CA2360526C - Perforated sheet of material - Google Patents
Perforated sheet of material Download PDFInfo
- Publication number
- CA2360526C CA2360526C CA002360526A CA2360526A CA2360526C CA 2360526 C CA2360526 C CA 2360526C CA 002360526 A CA002360526 A CA 002360526A CA 2360526 A CA2360526 A CA 2360526A CA 2360526 C CA2360526 C CA 2360526C
- Authority
- CA
- Canada
- Prior art keywords
- perforation
- sheet
- wipes
- length
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 58
- 239000000203 mixture Substances 0.000 claims description 98
- 239000007788 liquid Substances 0.000 claims description 23
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- 238000000926 separation method Methods 0.000 abstract 1
- -1 polyethylene tetraphthalate Polymers 0.000 description 39
- 239000000758 substrate Substances 0.000 description 34
- 230000000249 desinfective effect Effects 0.000 description 24
- 239000004094 surface-active agent Substances 0.000 description 23
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 20
- 125000000217 alkyl group Chemical group 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000004140 cleaning Methods 0.000 description 16
- 239000002738 chelating agent Substances 0.000 description 15
- 239000002253 acid Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000003921 oil Substances 0.000 description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 12
- 239000000123 paper Substances 0.000 description 12
- 229960003237 betaine Drugs 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 239000000341 volatile oil Substances 0.000 description 11
- 239000007844 bleaching agent Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000002736 nonionic surfactant Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- 239000003995 emulsifying agent Substances 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- MGSRCZKZVOBKFT-UHFFFAOYSA-N thymol Chemical compound CC(C)C1=CC=C(C)C=C1O MGSRCZKZVOBKFT-UHFFFAOYSA-N 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- IZWSFJTYBVKZNK-UHFFFAOYSA-O N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonic acid Chemical compound CCCCCCCCCCCC[N+](C)(C)CCCS(O)(=O)=O IZWSFJTYBVKZNK-UHFFFAOYSA-O 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 7
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 6
- 239000002888 zwitterionic surfactant Substances 0.000 description 6
- 125000006538 C11 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 239000003945 anionic surfactant Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 4
- 229920000297 Rayon Polymers 0.000 description 4
- 239000005844 Thymol Substances 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Substances OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000002191 fatty alcohols Chemical class 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-K pentetate(3-) Chemical compound OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O QPCDCPDFJACHGM-UHFFFAOYSA-K 0.000 description 4
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002516 radical scavenger Substances 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical group 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- 229960000790 thymol Drugs 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 3
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 3
- 239000005770 Eugenol Substances 0.000 description 3
- 239000005792 Geraniol Substances 0.000 description 3
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- 240000004760 Pimpinella anisum Species 0.000 description 3
- 235000012550 Pimpinella anisum Nutrition 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 239000004599 antimicrobial Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229960002217 eugenol Drugs 0.000 description 3
- 229940113087 geraniol Drugs 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 125000001165 hydrophobic group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000004034 viscosity adjusting agent Substances 0.000 description 3
- DCSCXTJOXBUFGB-JGVFFNPUSA-N (R)-(+)-Verbenone Natural products CC1=CC(=O)[C@@H]2C(C)(C)[C@H]1C2 DCSCXTJOXBUFGB-JGVFFNPUSA-N 0.000 description 2
- DCSCXTJOXBUFGB-SFYZADRCSA-N (R)-(+)-verbenone Chemical compound CC1=CC(=O)[C@H]2C(C)(C)[C@@H]1C2 DCSCXTJOXBUFGB-SFYZADRCSA-N 0.000 description 2
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 2
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 2
- LNFLHXZJCVGTSO-UHFFFAOYSA-N 1-(3-butoxypropoxy)propan-1-ol Chemical compound CCCCOCCCOC(O)CC LNFLHXZJCVGTSO-UHFFFAOYSA-N 0.000 description 2
- KNENSDLFTGIERH-UHFFFAOYSA-N 2,2,4,4-tetramethyl-3-phenylpentan-3-ol Chemical compound CC(C)(C)C(O)(C(C)(C)C)C1=CC=CC=C1 KNENSDLFTGIERH-UHFFFAOYSA-N 0.000 description 2
- IXWOUPGDGMCKGT-UHFFFAOYSA-N 2,3-dihydroxybenzaldehyde Chemical compound OC1=CC=CC(C=O)=C1O IXWOUPGDGMCKGT-UHFFFAOYSA-N 0.000 description 2
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 2
- JZODKRWQWUWGCD-UHFFFAOYSA-N 2,5-di-tert-butylbenzene-1,4-diol Chemical compound CC(C)(C)C1=CC(O)=C(C(C)(C)C)C=C1O JZODKRWQWUWGCD-UHFFFAOYSA-N 0.000 description 2
- WXTMDXOMEHJXQO-UHFFFAOYSA-N 2,5-dihydroxybenzoic acid Chemical group OC(=O)C1=CC(O)=CC=C1O WXTMDXOMEHJXQO-UHFFFAOYSA-N 0.000 description 2
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 2
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- UCQUAMAQHHEXGD-UHFFFAOYSA-N 3',4'-dihydroxyacetophenone Chemical compound CC(=O)C1=CC=C(O)C(O)=C1 UCQUAMAQHHEXGD-UHFFFAOYSA-N 0.000 description 2
- IBGBGRVKPALMCQ-UHFFFAOYSA-N 3,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1O IBGBGRVKPALMCQ-UHFFFAOYSA-N 0.000 description 2
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 2
- FHEHIXJLCWUPCZ-UHFFFAOYSA-N 4-prop-2-enylbenzene-1,2-diol Chemical compound OC1=CC=C(CC=C)C=C1O FHEHIXJLCWUPCZ-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- 241000218645 Cedrus Species 0.000 description 2
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 2
- 244000004281 Eucalyptus maculata Species 0.000 description 2
- 241000208152 Geranium Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000004166 Lanolin Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 235000006679 Mentha X verticillata Nutrition 0.000 description 2
- 235000002899 Mentha suaveolens Nutrition 0.000 description 2
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 2
- 235000007265 Myrrhis odorata Nutrition 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 108010077895 Sarcosine Proteins 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 2
- 244000223014 Syzygium aromaticum Species 0.000 description 2
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 2
- 235000007303 Thymus vulgaris Nutrition 0.000 description 2
- 240000002657 Thymus vulgaris Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002535 acidifier Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000004996 alkyl benzenes Chemical group 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- FUWUEFKEXZQKKA-UHFFFAOYSA-N beta-thujaplicin Chemical compound CC(C)C=1C=CC=C(O)C(=O)C=1 FUWUEFKEXZQKKA-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- HHTWOMMSBMNRKP-UHFFFAOYSA-N carvacrol Natural products CC(=C)C1=CC=C(C)C(O)=C1 HHTWOMMSBMNRKP-UHFFFAOYSA-N 0.000 description 2
- RECUKUPTGUEGMW-UHFFFAOYSA-N carvacrol Chemical compound CC(C)C1=CC=C(C)C(O)=C1 RECUKUPTGUEGMW-UHFFFAOYSA-N 0.000 description 2
- 235000007746 carvacrol Nutrition 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229960005233 cineole Drugs 0.000 description 2
- 235000017803 cinnamon Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 2
- 229940008099 dimethicone Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 2
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 2
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 2
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 2
- WYXXLXHHWYNKJF-UHFFFAOYSA-N isocarvacrol Natural products CC(C)C1=CC=C(O)C(C)=C1 WYXXLXHHWYNKJF-UHFFFAOYSA-N 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- 229940039717 lanolin Drugs 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229940094506 lauryl betaine Drugs 0.000 description 2
- 229940087305 limonene Drugs 0.000 description 2
- 235000001510 limonene Nutrition 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- OQILCOQZDHPEAZ-UHFFFAOYSA-N octyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OCCCCCCCC OQILCOQZDHPEAZ-UHFFFAOYSA-N 0.000 description 2
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920002851 polycationic polymer Polymers 0.000 description 2
- 239000004302 potassium sorbate Substances 0.000 description 2
- 235000010241 potassium sorbate Nutrition 0.000 description 2
- 229940069338 potassium sorbate Drugs 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 229960003885 sodium benzoate Drugs 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 229940117986 sulfobetaine Drugs 0.000 description 2
- 239000001585 thymus vulgaris Substances 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- LINXHFKHZLOLEI-UHFFFAOYSA-N trimethyl-[phenyl-bis(trimethylsilyloxy)silyl]oxysilane Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)C1=CC=CC=C1 LINXHFKHZLOLEI-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- DCSCXTJOXBUFGB-UHFFFAOYSA-N verbenone Natural products CC1=CC(=O)C2C(C)(C)C1C2 DCSCXTJOXBUFGB-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- PUNFIBHMZSHFKF-KTKRTIGZSA-N (z)-henicos-12-ene-1,2,3-triol Chemical compound CCCCCCCC\C=C/CCCCCCCCC(O)C(O)CO PUNFIBHMZSHFKF-KTKRTIGZSA-N 0.000 description 1
- ZNQOETZUGRUONW-UHFFFAOYSA-N 1-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOC(C)O ZNQOETZUGRUONW-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001074 1-methoxy-4-[(E)-prop-1-enyl]benzene Substances 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- GLVYLTSKTCWWJR-UHFFFAOYSA-N 2-carbonoperoxoylbenzoic acid Chemical compound OOC(=O)C1=CC=CC=C1C(O)=O GLVYLTSKTCWWJR-UHFFFAOYSA-N 0.000 description 1
- MOEFFSWKSMRFRQ-UHFFFAOYSA-N 2-ethoxyphenol Chemical compound CCOC1=CC=CC=C1O MOEFFSWKSMRFRQ-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- PCYGLFXKCBFGPC-UHFFFAOYSA-N 3,4-Dihydroxy hydroxymethyl benzene Natural products OCC1=CC=C(O)C(O)=C1 PCYGLFXKCBFGPC-UHFFFAOYSA-N 0.000 description 1
- CJAZCKUGLFWINJ-UHFFFAOYSA-N 3,4-dihydroxybenzene-1,2-disulfonic acid Chemical class OC1=CC=C(S(O)(=O)=O)C(S(O)(=O)=O)=C1O CJAZCKUGLFWINJ-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- PRWJPWSKLXYEPD-UHFFFAOYSA-N 4-[4,4-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan-2-yl]-2-tert-butyl-5-methylphenol Chemical compound C=1C(C(C)(C)C)=C(O)C=C(C)C=1C(C)CC(C=1C(=CC(O)=C(C=1)C(C)(C)C)C)C1=CC(C(C)(C)C)=C(O)C=C1C PRWJPWSKLXYEPD-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XXAXVMUWHZHZMJ-UHFFFAOYSA-N Chymopapain Chemical compound OC1=CC(S(O)(=O)=O)=CC(S(O)(=O)=O)=C1O XXAXVMUWHZHZMJ-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 240000004784 Cymbopogon citratus Species 0.000 description 1
- 235000017897 Cymbopogon citratus Nutrition 0.000 description 1
- 244000166675 Cymbopogon nardus Species 0.000 description 1
- 235000018791 Cymbopogon nardus Nutrition 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical group CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- 229920004511 Dow Corning® 200 Fluid Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241001553290 Euphorbia antisyphilitica Species 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 1
- BCXBKOQDEOJNRH-UHFFFAOYSA-N NOP(O)=O Chemical class NOP(O)=O BCXBKOQDEOJNRH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 240000001519 Verbena officinalis Species 0.000 description 1
- 235000018718 Verbena officinalis Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- JTPLPDIKCDKODU-UHFFFAOYSA-N acetic acid;2-(2-aminoethylamino)ethanol Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.NCCNCCO JTPLPDIKCDKODU-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- TUFYVOCKVJOUIR-UHFFFAOYSA-N alpha-Thujaplicin Natural products CC(C)C=1C=CC=CC(=O)C=1O TUFYVOCKVJOUIR-UHFFFAOYSA-N 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000002648 azanetriyl group Chemical group *N(*)* 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- YBHILYKTIRIUTE-UHFFFAOYSA-N berberine Chemical compound C1=C2CC[N+]3=CC4=C(OC)C(OC)=CC=C4C=C3C2=CC2=C1OCO2 YBHILYKTIRIUTE-UHFFFAOYSA-N 0.000 description 1
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 1
- 229940093265 berberine Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- SVURIXNDRWRAFU-OGMFBOKVSA-N cedrol Chemical compound C1[C@]23[C@H](C)CC[C@H]3C(C)(C)[C@@H]1[C@@](O)(C)CC2 SVURIXNDRWRAFU-OGMFBOKVSA-N 0.000 description 1
- 229940026455 cedrol Drugs 0.000 description 1
- PCROEXHGMUJCDB-UHFFFAOYSA-N cedrol Natural products CC1CCC2C(C)(C)C3CC(C)(O)CC12C3 PCROEXHGMUJCDB-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 229940073669 ceteareth 20 Drugs 0.000 description 1
