus, Streptomyces promoters, the iht promoter of bacteriophage lambda, the bla 5 promoter of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene. Prokaryotic promoters have been reviewed by Glick, J. hzd. Microbiol.
1:277 (1987), Watson et al., Molecular Biology of the Gerce, 4th Ed. (Benjamin Cummins 1987), and by Ausubel et al. (1995).
Preferred prokaryotic hosts include E. coli and Bacillus subtilus.
10 Suitable strains of E. coli include BL21(DE3), BL21(DE3)pLysS, BL21(DE3)pLysE, DH1, DH4I, DHS, DHSI, DH5IF', DH5IMCR, DH10B, DHl0Blp3, DH11S, C600, HB101, JM101, JM105, JM109, JM110, K38, RRl, Y1088, Y1089, CSH18, ER1451, and ER1647 (see, for example, Brown (ed.), Molecular Biology Labfax [Academic Press 1991)). Suitable strains of Bacillus subtilus include BR151, YB886, MI119, 15 MI120, and B170 (see, for example, Hardy, "Bacillus Cloning Methods," in DNA
Cloning: A Practical Approach, Glover (ed.) (IRL Press 1985)].
When expressing a Zlmda6 polypeptide in bacteria such as E. coli, the polypeptide may be retained in the cytoplasm, typically as insoluble granules, or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, 2 0 the cells are lysed, and the granules are recovered and denatured using, for example, guanidine isothiocyanate or urea. The denatured polypeptide can then be refolded and dimerized by diluting the denaturant, such as by dialysis against a solution of urea and a combination of reduced and oxidized glutathione, followed by dialysis against a buffered saline solution. In the latter case, the polypeptide can be recovered from the 2 5 periplasmic space in a soluble and functional form by disrupting the cells (by, for example, sonication or osmotic shock) to release the contents of the periplasmic space and recovering the protein, thereby obviating the need for denaturation and refolding.
Methods for expressing proteins in prokaryotic hosts are well-known to those of skill in the art (see, for example, Williams et al., "Expression of foreign 3 0 proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies," in DNA Clouiug 2: Expression Systems, 2yad Edition, Glover et al.
(eds.), page 15 (Oxford University Press 1995), Ward et al., "Genetic Manipulation and Expression of Antibodies," in Monoclonal A~Ztibodies: Principles and Applications, page 137 (Wiley-Liss, Inc. 1995), and Georgiou, "Expression of Proteins in Bacteria,"
3 5 in Protein Erlgineeriyng: Principles and Practice, Cleland et al. (eds.), page 101 [John Wiley & Sons, Inc. 1996)].
Standard methods for introducing expression vectors into bacterial, yeast, insect, and plant cells are provided, for example, by Ausubel (1995).
General methods for expressing and recovering foreign protein produced by a mammalian cell system are provided by, for example, Etcheverry, "Expression of Engineered Proteins in Mammalian Cell Culture," in Protein Engineering:
Principles arid Practice, Cleland et al. (eds.), pages 163 (Wiley-Liss, Inc. 1996). Standard techniques for recovering protein produced by a bacterial system is provided by, for example, Grisshammer et al., "Purification of over-produced proteins from E. coli cells," in DNA
Clohiyag 2: Expression Systems, 2nd Editio~z, Glover et al. (eds.), pages 59-92 (Oxford University Press 1995). Established methods for isolating recombinant proteins from a baculovirus system are described by Richardson (ed.), Baculovirus Expression Protocols (The Humana Press, Inc. 1995).
7. Isolation of Zlfnda6 Polypeptides It is preferred to purify the polypeptides of the present invention to at least about 80% purity, more preferably to at least about 90% purity, even more preferably to at least about 95% purity, or even greater than 95% purity with respect to contaminating macromolecules, particularly other proteins and nucleic acids, and free of infectious and pyrogenic agents. The polypeptides of the present invention may also 2 0 be purified to a pharmaceutically pure state, which is greater than 99.9%
pure.
Preferably, a purified polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin.
Fractionation and/or conventional purification methods can be used to obtain preparations of Zlmda6 purified from natural sources (e.g., coronary artery 2 5 smooth muscle tissue, placental tissue, uterine tissue, or tracheal tissue), and recombinant Zlmda6 polypeptides and fusion Zlmda6 polypeptides purified from recombinant host cells. In general, ammonium sulfate precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high 3 0 performance liquid chromatography. Suitable chromatographic media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like.
PEI, DEAF, QAE and Q derivatives are preferred. Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), 3 5 Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties.
Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries.
These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Selection of a particular method for polypeptide isolation and purification is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affizzity Chromatography:
Priyzciples & Metlzods (Pharmacia LKB Biotechnology 1988), and Doonan, Protein Purificatiozz Protocols (The Humana Press 1996).
Additional variations in Zlmda6 isolation and purification can be devised by those of skill in the art. For example, anti-Zlmda6 antibodies, obtained as described below, can be used to isolate large quantities of protein by immunoaffinity purification. The use of monoclonal antibody columns to purify interferons from recombinant cells and from natural sources has been described, for example, by 2 0 Staehelin et al., J. Biol. Chem. 256:9750 (1981), and by Adolf et al., J.
Biol. Chezzz.
265:9290 (1990). Moreover, methods for binding ligands, such as Zlmda6, to receptor polypeptides bound to support media are well known in the art.
The polypeptides of the present invention can also be isolated by exploitation of particular properties. For example, immobilized metal ion adsorption 2 5 (IMAC) chromatography can be used to purify histidine-rich proteins, including those comprising polyhistidine tags. Briefly, a gel is first charged with divalent metal ions to form a chelate [Sulkowski, Treads in Biochem. 3:1 (1985)]. Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating 3 0 agents. Other methods of purification include purification of glycosylated proteins by lectin affinity chromatography and ion exchange chromatography [M. Deutscher, (ed.), Meth. Enzymol. 182:529 (1990)]. Zlmda6 polypeptides or fragments thereof may also be prepared through chemical synthesis, as described below. Zlmda6 polypeptides may be monomers or multimers; glycosylated or non-glycosylated; PEGylated or non-3 5 PEGylated; and may or may not include an initial methionine amino acid residue.
8. Chemical Synthesis of Zlmda6 Polypeptides Zlmda6 polypeptides of the present invention can also be synthesized by exclusive solid phase synthesis, partial solid phase methods, fragment condensation or classical solution synthesis. The polypeptides are preferably prepared by solid phase peptide synthesis, for example as described by MeiTifield, J. Am. Chem. Soc.
85:2149 (1963). The synthesis is carried out with amino acids that are protected at the alpha-amino terminus. Trifunctional amino acids with labile side-chains are also protected with suitable groups to prevent undesired chemical reactions from occurring during the assembly of the polypeptides. The alpha-amino protecting group is selectively removed to allow subsequent reaction to take place at the amino-terminus. The conditions for the removal of the alpha-amino protecting group do not remove the side-chain protecting groups.
See Stewart et al., "Solid Phase Peptide Synthesis" (2nd Edition), (Pierce Chemical Co. 1984), Bayer and Rapp, Chem. Pept. Prot. 3:3 (1986), Atherton et al., Solid Phase Peptide Synthesis: A Practical Approach (IRL Press 1989), and by Lloyd-Williams et al., Chemical Approaches to the Synthesis of Peptides and Proteins (CRC Press, Inc. 1997), Kaiser et al., Anal. Bioclzezn. 34:595 (1970). The coupling reactions can be performed automatically with commercially available instruments such as ABI model 430A, 431A and 433A peptide synthesizers.
2 0 The "native chemical ligation" approach to producing polypeptides is one variation of total chemical synthesis strategy (see, for example, Dawson et al., Science 266:776 (1994), Hackeng et al., Proc. Nat'L Acad. Sci. USA 94:7845 (1997), and Dawson, Methods Ehzymol. 287: 34 (1997)). According to this method, an N-terminal cysteine-containing peptide is chemically ligated to a peptide having a C-2 5 terminal thioester group to form a normal peptide bond at the ligation site.
The "expressed protein ligation" method is a semi-synthesis variation of the ligation approach (see, for example, Muir et al, Proc. Nat'l Acad. Sci.
USA 95:6705 (1998); Severinov and Muir, J. Biol. Clzezn. 273:16205 (1998)). Here, synthetic peptides and protein cleavage fragments are linked to form the desired protein product.
3 0 This method is particularly useful for the site-specific incorporation of unnatural amino acids (e.g., amino acids comprising biophysical or biochemical probes) into proteins.
In an approach illustrated by Muir et al, Proc. Nat'L Acad. Sci. USA
95:6705 (1998), a gene or gene fragment is cloned into the PCYB2-IMPACT vector (New England Biolabs, Inc.; Beverly, MA) using the NdeI and SmaI restriction sites.
3 5 As a result, the gene or gene fragment is expressed in frame fused with a chitin binding domain sequence, and a Pro-Gly is appended to the native C terminus of the protein of interest. The presence of a C-terminal glycine reduces the chance of side reactions, because the glycine residue accelerates native chemical ligation. Affinity chromatography with a chitin resin is used to purify the expressed fusion protein, and the chemical ligation step is initiated by incubating the resin-bound protein with thiophenol and synthetic peptide in buffer. This mixture produces the iu situ generation of a highly reactive phenyl °'thioester derivative of the protein that rapidly ligates with the synthetic peptide to produce the desired semi-synthetic protein.
9. Assays for Zlmda6, Its Afzalogs, and the Zlmda6 Receptor As described above, the disclosed polypeptides can be used to construct Zlmda6 variants. A Zlmda6 variant will possess a Zlmda6 biological activity, as determined by the in vitro assays described below. A polypeptide produced by a Zlmda6 variant gene is considered to be a Zlmda6 agonist if the polypeptide exhibits a biological activity On the other hand, a Zlmda6 variant gene product that lacks biological activity may be a Zlmda6~ antagonist. These biologically inactive Zlmda6 variants can be initially identified on the basis of hybridization analysis, sequence identity determination, or by the ability to specifically bind anti-Zlmda6 antibody. A
Zlmda6 antagonist can be further characterized by its ability to inhibit the biological response induced by Zlmda6 or by a Zlmda6 agonist. This inhibitory effect may result, for 2 0 example, from the competitive or non-competitive binding of the antagonist to the Zlmda6 receptor.
Zhnda6, its agonists and antagonists are valuable in both in vivo and in vitro uses. As an illustration, cytokines can be used as components of defined cell culture media, alone or in combination with other cytokines and hormones, to replace 2 5 serum that is commonly used in cell culture. Antagonists are also useful as research reagents for characterizing sites of interaction between Zlmda6 and its receptor. In a therapeutic setting, pharmaceutical compositions comprising Zlmda6 antagonists can be used to inhibit Zlmda6 activity.
One general class of Zlmda6 analogs are agonists or antagonists having 3 0 an amino acid sequence that is a mutation of the amino acid sequences disclosed herein.
Another general class of Zlmda6 analogs is provided by anti-idiotype antibodies, and fragments thereof, as described below. Moreover, recombinant antibodies comprising anti-idiotype variable domains can be used as analogs (see, for example, Monfardini et al., Proc. Assoc. Anz. Plzysiciarzs 108:420 (1996)). Since the variable domains of anti-3 5 idiotype Zlmda6E antibodies mimic Zlmda6, these domains can provide either Zlmda6 agonist or antagonist activity.
A third approach to identifying Zlmda6 analogs is provided by the use of combinatorial libraries. Methods for constructing and screening phage display and other combinatorial libraries are provided, for example, by Kay et al., Phage Display of Peptides and Proteins (Academic Press 1996), Verdine, U.S. Patent No.
5,783,384, 5 Kay, et. al., U.S. Patent No. 5,747,334, and Kauffman et al., U.S. Patent No. 5,723,323.
Zlmda6, its analogs, and anti-iodiotype Zlmda6 antibodies can be used to identify and to isolate Zlmda6 receptors. For example, proteins and peptides of the present invention can be immobilized on a column and used to bind receptor proteins from membrane preparations that are run over the column (Hermanson et al.