- 229940085262 cetyl dimethicone Drugs 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- LNUIUONEPHRXHM-UHFFFAOYSA-L disodium acetic acid ethane-1,2-diamine diacetate Chemical compound [Na+].[Na+].CC(O)=O.CC(O)=O.CC([O-])=O.CC([O-])=O.NCCN LNUIUONEPHRXHM-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 210000004392 genitalia Anatomy 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 229960001867 guaiacol Drugs 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 150000005204 hydroxybenzenes Chemical class 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- SVURIXNDRWRAFU-UHFFFAOYSA-N juniperanol Natural products C1C23C(C)CCC3C(C)(C)C1C(O)(C)CC2 SVURIXNDRWRAFU-UHFFFAOYSA-N 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZWLPBLYKEWSWPD-UHFFFAOYSA-N o-toluic acid Chemical compound CC1=CC=CC=C1C(O)=O ZWLPBLYKEWSWPD-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- RUVINXPYWBROJD-UHFFFAOYSA-N para-methoxyphenyl Natural products COC1=CC=C(C=CC)C=C1 RUVINXPYWBROJD-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940057874 phenyl trimethicone Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007430 reference method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- NXLOLUFNDSBYTP-UHFFFAOYSA-N retene Chemical compound C1=CC=C2C3=CC=C(C(C)C)C=C3C=CC2=C1C NXLOLUFNDSBYTP-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- RUVINXPYWBROJD-ONEGZZNKSA-N trans-anethole Chemical compound COC1=CC=C(\C=C\C)C=C1 RUVINXPYWBROJD-ONEGZZNKSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- UUJLHYCIMQOUKC-UHFFFAOYSA-N trimethyl-[oxo(trimethylsilylperoxy)silyl]peroxysilane Chemical compound C[Si](C)(C)OO[Si](=O)OO[Si](C)(C)C UUJLHYCIMQOUKC-UHFFFAOYSA-N 0.000 description 1
- NTKBNCABAMQDIG-UHFFFAOYSA-N trimethylene glycol-monobutyl ether Natural products CCCCOCCCO NTKBNCABAMQDIG-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229930007845 β-thujaplicin Natural products 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47K—SANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
- A47K10/00—Body-drying implements; Toilet paper; Holders therefor
- A47K10/16—Paper towels; Toilet paper; Holders therefor
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47K—SANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
- A47K10/00—Body-drying implements; Toilet paper; Holders therefor
- A47K10/24—Towel dispensers, e.g. for piled-up or folded textile towels; Toilet paper dispensers; Dispensers for piled-up or folded textile towels provided or not with devices for taking-up soiled towels as far as not mechanically driven
- A47K10/32—Dispensers for paper towels or toilet paper
- A47K2010/3266—Wet wipes
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
- Cosmetics (AREA)
- Nonwoven Fabrics (AREA)
- Laminated Bodies (AREA)
- Body Washing Hand Wipes And Brushes (AREA)
Abstract
The present invention relates to sheets of material (1), preferably wet wipes for use in wiping surfaces in the home and in industry, in addition to their use on the human body such as for baby wipes, make-up removal and other skin care applications. The wet wipes are provided with an improved perforation configuration (20) to improve visibility of the location of the perforation and ease of dispensing and separation of the wipes, whilst providing sufficient strength to prevent tearing during use.
Description
PERFORATED SHEET OF MATERIAL
S
Field of the Invention The present invention relates, to sheets o~ material preferably wet wipes which are provided with an improved perforation configuration, which is easily visible to the consumer and which' allows the wet wipes to be easily separated from oneanother whilst not comprornising on strength.
Background of the Invention Wet wipes are typically premoistened, disposable towelettes which may be utilised in a variety of applications both domestic and industrial and perform a variety of functions. Wet wipes are typically used to wipe surfaces both animate and inanimate, and may provide numerous benefits such as cleaning, cleansing, disinfecting, and skin care benefits.
One particular application is the use of wet wipes for wiping parts of the human body particularly when wash water is not available, for example when travelling. Wipes are commonly used for human cleansing and wiping such as face and hand cleansing and anal, perineal and genital cleansing for example as intimate hygiene wipes such as feminine wet wipes. Wet wipes may also be used for application of substances to the body including removing and applying of
S
Field of the Invention The present invention relates, to sheets o~ material preferably wet wipes which are provided with an improved perforation configuration, which is easily visible to the consumer and which' allows the wet wipes to be easily separated from oneanother whilst not comprornising on strength.
Background of the Invention Wet wipes are typically premoistened, disposable towelettes which may be utilised in a variety of applications both domestic and industrial and perform a variety of functions. Wet wipes are typically used to wipe surfaces both animate and inanimate, and may provide numerous benefits such as cleaning, cleansing, disinfecting, and skin care benefits.
One particular application is the use of wet wipes for wiping parts of the human body particularly when wash water is not available, for example when travelling. Wipes are commonly used for human cleansing and wiping such as face and hand cleansing and anal, perineal and genital cleansing for example as intimate hygiene wipes such as feminine wet wipes. Wet wipes may also be used for application of substances to the body including removing and applying of
2 make-up, skin conditioners and medications. Another application of wipes is during diaper changes and also for the treatment of adult and baby dermatitis partly caused by the use of diapers and incontinence devices. In addition wet wipes are also applicable for wiping and or cleaning other surfaces or for the application of compositions to surfaces, for example kitchen and bathroom surfaces, eyeglasses, shoes and surfaces which require cleaning in industry for example surfaces of machinery or automobiles. Wet wipes also include articles used for the cleaning or grooming of pets.
Wet wipes are commonly constructed from combinations of synthetic and natural fibres, such as polyolefin fibres, viscose fibres and cotton fibres, which are generally moistened with an aqueous composition which contains amongst others surfactants, preservatives, oils and scents. The wet wipes are then typically provided in a folded stac~Ced configuration within a covered container I s such as a tub-like container having a lid. Alternatively, the wipes may be provided in tub containers having a dispensing aperture. In both cases this allows easy transportation and storage of the wipes. Typically the wipes are packaged in a plastic foil in order to protect the wet wipes prior to use.
In order to aid dispensing and to allow the consumer to select the desired size of wipe it is highly desirable to provide the wipes with perforations.
The use of perforations is well known in the field of paper, tissue and towels. For example, US 5 704 566 discloses a roll of paper towelling to be dispensed from a dispenser which may be separated into towelling segments by pulling along perforated tear lines. The perforated tear lines comprise a plurality of slits which are longer towards the side edges of the paper than in the middle, to aid dispensing.
Similarly DE 27 06 234 discloses the use of perforated lines of variegated holes formed in a paper sheet, the diameter of which increases towards the edge of the paper so as to facilitate tearing of the paper by one hand.
Wet wipes are commonly constructed from combinations of synthetic and natural fibres, such as polyolefin fibres, viscose fibres and cotton fibres, which are generally moistened with an aqueous composition which contains amongst others surfactants, preservatives, oils and scents. The wet wipes are then typically provided in a folded stac~Ced configuration within a covered container I s such as a tub-like container having a lid. Alternatively, the wipes may be provided in tub containers having a dispensing aperture. In both cases this allows easy transportation and storage of the wipes. Typically the wipes are packaged in a plastic foil in order to protect the wet wipes prior to use.
In order to aid dispensing and to allow the consumer to select the desired size of wipe it is highly desirable to provide the wipes with perforations.
The use of perforations is well known in the field of paper, tissue and towels. For example, US 5 704 566 discloses a roll of paper towelling to be dispensed from a dispenser which may be separated into towelling segments by pulling along perforated tear lines. The perforated tear lines comprise a plurality of slits which are longer towards the side edges of the paper than in the middle, to aid dispensing.
Similarly DE 27 06 234 discloses the use of perforated lines of variegated holes formed in a paper sheet, the diameter of which increases towards the edge of the paper so as to facilitate tearing of the paper by one hand.
3 The use of perforations for wet wipes is particularly advantageous not only in terms of dispensing, but also in allowing the consumer to select the length or amount of wet wipe material required to carry out a particular clearing activity.
Thus for small and easy cleaning activities just one wipe can be selected, whilst for larger and dirty cleaning activities a number of wipes can be used. Thus it is not only important that the consumer can easily dispense the size of wipe that is required, it is also equally important that the perforations are strong enough such that they do not break or tear within a larger wipe during the cleaning process.
This problem of perforation strength is further exacerbated upon storage of the wet wipes which has been found to generally weaken the perforation.
In addition another important factor with respect to the convenient usage of such wipes, is that the consumer can readily identify the location of the perforations in the wipe substrate. The visibility of the perforations is related to the length of the perforation or slit in the substrate; larger perforations or slits providing easy recognition by the consumer. However a problem with such larger perforations is that the strength of the perforations is further reduced, which is as discussed above highly undesirable. This problem is yet further exacerbated by certain dispensing methods. For example methods which result in continuous dispensing through a container orifice whereby mechanical friction is utilised to dispense and separate the wipes.
It is therefore desirable to provide a wet wipe stacking configuration which is suitable for multiple applications such as baby wipes and hard surface cleaning wipes which are strong, soft, absorbent and provide improved cleaning. It is further desirable to provide wet wipes whereby the wipe substrate is provide with perforated tear lines that are readily visible so that the consumer can select the desired length of wipe required and easily separate the wipes from oneanother, whilst providing sufficient strength so that the perforation within the wipe does not tear or break during use.
Thus for small and easy cleaning activities just one wipe can be selected, whilst for larger and dirty cleaning activities a number of wipes can be used. Thus it is not only important that the consumer can easily dispense the size of wipe that is required, it is also equally important that the perforations are strong enough such that they do not break or tear within a larger wipe during the cleaning process.
This problem of perforation strength is further exacerbated upon storage of the wet wipes which has been found to generally weaken the perforation.
In addition another important factor with respect to the convenient usage of such wipes, is that the consumer can readily identify the location of the perforations in the wipe substrate. The visibility of the perforations is related to the length of the perforation or slit in the substrate; larger perforations or slits providing easy recognition by the consumer. However a problem with such larger perforations is that the strength of the perforations is further reduced, which is as discussed above highly undesirable. This problem is yet further exacerbated by certain dispensing methods. For example methods which result in continuous dispensing through a container orifice whereby mechanical friction is utilised to dispense and separate the wipes.
It is therefore desirable to provide a wet wipe stacking configuration which is suitable for multiple applications such as baby wipes and hard surface cleaning wipes which are strong, soft, absorbent and provide improved cleaning. It is further desirable to provide wet wipes whereby the wipe substrate is provide with perforated tear lines that are readily visible so that the consumer can select the desired length of wipe required and easily separate the wipes from oneanother, whilst providing sufficient strength so that the perforation within the wipe does not tear or break during use.