(eds.), 10 I»znzobilized Affizzity Ligarzd Techniques, pages 195-202 (Academic Press 1992)).
Radiolabeled or affinity labeled Zlmda6 polypeptides can also be used to identify or to localize Zlmda6 receptors in a biological sample (see, for example, Deutscher (ed.), Methods i>2 Ezzzymol., vol. 182, pages 721-37 (Academic Press 1990); Brunner et al., Azah. Rev. Biochem. 62:483 (1993); Fedan et al., Biochem. Pl2armacol. 33:1167 (1984)).
15 Also see, Varthakavi and Minocha, J. Gerz. Virol. 77:1875 (1996), who describe the use of anti-idiotype antibodies for receptor identification.
In addition, a solid phase system can be used to identify a Zlmda6 receptor, or an agonist or antagonist of a Zlmda6 receptor. For example, a Zlmda6 polypeptide or Zlmda6 fusion protein can be immobilized onto the surface of a receptor 2 0 chip of a commercially available biosensor instrument (BIACORE, Biacore AB;
Uppsala, Sweden). The use of this instrument is disclosed, for example, by Karlsson, Immunol. Methods 145:229 (1991), and Cunningham and Wells, J. Mol. Biol.
234:554 (1993).
As an illustration, a Zlmda6 polypeptide or fusion protein is covalently 2 5 attached, using amine or sulfhydryl chemistry, to dextran fibers that are attached to gold film within a flow cell. A test sample is then passed through the cell. If a receptor is present in the sample, it will bind to the immobilized polypeptide or fusion protein, causing a change in the refractive index of the medium, which is detected as a change in surface plasmon resonance of the gold film. This system allows the determination of 3 0 on- and off rates, from which binding affinity can be calculated, and assessment of stoichiometry of binding. This system can also be used to examine antibody-antigen interactions, and the interactions of other complement/anti-complement pairs.
10. Production of Antibodies to Zlfnda6 Proteins 3 5 Antibodies to Zlmda6 can be obtained, for example, using the product of a Zlmda6 expression vector or Zlmda6 isolated from a natural source as an antigen.
Particularly useful anti-Zlmda6 antibodies "bind specifically" with Zlmda6.
Antibodies are considered to be specifically binding if the antibodies exhibit at least one of the following two properties: (1) antibodies bind to Zlmda6 with a threshold level of binding activity, and (2) antibodies do not significantly cross-react with polypeptides related to Zlmda6.
With regard to the first characteristic, antibodies specifically bind if they bind to a Zlmda6 polypeptide, peptide or epitope with a binding affinity (Ka) of 106 M-1 or greater, preferably 107 M-1 or greater, more preferably l Og M-1 or greater, and most preferably 109 M-1 or greater. The binding affinity of an antibody can be readily -10 determined by one of ordinary skill in the art, for example, by Scatchard analysis (Scatchard, Aizfz. NYAcad. Sci. 51:660 (1949)). With regard to the second characteristic, antibodies do not significantly cross-react with related polypeptide molecules, for example, if they detect Zlmda6, but not known related polypeptides using a standard Western blot analysis. Examples of known related polypeptides are orthologs and proteins from the same species that are members of a protein family.
Anti-Zlmda6 antibodies can be produced using antigenic Zlmda6s epitope-bearing peptides and polypeptides. Antigenic epitope-bearing peptides and polypeptides of the present invention contain a sequence of at least nine, preferably between 15 to about 30 amino acids contained within SEQ ID NO: 2. However, 2 0 peptides or polypeptides comprising a larger portion of an amino acid sequence of the invention, containing from 30 to 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are useful for inducing antibodies that bind with Zlmda6. It is desirable that the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues, while hydrophobic residues are preferably avoided). Moreover, amino acid sequences containing proline residues may be also be desirable for antibody production.
As an illustration, potential antigenic sites in human Zlmda6 were identified using the Jameson-Wolf method, Jameson and Wolf, CABIOS 4:181, (1988), 3 0 as implemented by the PROTEAN program (version 3.14) of LASERGENE
(DNASTAR; Madison, WI). Default parameters were used in this analysis.
The Jameson-Wolf method predicts potential antigenic determinants by combining six major subroutines for protein structural prediction. Briefly, the Hopp-Woods method, Hopp et al., Proc. Nat'l Acad. Sci. USA 78:3824 (1981), was first used 3 5 to identify amino acid sequences representing areas of greatest local hydrophilicity (parameter: seven residues averaged). In the second step, Emini's method, Emini et al., J. Virology 55:836 (1985), was used to calculate surface probabilities (parameter:
surface decision threshold (0.6) = 1). Third, the Karplus-Schultz method, Karplus and Schultz, Naturwissehschafteh 72:212 (1985), was used to predict backbone chain flexibility (parameter: flexibility threshold (0.2) = 1). In the fourth and fifth steps of the analysis, secondary structure predictions were applied to the data using the methods of Chou-Fasman, Chou, "Prediction of Protein Structural Classes from Amino Acid Composition," in Prediction of Protein Structure a~zd the Pf°iuciples of Protein Couformatiorc, Fasman (ed.), pages 549-586 (Plenum Press 1990), and Gamier-Robson, Gamier et al., J. Mol. Biol. 120:97 (1978) (Chou-Fasman parameters:
conformation table = 64 proteins; a region threshold = 103; (3 region threshold = 105;
Garnier-Robson parameters: a and (3 decision constants = 0). In the sixth subroutine, flexibility parameters and hydropathy/solvent accessibility factors were combined to determine a surface contour value, designated as the "antigenic index." Finally, a peak broadening function was applied to the antigenic index, which broadens major surface peaks by adding 20, 40, 60, or 80°Io of the respective peak value to account for additional free energy derived from the mobility of surface regions relative to interior regions. This calculation was not applied, however, to any major peak that resides in a helical region, since helical regions tend to be less flexible.
The results of this analysis indicated that the following amino acid sequences of SEQ m NO: 2 would provide suitable antigenic peptides: amino acids 14 2 0 to 45 of SEQ m NO: 2 (SEQ )D NO: 3), amino acids 37 to 69 (SEQ m NO: 4), 63 to 87 (SEQ ID NO: 5), amino acids 80 to 103 (SEQ ID NO: 6), amino acids 80 to 119 (SEQ lD NO: 7), amino acids 93 to 125 (SEQ ID NO: 8), amino acids 115 to 151 (SEQ
ID NO: 9), amino acids 135 to 168 (SEQ ID NO: 10), amino acids 165 to 217 (SEQ
ll~
NO: 11), amino acids 214 to 251 (SEQ m NO: 12), amino acids 249 to 279 (SEQ m 2 5 NO: 13), amino acids 249 to 289 (SEQ ID NO: 14), amino acids 272 to 304 (SEQ ID
NO: 15), amino acids 299 to 333 (SEQ m NO: 16), amino acids 314 to 376 (SEQ ID
NO: 17), amino acids 337 to 376 (SEQ ID NO: 18), amino acids 365 to 388 (SEQ m NO: 19), amino acids 365 to 405 (SEQ ID NO: 20), 374 to 440 (SEQ ID NO: 21), amino acids 430 to 483 (SEQ ID NO: 22), amino acids 478 to 528 (SEQ ID NO:
23), 3 o amino acids 507 to 559 (SEQ ID NO: 24), amino acids 515 to 559 (SEQ ID NO:
25), amino acids 538 to 573 (SEQ ID NO: 26), amino acids 14 to 125 (SEQ ID NO: 27), amino acids 84 to 199 (SEQ I~ NO: 28), amino acids 135 to 276 (SEQ ID NO: 29), amino acids 175 to 304 (SEQ ID NO: 30), amino acids 272 to 388 (SEQ ID NO:
31), amino acids 314 to 405 (SEQ ID NO: 32), amino acids 365 to 528 (SEQ >D NO:
33), 3 5 amino acids 430 to 573 (SEQ ID NO: 34), amino acids 15 to 272 (SEQ ID NO:
35), amino acids 90 to 332 (SEQ m NO: 36), 285 to 528 (SEQ m NO: 37), amino acids 398 to 544 (SEQ ID NO: 38), amino acids 430 to 573 (SEQ 1D NO: 39), and amino acids 101 to 304 (SEQ m NO: 40). The present invention contemplates the use of any one of antigenic polypeptides to generate antibodies to Zlmda6.
Polyclonal antibodies to recombinant Zlmda6 protein or to Zlmda6 isolated from natural sources can be prepared using methods well known to those of skill in the art. See, for example, Green et al., "Production of Polyclonal Antisera," in Imnzunoclzefnical Protocols (Manson, ed.), pages 1-5 (Humana Press 1992), and Williams et al., "Expression of foreign proteins in E. coli using plasmid vectors and purification of specific polyclonal antibodies," in DNA Cloning 2: Expression Systems, 2ud Edition, Glover et al. (eds.), page 15 (Oxford University Press 1995). The immunogenicity of a Zlmda6 polypeptide can be increased through the use of an adjuvant, such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such as fusions of Zlmda6 or a portion thereof with an immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "hapten-like," such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole limpet hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.
Although polyclonal antibodies are typically raised in animals such as horses, cows, dogs, chicken, rats, mice, rabbits, guinea pigs, goats, or sheep, an anti-2 0 Zlmda6 antibody of the present invention may also be derived from a subhuman primate antibody. General techniques for raising diagnostically and therapeutically useful antibodies in baboons may be found, for example, in Goldenberg et al., international patent publication No. WO 91/11465, and in Losman et al., Int.
J. Cancer 46:310 (1990).
2 5 Alternatively, monoclonal anti-Zlmda6 antibodies can be generated.
Rodent monoclonal antibodies to specific antigens may be obtained by methods known to those skilled in the art [see, for example, Kohler et al., Nature 256:495 (1975), Coligan et al. (eds.), Current Protocols in Irrzmunology, Vol. 1, pages 2.5.1-2.6.7 (John Wiley & Sons 1991) ("Coligan")], Picksley et al., "Production of monoclonal 3 0 antibodies against proteins expressed in E. coli," in DNA Cloning 2:
Expression Systems, 2nd Edztion, Glover et al. (eds.), page 93 (Oxford University Press 1995)].
Briefly, monoclonal antibodies can be obtained by injecting mice with a composition comprising an Zlnzda6 gene product, verifying the presence of antibody production by removing a serum sample, removing the spleen to obtain B-lymphocytes, 3 5 fusing the B-lymphocytes with myeloma cells to produce hybridomas, cloning the hybridomas, selecting positive clones which produce antibodies to the antigen, culturing the clones that produce antibodies to the antigen, and isolating the antibodies from the hybridoma cultures.
In addition, an anti-Zlmda6 antibody of the present invention may be derived from a human monoclonal antibody. Human monoclonal antibodies are obtained from transgenic mice that have been engineered to produce specific human antibodies in response to antigenic challenge. In this technique, elements of the human heavy and light chain locus are introduced into strains of mice derived from embryonic stem cell lines that contain targeted disruptions of the endogenous heavy chain and light chain loci. The transgenic mice can synthesize human antibodies specific for human antigens, and the mice can be used to produce human antibody-secreting hybridomas. Methods for obtaining human antibodies from transgenic mice are described, for example, by Green et al., Nature Genet. 7:13 (1994), Lonberg et al., Nature 368:856 (1994), and Taylor et al., Int. IrnmusZ. 6:579 (1994).
Monoclonal antibodies can be isolated and purified from hybridoma cultures by a variety of well-established techniques. Such isolation techniques include affinity chromatography with Protein-A Sepharose, size-exclusion chromatography, and ion-exchange chromatography [see, for example, Coligan at pages 2.7.1-2.7.12 and pages 2.9.1-2.9.3; Barnes et al., "Purification of Tmmunoglobulin G (IgG)," in Methods in Molecular Biology, Vol. 10, pages 79-104 (The Humana Press, Inc. 1992)].
2 0 For particular uses, it may be desirable to prepare fragments of anti-Zlmda6 antibodies. Such antibody fragments can be obtained, for example, by proteolytic hydrolysis of the antibody. Antibody fragments can be obtained by pepsin or papain digestion of whole antibodies by conventional methods. As an illustration, antibody fragments can be produced by enzymatic cleavage of antibodies with pepsin to 2 5 provide a SS fragment denoted F(ab')2. This fragment can be further cleaved using a thiol reducing agent to produce 3.55 Fab' monovalent fragments. Optionally, the cleavage reaction can be performed using a blocking group for the sulfhydryl groups that result from cleavage of disulfide linkages. As an alternative, an enzymatic cleavage using pepsin produces two monovalent Fab fragments and an Fc fragment 3 0 directly. These methods are described, for example, by Goldenberg, U.S.
patent No.
4,331,647, Nisonoff et al., Arch Biochem. Bioplzys. 89:230 (1960), Porter, Bioclaem. J.
73:119 (1959), Edelman et al., in Methods ifZ Efzzymology Vol. 1, page 422 (Academic Press 1967), and by Coligan at pages 2.8.1-2.8.10 and 2.10.-2.10.4.
Other methods of cleaving antibodies, such as separation of heavy chains 3 5 to form monovalent light-heavy chain fragments, further cleavage of fragments, or other enzymatic, chemical or genetic techniques may also be used, so long as the fragments bind to the antigen that is recognized by the intact antibody.
For example, Fv fragments comprise an association of VH and VL chains.
This association can be noncovalent, as described by mbar et al., Proc. Nat'l Acad. Sci.
USA 69:2659 (1972). Alternatively, the variable chains can be linked by an intermolecular disulfide bond or cross-linked by chemicals such as glutaraldehyde (see, 5 for example, Sandhu, Crit. Rev. Biotech. 12:437 (1992)).
The Fv fragments may comprise VH and VL chains which are connected by a peptide linker. These single-chain antigen binding proteins (scFv) are prepared by constructing a structural gene comprising DNA sequences encoding the VH and VL
domains which are connected by an oligonucleotide. The structural gene is inserted 10 into an expression vector, which is subsequently introduced into a host cell, such as E.
coli. The recombinant host cells synthesize a single polypeptide chain with a linker peptide bridging the two V domains. Methods for producing scFvs are described, for example, by Whitlow et. al., Methods: A Companion to Methods irz Ef2zyjzzology 2:97 (1991) (also see, Bird et al., Science 242:423 (1988), Ladner et al., U.S.
Patent No.
15 4,946,778, Pack et al., Biol!'ech>zology 11:1271 (1993), and Sandhu, supra).
As an illustration, a scFV can be obtained by exposing lymphocytes to Zlmda6~ polypeptide irz vitro, and selecting antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled Zlmda6 protein or peptide). Genes encoding polypeptides having potential Zlmda6 polypeptide-binding 2 0 domains can be obtained by screening random peptide libraries displayed on phage (phage display) or on bacteria, such as E. coli. Nucleotide sequences encoding the polypeptides can be obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. These random peptide display libraries can be used to screen for peptides that interact with a known target which can be a protein or 2 5 polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, or organic or inorganic substances. Techniques for creating and screening such random peptide display libraries are known in the art [(Ladner et al., U.S. Patent No. 5,223,409, Ladner et al., U.S. Patent No. 4,946,778, Ladner et al., U.S. Patent No.
5,403,484, Ladner et al., U.S. Patent No. 5,571,698, and Kay et al., Phage Dr.'splay of Peptides azed 3 0 Proteins (Academic Press, Inc. 1996)] and random peptide display libraries and kits for screening such libraries are available commercially, for instance from CLONTECH
Laboratories, Inc. (Palo Alto, CA), Invitrogen Inc. (San Diego, CA), New England Biolabs, Inc. (Beverly, MA), and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ).
Random peptide display libraries can be screened using the Zlmda6 sequences 3 5 disclosed herein to identify proteins that bind to Zlmda6.
Another form of an antibody fragment is a peptide coding for a single complementarity-determining region (CDR). CDR peptides ("minimal recognition units") can be obtained by constructing genes encoding the CDR of an antibody of interest. Such genes are prepared, for example, by using the polymerase chain reaction to synthesize the variable region from RNA of antibody-producing cells [see, for example, Larrick et al., Methods: A Compazzio>z to Methods izz Ezzzynzology 2:106 (1991), Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," in Moyzoclozzal Antibodies: Productio>z, Ehgizzeerirzg az2d Clinical Application, Ritter et al.
(eds.), page 166 (Cambridge University Press 1995), and Ward et al., "Genetic Manipulation and Expression of Antibodies," in Mozzoclozzal Antibodies:
Principles and Applicatiozzs, Birch et al., (eds.), page I37 (Wiley-Liss, Inc. 1995)].
Alternatively, an anti-Zlmda6 antibody may be derived from a "humanized" monoclonal antibody. Humanized monoclonal antibodies are produced by transferring mouse complementary determining regions from heavy and light variable chains of the mouse immunoglobulin into a human variable domain.
Typical residues of human antibodies are then substituted in the framework regions of the murine counterparts. The use of antibody components derived from humanized monoclonal antibodies obviates potential problems associated with the immunogenicity of murine constant regions. General techniques for cloning murine immunoglobulin variable domains are described, for example, by Orlandi et al., Proc. Nat'l Acad. Sci.
USA 86:3833 (1989). Techniques for producing humanized monoclonal antibodies are 2 0 described, for example, by Jones et al., Nature 321:522 (1986), Carter et al., Proc. Nat'l Acad. Sci. USA 89:4285 (1992), Sandhu, Crit. Rev. Biotech. 12:437 (1992), Singer et al., J. Imzzzurz. 150:2844 (1993), Sudhir (ed.), Azztibody Ezzgizzeerizcg Protocols (Humana Press, Inc. 1995), Kelley, "Engineering Therapeutic Antibodies," in Proteizz Engiyzeeriszg: Principles arid Practice, Cleland et al. (eds.), pages 399-434 (John Wiley 2 5 & Sons, Inc. 1996), and by Queen et al., U.S. Patent No. 5,693,762 (1997).
Polyclonal anti-idiotype antibodies can be prepared by immunizing animals with anti-Zlmda6 antibodies or antibody fragments, using standard techniques.
See, for example, Green et al., "Production of Polyclonal Antisera," in Methods Izz Molecular Biology: Iznnzuzzochemical Protocols, Manson (ed.), pages 1-12 (Humana 3 0 Press 1992). Also, sea Coligan at pages 2.4.1-2.4.7. Alternatively, monoclonal anti-idiotype antibodies can be prepared using anti-Zlmda6 antibodies or antibody fragments as immunogens with the techniques, described above. As another alternative, humanized anti-idiotype antibodies or subhuman primate anti-idiotype antibodies can be prepared using the above-described techniques. Methods for producing anti-idiotype 35 antibodies are described, for example, by Irie, U.S. Patent No. 5,208,146, Greene, et.
al., U.S. Patent No. 5,637,677, and Varthakavi and Minocha, J. Gezz. Virol.
77:1875 (1996).
11. Diagnostic Application of Zlmda6 Nucleotide Seque~zces Nucleic acid molecules can be used to detect the expression of an Zlmda6 gene in a biological sample. Although such probe molecules can include murine Zlmda6 encoding sequences, preferred probe molecules include double-stranded nucleic acid molecules comprising the nucleotide sequence of SEQ ID NO: 1, or a fragment thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ ID NO: 1 or a fragment thereof.
Probe molecules may be DNA, RNA, oligonucleotides, and the like.
In a basic assay, a single-stranded probe molecule is incubated with RNA, isolated from a biological sample, under conditions of temperature and ionic strength that promote base pairing between the probe and target Zlmda6 RNA
species.
After separating unbound probe from hybridized molecules, the amount of hybrids is detected. lllustrative biological samples include blood, urine, saliva, tissue biopsy, and autopsy material.
Well-established hybridization methods of RNA detection include northern analysis and dot/slot blot hybridization (see, for example, Ausubel (1995) at pages 4-1 to 4-27, and Wu et al. (eds.), "Analysis of Gene Expression at the RNA
Level," in Methods izz Gezze Biotechnology, pages 225-239 (CRC Press, Inc.
1997)).
2 0 Nucleic acid probes can be detectably labeled with radioisotopes such as 32P or 355.
Alternatively, Zlmda6 RNA can be detected with a nonradioactive hybridization method (see, for example, Isaac (ed.), Protocols for Nucleic Acid Analysis by Nozzradioactive Probes (Humana Press, Inc. 1993)). Typically, nonradioactive detection is achieved by enzymatic conversion of chromogenic or chemiluminescent substrates.
lllustrative 2 5 nonradioactive moieties include biotin, fluorescein, and digoxigenin.
Zlnzda6oligonucleotide probes are also useful for in vivo diagnosis. As an illustration, 18F-labeled oligonucleotides can be administered to a subject and visualized by positron emission tomography [Tavitian et al., Nature Medicine 4:467 (1998)].
Numerous diagnostic procedures take advantage of the polymerase chain 3 0 reaction (PCR) to increase sensitivity of detection methods. Standard techniques for performing PCR are well-known [see, generally, Mathew (ed.), Protocols in Humazz Molecular Genetics (Humana Press, Inc. 1991), White (ed.), PCR Protocols:
Current Methods and Applications (Humana Press, Inc. 1993), Cotter (ed.), Molecular Diagnosis of Cancer (Humana Press, Inc. 1996), Hanausek and Walaszek (eds.), Turzzor 3 5 Marker Protocols (Humana Press, Inc. 1998), Lo (ed.), Clinical Applications of PCR
(Humana Press, Inc. 1998), and Meltzer (ed.), PCR in Bioanalysis (Humana Press, Inc.
1998)].
One variation of PCR for diagnostic assays is reverse transcriptase-PCR
(RT-PCR). In the RT-PCR technique, RNA is isolated from a biological sample, reverse transcribed to cDNA, and the cDNA is incubated with Zlmda6 primers [see, for example, Wu et al. (eds.), "Rapid Isolation of Specific cDNAs or Genes by PCR," in Methods i~c Gene Biotechnology, pages 15-28 (CRC Press, Inc. 1997)]. PCR is then performed and the products are analyzed using standard techniques.
As an illustration, RNA is isolated from biological sample using, for example, the gunadinium-thiocyanate cell lysis procedure described above.
Alternatively, a solid-phase technique can be used to isolate mRNA from a cell lysate.
A reverse transcription reaction can be primed with the isolated RNA using random oligonucleotides, short homopolymers of dT, or Zlmda6anti-sense oligomers.
Oligo-dT
primers offer the advantage that various mRNA nucleotide sequences are amplified that can provide control target sequences. Zlmda6 sequences are amplified by the polymerise chain reaction using two flanking oligonucleotide primers that are typically bases in length.
PCR amplification products can be detected using a variety of approaches. For example, PCR products can be fractionated by gel electrophoresis, and 2 0 visualized by ethidium bromide staining. Alternatively, fractionated PCR
products can be transferred to a membrane, hybridized with a detectably-labeled Zlmda6 probe, and examined by autoradiography. Additional alternative approaches include the use of digoxigenin-labeled deoxyribonucleic acid triphosphates to provide chemiluminescence detection, and the C-TRAM colorimetric assay.
2 5 Another approach for detection of Zlmda6 expression is cycling probe technology (CPT), in which a single-stranded DNA target binds with an excess of DNA-RNA-DNA chirneric probe to form a complex, the RNA portion is cleaved with RNAase H, and the presence of cleaved chimeric probe is detected [see, for example, Beggs et al., J. Clifz. Microbiol. 34:2985 (1996), Bekkaoui et al., Biotechniques 20:240 3 0 (1996)]. Alternative methods for detection of Zlmda6 sequences can utilize approaches such as nucleic acid sequence-based amplification (NASBA), cooperative amplification of templates by cross-hybridization (CATCH), and the ligase chain reaction (LCR) (see, for example, Marshall et al., U.S. Patent No. 5,686,272 (1997), Dyer et al., J. Virol.