4 Summary of the Invention The present invention hence relates to a sheet of material, preferably a wet wipe for wiping parts of the human body such as baby wipes and other inanimate surfaces. In particular, the present invention relates to a sheet of material (1 ) such as a wet wipe, wherein said sheet of material comprises at least one transverse perforation tine (20), said transverse perforation line (20), having at least one repeating perforation pattern (21 ), characterised in that each of said repeating patterns (21 ) has at least one primary perforation slit (22), at least one secondary perforation slit (23) and at least two bonded areas (24), wherein the length ratio of one of said primary perforation slits (22) to one of said secondary perforation slits (23) is from 100:1 to 1.5:1 and wherein the ratio of the total length of said bonded areas (24) ,to the total ~ngth of said primary (22) and secondary (23) perforation slits of said perforation line is from 1:1 to 1:6.
Detailed Description of the Invention Brief description of the figures Figure 1 a: is a plan view of a sheet material, e.g. a wet wipe showing the perforation line of the present invention.
Figure 1 b: Is a cross sectional side view of the sheet material of figure 1, comprising perforation line according to the present invention.
Figure 2: Is a partial plan view of a sheet of material having the preferred perforation line of the present invention.
According to the present invention the sheet of material comprises a substrate which is preferably coated or impregnated with a liquid composition.
The sheet of material may be woven or nonwoven, foam, sponge, battings, balls, puffs, films, or tissue paper, most preferably a nonwoven and may be composed or natural or synthetic fibres or mixtures thereof. Preferably, the fibre compositions are a mixed of hydrophilic fibre material such as viscose, cotton, or
Detailed Description of the Invention Brief description of the figures Figure 1 a: is a plan view of a sheet material, e.g. a wet wipe showing the perforation line of the present invention.
Figure 1 b: Is a cross sectional side view of the sheet material of figure 1, comprising perforation line according to the present invention.
Figure 2: Is a partial plan view of a sheet of material having the preferred perforation line of the present invention.
According to the present invention the sheet of material comprises a substrate which is preferably coated or impregnated with a liquid composition.
The sheet of material may be woven or nonwoven, foam, sponge, battings, balls, puffs, films, or tissue paper, most preferably a nonwoven and may be composed or natural or synthetic fibres or mixtures thereof. Preferably, the fibre compositions are a mixed of hydrophilic fibre material such as viscose, cotton, or
5 flax and a hydrophobic fibre material such as polyethylene tetraphthalate (PET) or polypropylene (PP) in a ratio of 10%-90% hydrophilic and 90%-10%
hydrophobic material by weight. Particularly preferred compositions are 50%
viscose, 50%PP; and 50% viscose, 50 % PET; and 70% cellulose, 15% PET and 15% latex. The sheet of material preferably has a basis weight of at least 20 gm-2 and preferably less than 150gm-2, and most preferably the base weight is in the range of 20 gm-2 to 100 gm-2, more preferably from 50 grn-2 to 95 gm-2.
The sheet of material may have any caliper. Typically, when the sheet of material is made by an air laying process, the average sheet of material caliper is less than 1.0 mm. More preferably the average calipef of the sheet of material is from I S 0.1 mm to 0.9 mm. The sheet of material caliper is measured according to standard EDANA non woven industry methodology, reference method # 30.4-89.
In addition to the fibers used to make the sheet of material, the sheet of material can have other components or materials added thereto as known in the art. The types of additives desirable will be dependent upon the particular end use of the substrate contemplated. For example, in wet wipe products such as moist toilet paper, paper towels, facial tissues, baby wipes and other similar air laid products, high wet strength is a desirable attribute. Thus, it is often desirable particularly for cellulose based materials to add chemical substances known in the art as wet strength resins. A general dissertation on the types of wet strength resins utilised in the paper art can be found in TAPPI monograph series No.
29, Wet Strength in Paper and Paperboard, Technical Association of the Pulp and Paper Industry (New York, 1965). Particularly preferred resins are polyamide-epichlorohydrin, polyacrylamides, styrene-butiene latexes, dialdehyde starch and mixtures thereof. In addition to wet strength additives, it can also be desirable to include certain dry strength and lint control additives known in the art such as
hydrophobic material by weight. Particularly preferred compositions are 50%
viscose, 50%PP; and 50% viscose, 50 % PET; and 70% cellulose, 15% PET and 15% latex. The sheet of material preferably has a basis weight of at least 20 gm-2 and preferably less than 150gm-2, and most preferably the base weight is in the range of 20 gm-2 to 100 gm-2, more preferably from 50 grn-2 to 95 gm-2.
The sheet of material may have any caliper. Typically, when the sheet of material is made by an air laying process, the average sheet of material caliper is less than 1.0 mm. More preferably the average calipef of the sheet of material is from I S 0.1 mm to 0.9 mm. The sheet of material caliper is measured according to standard EDANA non woven industry methodology, reference method # 30.4-89.
In addition to the fibers used to make the sheet of material, the sheet of material can have other components or materials added thereto as known in the art. The types of additives desirable will be dependent upon the particular end use of the substrate contemplated. For example, in wet wipe products such as moist toilet paper, paper towels, facial tissues, baby wipes and other similar air laid products, high wet strength is a desirable attribute. Thus, it is often desirable particularly for cellulose based materials to add chemical substances known in the art as wet strength resins. A general dissertation on the types of wet strength resins utilised in the paper art can be found in TAPPI monograph series No.
29, Wet Strength in Paper and Paperboard, Technical Association of the Pulp and Paper Industry (New York, 1965). Particularly preferred resins are polyamide-epichlorohydrin, polyacrylamides, styrene-butiene latexes, dialdehyde starch and mixtures thereof. In addition to wet strength additives, it can also be desirable to include certain dry strength and lint control additives known in the art such as
6 starch binders. Furthermore, the material may also comprise agents to improve the optical characteristics of the material such as opacifying agents, for example titanium dioxide.
According to the present invention the sheet may be produced by any methods known in the art. For example nonwoven material substrates can be formed by dry forming techniques such as air-laying or wet laying such as on a paper making machine. Other nonwoven manufacturing techniques such as melt blown, spun bonded, needle punched and spun laced methods may also be used. A preferred method is air laying.
According to the present invention, the sheets of material are provided in a stacked configuration which may comprise any number of sheets. Typically, the stack comprises from 3 to 150, mare preferably from 5 to 100, most preferably from 10 to 60 of sheets of material. Moreover the sheets may be provide in any configuration folded or unfolded. Most preferably the wipes are stacked in a folded configuration. In an alternative embodiment the sheet of material may be provided as a roll, which comprises a continuous material providing individual sheets connected end to end by perforation lines according to the present invention. The present invention will now be described with reference to the preferred embodiment of the present invention namely wet wipes. However the description is equally applicable to the alternative sheet materials and configurations.
Each folded wipe 1 extends lengthwise in the machine direction from a first, leading end edge 2, to a second, trailing end edge 3. The folded webs also have side edges 4 and 5 which extend lengthwise from the first leading end edge 2 to the second trailing end edge 3. Each folded wipe 1 can include a first panel fold 6 which is generally parallel to the leading edge 2, and which is generally perpendicular to the side edges 4, 5. The first panel fold 6 is spaced lengthwise from the leading edge 2 to provide a leading edge panel 9 extending between the
According to the present invention the sheet may be produced by any methods known in the art. For example nonwoven material substrates can be formed by dry forming techniques such as air-laying or wet laying such as on a paper making machine. Other nonwoven manufacturing techniques such as melt blown, spun bonded, needle punched and spun laced methods may also be used. A preferred method is air laying.
According to the present invention, the sheets of material are provided in a stacked configuration which may comprise any number of sheets. Typically, the stack comprises from 3 to 150, mare preferably from 5 to 100, most preferably from 10 to 60 of sheets of material. Moreover the sheets may be provide in any configuration folded or unfolded. Most preferably the wipes are stacked in a folded configuration. In an alternative embodiment the sheet of material may be provided as a roll, which comprises a continuous material providing individual sheets connected end to end by perforation lines according to the present invention. The present invention will now be described with reference to the preferred embodiment of the present invention namely wet wipes. However the description is equally applicable to the alternative sheet materials and configurations.
Each folded wipe 1 extends lengthwise in the machine direction from a first, leading end edge 2, to a second, trailing end edge 3. The folded webs also have side edges 4 and 5 which extend lengthwise from the first leading end edge 2 to the second trailing end edge 3. Each folded wipe 1 can include a first panel fold 6 which is generally parallel to the leading edge 2, and which is generally perpendicular to the side edges 4, 5. The first panel fold 6 is spaced lengthwise from the leading edge 2 to provide a leading edge panel 9 extending between the
7 first panel fold 6 and the leading edge 2. As used herein a panel is a portion of the wipe extending between two folds, or between a fold and an edge end.
The folded wipe can also include a second panel fold 7, and a first central panel 8, and a trailing edge panel 10. The second panel fold 7 is generally parallel to, and spaced lengthwise from, the first panel fold 6. The first central panel 8 is joined to the leading edge panel 9, at the first panel fold 6, and extends between the first panel fold 6 and the second panel fold 7.
The trailing edge panel 10 is joined to the first central panel 8 at the second panel fold 7. The trailing edge panel 10 extends between the second panel fold and the trailing end edge 3. The wipe is folded at the first and second panel folds 6 and 7 to provide the leading edge panel 9, first central panel 8, and trailing edge panel 10, in a Z-fold configuration, as bestjseen in Figure 3a. In the Z-fold 1 ~ configuration, panel 9 is adjacent to and overlies a portion of panel 8, and panel 10 is adjacent to and underlies 8 portion of panel 8. However, other folding configurations such as C folds or J folds configurations having more or less panels are equally applicable.
Furthermore in addition to the panels described herein above, the wipe may have additional panels. In particular, the leading edge panel and or the trailing edge panel may also be provided with an additional fold so as to provide a leading edge panel lip or a trailing edge panel lip. Such a lip is formed by providing the leading edge panel or the trailing edge panel with a panel lip fold which is adjacent to and spaced from the leading or trailing edge of the folded substrate to provide a lip extending between the panel lip fold and the end edge.
The panel lip fold may be folded onto the lower surface of.the leading edge panel such that the leading end edge is below the leading edge end panel. This configuration is particularly beneficial in facilitating grasping of the edge.
Alternatively, the leading edge panel may be folded such that the leading end edge rests on the upper surface of the leading edge panel. The lip may also be positioned on the upper or lower surface of the trailing edge panel.
The folded wipe can also include a second panel fold 7, and a first central panel 8, and a trailing edge panel 10. The second panel fold 7 is generally parallel to, and spaced lengthwise from, the first panel fold 6. The first central panel 8 is joined to the leading edge panel 9, at the first panel fold 6, and extends between the first panel fold 6 and the second panel fold 7.
The trailing edge panel 10 is joined to the first central panel 8 at the second panel fold 7. The trailing edge panel 10 extends between the second panel fold and the trailing end edge 3. The wipe is folded at the first and second panel folds 6 and 7 to provide the leading edge panel 9, first central panel 8, and trailing edge panel 10, in a Z-fold configuration, as bestjseen in Figure 3a. In the Z-fold 1 ~ configuration, panel 9 is adjacent to and overlies a portion of panel 8, and panel 10 is adjacent to and underlies 8 portion of panel 8. However, other folding configurations such as C folds or J folds configurations having more or less panels are equally applicable.
Furthermore in addition to the panels described herein above, the wipe may have additional panels. In particular, the leading edge panel and or the trailing edge panel may also be provided with an additional fold so as to provide a leading edge panel lip or a trailing edge panel lip. Such a lip is formed by providing the leading edge panel or the trailing edge panel with a panel lip fold which is adjacent to and spaced from the leading or trailing edge of the folded substrate to provide a lip extending between the panel lip fold and the end edge.
The panel lip fold may be folded onto the lower surface of.the leading edge panel such that the leading end edge is below the leading edge end panel. This configuration is particularly beneficial in facilitating grasping of the edge.