Methods 60:161 (1996), Ehricht et al., Eur. J. Biochefn. 243:358 (1997), and Chadwick 3 5 et al., J. Virol. Methods 70:59 (1998)). Other standard methods are known to those of skill in the art.
Zlnzda6 probes and primers can also be used to detect and to localize Zlnzda6 gene expression in tissue samples. Methods for such in situ hybridization are well-known to those of skill in the art (see, for example, Choo (ed.), In Situ Hybridizatioyz Protocols (Humana Press, Inc. 1994), Wu et al. (eds.), "Analysis of Cellular DNA or Abundance of mRNA by Radioactive In Situ Hybridization IRISH),"
in Methods in Gene Biotechnology, pages 259-278 (CRC Press, Inc. 1997), and Wu et al.
(eds.), "Localization of DNA or Abundance of mRNA by Fluorescence Irz Situ Hybridization IRISH)," in Methods in Gene Bioteclznology, pages 279-289 (CRC
Press, Inc. 1997)). Various additional diagnostic approaches are well-known to those of skill in the art (see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Coleman and Tsongalis, Molecular Diagnostics (Humana Press, Inc. 1996), and Elles, Molecular Diagnosis of Genetic Diseases (Humana Press, Inc., 1996)).
Nucleic acid molecules comprising Zlmda6 nucleotide sequences can also be used to determine whether a subject's chromosomes contain a mutation in the Zlnzda6 gene. Detectable chromosomal aberrations at the Zlrnda6 gene locus include, but are not limited to, aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements. Of particular interest are genetic alterations that inactivate the Zlmda6 gene.
2 0 Aberrations associated with the Zlmda6 locus can be detected using nucleic acid molecules of the present invention by employing molecular genetic techniques, such as restriction fragment length polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, amplification-refractory mutation system analysis (ARMS), single-strand conformation polymorphism (SSCP) 2 5 detection, RNase cleavage methods, denaturing gradient gel electrophoresis, fluorescence-assisted mismatch analysis (FAMA), and other genetic analysis techniques known in the art [see, for example, Mathew (ed.), Protocols in Human Molecular Genetics (Humana Press, Inc. 1991), Marian, Clzest 108:255 (1995), Coleman and Tsongalis, Molecular Diagnostics (Human Press, Inc. 1996), Elles (ed.) Molecular 3 0 Diagnosis of Genetic Diseases (Humana Press, Inc. 1996), Landegren (ed.), Laboratory Protocols for Mutation Detection (Oxford University Press 1996), Birren et al.
(eds.), Genome Analysis, Vol. 2: Detectiyzg Genes (Cold Spring Harbor Laboratory Press 1998), Dracopoli et al. (eds.), Current Protocols in Human Genetics (John Wiley &
Sons 1998), and Richards and Ward, "Molecular Diagnostic Testing," in Principles of 3 5 Molecular Medicine, pages 83-88 (Humana Press, Inc. 1998)].
The protein truncation test is also useful for detecting the inactivation of a gene in which translation-terminating mutations produce only portions of the encoded protein [see, for example, Stoppa-Lyonnet et al., Blood 91:3920 (1998)].
According to this approach, RNA is isolated from a biological sample, and used to synthesize cDNA.
PCR is then used to amplify the Zlmda6 target sequence and to introduce an RNA
polymerase promoter, a translation initiation sequence, and an in-frame ATG
triplet.
5 PCR products are transcribed using an RNA polymerase, and the transcripts are translated ih vitro with a T7-coupled reticulocyte lysate system. The translation products are then fractionated by SDS-PAGE to determine the lengths of the translation products. The protein truncation test is described, for example, by Dracopoli et al.
(eds.), Curreyzt Protocols iiz Human Geizetics, pages 9.11.1 - 9.11.18 (John Wiley &
l0 Sons 1998).
In a related approach, Zlmda6 protein is isolated from a subject, the molecular weight of the isolated Zlmda6 protein is determined, and then compared with the molecular weight a normal Zlmda6 protein, such as a protein having the amino acid sequence of SEQ m NO: 2. A substantially lower molecular weight for the isolated 15 Zlmda6 protein is indicative that the protein is truncated. In this context, "substantially lower molecular weight" refers to at least about 10 percent lower, and preferably, at least about 25 percent lower. The Zlmda6 protein may be isolated by various procedures known in the art including immunoprecipitation, solid phase radioimmunoassay, enzyme-linked immunosorbent assay, or Western blotting. The 2 0 molecular weight of the isolated Zlmda6 protein can be determined using standard techniques, such as SDS-polyacrylamide gel electrophoresis.
The present invention also contemplates kits for performing a diagnostic assay for Zlffada6 gene expression or to detect mutations in the Zlrnda6gene.
Such kits comprise nucleic acid probes, such as double-stranded nucleic acid molecules 2 5 comprising the nucleotide sequence of SEQ m NO: 1, or a fragment thereof, as well as single-stranded nucleic acid molecules having the complement of the nucleotide sequence of SEQ m NO: 1, or a fragment thereof. Probe molecules may be DNA, RNA, oligonucleotides, and the like. Kits may comprise nucleic acid primers for performing PCR.
3 0 Preferably, such a kit contains all the necessary elements to perform a nucleic acid diagnostic assay described above. A kit will comprise at least one container comprising a Zlmda6 probe or primer. The kit may also comprise a second container comprising one or more reagents capable of indicating the presence of Zlmda6 sequences. Examples of such indicator reagents include detectable labels such 3 5 as radioactive labels, fluorochromes, chemiluminescent agents, and the like. A kit may also comprise a means for conveying to the user that the Zlmda6 probes and primers are used to detect Zlmda6 gene expression. For example, written instructions may state that the enclosed nucleic acid molecules can be used to detect either a nucleic acid molecule that encodes Zlmda6, or a nucleic acid molecule having a nucleotide sequence that is complementary to a Zlmda6-encoding nucleotide sequence. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.
12. Diagnostic Application of Anti-Zlfnda6 Antibodies The present invention contemplates the use of anti-Zlmda6 antibodies to screen biological samples in vitro for the presence of Zlmda6. In one type of in vitro assay, anti-Zlmda6 antibodies are used in liquid phase. For example, the presence of Zlmda6 in a biological sample can be tested by mixing the biological sample with a trace amount of labeled Zlmda6 and an anti-Zlmda6 antibody under conditions that promote binding between Zlmda6 and its antibody. Complexes of Zlmda6 and anti-Zlmda6 in the sample can be separated from the reaction mixture by contacting the complex with an immobilized protein which binds with the antibody, such as an Fc antibody or Staphylococcus protein A. The concentration of Zlmda6 in the biological sample will be inversely proportional to the amount of labeled Zlmda6 bound to the antibody and directly related to the amount of free-labeled Zlmda6. Illustrative biological samples include blood, urine, saliva, tissue biopsy, and autopsy material.
2 0 Alternatively, in vitro assays can be performed in which anti-Zlmda6 antibody is bound to a solid-phase carrier. For example, antibody can be attached to a polymer, such as aminodextran, in order to link the antibody to an insoluble support such as a polymer-coated bead, a plate or a tube. Other suitable in vitro assays will be readily apparent to those of skill in the art.
2 5 Tn another approach, anti-Zlmda6 antibodies can be used to detect Zlmda6s in tissue sections prepared from a biopsy specimen. Such immunochemical detection can be used to determine the relative abundance of Zlmda6 and to determine the distribution of Zlmda6 in the examined tissue. General immunochemistry techniques are well established [see, for example, Ponder, "Cell Marking Techniques and Their 3 0 Application," in Mammalian. Development: A Practical. Approach, Monk (ed.), pages 115-38 (IRL Press 1987), Coligan at pages 5.8.1-5.8.8, Ausubel (1995) at pages 14.6.1 to 14.6.13 (Wiley Interscience 1990), and Manson (ed.), Methods In Molecular Biology, Vol.
10: Imf~aur~oclzemical Protocols (The Humana Press, Ins. 1992)].
Immunochemical detection can be performed by contacting a biological 3 5 sample with an anti-Zlmda6 antibody, and then contacting the biological sample with a detestably labeled molecule that binds to the antibody. For example, the detestably labeled molecule can comprise an antibody moiety that binds to anti-Zlmda6 antibody.
Alternatively, the anti-Zlmda6 antibody can be conjugated with avidin/streptavidin (or biotin) and the detestably labeled molecule can comprise biotin (or avidin/streptavidin).
Alternatively, an anti-Zlmda6 antibody can be conjugated with a detectable label to form an anti-Zlmda6 immunoconjugate. Suitable detectable labels include, for example, a radioisotope, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label or colloidal gold. Methods of making and detecting such detestably labeled immunoconjugates are described in more detail below.
The detectable label can be a radioisotope that is detected by autoradiography. Isotopes that are particularly useful for the purpose of the present invention are 3H, lash i3ih ass and 14C.
Anti-Zlmda6 immunoconjugates can also be labeled with a fluorescent compound. The presence of a fluorescently labeled antibody is determined by exposing the imrnunoconjugate to light of the proper wavelength and detecting the resultant fluorescence. Fluorescent labeling compounds include fluorescein isothiocyanate, rhoda-mine, phycoerytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.
Alternatively, anti-Zlmda6 immunoconjugates can be detestably labeled by coupling an antibody component to a chemiluminescent compound. The presence of the chemiluminescent-tagged immunoconjugate is determined by detecting the presence 2 0 of luminescence that arises during the course of a chemical reaction.
Examples of chemi-luminescent labeling compounds include luminol, isoluminol, an aromatic acridinium ester, an imidazole, an acridinium salt and an oxalate ester.
Similarly, a bioluminescent compound can be used to label anti-Zlmda6 immunoconjugates of the present invention. Bioluminescence is a type of 2 5 chemiluminescence found in biological systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Bioluminescent compounds that are useful for labeling include luciferin, luciferase and aequorin.
Alternatively, anti-Zlmda6 immunoconjugates can be detestably labeled 3 0 by linking an anti-Zlmda6 antibody component to an enzyme. When the anti-Zlmda6-enzyme conjugate is incubated in the presence of the appropriate substrate, the enzyme moiety reacts with the substrate to produce a chemical moiety that can be detected, for example, by spectrophotometric, fluorometric or visual means. Examples of enzymes that can be used to detestably label polyspecific immunoconjugates include (3-galactosidase, 3 5 glucose oxidase, peroxidase and alkaline phosphatase.
The binding of marker moieties to anti-Zlmda6 antibodies can be accomplished using standard techniques. Typical methodology in this regard is described by Kennedy et al., Cliz~. Chim. Acta 70:1 (1976), Schurs et al., Cliza. Chizn.
Acta 81:1 (1977), Shih et al., Iht'l J. Cancer 46:1101 (1990), Stein et al., Ca>zcer Res. 50:1330 (1990), and Coligan, supra.
Moreover, the convenience and versatility of immunochemical detection can be enhanced by using anti-Zlmda6 antibodies that have been conjugated with avidin, streptavidin, and biotin (see, for example, Wilchek et al. (eds.), "Avidin-Biotin Technology," Methods Irz Ehzymology, vol. 184 (Academic Press 1990), and Bayer et al., "Immunochemical Applications of Avidin-Biotin Technology," in Methods In Molecular Biology, vol. 10, Manson (ed.), pages 149-162 (The Humana Press, Inc. 1992).
Methods for performing immunoassays are illustrated in the following:
Cook and Self, "Monoclonal Antibodies in Diagnostic Immunoassays," in Monoclozzal Antibodies: Production, Eyzgifzeerizzg, and Clinical Applicatiozz, Ritter and Ladyman (eds.), pages 180-208, (Cambridge University Press, 1995), Perry, "The Role of Monoclonal Antibodies in the Advancement of Tmmunoassay Technology," in Monoclonal AiZtibodies: Principles and Applications, Birch and Lennox (eds.), pages 107-120 (Wiley-Liss, Inc. 1995), and Diamandis, Izzzmurzoassay (Academic Press, Inc.
1996).
In a related approach, biotin- or FITC-labeled Zlmda6 can be used to identify cells that bind Zlmda6. Such can binding can be detected, for example, using 2 0 flow cytometry.
The present invention also contemplates kits for performing an immunological diagnostic assay for Zlmda6 gene expression. Such kits comprise at least one container comprising an anti-Zlmda6 antibody, or antibody fragment. A kit may also comprise a second container comprising one or more reagents capable of indicating 2 5 the presence of Zlmda6 antibody or antibody fragments. Examples of such indicator reagents include detectable labels such as a radioactive label, a fluorescent label, a chemiluminescent label, an enzyme label, a bioluminescent label, colloidal gold, and the like. A kit may also comprise a means for conveying to the user that Zlmda6 antibodies or antibody fragments are used to detect Zlmda6 protein. For example, written 3 0 instructions may state that the enclosed antibody or antibody fragment can be used to detect Zlmda6. The written material can be applied directly to a container, or the written material can be provided in the form of a packaging insert.
13. Therapeutic l7ses of Polypeptides Having ZZmda6Activity 3 5 Generally, the dosage of administered Zlmda6 (or Zlmda6 analog or fusion protein) will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition and previous medical history.
Typically, it is desirable to provide the recipient with a dosage of Zlmda6 that is in the range of from about 1 pg/kg to 10 mg/kg (amount of agent/body weight of patient), although a lower or higher dosage also may be administered as circumstances dictate.
Administration of a molecule having Zlmda6 activity to a subject can be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, by perfusion through a regional catheter, or by direct intralesional injection.
When administering therapeutic proteins by injection, the administration may be by continuous infusion or by single or multiple boluses. Alternatively, Zlmda6 can be administered as a controlled release formulation. Additional routes of administration include oral, dermal, mucosal-membrane, pulmonary, and transcutaneous. Oral delivery is suitable for polyester microspheres, zero microspheres, proteinoid microspheres, polycyanoacrylate microspheres, and lipid-based systems [see, for example, DiBase and Morrel, "Oral Delivery of Microencapsulated Proteins," in Protein Delivery: Physical Systems, Sanders and Hendren (eds.), pages 255-288 (Plenum Press 1997)]. The feasibility of an intranasal delivery is exemplified by such a mode of insulin administration [see, for example, Hinchcliffe and Illum, Adv.
Drug Deliv. Rev. 35:199 (1999)]. Dry or liquid particles comprising Zlmda6 can be prepared and inhaled with the aid of dry-powder dispersers, liquid aerosol generators, or 2 0 nebulizers [e.g., Pettit and Gombotz, TIBTECH 16:343 (1998); Patton et al., Adv. Drug Deliv. Rev. 35:235 (1999)]. This approach is illustrated by the AERX diabetes management system, which is a hand-held electronic inhaler that delivers aerosolized insulin into the lungs. Studies have shown that proteins as large as 48,000 kDa have been delivered across skin at therapeutic concentrations with the aid of low-frequency 2 5 ultrasound, which illustrates the feasibility of trascutaneous administration [Mitragotri et al., Science 269:850 (1995)]. Transdermal delivery using electroporation provides another means to administer Zlmda6 [Putts et al., Pharm. Biotechnol. 10:213 (1997)].
A pharmaceutical composition comprising a protein, polypeptide, or peptide having Zlmda6 activity can be formulated according to known methods to 3 0 prepare pharmaceutically useful compositions, whereby the therapeutic proteins are combined in a mixture with a pharmaceutically acceptable carrier. A
composition is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient patient. Sterile phosphate-buffered saline is one example of a pharmaceutically acceptable carrier. Other suitable carriers are well known to those in 3 5 the art. See, for example, Gennaro (ed.), Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company 1995).
For purposes of therapy, molecules having Zlmda6 activity and a pharmaceutically acceptable carrier are administered to a patient in a therapeutically effective amount. A combination of a protein, polypeptide, or peptide having Zlmda6 activity and a pharmaceutically acceptable carrier is said to be administered in a 5 "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient. A pharmaceutical composition comprising molecules having Zlmda6activity can be furnished in liquid form, in an aerosol, or in solid form. Proteins having Zlmda6 activity, such as human or murine 10 Zlmda6, can be administered as a conjugate with a pharmaceutically acceptable water-soluble polymer moiety, as described above. - Liquid forms, including liposome-encapsulated formulations, are illustrated by injectable solutions and oral suspensions.
Exemplary solid forms include capsules, tablets, and controlled-release forms, such as a miniosmotic pump or an implant. Other dosage forms can be devised by those skilled 15 in the art, as shown, for example, by Ansel and Popovich, Pharmaceutical Dosage Forms aizd Drug Delivery Systems, 5t1' Edition (Lea & Febiger 1990), Gennaro (ed.), Remingtoh's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company 1995), and by Ranade and Hollinger, Drug Delivery Systems (CRC Press 1996).
As an illustration, Zlmda6 pharmaceutical compositions may be supplied 2 0 as a kit comprising a container that comprises Zlmda6, a Zlmda6 agonist, or a Zlmda6 antagonist (e.g., an anti-Zlmda6 antibody or antibody fragment). Zlmda6 can be provided in the form of an injectable solution for single or multiple doses, or as a sterile powder that will be reconstituted before injection. Alternatively, such a kit can include a dry-powder dispenser, liquid aerosol generator, or nebulizer for administration of a 2 5 therapeutic polypeptide. Such a kit may further comprise written information on indications and usage of the pharmaceutical composition. Moreover, such information may include a statement that the Zlmda6 composition is contraindicated in patients with known hypersensitivity to Zlmda6.
3 0 14. Therapeutic Uses of Zlfrzda6 Nucleotide Sequences Immunomodulator genes can be introduced into a subject to enhance immunological responses. As an illustration "immunomodulator gene therapy" has been examined in model systems using vectors that express IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-15, tumor necrosis factor-a, or granulocyte-macrophage colony-3 5 stimulating factor (see, for example, Cao et al., J. Gastroeraterol.
Hepatol. 11:1053 (1996), Tahara et al., Ann. N. Y. Acad. Sci. 795:275 (1996), Rakhmilevich et al., Hum.
Gefze Ther. 8:1303 (1997), and Cao et al., Transplaretatio~2 65:325 (1998)).
In addition, a therapeutic expression vector can be provided that inhibits Zlfnda6 gene expression, such as an anti-sense molecule, a ribozyme, or an external guide sequence molecule.
There are numerous approaches to introduce an Zlmda6 gene to a subject, including the use of recombinant host cells that express Zlmda6, delivery of naked nucleic acid encoding Zlmda6, use of a cationic lipid carrier with a nucleic acid molecule that encodes Zlmda6, and the use of viruses that express Zlmda6, such as recombinant retroviruses, recombinant adeno-associated viruses, recombinant adenoviruses, and recombinant Herpes simplex viruses [HSV] [see, for example, l0 Mulligan, Science 260:926 (1993), Rosenberg et al., Science 242:1575 (1988), LaSalle et al., Sciezcce 259:988 (1993), Wolff et al., Scierzce 247:1465 (1990), Breakfield and Deluca, The New Biologist 3:203 (1991)]. In an ex vivo approach, for example, cells are isolated from a subject, transfected with a vector that expresses a Zlmda6 gene, and then transplanted into the subject.
In order to effect expression of a Zlmda6 gene, an expression vector is constructed in which a nucleotide sequence encoding a Zlmda6 gene is operably linked to a core promoter, and optionally a regulatory element, to control gene transcription. The general requirements of an expression vector are described above. .
Alternatively, a Zlmda6gene can be delivered using recombinant viral 2 0 vectors, including for example, adenoviral vectors [e.g., Kass-Eisler et al., Proc. Nat'l Acad. Sci. USA 90:11498 (1993), Kolls et al., Proc. Nat'l Acad. Sci. USA
91:215 (1994), Li et al., Hum. Gene Ther. 4:403 (1993), Vincent et al., Nat. Gezzet.
5:130 (1993), and Zabner et al., Cell 75:207 (1993)], adenovirus-associated viral vectors (Flotte et al., Proc. Nat'l Acad. Sci. USA 90:10613 (1993)], alphaviruses such as Semliki Forest Virus and Sindbis Virus [Hertz and Huang, J. Vir. 66:857 (1992), Raju and Huang, J. Vir. 65:2501 (1991), and Xiong et al., Science 243:1188 (1989)], herpes viral vectors [e.g., U.S. Patent Nos. 4,769,331, 4,859,587, 5,288,641 and 5,328,688), parvovirus vectors (Koering et al., Hum. Gerze Therap. 5:457 (1994)], pox virus vectors [Ozaki et al., Biochem. Biophys. Res. Conun. 193:653 (1993), Panicali and Paoletti, 3 0 Pz-oc. Nat'l Acad. Sci. USA 79:4927 (1982)], pox viruses, such as canary pox virus or vaccinia virus [Fisher-Hoch et al., Proc. Nat'L Acad. Sci. USA 86:317 (1989), and Flexner et al., Afzn. N. Y. Acad. Sci. 569:86 (1989)], and retroviruses [e.g., Baba et al., J.
Neurosurg 79:729 (1993), Ram et al., Cancer Res. 53:83 (1993), Takamiya et al., J.
Neurosci. Res 33:493 (1992), Vile and Hart, Cancer Res. 53:962 (1993), Vile and Hart, 3 5 Cancer Res. 53:3860 (1993), and Anderson et al., U.S. Patent No.
5,399,346]. Within various embodiments, either the viral vector itself, or a viral particle which contains the viral vector may be utilized in the methods and compositions described below.
As an illustration of one system, adenovirus, a double-stranded DNA
virus, is a well-characterized gene transfer vector for delivery of a heterologous nucleic acid molecule [for a review, see Becker et al., Meth. Cell Biol. 43:161 (1994); Douglas and Curiel, Science & Medicine 4:44 (1997)]. The adenovirus system offers several advantages including: (i) the ability to accommodate relatively large DNA
inserts, (ii) the ability to be grown to high-titer, (iii) the ability to infect a broad range of mammalian cell types, and (iv) the ability to be used with many different promoters including ubiquitous, tissue specific, and regulatable promoters. In addition, adenoviruses can be administered by intravenous injection, because the viruses are stable in the bloodstream.
Using adenovirus vectors where portions of the adenovirus genome are deleted, inserts are incorporated into the viral DNA by direct ligation or by homologous recombination with a co-transfected plasmid. In an exemplary system, the essential E1 gene is deleted from the viral vector, and the virus will not replicate unless the E1 gene is provided by the host cell. When intravenously administered to intact animals, adenovirus primarily targets the liver. Although an adenoviral delivery system with an E1 gene deletion cannot replicate in the host cells, the host's tissue will express and process an encoded heterologous protein. Host cells will also secrete the heterologous protein if the corresponding gene includes a secretory signal sequence.
Secreted 2 0 proteins will enter the circulation from tissue that expresses the heterologous gene (e.g., the highly vascularized liver).
Moreover, adenoviral vectors containing various deletions of viral genes can be used to reduce or eliminate immune responses to the vector. Such adenoviruses are E1-deleted, and in addition, contain deletions of E2A or E4 [Lusky et al., J. Virol.
72:2022 (1998); Raper et al., Hurrah GefZe Therapy 9:671 (1998)]. The deletion of E2b has also been reported to reduce immune responses [Amalfitano et al., J.
Virol. 72:926 (1998)]. By deleting the entire adenovirus genome, very large inserts of heterologous DNA can be accommodated. Generation of so called "gutless" adenoviruses, where all viral genes are deleted, are particularly advantageous for insertion of large inserts of 3 0 heterologous DNA [for a review, see Yeh. and Perricaudet, FASEB J. 11:615 (1997)].
High titer stocks of recombinant viruses capable of expressing a therapeutic gene can be obtained from infected mammalian cells using standard methods. For example, recombinant HSV can be prepared in Vero cells, as described by Brandt et al., J. Gefa. Virol. 72:2043 (1991), Herold et al., J. Gen.