Alternatively, the leading edge panel may be folded such that the leading end edge rests on the upper surface of the leading edge panel. The lip may also be positioned on the upper or lower surface of the trailing edge panel.
8 According to the present invention, the overall dimensions of the substrate material is dependent on the intended application of the wipe and can be selected accordingly. In one non limiting, illustrative example wherein the wipe may be utilised as a hard surface cleaning wipe, each folded wipe 1 can have an unfolded length of from 10 cm to 40 cm as measured lengthwise from the leading end edge 2 to the trailing end edge 3 and a width of from 10cm to 25cm. For each folded wipe 1, the lengths of the leading edge panel 9 and trailing edge panel 10 can be from 2 cm to 7 cm. In a preferred embodiment the spacing between the first panel fold 6 and the leading end edge 2 and the second panel fold 7 and the trailing edge 3, is preferably from 3 cm to 6. The spacing between the first panel fold 6 and the third panel fold 12 and the second panel fold 7 and the third panel fold 12 are preferably from 3 cm to 12 cm, and more preferably between about 8 cm and 12 cm.
According to the present invehtion the wet wipes are provided, with at least one transverse perforation lines (20). The perforation lines comprise perforated slits or cuts joined by wet substrate material in-between each perforated slit, herein after referred to as bonded area. The transverse perforation lines are provided typically at regular intervals. For the unlimiting example described hereinabove this will be from 9 cm to 20 cm, preferably from 12 cm to 16 cm.
It has now been found that the provision of the perforation line (20) with at least one repeating pattern (21 ) as defined herein provides the wet wipe stack with easily visible perforations which are strong.
Accordingly, the perforation lines (20) comprise at least one repeat pattern (21 ). According to the preferred embodiment of the present invention the perforation line (20) comprises at least one repeating pattern (21 ). However the perforation line (20) may comprise any number of repeating patterns. Each of said repeating pattern (21 ) comprises at least one primary perforation slit (22) and at least one, preferably from 1 to 20, more preferably from 2 to 10,
According to the present invehtion the wet wipes are provided, with at least one transverse perforation lines (20). The perforation lines comprise perforated slits or cuts joined by wet substrate material in-between each perforated slit, herein after referred to as bonded area. The transverse perforation lines are provided typically at regular intervals. For the unlimiting example described hereinabove this will be from 9 cm to 20 cm, preferably from 12 cm to 16 cm.
It has now been found that the provision of the perforation line (20) with at least one repeating pattern (21 ) as defined herein provides the wet wipe stack with easily visible perforations which are strong.
Accordingly, the perforation lines (20) comprise at least one repeat pattern (21 ). According to the preferred embodiment of the present invention the perforation line (20) comprises at least one repeating pattern (21 ). However the perforation line (20) may comprise any number of repeating patterns. Each of said repeating pattern (21 ) comprises at least one primary perforation slit (22) and at least one, preferably from 1 to 20, more preferably from 2 to 10,
9 secondary perforation slits (23). The exact number utilised can be readily selected by the skilled person depending on the material substrate type and use intended provided that certain parameters are meet. The length ratio between the primary (22) and the secondary (23) perforations slits from 100:1 to 1.5:1, preferably from 50:1 to 2:1, more preferably from 25:1 to 2:1, most preferably from 10:1 to 3:1. The presence of a primary slit (22) which is substantially longer than the secondary slit (23) provides an easily recognisable means for the consumer to locate the perforation line along the wipe. The perforation slits whether primary (22) or secondary (23) are separated from one another by the wet wipe substrate material. This substrate material is referred to as bonded area (24). Typically the ratio of the length of one of the bonded areas (24) to the length of one of the secondary perforation slits (23) is from 10:1 to 1:10 preferably from 5:1 to 1:5, most preferably 1:2 to 1:1. The exact number utilised can be readily selected by the skilled person depending on the material substrate type and use intended provided that certain parameters are meet. Typically each perforation line (20) comprises at least one repeating pattern (21 ), which is repeated at least once, preferably from 1 to 50, more preferably from 5 to 25, most preferably from 10 to 20 times, depending upon the length of the repeating pattern and the width of the wipe It has been identified that in order to ensure the desired tensile strength of the wet wipes, the ratio of the total length of the bonded area (24) to the total length of the primary (22) and secondary (23) perforation slit along the perforation line (20) is from 1:1 to 1:6, preferably from 1:1.5 to 1:4, more preferably from 1:2 to 1:3.5.
Typically the ratio of the width of the wipe to the length of the total bonded area (24) along the perforation line (20) is from 10:1 to 1:10, preferably from 5:1 to 3:1.
For the wet wipe of the unlimited example described herein above the length of each primary perforation slit (22) is from 3 mm to 10 mm, preferably from 3 mm to 8 mm, more preferably from 3.5 mm to 6.5 mm. The length of each secondary pertoration slit (23) is from 0.5 mm to 2.5 mm, preferably from 1 mm to 2 mm. The length of each bonded area (24) is from 0.5 mm to 10 mm, preferably from 0.5 mm to 3 mm, more preferably from 0.5 mm to 1.5 mm.
In order to provide the desired tensile strength, the perforation lines should preferably exhibit a tensile strength of at least 0.7N/inch (0.28N/cm) to 5N/inch (1.97N/cm), more preferably from 1 N/inch (0.39N/cm) to 4.5N/inch (1.77N/cm), most preferably from 1.8N/inch (0.70N/cm) to 4.ON/inch (1.57N/cm) as described
Typically the ratio of the width of the wipe to the length of the total bonded area (24) along the perforation line (20) is from 10:1 to 1:10, preferably from 5:1 to 3:1.
For the wet wipe of the unlimited example described herein above the length of each primary perforation slit (22) is from 3 mm to 10 mm, preferably from 3 mm to 8 mm, more preferably from 3.5 mm to 6.5 mm. The length of each secondary pertoration slit (23) is from 0.5 mm to 2.5 mm, preferably from 1 mm to 2 mm. The length of each bonded area (24) is from 0.5 mm to 10 mm, preferably from 0.5 mm to 3 mm, more preferably from 0.5 mm to 1.5 mm.
In order to provide the desired tensile strength, the perforation lines should preferably exhibit a tensile strength of at least 0.7N/inch (0.28N/cm) to 5N/inch (1.97N/cm), more preferably from 1 N/inch (0.39N/cm) to 4.5N/inch (1.77N/cm), most preferably from 1.8N/inch (0.70N/cm) to 4.ON/inch (1.57N/cm) as described
10 in the EDANA 30 test method Gamed out on the material within 24 hours of manufacture.
According to the present invention, the substrate material of the wipes is typically impregnated or coated witJi a liquid composition. The composition may be aqueous, alcohol based or an emulsion, either a water-in-oil or a oil-in-water or a multiple emulsion, preferably tile emulsion is a oil-in-water emulsion.
Typically, the composition will comprise from 2% to 50% by weight of said composition of actives and from 50% to 98% water, preferably de-ionised or distilled. Of the active component, preferably 2% to 20% are present in the oil phase and the remainder are present in the aqueous phase.
The liquid composition can provide a number of different benefits when released. For example, in wet-like cleaning wipes for perianal cleaning the water component is released and thereby provides the primary cleansing action for these wipes.
In a preferred embodiment of the present invention the liquid composition (preferably comprising water as a major constituent) comprises a disinfecting component comprising an antimicrobial compound, preferably an essential oil or an active thereof, and a bleach, preferably a peroxygen bleach. Disinfecting
According to the present invention, the substrate material of the wipes is typically impregnated or coated witJi a liquid composition. The composition may be aqueous, alcohol based or an emulsion, either a water-in-oil or a oil-in-water or a multiple emulsion, preferably tile emulsion is a oil-in-water emulsion.
Typically, the composition will comprise from 2% to 50% by weight of said composition of actives and from 50% to 98% water, preferably de-ionised or distilled. Of the active component, preferably 2% to 20% are present in the oil phase and the remainder are present in the aqueous phase.
The liquid composition can provide a number of different benefits when released. For example, in wet-like cleaning wipes for perianal cleaning the water component is released and thereby provides the primary cleansing action for these wipes.
In a preferred embodiment of the present invention the liquid composition (preferably comprising water as a major constituent) comprises a disinfecting component comprising an antimicrobial compound, preferably an essential oil or an active thereof, and a bleach, preferably a peroxygen bleach. Disinfecting
11 wipes comprising such a liquid composition provide effective disinfecting performance on a surface while being safe to the surface treated.
By "effective disinfecting performance" it is meant herein that the disinfecting wipes of the present invention allow significant reduction in the amount of bacteria on an infected surface. Indeed, effective disinfecting may be obtained on various micro-organisms including Gram positive bacteria like Staphylococcus aureus, and Gram negative bacteria like Pseudomonas aeruginosa, as well as on more resistant micro-organisms like fungi (e.g., Candida albicans) present on infected surfaces.
Another advantage of the disinfecting wipes according to the present invention is that besides the disinfecting properties delivered, good cleaning is also provided as the disinfecting polar phase r>~ay further comprise surfactants 1 s and/or solvents.
An essential element of such disinfecting liquid compositions is an antimicrobial compound typically selected from the group consisting of an essential oil and an active thereof, paraben (e.g., methyl paraben, ethyl paraben), glutaraldehyde and mixtures thereof. Essential oils or actives thereof are the preferred antimicrobial compounds to be used herein.
Suitable essential oils or actives thereof to be used herein are those essential oils which exhibit antimicrobial activity and more particularly antibacterial activity. By "actives of essential oils" it is meant herein any ingredient of essential oils that exhibits antimicrobial/antibacterial activity. A
further advantage of said essential oils and actives hereof is that they impart pleasant odour to the disinfecting wipes according to the present invention without the need of adding a perfume. Indeed, the disinfecting wipes according to the present invention deliver not only excellent disinfecting performance on infected surfaces but also good scent.
By "effective disinfecting performance" it is meant herein that the disinfecting wipes of the present invention allow significant reduction in the amount of bacteria on an infected surface. Indeed, effective disinfecting may be obtained on various micro-organisms including Gram positive bacteria like Staphylococcus aureus, and Gram negative bacteria like Pseudomonas aeruginosa, as well as on more resistant micro-organisms like fungi (e.g., Candida albicans) present on infected surfaces.
Another advantage of the disinfecting wipes according to the present invention is that besides the disinfecting properties delivered, good cleaning is also provided as the disinfecting polar phase r>~ay further comprise surfactants 1 s and/or solvents.
An essential element of such disinfecting liquid compositions is an antimicrobial compound typically selected from the group consisting of an essential oil and an active thereof, paraben (e.g., methyl paraben, ethyl paraben), glutaraldehyde and mixtures thereof. Essential oils or actives thereof are the preferred antimicrobial compounds to be used herein.
Suitable essential oils or actives thereof to be used herein are those essential oils which exhibit antimicrobial activity and more particularly antibacterial activity. By "actives of essential oils" it is meant herein any ingredient of essential oils that exhibits antimicrobial/antibacterial activity. A
further advantage of said essential oils and actives hereof is that they impart pleasant odour to the disinfecting wipes according to the present invention without the need of adding a perfume. Indeed, the disinfecting wipes according to the present invention deliver not only excellent disinfecting performance on infected surfaces but also good scent.
12 Such essential oils include, but are not limited to, those obtained from thyme, lemongrass, citrus, lemons, oranges, anise, clove, aniseed, cinnamon, geranium, roses, mint, lavender, citronella, eucalyptus, peppermint, camphor, sandalwood and cedar and mixtures thereof. Actives of essential oils to be used herein include, but are not limited to, thymol (present for example in thyme), eugenol (present for example in cinnamon and clove), menthol (present for example in mint), geraniol (present for example in geranium and rose), verbenone (present for example in vervain), eucalyptol and pinocanrone (present in eucalyptus), cedrol (present for example in cedar), anethol (present for example in anise), carvacrol, hinokitiol, berberine, terpineol, limonene, methyl salycilate and mixtures thereof. Preferred actives of essential oils to be used herein are thymol, eugenol, verbenone, eucalyptol, carvacrol, limonene and/or geraniol. Thymol may be commercially available for example from Aldrich, eugenol may be commercially available for example from Sigma, Systems -Bioindustries (SBI) - Manheimer Ind.
Typically, the antimicrobial compound or mixtures thereof will be present in the liquid composition at a level of from 0.001 % to 5%, preferably from 0.001 % to 3%, more preferably from 0.005% to 1 %, by weight of liquid composition.
An important element of the internal disinfecting polar phase is a bleach or mixtures thereof. Any bleach known to those skilled in the art may be suitable to be used herein including any chlorine bleach as well as any peroxygen bleach.
The presence of the bleach, preferably the peroxygen bleach, in the disinfecting wipes of the present invention contribute to the disinfecting properties of the ropes.
Suitable chlorine bleaches to be used herein include any compound capable of releasing chlorine when said compound is in contact with water.
Suitable chlorine bleaches include alkali metal dichloroisocyanurates as well as alkali metal hypohalites like hypochlorite and/or hypobromite. Preferred chlorine WO 00/44270 PCT/~JS00/01388
Typically, the antimicrobial compound or mixtures thereof will be present in the liquid composition at a level of from 0.001 % to 5%, preferably from 0.001 % to 3%, more preferably from 0.005% to 1 %, by weight of liquid composition.
An important element of the internal disinfecting polar phase is a bleach or mixtures thereof. Any bleach known to those skilled in the art may be suitable to be used herein including any chlorine bleach as well as any peroxygen bleach.
The presence of the bleach, preferably the peroxygen bleach, in the disinfecting wipes of the present invention contribute to the disinfecting properties of the ropes.
Suitable chlorine bleaches to be used herein include any compound capable of releasing chlorine when said compound is in contact with water.
Suitable chlorine bleaches include alkali metal dichloroisocyanurates as well as alkali metal hypohalites like hypochlorite and/or hypobromite. Preferred chlorine WO 00/44270 PCT/~JS00/01388
13 bleaches are alkali metal hypochlorites. Various forms of alkali metal hypochlorite are commercially available, for instance sodium hypochlorite.
Preferred bleaches for use herein are peroxygen bleaches, more particularly hydrogen peroxide, or a water soluble source thereof, or mixtures thereof. Hydrogen peroxide is particularly preferred.
Peroxygen bleaches like hydrogen peroxide are preferred herein as they are generally well accepted from an environmental point of view. For example the IO decomposition products of hydrogen peroxide are oxygen and water.
As used herein, a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
Suitable water-soluble sources of hydrpgen peroxide for use herein include 1 ~ percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodeCandioic acid (DPDA), magnesium perphthalic acid, dialkylperoxides, diacylperoxides, performed percarboxylic acids, organic and inorganic peroxides and/or hydroperoxides and mixtures thereof.
20 Typically, the bleach or mixtures thereof is present at a level of from 0.001 to 15% by weight of the liquid composition, preferably from 0.001 % to 5%, and more preferably from 0.005% to 2%.
The liquid composition may further comprise a detersive surfactant or a 25 mixture thereof. Typically, the surfactant or mixtures thereof is present at a level of from 0.001 % to 40% by weight of the total internal polar phase, preferably from 0.01 % to 10% and more preferably from 0.05% to 2%.
Suitable detersive surfactants to be used in the present invention include 30 any surfactant known to those skilled in the art like nonionic, anionic, cationic, amphoteric and/or zwitterionic surfactants. Preferred detersive surfactants to be used herein are the amphoteric and/or zwitterionic surfactants.
Preferred bleaches for use herein are peroxygen bleaches, more particularly hydrogen peroxide, or a water soluble source thereof, or mixtures thereof. Hydrogen peroxide is particularly preferred.
Peroxygen bleaches like hydrogen peroxide are preferred herein as they are generally well accepted from an environmental point of view. For example the IO decomposition products of hydrogen peroxide are oxygen and water.
As used herein, a hydrogen peroxide source refers to any compound which produces perhydroxyl ions when said compound is in contact with water.
Suitable water-soluble sources of hydrpgen peroxide for use herein include 1 ~ percarbonates, persilicates, persulphates such as monopersulfate, perborates, peroxyacids such as diperoxydodeCandioic acid (DPDA), magnesium perphthalic acid, dialkylperoxides, diacylperoxides, performed percarboxylic acids, organic and inorganic peroxides and/or hydroperoxides and mixtures thereof.
20 Typically, the bleach or mixtures thereof is present at a level of from 0.001 to 15% by weight of the liquid composition, preferably from 0.001 % to 5%, and more preferably from 0.005% to 2%.
The liquid composition may further comprise a detersive surfactant or a 25 mixture thereof. Typically, the surfactant or mixtures thereof is present at a level of from 0.001 % to 40% by weight of the total internal polar phase, preferably from 0.01 % to 10% and more preferably from 0.05% to 2%.
Suitable detersive surfactants to be used in the present invention include 30 any surfactant known to those skilled in the art like nonionic, anionic, cationic, amphoteric and/or zwitterionic surfactants. Preferred detersive surfactants to be used herein are the amphoteric and/or zwitterionic surfactants.
14 Suitable amphoteric detersive surfactants to be used herein include amine oxides of the formula R1 R2R3N0, wherein each of R1, R2 and R3 is independently a saturated, substituted or unsubstituted, linear or branched hydrocarbon chain having from 1 to 30 carbon atoms. Preferred amine oxide surfactants to be used according to the present invention are amine oxides of the formula R1 R2R3N0, wherein R1 is an hydrocarbon chain having from 1 to 30 carbon atoms, preferably from 6 to 20, more preferably from 8 to 16, most preferably from 8 to 12, and wherein R2 and R3 are independently substituted or unsubstituted, linear or branched hydrocarbon chains having from 1 to 4 carbon atoms, preferably from 1 to 3 carbon atoms, and more preferably are methyl groups. R1 may be a saturated, substituted or unsubstituted, linear or branched hydrocarbon chain. Suitable amine oxides for use herein are for instance natural blend Cg-C1p amine oxides as well as C12-G~16 amine oxides commercially 1 s available from Hoechst. Amine dxides are preferred herein as they deliver effective cleaning performance and further participate to the disinfecting properties of the disinfecting wipes herein.
Suitable zwitterionic surfactants to be used herein contain both cationic and anionic hydrophilic groups on the same molecule at a relatively wide range of pH's. The typical cationic group is a quaternary ammonium group, although other positively charged groups like phosphonium, imidazolinium and sulfonium groups can be used. The typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups such as sulfates, phosphonates, and the like can be used. A generic formula for some zwitterionic surfactants to be used herein is R1-N+~R2)~R3)R4X-wherein R1 is a hydrophobic group; R2 and R3 are each C1-C4 alkyl, hydroxy alkyl or other substituted alkyl group which can also be joined to form ring structures with the N; R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is preferably a carboxylate or sulfonate group. Preferred hydrophobic groups are alkyl groups containing from 1 to 24, preferably less than 18, more preferably 5 less than 16 carbon atoms. The hydrophobic group can contain unsaturation andlor substituents and/or linking groups such as aryl groups, amido groups, ester groups and the like. In general, the simple alkyl groups are preferred for cost and stability reasons.
10 Highly preferred zwitterionic surfactants include betaine and sulphobetaine surfactants, derivatives thereof or mixtures thereof. Said betaine or sulphobetaine surtactants are preferred herein as they help disinfecting by increasing the permeability of the bacterial cell wall, thus allowing other active ingredients to enter the cell.
Furthermore, due to the mild action profile of said betaine or sulphobetaine surfactants, they are particularly suitable for the cleaning of delicate surfaces, e.g., hard surfaces in contact with food and/or babies. Betaine and sulphobetaine surfactants are also extremely mild to the skin and/or surfaces to be treated.
Suitable betaine and sulphobetaine surfactants to be used herein are the betaine/sulphobetaine and betaine-like detergents wherein the molecule contains both basic and acidic groups which form an inner salt giving the molecule both cationic and anionic hydrophilic groups over a broad range of pH values. Some common examples of these detergents are described in U.S. Pat. Nos.
2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.
Preferred betaine and sulphobetaine surfactants herein are according to the formula R1 - N+ - (CH2)n - Y-wherein R1 is a hydrocarbon chain containing from 1 to 24 carbon atoms, preferably from 8 to 18, more preferably from 12 to 14, wherein R2 and R3 are hydrocarbon chains containing from 1 to 3 carbon atoms, preferably 1 carbon atom, wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is 1, Y is selected from the group consisting of carboxyl and sulfonyl radicals and wherein the sum of R1, R2 and R3 hydrocarbon chains is from 14 to 24 carbon atoms, or mixtures therepf.
Examples of particularly suitable betaine surfactants include C12-C18 alkyl dimethyl betaine such as coconut-betaine and C1 p-C16 alkyl dimethyl betaine such as laurylbetaine. Coconutbetaine is commercially available from Seppic under the trade name of Amonyl 265". Laurylbetaine is commercially available from Albright & Wilson under the trade name Empigen BB/L".
Other specific zwitterionic surfactants have the generic formulas:
R1-C(O)-N(R2)-(C(R3)2)n-N(R2)2(+)-(C(R3)2)n-S03(-) ; or R1-C(O)-N(R2)-(C(R3)2)n-N(R2)2(+)-(C(R3)2)n-COO(-) wherein each R1 is a hydrocarbon, e.g. an alkyl group containing from 8 up to 20, preferably up to 18, more preferably up to 16 carbon atoms, each R2 is either a hydrogen (when attached to the amido nitrogen), short chain alkyl or substituted alkyl containing from 1 to 4 carbon atoms, preferably groups selected from the group consisting of methyl, ethyl, propyl, hydroxy substituted ethyl or propyl and mixtures thereof, preferably methyl, each R3 is selected from the group consisting of hydrogen and hydroxy groups and each n is a number from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R3)2) moiety. The R1 groups can be branched and/or unsaturated. The R2 groups can also be connected to form ring structures. A
surfactant of this type is a C10-C14 fatty acylamidopropylene-(hydroxypropylene)sulfobetaine that is available from the Sherex Company under the trade name "Varion CAS sulfobetaine"".
Suitable nonionic surfactants to be used herein are fatty alcohol ethoxylates and/or propoxylates which are commercially available with a variety of fatty alcohol chain lengths and a variety of ethoxyldtion degrees. Indeed, the HLB
values of such alkoxylated nonionic surfactants depend essentially on the chain 1 s length of the fatty alcohol, the nature of the alkoxylation and the degree of alkoxylation. Surfactant catalogues are available which list a number of surfactants, including nonionics, together with their respective HLB values.
Particularly suitable for use herein as nonionic surfactants are the hydrophobic nonionic surfactants having an HLB (hydrophilic-lipophilic balance) below 16 and more preferably below 15. Those hydrophobic nonionic surfactants have been found to provide good grease cutting properties.