Virol. 75:1211 3 5 (1994), Visalli and Brandt, Virology 185:419 (1991), Grau et al., Invest.
Ophthalmol.
Vis. Sci. 30:2474 (1989), Brandt et al., J. Virol. Metlz. 36:209 (1992), and by Brown and MacLean (eds.), HSV Virus Protocols (Humana Press 1997).
Alternatively, an expression vector comprising a Zlmda6 gene can be introduced into a subject's cells by lipofection in vivo using liposomes.
Synthetic cationic lipids can be used to prepare liposomes for in vivo transfection of a gene encoding a marker [Felgner et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987);
Mackey et al., Proc. Nat'l Acad. Sci. USA 85:8027 (1988)]. The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages.
Liposomes can be used to direct transfection to particular cell types, which is particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides (e.g., hormones or neurotransmitters), proteins such as antibodies, or non-peptide molecules can be coupled to liposomes chemically.
Electroporation is another alternative mode of administration. For example, Aihara and Miyazaki, Nature Biotechnology 16:867 (1998), have demonstrated the use of izz vivo electroporation for gene transfer into muscle.
In an alternative approach to gene therapy, a therapeutic gene may encode a Zlmda6 anti-sense RNA that inhibits the expression of Zlmda6.
Suitable sequences for anti-sense molecules can be derived from the nucleotide sequences of Zlmda6~ disclosed herein.
Alternatively, an expression vector can be constructed in which a 2 0 regulatory element is operably linked to a nucleotide sequence that encodes a ribozyme.
Ribozymes can be designed to express endonuclease activity that is directed to a certain target sequence in a mRNA molecule (see, for example, Draper and Macejak, U.S.
Patent No. 5,496,698, McSwiggen, U.S. Patent No. 5,525,468, Chowrira and McSwiggen, U.S. Patent No. 5,631,359, and Robertson and Goldberg, U.S. Patent No.
2 5 5,225,337). In the context of the present invention, ribozymes include nucleotide sequences that bind with Zlmda6 mRNA.
In another approach, expression vectors can be constructed in which a regulatory element directs the production of RNA transcripts capable of promoting RNase P-mediated cleavage of mRNA molecules that encode an Zlrrada6 gene. According to this 3 0 approach, an external guide sequence can be constructed for directing the endogenous ribozyme, RNase P, to a particular species of intracellular mRNA, which is subsequently cleaved by the cellular ribozyme (see, for example, Altman et al., U.S. Patent No.
5,168,053, Yuan et al., Science 263:1269 (1994), Pace et al., international publication No. WO 96/18733, George et al., international publication No. WO 96/21731, and 3 5 Werner et al., international publication No. WO 97/33991). Preferably, the external guide sequence comprises a ten to fifteen nucleotide sequence complementary to Zlmda6 mRNA, and a 3'-NCCA nucleotide sequence, wherein N is preferably a purine. The external guide sequence transcripts bind to the targeted mRNA species by the formation of base pairs between the mRNA and the complementary external guide sequences, thus promoting cleavage of mRNA by RNase P at the nucleotide located at the 5'-side of the base-paired region.
In general, the dosage of a composition comprising a therapeutic vector having a Zlmda6 nucleotide acid sequence, such as a recombinant virus, will vary depending upon such factors as the subject's age, weight, height, sex, general medical condition and previous medical history. Suitable routes of administration of therapeutic vectors include intravenous injection, intraarterial injection, intraperitoneal injection, and intramuscular injection.
A composition comprising viral vectors, non-viral vectors, or a combination of viral and non-viral vectors of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby vectors or viruses are combined in a mixture with a pharmaceutically acceptable carrier.
As noted above, a composition such as phosphate-buffered saline is said to be a "pharmaceutically acceptable carrier" if its administration can be tolerated by a recipient subject. Other suitable carriers are well-known to those in the art [see, for example, Reznington's Pharmaceutical Sciefzces, 19th Ed. (Mack Publishing Co.
1995), and Gilman's the Pharmacological Basis of Therapeutics, 7th Ed. (MacMillan 2 0 Publishing Co. 1985)].
For purposes of therapy, a therapeutic gene expression vector, or a recombinant virus comprising such a vector, and a pharmaceutically acceptable carrier are administered to a subject in a therapeutically effective amount. A
combination of an expression vector (or virus) and a pharmaceutically acceptable carrier is said to be 2 5 administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient subject When the subject treated with a therapeutic gene expression vector or a recombinant virus is a human, then the therapy is preferably somatic cell gene therapy.
3 0 That is, the preferred treatment of a human with a therapeutic gene expression vector or a recombinant virus does not entail introducing into cells a nucleic acid molecule that can form part of a human germ line and be passed onto successive generations (i.e., human germ line gene therapy).
I5. Production of Transgenic Mice Transgenic mice can be engineered to over-express the human or murine Zlmda6gene in all tissues or under the control of a tissue-specific or tissue-preferred regulatory element. These over-producers of Zlmda6 can be used to characterize the 5 phenotype that results from over-expression, and the transgenic animals can serve as models for human disease caused by excess Zlmda6. Transgenic mice that over-express Zlmda6 also provide model bioreactors for production of Zlmda6 in the milk or blood of larger animals. Methods for producing transgenic mice are well-known to those of skill in the art [see, for example, Jacob, "Expression and Knockout of Interferons in 10 Transgenic Mice," in Overexpressiou and Kfaockout of Cytokiues in Trafzsgenic Mice, Jacob (ed.), pages 111-124 (Academic Press, Ltd. 1994), Monastersky and Robl (eds.), Strategies ire Trarcsgeuic Animal Science (ASM Press 1995), and Abbud and Nilson, "Recombinant Protein Expression in Transgenic Mice," in Gene Expression Systems:
Using Nature for the Art of Expression, Fernandez and Hoeffler (eds.), pages 15 (Academic Press, Inc. 1999)].
For example, a method for producing a transgenic mouse that expresses a Zlnada6 gene can begin with adult, fertile males (studs) [B6C3f1, 2-8 months of age (Taconic Farms, Germantown, NY)], vasectomized males (duds) [B6D2f1, 2-8 months, (Taconic Farms)], prepubescent fertile females (donors) [B6C3f1, 4-5 weeks, (Taconic 2 0 Farms)] and adult fertile females (recipients) [B6D2f1, 2-4 months, (Taconic Farms)].
The donors are acclimated for one week and then injected with approximately 8 IU/mouse of Pregnant Mare's Serum gonadotrophin (Sigma Chemical Company; St.
Louis, MO) LP., and 46-47 hours later, 8 ILJ/mouse of human Chorionic Gonadotropin (hCG (Sigma)) LP. to induce superovulation. Donors are mated with studs subsequent 2 5 to hormone injections. Ovulation generally occurs within 13 hours of hCG
injection.
Copulation is confirmed by the presence of a vaginal plug the morning following mating.
Fertilized eggs are collected under a surgical scope. The oviducts are collected and eggs are released into urinanalysis slides containing hyaluronidase 3 0 (Sigma). Eggs are washed once in hyaluronidase, and twice in Whitten's W640 medium [described, for example, by Menino and O'Claray, Biol. Reprod. 77:159 (1986), and Dienhart and Downs, Zygote 4:129 (1996)] that has been incubated with 5% C02, 5%
02, and 90% NZ at 37°C. The eggs are then stored in a 37°C/5%
C02 incubator until microinjection.
3 5 Ten to twenty micrograms of plasmid DNA containing a Zlmda6 encoding sequence is linearized, gel-purified, and resuspended in 10 mM Tris-HCl (pH
7.4), 0.25 mM EDTA (pH 8.0), at a final concentration of 5-10 nanograms per microliter for microinjection. Plasmid DNA is microinjected into harvested eggs contained in a drop of W640 medium overlaid by warm, CO2 equilibrated mineral oil.
The DNA is drawn into an injection needle (pulled from a 0.75mm m, lmm OD
borosilicate glass capillary), and injected into individual eggs. Each egg is penetrated with the injection needle, into one or both of the haploid pronuclei.
Picoliters of DNA
are injected into the pronuclei, and the injection needle withdrawn without coming into contact with the nucleoli. The procedure is repeated until all the eggs are injected.
Successfully microinjected eggs are transferred into an organ tissue-culture dish with pre-gassed W640 medium for storage overnight in a 37°C/5% C02 incubator.
The following day, two-cell embryos are transferred into pseudopregnant recipients. The recipients are identified by the presence of copulation plugs, after copulating with vasectomized duds. Recipients are anesthetized and shaved on the dorsal left side and transferred to a surgical microscope. A small incision is made in the skin and through the muscle wall in the middle of the abdominal area outlined by the ribcage, the saddle, and the hind leg, midway between knee and spleen. The reproductive organs are exteriorized onto a small surgical drape. The fat pad is stretched out over the surgical drape, and a baby serrefine (Roboz, Rockville, MD) is attached to the fat pad and left hanging over the back of the mouse, preventing the organs from sliding back in.
2 0 With a fine transfer pipette containing mineral oil followed by alternating W640 and air bubbles, 12-17 healthy two-cell embryos from the previous day's injection are transferred into the recipient. The swollen ampulla is located and holding the oviduct between the ampulla and the bursa, a nick in the oviduct is made with a 28 g needle close to the bursa, making sure not to tear the ampulla or the bursa.
2 5 The pipette is transferred into the nick in the oviduct, and the embryos are blown in, allowing the first air bubble to escape the pipette. The fat pad is gently pushed into the peritoneum, and the reproductive organs allowed to slide in. The peritoneal wall is closed with one suture and the skin closed with a wound clip. The mice recuperate on a 37°C slide warmer for a minimum of four hours. The recipients are returned to cages in 3 o pairs, and allowed 19-21 days gestation. After birth, 19-21 days postpartum is allowed before weaning. The weanlings are sexed and placed into separate sex cages, and a 0.5 cm biopsy (used for genotyping) is snipped off the tail with clean scissors.
Genomic DNA is prepared from the tail snips using, for example, a QIAGEN DNEASY kit following the manufacturer's instructions. Genomic DNA is 3 5 analyzed by PCR using primers designed to amplify a Zlmda6 gene or a selectable marker gene that was introduced in the same plasmid. After animals are confirmed to be transgenic, they are back-crossed into an inbred strain by placing a transgenic female with a wild-type male, or a transgenic male with one or two wild-type female(s). As pups are born and weaned, the sexes are separated, and their tails snipped for genotyping. To check for expression of a transgene in a live animal, a partial hepatectomy is performed. A surgical prep is made of the upper abdomen directly below the zyphoid process. Using sterile technique, a small 1.5-2 cm incision is made below the sternum and the left lateral lobe of the liver exteriorized. Using 4-0 silk, a tie is made around the lower lobe securing it outside the body cavity. An atraumatic clamp is used to hold the tie while a second loop of absorbable Dexon (American Cyanamid;
Wayne, N.J.) is placed proximal to the first tie. A distal cut is made from the Dexon tie and approximately 100 mg of the excised liver tissue is placed in a sterile petri dish.
The excised liver section is transferred to a 14 ml polypropylene round bottom tube and snap frozen in liquid nitrogen and then stored on dry ice. The surgical site is closed with suture and wound clips, and the animal's cage placed on a 37°C
heating pad for 24 hours post operatively. The animal is checked daily post operatively and the wound clips removed 7-10 days after surgery. The expression level of Zlmda6 mRNA is examined for each transgenic mouse using an RNA solution hybridization assay or polyrnerase chain reaction.
In addition to producing transgenic mice that over-express Zlmda6, it is useful to engineer transgenic mice with either abnormally low or no expression of the 2 0 gene. Such transgenic mice provide useful models for diseases associated with a lack of Zlmda6. As discussed above, Zlmda6 gene expression can be inhibited using anti-sense genes, ribozyme genes, or external guide sequence genes. To produce transgenic mice that under-express the Zlmda6 gene, such inhibitory sequences are targeted to marine Zlmda6 mRNA. Methods for producing transgenic mice that have abnormally 2 5 low expression of a particular gene are known to those in the art [see, for example, Wu et al., "Gene Underexpression in Cultured Cells and Animals by Antisense DNA
and RNA Strategies," in Methods irz Gefae Biotechnology, pages 205-224 (CRC Press 1997)].