Preferred nonionic surfactants for use herein are nonionic surfactants according to the formula RO-(C2H40)n(C3Hg0)mH, wherein R is a Cg to C22 alkyl chain or a C6 to C2g alkyl benzene chain, and wherein n+m is from 0 to and n is from 0 to 15 and m is from 0 to 20, preferably n+m is from 1 to 15 and, n and m are from 0.5 to 15, more preferably n+m is from 1 to 10 and, n and m are from 0 to 10. The preferred R chains for use herein are the Cg to C22 alkyl chains. Accordingly, suitable hydrophobic nonionic surfactants for use herein are WO 00/44270 PCT/US00l01388 Dobanol R 91-2.5 (HLB= 8.1; R is a mixture of Cg and C11 alkyl chains, n is 2.5 and m is 0), or Lutensol R T03 (HLB=8; R is a C13 alkyl chains, n is 3 and m is 0), or Lutensol R A03 (HLB=8; R is a mixture of C13 and C15 alkyl chains, n is and m is 0), or Tergitol R 25L3 (HLB= 7.7; R is in the range of C12 to C15 alkyl chain length, n is 3 and m is 0), or Dobanol R 23-3 (HLB=8.1; R is a mixture of C12 and C13 alkyl chains, n is 3 and m is 0), or Dobanol R 23-2 (HLB=6.2; R is a mixture of C12 and C13 alkyl chains, n is 2 and m is 0), or Dobanol R 45-7 (HLB=11.6; R is a mixture of C14 and C15 alkyl chains, n is 7 and m is 0) Dobanol R 23-6.5 (HLB=11.9; R is a mixture of C12 and C13 alkyl chains, n is 6.5 and m is 0), or Dobanol R 25-7 (HLB=12; R is a mixture of C12 and C15 alkyl chains, n is 7 and m is 0), or Dobanol R 91-5 (HLB=11.6; R is a mixture of Cg and C11 alkyl chains, n is 5 and m is 0), or Dobanol R 91-6 (HLB=12.5; R is a mixture of Cg and C11 alkyl chains, n is 6 arid m is 0), or Dobanol R 91-8 (HLB=13.7; R is a mixture of Cg, and C11 alkyl chains, n is 8 and m is 0), 1 ~ Dobanol R 91-10 (HLB=14.2; R is a mixture of Cg to C11 alkyl chains, n is and m is 0), or mixtures thereof. Preferred herein are Dobanol R 91-2.5, or Lutensol R T03, or Lutensol R A03, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or Dobanol R 23-10, or mixtures thereof. DobanolR surfactants are commercially available from SHELL. LutensolR surfactants are commercially available from BASF and the Tergitol R surfactants are commercially available from UNION CARBIDE.
Suitable anionic surfactants to be used herein include water soluble salts or acids of the formula ROS03M wherein R is preferably a Cg-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a Cg-C20 alkyl component, more preferably a Cg-C1g alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
Other suitable anionic surfactants to be used herein include alkyl-diphenyl-ether-sulphonates and alkyl-carboxylates. Other anionic surfactants can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C20 linear alkylbenzenesulfonates, Cg-C22 primary or secondary alkanesulfonates, l0 Cg-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, Cg-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as 16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, 1, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C1g monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), acyl sarcosinates, sulfates of 20 alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)kCH2C00-M+ wherein R is a Cg-C22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated 25 resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 30 23, line 58 through Column 29, line 23 (herein incorporated by reference).
Preferred anionic surfactants for use herein are the alkyl benzene sulfonates, alkyl sulfates, alkyl alkoxylated sulfates, paraffin sulfonates and mixtures thereof.
The internal disinfecting polar phase according to the present invention has a pH of from 1 to 12, preferably from 1.5 to 10, and more preferably from 2 to 9.
The pH can be adjusted by using alkalinizing agents or acidifying agents.
Examples of alkalinizing agents are alkali metal hydroxides, such as potassium 10 and/or sodium hydroxide, or alkali metal oxides such as sodium and/or potassium oxide. Examples of acidifying agents are organic or inorganic acids such as citric or sulfuric acid.
Solvents may be present in tfle liquid composition according to the present invention. These solvents will, advantageously, give an enhanced cleaning to the disinfecting wipes of the present Invention. Suitable solvents for incorporation herein include ~ propylene glycol derivatives such as n-butoxypropanol or n-butoxypropoxypropanol, water-soluble CARBITOL, solvents or water-soluble CELLOSOLVE, solvents. Water-soluble CARBITOL, solvents are compounds of 20 the 2-(2-alkoxyethoxy)ethanol class wherein the alkoxy group is derived from ethyl, propyl or butyl. A preferred water-soluble carbitol is 2-(2-butoxyethoxy)ethanol also known as butyl carbitol. Water-soluble CELLOSOLVE, solvents are compounds of the 2-alkoxyethoxyethanol class, with 2-butoxyethoxyethanol being preferred. Other suitable solvents are benzyl alcohol, methanol, ethanol, isopropyl alcohol and diols such as 2-ethyl-1,3-hexanediol and 2,2,4-trimethyl-1,3-pentanediol and mixture thereof. Preferred solvents for use herein are n-butoxypropoxypropanol, butyl carbitol, and mixtures thereof.
A
most preferred solvent for use herein is butyl carbitol.
The liquid composition may further comprise other optional ingredients including radical scavengers, chelating agents, thickeners, builders, buffers, stabilizers, bleach activators, soil suspenders, dye transfer agents, brighteners, anti dusting agents, enzymes, dispersant, dye transfer inhibitors, pigments, perfumes, and dyes and the like.
Suitable radical scavengers for use herein include the well-known substituted mono and di hydroxy benzenes and derivatives thereof, alkyl- and aryl carboxylates and mixtures thereof. Preferred radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), p-hydroxy-toluene, hydroquinone (HQ), di-tert-butyl hydroquinone (DTBHQ), mono-tert-butyl hydroquinone (MTBHQ), tert-butyl-hydroxy anysole, p-hydroxy-anysol, benzoic acid, 2,5-dihydroxy benzoic acid, 2,5-dihydroxyterephtalic acid, toluic acid, catechol, t-butyl catechol, 4-allyl-catechol, 4-acetyl catechol, 2-methoxy-phenol, 2-ethoxy-phenol, 2-methoxy-4-(2-propenyl)phenol, 3,4-dihydroxy benzaldehyde, 2,3-dihydroxy benzaldehyde, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, tert-butyl-hyd~oxy-anyline, ~-hydroxy anyline as well as n-propyl-gallate. Highly preferred foi- use herein is di-tert-butyl hydroxy toluene, which is for example commercially'available from SHELL under the trade name IONOL CP"
Typically, the radical scavenger, or a mixture thereof, is present in the liquid composition up to a level of 5% by weight, preferably from 0.001 % to 3% by weight, and more preferably from 0.001 % to 1.5%.
Suitable chelating agents to be used herein may be any chelating agent known to those skilled in the art such as the ones selected from the group consisting of phosphonate chelating agents, amino carboxylate chelating agents or other carboxylate chelating agents, or polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
Such phosphonate chelating agents may include etidronic acid (1-hydroxyethylidene-bisphosphonic acid or HEDP) as well as amino phosphonate compounds, including amino alkylene poly (alkylene phosphonate), alkali metal ethane 1-hydroxy diphosphonates, nitrilo tfimethylene phosphonates, ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates. The phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonates. Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST.
Polyfunctionally-substituted aromatic chelating agents may also be useful herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
A preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or ~Ikali metal, ~r alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof. Ethylenediamine N,N'-disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987 to Hartman and Perkins.
Ethylenediamine N,N'- disuccinic acid is, for instance, commercially available under the tradename ssEDDS, from Palmer Research Laboratories.
Suitable amino carboxylate chelating agents useful herein include ethylene diamine tetra acetate, diethylene triamine pentaacetate, diethylene triamine pentaacetate (DTPA), N-hydroxyethylethylenediamine triacetate, nitrilotri-acetate, ethylenediamine tetraproprionate, triethylenetetraaminehexa-acetate, ?5 ethanoldiglycine, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms. Particularly suitable to be used herein are diethylene triamine yenta acetic acid (DTPA), propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Triton FS, and methyl glycine di-acetic acid (MGDA).
Further carboxylate chelating agents to be used herein includes malonic acid, salicylic acid, glycine, aspartic acid, glutamic acid, dipicolinic acid and derivatives thereof, or mixtures thereof.
S Typically, the chelating agent, or a mixture thereof, is present in the liquid composition at a level of from 0.001 % to 5% by weight, preferably from 0.001 to 3% by weight and more preferably from 0.001 % to 1.5%.
The disinfecting wipes according to the present invention are suitable for l0 disinfecting various surfaces including animate surfaces (e.g. human skin) as well as inanimate surfaces including any hard-surfaces.
Other water-soluble or dispersible materials that can be present in the liquid composition include thickeners and viscosity modifiers. Suitable thickeners and
Suitable zwitterionic surfactants to be used herein contain both cationic and anionic hydrophilic groups on the same molecule at a relatively wide range of pH's. The typical cationic group is a quaternary ammonium group, although other positively charged groups like phosphonium, imidazolinium and sulfonium groups can be used. The typical anionic hydrophilic groups are carboxylates and sulfonates, although other groups such as sulfates, phosphonates, and the like can be used. A generic formula for some zwitterionic surfactants to be used herein is R1-N+~R2)~R3)R4X-wherein R1 is a hydrophobic group; R2 and R3 are each C1-C4 alkyl, hydroxy alkyl or other substituted alkyl group which can also be joined to form ring structures with the N; R4 is a moiety joining the cationic nitrogen atom to the hydrophilic group and is typically an alkylene, hydroxy alkylene, or polyalkoxy group containing from 1 to 10 carbon atoms; and X is the hydrophilic group which is preferably a carboxylate or sulfonate group. Preferred hydrophobic groups are alkyl groups containing from 1 to 24, preferably less than 18, more preferably 5 less than 16 carbon atoms. The hydrophobic group can contain unsaturation andlor substituents and/or linking groups such as aryl groups, amido groups, ester groups and the like. In general, the simple alkyl groups are preferred for cost and stability reasons.
10 Highly preferred zwitterionic surfactants include betaine and sulphobetaine surfactants, derivatives thereof or mixtures thereof. Said betaine or sulphobetaine surtactants are preferred herein as they help disinfecting by increasing the permeability of the bacterial cell wall, thus allowing other active ingredients to enter the cell.
Furthermore, due to the mild action profile of said betaine or sulphobetaine surfactants, they are particularly suitable for the cleaning of delicate surfaces, e.g., hard surfaces in contact with food and/or babies. Betaine and sulphobetaine surfactants are also extremely mild to the skin and/or surfaces to be treated.
Suitable betaine and sulphobetaine surfactants to be used herein are the betaine/sulphobetaine and betaine-like detergents wherein the molecule contains both basic and acidic groups which form an inner salt giving the molecule both cationic and anionic hydrophilic groups over a broad range of pH values. Some common examples of these detergents are described in U.S. Pat. Nos.
2,082,275, 2,702,279 and 2,255,082, incorporated herein by reference.
Preferred betaine and sulphobetaine surfactants herein are according to the formula R1 - N+ - (CH2)n - Y-wherein R1 is a hydrocarbon chain containing from 1 to 24 carbon atoms, preferably from 8 to 18, more preferably from 12 to 14, wherein R2 and R3 are hydrocarbon chains containing from 1 to 3 carbon atoms, preferably 1 carbon atom, wherein n is an integer from 1 to 10, preferably from 1 to 6, more preferably is 1, Y is selected from the group consisting of carboxyl and sulfonyl radicals and wherein the sum of R1, R2 and R3 hydrocarbon chains is from 14 to 24 carbon atoms, or mixtures therepf.
Examples of particularly suitable betaine surfactants include C12-C18 alkyl dimethyl betaine such as coconut-betaine and C1 p-C16 alkyl dimethyl betaine such as laurylbetaine. Coconutbetaine is commercially available from Seppic under the trade name of Amonyl 265". Laurylbetaine is commercially available from Albright & Wilson under the trade name Empigen BB/L".
Other specific zwitterionic surfactants have the generic formulas:
R1-C(O)-N(R2)-(C(R3)2)n-N(R2)2(+)-(C(R3)2)n-S03(-) ; or R1-C(O)-N(R2)-(C(R3)2)n-N(R2)2(+)-(C(R3)2)n-COO(-) wherein each R1 is a hydrocarbon, e.g. an alkyl group containing from 8 up to 20, preferably up to 18, more preferably up to 16 carbon atoms, each R2 is either a hydrogen (when attached to the amido nitrogen), short chain alkyl or substituted alkyl containing from 1 to 4 carbon atoms, preferably groups selected from the group consisting of methyl, ethyl, propyl, hydroxy substituted ethyl or propyl and mixtures thereof, preferably methyl, each R3 is selected from the group consisting of hydrogen and hydroxy groups and each n is a number from 1 to 4, preferably from 2 to 3, more preferably 3, with no more than one hydroxy group in any (C(R3)2) moiety. The R1 groups can be branched and/or unsaturated. The R2 groups can also be connected to form ring structures. A
surfactant of this type is a C10-C14 fatty acylamidopropylene-(hydroxypropylene)sulfobetaine that is available from the Sherex Company under the trade name "Varion CAS sulfobetaine"".
Suitable nonionic surfactants to be used herein are fatty alcohol ethoxylates and/or propoxylates which are commercially available with a variety of fatty alcohol chain lengths and a variety of ethoxyldtion degrees. Indeed, the HLB
values of such alkoxylated nonionic surfactants depend essentially on the chain 1 s length of the fatty alcohol, the nature of the alkoxylation and the degree of alkoxylation. Surfactant catalogues are available which list a number of surfactants, including nonionics, together with their respective HLB values.
Particularly suitable for use herein as nonionic surfactants are the hydrophobic nonionic surfactants having an HLB (hydrophilic-lipophilic balance) below 16 and more preferably below 15. Those hydrophobic nonionic surfactants have been found to provide good grease cutting properties.
Preferred nonionic surfactants for use herein are nonionic surfactants according to the formula RO-(C2H40)n(C3Hg0)mH, wherein R is a Cg to C22 alkyl chain or a C6 to C2g alkyl benzene chain, and wherein n+m is from 0 to and n is from 0 to 15 and m is from 0 to 20, preferably n+m is from 1 to 15 and, n and m are from 0.5 to 15, more preferably n+m is from 1 to 10 and, n and m are from 0 to 10. The preferred R chains for use herein are the Cg to C22 alkyl chains. Accordingly, suitable hydrophobic nonionic surfactants for use herein are WO 00/44270 PCT/US00l01388 Dobanol R 91-2.5 (HLB= 8.1; R is a mixture of Cg and C11 alkyl chains, n is 2.5 and m is 0), or Lutensol R T03 (HLB=8; R is a C13 alkyl chains, n is 3 and m is 0), or Lutensol R A03 (HLB=8; R is a mixture of C13 and C15 alkyl chains, n is and m is 0), or Tergitol R 25L3 (HLB= 7.7; R is in the range of C12 to C15 alkyl chain length, n is 3 and m is 0), or Dobanol R 23-3 (HLB=8.1; R is a mixture of C12 and C13 alkyl chains, n is 3 and m is 0), or Dobanol R 23-2 (HLB=6.2; R is a mixture of C12 and C13 alkyl chains, n is 2 and m is 0), or Dobanol R 45-7 (HLB=11.6; R is a mixture of C14 and C15 alkyl chains, n is 7 and m is 0) Dobanol R 23-6.5 (HLB=11.9; R is a mixture of C12 and C13 alkyl chains, n is 6.5 and m is 0), or Dobanol R 25-7 (HLB=12; R is a mixture of C12 and C15 alkyl chains, n is 7 and m is 0), or Dobanol R 91-5 (HLB=11.6; R is a mixture of Cg and C11 alkyl chains, n is 5 and m is 0), or Dobanol R 91-6 (HLB=12.5; R is a mixture of Cg and C11 alkyl chains, n is 6 arid m is 0), or Dobanol R 91-8 (HLB=13.7; R is a mixture of Cg, and C11 alkyl chains, n is 8 and m is 0), 1 ~ Dobanol R 91-10 (HLB=14.2; R is a mixture of Cg to C11 alkyl chains, n is and m is 0), or mixtures thereof. Preferred herein are Dobanol R 91-2.5, or Lutensol R T03, or Lutensol R A03, or Tergitol R 25L3, or Dobanol R 23-3, or Dobanol R 23-2, or Dobanol R 23-10, or mixtures thereof. DobanolR surfactants are commercially available from SHELL. LutensolR surfactants are commercially available from BASF and the Tergitol R surfactants are commercially available from UNION CARBIDE.
Suitable anionic surfactants to be used herein include water soluble salts or acids of the formula ROS03M wherein R is preferably a Cg-C24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a Cg-C20 alkyl component, more preferably a Cg-C1g alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), or ammonium or substituted ammonium (e.g., methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammonium cations, such as tetramethyl-ammonium and dimethyl piperdinium cations and quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like).
Other suitable anionic surfactants to be used herein include alkyl-diphenyl-ether-sulphonates and alkyl-carboxylates. Other anionic surfactants can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C20 linear alkylbenzenesulfonates, Cg-C22 primary or secondary alkanesulfonates, l0 Cg-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1,082,179, Cg-C24 alkylpolyglycolethersulfates (containing up to 10 moles of ethylene oxide); alkyl ester sulfonates such as 16 methyl ester sulfonates; acyl glycerol sulfonates, fatty oleyl glycerol sulfates, 1, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C1g monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), acyl sarcosinates, sulfates of 20 alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described below), branched primary alkyl sulfates, alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20)kCH2C00-M+ wherein R is a Cg-C22 alkyl, k is an integer from 0 to 10, and M is a soluble salt-forming cation. Resin acids and hydrogenated 25 resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 30 23, line 58 through Column 29, line 23 (herein incorporated by reference).
Preferred anionic surfactants for use herein are the alkyl benzene sulfonates, alkyl sulfates, alkyl alkoxylated sulfates, paraffin sulfonates and mixtures thereof.
The internal disinfecting polar phase according to the present invention has a pH of from 1 to 12, preferably from 1.5 to 10, and more preferably from 2 to 9.
The pH can be adjusted by using alkalinizing agents or acidifying agents.
Examples of alkalinizing agents are alkali metal hydroxides, such as potassium 10 and/or sodium hydroxide, or alkali metal oxides such as sodium and/or potassium oxide. Examples of acidifying agents are organic or inorganic acids such as citric or sulfuric acid.
Solvents may be present in tfle liquid composition according to the present invention. These solvents will, advantageously, give an enhanced cleaning to the disinfecting wipes of the present Invention. Suitable solvents for incorporation herein include ~ propylene glycol derivatives such as n-butoxypropanol or n-butoxypropoxypropanol, water-soluble CARBITOL, solvents or water-soluble CELLOSOLVE, solvents. Water-soluble CARBITOL, solvents are compounds of 20 the 2-(2-alkoxyethoxy)ethanol class wherein the alkoxy group is derived from ethyl, propyl or butyl. A preferred water-soluble carbitol is 2-(2-butoxyethoxy)ethanol also known as butyl carbitol. Water-soluble CELLOSOLVE, solvents are compounds of the 2-alkoxyethoxyethanol class, with 2-butoxyethoxyethanol being preferred. Other suitable solvents are benzyl alcohol, methanol, ethanol, isopropyl alcohol and diols such as 2-ethyl-1,3-hexanediol and 2,2,4-trimethyl-1,3-pentanediol and mixture thereof. Preferred solvents for use herein are n-butoxypropoxypropanol, butyl carbitol, and mixtures thereof.
A
most preferred solvent for use herein is butyl carbitol.
The liquid composition may further comprise other optional ingredients including radical scavengers, chelating agents, thickeners, builders, buffers, stabilizers, bleach activators, soil suspenders, dye transfer agents, brighteners, anti dusting agents, enzymes, dispersant, dye transfer inhibitors, pigments, perfumes, and dyes and the like.
Suitable radical scavengers for use herein include the well-known substituted mono and di hydroxy benzenes and derivatives thereof, alkyl- and aryl carboxylates and mixtures thereof. Preferred radical scavengers for use herein include di-tert-butyl hydroxy toluene (BHT), p-hydroxy-toluene, hydroquinone (HQ), di-tert-butyl hydroquinone (DTBHQ), mono-tert-butyl hydroquinone (MTBHQ), tert-butyl-hydroxy anysole, p-hydroxy-anysol, benzoic acid, 2,5-dihydroxy benzoic acid, 2,5-dihydroxyterephtalic acid, toluic acid, catechol, t-butyl catechol, 4-allyl-catechol, 4-acetyl catechol, 2-methoxy-phenol, 2-ethoxy-phenol, 2-methoxy-4-(2-propenyl)phenol, 3,4-dihydroxy benzaldehyde, 2,3-dihydroxy benzaldehyde, benzylamine, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl) butane, tert-butyl-hyd~oxy-anyline, ~-hydroxy anyline as well as n-propyl-gallate. Highly preferred foi- use herein is di-tert-butyl hydroxy toluene, which is for example commercially'available from SHELL under the trade name IONOL CP"
Typically, the radical scavenger, or a mixture thereof, is present in the liquid composition up to a level of 5% by weight, preferably from 0.001 % to 3% by weight, and more preferably from 0.001 % to 1.5%.
Suitable chelating agents to be used herein may be any chelating agent known to those skilled in the art such as the ones selected from the group consisting of phosphonate chelating agents, amino carboxylate chelating agents or other carboxylate chelating agents, or polyfunctionally-substituted aromatic chelating agents and mixtures thereof.
Such phosphonate chelating agents may include etidronic acid (1-hydroxyethylidene-bisphosphonic acid or HEDP) as well as amino phosphonate compounds, including amino alkylene poly (alkylene phosphonate), alkali metal ethane 1-hydroxy diphosphonates, nitrilo tfimethylene phosphonates, ethylene diamine tetra methylene phosphonates, and diethylene triamine penta methylene phosphonates. The phosphonate compounds may be present either in their acid form or as salts of different cations on some or all of their acid functionalities.
Preferred phosphonate chelating agents to be used herein are diethylene triamine penta methylene phosphonates. Such phosphonate chelating agents are commercially available from Monsanto under the trade name DEQUEST.
Polyfunctionally-substituted aromatic chelating agents may also be useful herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
A preferred biodegradable chelating agent for use herein is ethylene diamine N,N'- disuccinic acid, or ~Ikali metal, ~r alkaline earth, ammonium or substitutes ammonium salts thereof or mixtures thereof. Ethylenediamine N,N'-disuccinic acids, especially the (S,S) isomer have been extensively described in US patent 4, 704, 233, November 3, 1987 to Hartman and Perkins.
Ethylenediamine N,N'- disuccinic acid is, for instance, commercially available under the tradename ssEDDS, from Palmer Research Laboratories.
Suitable amino carboxylate chelating agents useful herein include ethylene diamine tetra acetate, diethylene triamine pentaacetate, diethylene triamine pentaacetate (DTPA), N-hydroxyethylethylenediamine triacetate, nitrilotri-acetate, ethylenediamine tetraproprionate, triethylenetetraaminehexa-acetate, ?5 ethanoldiglycine, propylene diamine tetracetic acid (PDTA) and methyl glycine di-acetic acid (MGDA), both in their acid form, or in their alkali metal, ammonium, and substituted ammonium salt forms. Particularly suitable to be used herein are diethylene triamine yenta acetic acid (DTPA), propylene diamine tetracetic acid (PDTA) which is, for instance, commercially available from BASF under the trade name Triton FS, and methyl glycine di-acetic acid (MGDA).
Further carboxylate chelating agents to be used herein includes malonic acid, salicylic acid, glycine, aspartic acid, glutamic acid, dipicolinic acid and derivatives thereof, or mixtures thereof.
S Typically, the chelating agent, or a mixture thereof, is present in the liquid composition at a level of from 0.001 % to 5% by weight, preferably from 0.001 to 3% by weight and more preferably from 0.001 % to 1.5%.
The disinfecting wipes according to the present invention are suitable for l0 disinfecting various surfaces including animate surfaces (e.g. human skin) as well as inanimate surfaces including any hard-surfaces.