An alternative approach to producing transgenic mice that have little or 3 0 no Zlrnda6 gene expression is to generate mice having at least one normal Zlmda6 allele replaced by a nonfunctional Zlmda6 gene. One method of designing a nonfunctional Zlr~ada6 gene is to insert another gene, such as a selectable marker gene, within a nucleic acid molecule that encodes marine Zlmda6. Standard methods for producing these so-called "knockout mice" are known to those skilled in the art [see, 3 5 for example, Jacob, "Expression and Knockout of Interferons in Transgenic Mice," in Overexpression and Knockout of Cytokines ira Trarasge>zic Mice, Jacob (ed.), pages 111-124 (Academic Press, Ltd. 1994), and Wu et al., "New Strategies for Gene Knockout,"
in Methods in Gene Biotechnology, pages 339-365 (CRC Press 1997)].
I5. EDUCATIONAL KIT UTILITY OF ZLMDA6 POLYPEPTIDES, POLYNUCLEOTIDES AND ANTIBODIES.
Polynucleotides and polypeptides of the present invention will additionally find use as educational tools as a laboratory practicum kits for courses related to genetics and molecular biology, protein chemistry and antibody production and analysis.
Due to its unique polynucleotide and polypeptide sequence molecules of Zlmda6 can be used as standards or as "unknowns" for testing purposes. For example, Zlmda6 polynucleotides can be used as an aid, such as, for example, to teach a student how to prepare expression constructs for bacterial, viral, andlor mammalian expression, including fusion constructs, wherein Zlmda6 is the gene to be expressed; for determining the restriction endonuclease cleavage sites of the polynucleotides;
determining mRNA and DNA localization of Zlmda6 polynucleotides in tissues (i.e., by Northern and Southern blotting as well as polymerase chain reaction); and for identifying related polynucleotides and polypeptides by nucleic acid hybridization.
Zlmda6 polypeptides can be used educationally as an aid to teach preparation of antibodies; identifying proteins by Western blotting; protein purification;
2 0 determining the weight of expressed Zlmda6 polypeptides as a ratio to total protein expressed; identifying peptide cleavage sites; coupling amino and carboxyl terminal tags; amino acid sequence analysis, as well as, but not limited to monitoring biological activities of both the native and tagged protein (i.e., receptor binding, signal transduction, proliferation, and differentiation) in vitro and i.zz vivo.
Zlmda6 2 5 polypeptides can also be used to teach analytical skills such as mass spectrometry, circular dichroism to determine conformation, especially of the four alpha helices, x-ray crystallography to determine the three-dimensional structure in atomic detail, nuclear magnetic resonance spectroscopy to reveal the structure of proteins in solution. For example, a kit containing the Zlmda6 can be given to the student to analyze.
Since the 3 0 amino acid sequence would be known by the professor, the protein can be given to the student as a test to determine the skills or develop the skills of the student, the teacher would then know whether or not the student has correctly analyzed the polypeptide.
Since every polypeptide is unique, the educational utility of Zlmda6 would be unique unto itself.
The antibodies that bind specifically to Zlmda6 can be used as a teaching aid to instruct students how to prepare affinity chromatography columns to purify Zlmda6, cloning and sequencing the polynucleotide that encodes an antibody and thus as a practicum for teaching a student how to design humanized antibodies. The Zlmda6 gene, polypeptide or antibody would then be packaged by reagent companies and sold to universities so that the students gain skill in art of molecular biology.
Because each gene and protein is unique, each gene and protein creates unique challenges and learning experiences for students in a lab practicum. Such educational kits, containing the Zlmda6 gene, polypeptide or antibody, are considered within the scope of the present invention.
From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
SEQUENCE LISTING
<110> ZymoGenetics, Inc.
<120> Human cyclic nucleotide binding-protein <130> 00-97PC
<150> 60/241,513 <151> 2000-10-18 <160> 41 <170> FastSEQ for Windows Version 3.0 <210>1 <211>1792 <212>DNA
<213>Homo Sapiens <220>
<221> CDS
<222> (1)...(1731) <400> 1 atg agg aga cat atg gta act tat gcc tgg cag ctc ctg aag aag gaa 48 Met Arg Arg His Met Ual Thr Tyr Ala Trp Gln Leu Leu Lys Lys Glu ctg gga ctg tac cag ctc gcc atg gat atc atc ata atg atc cga gtg 96 Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Val tgt aaa atg ttc cgc caa ggc ctc agg gga ttc cgg gaa tat caa atc 144 Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile att gag act get cac tgg aag cac cct atc ttc tcc ttc tgg gat aaa 192 Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys aag atg caa agc cga gtc aca ttt gat acc atg gac ttc att gca gag 240 Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu gag ggt cac ttt cct cca aag gcc att cag atc atg cag aag aag cct 288 Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro tcc tgg aga'aca gag gat gag atc cag gcc gtc tgt aac atc ttg cag 336 Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln gtt ctg gat agc tat cgg aac tac gca gag ccc ctg cag ctg ctc ctg 384 Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu .
gcc aaa gtc atg cgc ttt gaa cgg ttt ggt cgc agg cgt gtg atc atc 432 Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile aag aag ggg cag aag ggc aac agc ttt tat ttc atc tac ctg ggc aca 480 Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr gtt gca ata acc aag gac gag gat ggc agc agt gcc ttc cta gat ccc 528 Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro cac ccg aaa ttg ctg cac aag ggt agc tgt ttt ggg gaa atg gac gtt 576 His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual ctg cat get tca gtg agg agg tcc acc atc gtc tgt atg gaa gaa acg 624 Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr gag ttc ctg gtt gtt gac cgg gag gac ttc ttt get aat aag ctg gac 672 Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp cag gaa gtt cag aag gat get cag tat cgg ttt gaa ttt ttt agg aag 720 Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys atg gag ctg ttt gca tca tgg tct gat gag aag ctc tgg cag ctg gta 768 Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Val gcc atg gcg aag ata gag agg ttc tcg tat ggg cag ctg atc tca aaa 816 Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys gat ttt gga gag tca ccc ttc atc atg ttt atc agc aag ggc agc tgt 864 Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys gaa gtc ctg cgg ctg ttg gac ctt ggg gcc tcc cct tcc tac cgt aga 912 Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg tgg atc tgg cag cac ctg gag ctg ata gat ggc aga cct ctg aag acc 960 Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr cac ctg agt gaa tac tct cct atg gaa aga ttt aag gaa ttc cag atc 1008 His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile aaa tca tat cct ctg caa gac ttt agc tcc ttg aaa ctt cca cat ctc 1056 Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu aaa aaa gcc tgg ggg cta cag ggg aca agc ttc agc agg aag atc aga 1104 Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg acc tca gga gac act ctc ccc aag atg ctg ggc ccg aag atc caa tcc 1152 Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser agg cct get cag tcg atc aaa tgt gcc atg atc aat atc aag cct ggt 1200 Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Tle Asn Ile Lys Pro Gly gag ctc ccc aag gag get gca gtg ggg gcc tac gtg aag gtg cac act 1248 Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr 405 ~ 410 415 gtg gag cag gga gaa att ttg ggt ctt cac cag gcc ttc ctt cca gag 1296 Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu ggt gaa tgc gac aca cga ccc ttg atc ctg atg agc ctg gga aat gag 1344 Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu ttg ata cgg ata agg aag gaa ata ttt tat gaa ctg att gac aat gat 1392 Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp gac gag atg ata aaa aag ttg tta aag ctc aat att gca ttc ccc agt 1440 Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser gat gaa gat atg tgc cag aag ttc ctc cag cag aac agc tgg aat atc 1488 Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile ttt cgg aag gac ctg ttg cag ctg ctc gtg gag cct tgc caa agt caa 1536 Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln ctg ttc act cca aac cgg ccc aag aag aga gag atc tac aac cct aag 1584 Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys tct gtg gtc ctg gat ttg tgc agc atc aac aag acg act aaa cct cgt 1632 Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg tat cct att ttt atg gca ccc cag aaa tac ctc ccc cca ttg agg att 1680 Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile gtc caa gcc atc aaa gca cct cgg tac aaa atc cga gaa ctc ttg get 1728 Ual Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu Leu Leu Ala tag tgtaagagca caggggtcct tatttaggac aaataaagga tggtggattg 1781 ggaaaaaaaa a 1792 <210>2 <211>576 <212>PRT
<213>Homo Sapiens <400> 2 Met Arg Arg His Met Ual Thr Tyr Ala Trp Gln Leu Leu Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Tle Ile Met Ile Arg Ual Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met A1a Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln Nis Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile Ual Gln Ala Tle Lys Ala Pro Arg Tyr Lys Ile Arg Glu Leu Leu Ala <210> 3 <211> 32 .
<212> PRT
<213> Homo sapiens <400> 3 Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp.Ile Ile Ile Met Ile Arg Val Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu <210>4 <211>33 <212>PRT
<213>Homo Sapiens <400> 4 Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg <210>5 <211>25 <212>PRT
<213>Homo sapiens <400> 5 Asp Lys Lys Met Gln Ser Arg Val Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys <210>6 <211>24 <212>PRT
<213>Homo sapiens <400> 6 Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu <210>7 <211>40 <212>PRT
<213>Homo Sapiens <400> 7 Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn <210>8 <211>33 <212>PRT
<213>Homo sapiens <400> 8 Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln <210>9 <211>37 <212>PRT
<213>Homo Sapiens <400> 9 Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn <210>10 <211>34 <212>PRT
<213>Homo sapiens <400> 10 Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp <210>11 <211>53 <212>PRT
<213>Homo Sapiens <400> 11 LysAsp GluAspGly Ser Ser PheLeuAsp Pro Pro Lys Ala His Leu LeuHis LysGlySer Cys Phe GluMetAsp Ual His Ala Gly Leu Ser UalArg ArgSerThr Ile Ual MetGluGlu Thr Phe Leu Cys Glu Ual UalAsp ArgGluAsp 50 ., <210>12 <211>38 <212>PRT
<213>Homo Sapiens <400> 12 Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys <210>13 <211>31 <212>PRT
<213>Homo Sapiens <400> 13 Asp G1u Lys Leu Trp Gln Leu Val Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe <210>14 <211>41 <212>PRT
<213>Homo sapiens <400> 14 AspGlu LeuTrp Gln Leu Ala Met Ala Lys Ile Glu Lys Val Arg Phe SerTyr GlnLeu Ile Ser Asp Phe Gly Glu Ser Pro Gly Lys Phe Ile MetPhe SerLys Gly Ser Glu Ile Cys <210>15 <211>33 <212>PRT
<213>Homo sapiens <400> 15 Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>16 <211>35 <212>PRT
<213>Homo sapiens <400> 16 Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu <210>17 <211>63 <212>PRT
<213>Homo sapiens <400> 17 Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys <210>18 <211>40 <212>PRT
<213>Homo sapiens <400> 18 Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu l 5 10 15 Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys <210>19 <211>24 <212>PRT
<213>Homo sapiens <400> 19 Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln i <210>20 <211>41 <212>PRT
<213>Homo sapiens <400> 20 ArgLys ArgThr Ser Gly Thr Leu Pro Lys Met Leu Ile Asp Gly Pro LysIle SerArg Pro Ala Ser Ile Lys Cys Ala Met Gln Gln Ile Asn IleLys GlyGlu Leu Pro Glu Pro Lys <210>21 <211>67 <212>PRT
<213>Homo sapiens <400> 21 Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Val Gly Ala Tyr Val Lys Val His Thr Val Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu <210>22 <211>54 <212>PRT
<213>Homo sapiens <400> 22 Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp <210>23 <211>51 <212>PRT
<213>Nomo sapiens <400> 23 Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>24 <211>53 <212>PRT
<213>Homo Sapiens <400> 24 Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg <210>25 <211>45 <212>PRT
<213>Homo Sapiens <400> 25 Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg <210>26 <211>36 <212>PRT
<213>Homo Sapiens <400> 26 Asn Lys.Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys 1 5 10 1.5 Tyr Leu Pro Pro Leu Arg Ile Val Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu <210>27 <211>112 <212>PRT
<213>Homo Sapiens <400> 27 ' Lys Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Val Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu 20 25 ~ 30 Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Val Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Val Cys Asn Ile Leu Gln Val Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln <210> 28 <211> 116 <212> PRT
<213> Homo sapiens <400> 28 PhePro ProLysAla IleGlnIle MetGlnLys LysProSer TrpArg ThrGlu AspGluIle GlnAlaUal CysAsnIle LeuGlnUal LeuAsp SerTyr ArgAsnTyr AlaGluPro LeuGlnLeu LeuLeuAla LysUal MetArg PheGluArg PheGlyArg ArgArgUal IleIleLys LysGly GlnLys GlyAsnSer ,PheTyrPhe IleTyrLeu GlyThrUal AlaIle ThrLys AspGluAsp GlySerSer AlaPheLeu AspProHis ProLys LeuLeu HisLysGly SerCysPhe GlyGluMet AspUalLeu HisAla SerUal ArgArg <210> 29 <211> 142 <212> PRT
<213> Homo sapiens <400> 29 GluArg PheGlyArg ArgArgUal IleIleLys LysGlyGln LysGly AsnSer PheTyrPhe IleTyrLeu GlyThrUal AlaIleThr LysAsp GluAsp GlySerSer AlaPheLeu AspProHis ProLysLeu LeuHis LysGly SerCysPhe GlyGluMet AspUalLeu HisAlaSer UalArg ArgSer ThrIleUal CysMetGlu GluThrGlu PheLeuUal UalAsp ArgGlu AspPhePhe AlaAsnLys LeuAspGln GluUalGln LysAsp AlaGln TyrArgPhe GluPhePhe ArgLysMet GluLeuPhe AlaSer TrpSer AspGluLys LeuTrpGln LeuUalAla MetAlaLys IleGlu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu <210>30 <211>130 <212>PRT
<213>Homo Sapiens <400> 30 Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Val Leu His Ala Ser Val Arg Arg Ser Thr Ile Val Cys Met Glu Glu Thr Glu Phe Leu Val Val Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Val Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu LyS Leu Trp Gln Leu Val Ala Met Ala Lys Ile Glu Arg Phe, Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>31 <211>117 <212>PRT
<213>Homo Sapiens <400> 31 Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Val Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln <210>32 <211>92 <212>PRT
<213>Homo Sapiens <400> 32 Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met 50 55 ' 60 Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu <210>33 <211>164 <212>PRT
<213>Homo Sapiens <400> 33 Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Val Gly Ala Tyr Val Lys Val His Thr Val Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>34 <211>144 <212>PRT
<213>Homo sapiens <400> 34 Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu 1 5 10 l5 Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Tle Tyr Asn Pro Lys Ser Val Val Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg Tyr Pro Ile Phe Met Ala Pro Gln Lys Tyr Leu Pro Pro Leu Arg Ile Val Gln Ala Ile Lys Ala Pro Arg Tyr Lys Ile Arg Glu <210> 35 <211> 258 <212> PRT
<213> Homo sapiens <400> 35 Lys Glu Leu Gly Leu Tyr Gln Leu Ala Met Asp Ile Ile Ile Met Ile Arg Ual Cys Lys Met Phe Arg Gln Gly Leu Arg Gly Phe Arg Glu Tyr Gln Ile Ile Glu Thr Ala His Trp Lys His Pro Ile Phe Ser Phe Trp Asp Lys Lys Met Gln Ser Arg Ual Thr Phe Asp Thr Met Asp Phe Ile Ala Glu Glu Gly His Phe Pro Pro Lys Ala Ile Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys <210>36 <211>243 <212>PRT
<213>Homo sapiens <400> 36 Gln Ile Met Gln Lys Lys Pro Ser Trp Arg Thr Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr .Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gin Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys <210>37 <211>244 <212>PRT
<213>Homo sapiens <400> 37 Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg Trp Ile Trp Gln His Leu Glu Leu Ile Asp Gly Arg Pro Leu Lys Thr His Leu Ser Glu Tyr Ser Pro Met Glu Arg Phe Lys Glu Phe Gln Ile Lys Ser Tyr Pro Leu Gln Asp Phe Ser Ser Leu Lys Leu Pro His Leu Lys~ Lys Ala Trp Gly Leu Gln Gly Thr Ser Phe Ser Arg Lys Ile Arg Thr Ser Gly Asp Thr Leu Pro Lys Met Leu Gly Pro Lys Ile Gln Ser Arg Pro Ala Gln Ser Ile Lys Cys Ala Met Ile Asn Ile Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Tle Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Ual Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys <210>38 <211>147 <212>PRT
<213>Homo Sapiens <400> 38 Lys Pro Gly Glu Leu Pro Lys Glu Ala Ala Ual Gly Ala Tyr Ual Lys Ual His Thr Ual Glu Gln Gly Glu Ile Leu Gly Leu His Gln Ala Phe Leu Pro Glu Gly Glu Cys Asp Thr Arg Pro Leu Ile Leu Met Ser Leu Gly Asn Glu Leu Ile Arg Ile Arg Lys Glu Ile Phe Tyr Glu Leu Ile Asp Asn Asp Asp Glu Met Ile Lys Lys Leu Leu Lys Leu Asn Ile Ala Phe Pro Ser Asp Glu Asp Met Cys Gln Lys Phe Leu Gln Gln Asn Ser Trp Asn Ile Phe Arg Lys Asp Leu Leu Gln Leu Leu Val Glu Pro Cys Gln Ser Gln Leu Phe Thr Pro Asn Arg Pro Lys Lys Arg Glu Ile Tyr Asn Pro Lys Ser Ual Ual Leu Asp Leu Cys Ser Ile Asn Lys Thr Thr Lys Pro Arg <210>39 <211>144 <212>PRT
<213>Homo Sapiens <400> 39 LeuPro GluGlyGlu CysAspThr ArgProLeu IleLeuMet SerLeu GlyAsn GluLeuIle ArgIleArg LysGluIle PheTyrGlu LeuIle AspAsn AspAspGlu MetIleLys LysLeuLeu LysLeuAsn IleAla PhePro SerAspGlu AspMetCys GlnLysPhe LeuGlnGln AsnSer TrpAsn IlePheArg LysAspLeu LeuGlnLeu LeuUalGlu ProCys GlnSer GlnLeuPhe ThrProAsn ArgProLys LysArgGlu IleTyr AsnPro LysSerUal UalLeuAsp LeuCysSer IleAsnLys ThrThr LysPro ArgTyrPro IlePheMet AlaProGln LysTyrLeu ProPro 115 120 l25 LeuArg IleUalGln AlaIleLys AlaProArg TyrLysIle ArgGlu <210>40 <211>204 <212>PRT
<213>Homo sapiens <400> 40 Glu Asp Glu Ile Gln Ala Ual Cys Asn Ile Leu Gln Ual Leu Asp Ser Tyr Arg Asn Tyr Ala Glu Pro Leu Gln Leu Leu Leu Ala Lys Ual Met Arg Phe Glu Arg Phe Gly Arg Arg Arg Ual Ile Ile Lys Lys Gly Gln Lys Gly Asn Ser Phe Tyr Phe Ile Tyr Leu Gly Thr Ual Ala Ile Thr Lys Asp Glu Asp Gly Ser Ser Ala Phe Leu Asp Pro His Pro Lys Leu Leu His Lys Gly Ser Cys Phe Gly Glu Met Asp Ual Leu His Ala Ser Ual Arg Arg Ser Thr Ile Ual Cys Met Glu Glu Thr Glu Phe Leu Ual Ual Asp Arg Glu Asp Phe Phe Ala Asn Lys Leu Asp Gln Glu Ual Gln Lys Asp Ala Gln Tyr Arg Phe Glu Phe Phe Arg Lys Met Glu Leu Phe Ala Ser Trp Ser Asp Glu Lys Leu Trp Gln Leu Ual Ala Met Ala Lys Ile Glu Arg Phe Ser Tyr Gly Gln Leu Ile Ser Lys Asp Phe Gly Glu Ser Pro Phe Ile Met Phe Ile Ser Lys Gly Ser Cys Glu Ual Leu Arg Leu Leu Asp Leu Gly Ala Ser Pro Ser Tyr Arg Arg <210>41 <211>16 <212>DNA
<213>Homo Sapiens <400> 41 ggsggsgggg sggggs 16
Claims (3)
1. A polynucleotide that encodes a polypeptide comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 2,-40.
2. A polypeptide comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-40.
3. An antibody that selectively binds to a polypeptide comprised of an amino acid sequence selected from the group consisting of SEQ ID NOs: 2-40.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24151300P | 2000-10-18 | 2000-10-18 | |
US60/241,513 | 2000-10-18 | ||
PCT/US2001/032515 WO2002032956A2 (en) | 2000-10-18 | 2001-10-17 | Human cyclic nucleotide binding protein |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2426624A1 true CA2426624A1 (en) | 2002-04-25 |
Family
ID=22910984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002426624A Abandoned CA2426624A1 (en) | 2000-10-18 | 2001-10-17 | Human cyclic nucleotide binding protein |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1326979A2 (en) |
AU (1) | AU2002224427A1 (en) |
CA (1) | CA2426624A1 (en) |
WO (1) | WO2002032956A2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6436703B1 (en) * | 2000-03-31 | 2002-08-20 | Hyseq, Inc. | Nucleic acids and polypeptides |
-
2001
- 2001-10-17 WO PCT/US2001/032515 patent/WO2002032956A2/en not_active Application Discontinuation
- 2001-10-17 EP EP01987770A patent/EP1326979A2/en not_active Withdrawn
- 2001-10-17 AU AU2002224427A patent/AU2002224427A1/en not_active Abandoned
- 2001-10-17 CA CA002426624A patent/CA2426624A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2002032956A3 (en) | 2003-04-03 |
EP1326979A2 (en) | 2003-07-16 |
WO2002032956A2 (en) | 2002-04-25 |
AU2002224427A1 (en) | 2002-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020156259A1 (en) | Human adenosine deaminase | |
US20030017980A1 (en) | Mammalian Wnt polypeptide-5 | |
US20020160953A1 (en) | Mammalian glycoprotein hormone-1 | |
US6468776B1 (en) | Human serine protease | |
US20020037551A1 (en) | New member of the lectin superfamily | |
US20030077751A1 (en) | Zvwf1: a member of the von Willebrand factor type a domain superfamily | |
US6423526B1 (en) | Human serine protease | |
US20040018549A1 (en) | Human secreted protein, Zsig47 | |
US6524822B1 (en) | Polynucleotide encoding human serpin | |
US20020091239A1 (en) | Human chemokine | |
US20020151029A1 (en) | Human serine protease | |
CA2360577A1 (en) | Zlrr3: a human leucine-rich repeat protein | |
US20020150974A1 (en) | Placental protein having multiple EGF-like domains | |
CA2426624A1 (en) | Human cyclic nucleotide binding protein | |
US20020150991A1 (en) | Insulin homolog polypeptide Zins5 | |
US20020142396A1 (en) | Mammalian cystatin-8 and its use to inhibit cancer procoagulant protein | |
US20020155561A1 (en) | Mammalian disulfide core protein-4 | |
US20030143678A1 (en) | Zlrr3: a human leucine-rich repeat protein | |
CA2358873A1 (en) | Human polypeptide having multiple epidermal growth factor (egf) -like domains, zntr2 | |
US20020151013A1 (en) | Zalpha13: a human secreted protein | |
US20020132996A1 (en) | Secretory protein-48 | |
US20030032778A1 (en) | New member of the human syntaxin/epimorphin family | |
US20030170824A1 (en) | Human chemokine | |
US20030108995A1 (en) | Human proteoglycan | |
CA2393527A1 (en) | Educational kit and method using tumor necrosis factor-stimulated gene and protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Discontinued |