Other water-soluble or dispersible materials that can be present in the liquid composition include thickeners and viscosity modifiers. Suitable thickeners and
15 viscosity modifiers include polyacrylic and hydrophobically modified polyacrylic resins such as Carbopol and Pemulen, starches such as corn starch, potato starch, tapioca, gums such as guar gum, gum arabic, cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, and the like. These thickeners and viscosity modifiers will typically be included in a 20 concentration in the range of from about 0.05 to about 0.5% of the liquid composition.
Again, where water is a major constituent of the liquid composition, water-soluble or dispersible materials that can be present in the internal phase include 25 polycationic polymers to provide steric stabilization at the polar phase-lipid phase interface and nonionic polymers that also stabilize the emulsion. Suitable polycationic polymers include Reten 201, Kymene~ 557H and Acco 711.
Suitable nonionic polymers include polyethylene glycols (PEG) such as Carbowax and polypropylene glycol) butyl ether. These polycationic and 30 nonionic polymers will typically be included in a concentration in the range of from about 0.05 to about 1.0% of the liquid composition.
According to the present invention, for wet wipe application designed specifically for use on the human skin such as baby wipes, the composition may be aqueous, alcohol based or an emulsion, either a water-in-oil or an oil-in-water or a multiple emulsion, preferably the emulsion is a oil-in-water emulsion.
Typically, the composition will comprise from 2% to 50% by weight of said composition of actives and from 50% to 98% water, preferably de-ionised or distilled. Of the active component, preferably 2% to 20% are present in the oil phase and the remainder are present in the aqueous phase.
According to the present invention the wet wipes are provided with an emulsion composition comprising a oil phase in the range of 1 % to 20%, preferably 2% to 10%, by weight of the composition. Advantageously, the oil based phase is derived from natural resources such as from vegetable or animal 1 ~ oils or may be synthetic or any mixtures thereof. Suitable vegetable and animal oils for use herein include waxes Such as beeswax, lanolin, candelilla, and oils such as glycerine esters and glycerine ethers, fatty acid alcohols, fatty acid esters and fatty acid ethers such as caprylic and capric triglycerides and octylpalmitate. Suitable mineral oils include petroleum based oils such as paraffin and petroleum jelly. Synthetic oils for use herein include ethylenic polymers for example polyethylene wax or silicone based oils. Suitable silicon oils include polydimethylsiloxanes, volatile cyclomethicones, dimethiconols, siloxysilicates and amino- and phenyl derivatives of siloxanes and mixtures thereof. Examples include dimethicone (Dow Corning 200 Fluids), cycfomethicone and dimethiconol (Dow Corning 1401 Fluid), cetyl dimethicone (Dow Corning 2502 Fluid), dimethicone and trimethylsiloxysilicate (Dow Corning 593 Fluid), cyclomethicone (Dow Corning 244, 245, 344 or 345 Fluid), phenyl trimethicone (Dow Corning 556 Fluid), or combinations thereof. ' The oil-in-water emulsions typically require emulsifying agents. The emulsifying agents which may be used in the present invention are preferably capable of primary emulsification of oil-in-water emulsions. The emulsifying agent is present in the range of 0.02% to 5.0%, preferably 0.02% to 3.0%, by weight of the composition.
In a preferred embodiment the emulsifying agent is a polymeric type of 5 emulsifying agent such as a copolymer of C10-C30 alkyl acrylates and one or more monomers of acrylic acid, methylacrylic acid or one of their simple esters cross linked with an allyl ether of sucrose or an allyl ether of pentaerythritol. The emulsifying agents which are thus useful in the present invention include Ceteareth-12, Ceteareth-20 or Pemulen TR1 and TR2 which are available from 10 B.F. Goodrich company of the USA. However, other known emulsifying agents such as ethoxylated fatty alcohols, glycerine esters of fatty acids, soaps, sugar derived agents are also suitable for use herein. Other useful emulsifying agents include those disclosed in detail in EP-A-328 355.
1 > According to the present invention the composition may comprise a stability agent or preservative. Stability agents suitable for use herein include phenoxyethanol preferably present in the range of from 0.1 to 1.0%, sodium benzoate, potassium sorbate, methylparaben, propylparaben, ethylparaben, butylparaben, sodium benzoate, potassium sorbate, benzalkonium chloride, and 20 disodium salt ethylenediamine tetraacetic acid (hereinafter referred to as EDTA) or other EDTA salts (sequestrenes). Sequestrene is a series of complexing agents and metal complexes general of ethylenediaminetetraacetic acid and salts. The total quantity of stability agents should be in the range of 0.1 %
to 4.0%
by weight of the composition.
The composition of the present invention may further comprise from 0.02%
to 5.0% by weight of said composition of an emollient or moisturiser.
Preferably the emollient is water soluble and includes polyhydric alcohols, such as propylene glycol, glycerin, and also water soluble lanolin derivatives.
In preparing wet wipe products according to the present invention, the composition is applied to at least one surface of the substrate material. The composition can be applied at any time during the manufacture of the wet wipe.
Preferably the composition can be applied to the substrate after the substrate has been dried. Any variety of application methods that evenly distribute lubricious materials having a molten or liquid consistency can be used.
Suitable methods include spraying, printing, (e.g. flexographic printing), coating (e.g.
gravure coating or flood coating) extrusion whereby the composition is forced through tubes in contact with the substrate whilst the substrate passes across the tube or combinations of these application techniques. For example spraying the composition on a rotating surface such as calender roll that then transfers the composition to the surface of the substrate. The composition can be applied either to one surface of the substrate or both surfaces, preferably both surfaces.
The preferred application method is extrusion coating.
The composition can also ~e applied uniformly or non uniformly to the surfaces of the substrate. By non uniform it is meant that for example the amount, pattern of distribution of the composition can vary over the surface of the substrate. For example some of the surface of the substrate can have greater or lesser amounts of composition, including portions of the surface that do not have any composition on it. Preferably however the composition is uniformly applied to the surfaces of the wipes. The composition is typically applied in an amount of from about 0.5 g to 10 g per gram of substrate, preferably from 1.0 g to 5 g per gram of substrate, most preferably from 2 g to 4 g per gram of dry substrate.
Preferably, the composition can be applied to the substrate at any point after it has been dried. For example the composition can be applied to the substrate prior to calendering or after calendering and prior to being wound up onto a parent roll. Typically, the application will be carried out on a substrate unwound from a roll having a width equal to a substantial number of wipes it is intended to produce. The substrate with the composition applied thereto is then subsequently perforated utilizing standard techniques such as in order to produce the desired perforation line.
EXAMPLE I
A) Carrier Preparation The carrier is a air laid nonwoven substrate comprising 70% pulp, 15%
PET and 15% latex. The substrate has a basis weight of 73g/m2.
B) Liquid composition Preparation A liquid composition is prepared from the ingredients shown in Table I.
Table I
Inaredients: Percentaae i Distilled Water 87 Salicylic acid 0.03 Hydrogen Peroxide 1.0 Ethanol 9.4 C-12 Amine Oxide 0.4 Geraniol 0.04 Thymol I 0.025 Citric acid 0.07 Glycol butyl ether 1.4 To formulate the composition all the components are mixed together and then heated to 140°F (45.8°C).
C) Appl~g the liauid composition to the Carrier The liquid composition prepared in step B is applied to the carrier by spraying. 3.25g of lotion per gram of substrate material is applied to the carrier.
The coated carrier is then perforated, folded and stacked. The stack is then sealed to yield finished product wipe.
Examples Sample REF REF 9 4 1 3 Bonded area length 0.8 1.0 0.8 0.8 0.8. 0.8 (mm) Primary slit length 4 3 4 6.4 3.9 6.5 (mm) Secondary slit length - - 1.3 1.5 1.4 1.3 (mm) No. bonded areas 1 1 5 5 2 4 No. primary slits 1 1 1 1 1 1 No. secondary slits - - 4 4 1 3 Ratio of total slit 5 3 9.2:4 3.1 3.3 3.25 length Tensile strength (N/inch)1.8 2.5 2.9 2.3 1.6 1.65 No. of patterns 1 1 1 1 1 1 No. of repeat patterns35 42 ; ~ 10 25 12 per 13 erforation line
Again, where water is a major constituent of the liquid composition, water-soluble or dispersible materials that can be present in the internal phase include 25 polycationic polymers to provide steric stabilization at the polar phase-lipid phase interface and nonionic polymers that also stabilize the emulsion. Suitable polycationic polymers include Reten 201, Kymene~ 557H and Acco 711.
Suitable nonionic polymers include polyethylene glycols (PEG) such as Carbowax and polypropylene glycol) butyl ether. These polycationic and 30 nonionic polymers will typically be included in a concentration in the range of from about 0.05 to about 1.0% of the liquid composition.
According to the present invention, for wet wipe application designed specifically for use on the human skin such as baby wipes, the composition may be aqueous, alcohol based or an emulsion, either a water-in-oil or an oil-in-water or a multiple emulsion, preferably the emulsion is a oil-in-water emulsion.
Typically, the composition will comprise from 2% to 50% by weight of said composition of actives and from 50% to 98% water, preferably de-ionised or distilled. Of the active component, preferably 2% to 20% are present in the oil phase and the remainder are present in the aqueous phase.
According to the present invention the wet wipes are provided with an emulsion composition comprising a oil phase in the range of 1 % to 20%, preferably 2% to 10%, by weight of the composition. Advantageously, the oil based phase is derived from natural resources such as from vegetable or animal 1 ~ oils or may be synthetic or any mixtures thereof. Suitable vegetable and animal oils for use herein include waxes Such as beeswax, lanolin, candelilla, and oils such as glycerine esters and glycerine ethers, fatty acid alcohols, fatty acid esters and fatty acid ethers such as caprylic and capric triglycerides and octylpalmitate. Suitable mineral oils include petroleum based oils such as paraffin and petroleum jelly. Synthetic oils for use herein include ethylenic polymers for example polyethylene wax or silicone based oils. Suitable silicon oils include polydimethylsiloxanes, volatile cyclomethicones, dimethiconols, siloxysilicates and amino- and phenyl derivatives of siloxanes and mixtures thereof. Examples include dimethicone (Dow Corning 200 Fluids), cycfomethicone and dimethiconol (Dow Corning 1401 Fluid), cetyl dimethicone (Dow Corning 2502 Fluid), dimethicone and trimethylsiloxysilicate (Dow Corning 593 Fluid), cyclomethicone (Dow Corning 244, 245, 344 or 345 Fluid), phenyl trimethicone (Dow Corning 556 Fluid), or combinations thereof. ' The oil-in-water emulsions typically require emulsifying agents. The emulsifying agents which may be used in the present invention are preferably capable of primary emulsification of oil-in-water emulsions. The emulsifying agent is present in the range of 0.02% to 5.0%, preferably 0.02% to 3.0%, by weight of the composition.
In a preferred embodiment the emulsifying agent is a polymeric type of 5 emulsifying agent such as a copolymer of C10-C30 alkyl acrylates and one or more monomers of acrylic acid, methylacrylic acid or one of their simple esters cross linked with an allyl ether of sucrose or an allyl ether of pentaerythritol. The emulsifying agents which are thus useful in the present invention include Ceteareth-12, Ceteareth-20 or Pemulen TR1 and TR2 which are available from 10 B.F. Goodrich company of the USA. However, other known emulsifying agents such as ethoxylated fatty alcohols, glycerine esters of fatty acids, soaps, sugar derived agents are also suitable for use herein. Other useful emulsifying agents include those disclosed in detail in EP-A-328 355.
1 > According to the present invention the composition may comprise a stability agent or preservative. Stability agents suitable for use herein include phenoxyethanol preferably present in the range of from 0.1 to 1.0%, sodium benzoate, potassium sorbate, methylparaben, propylparaben, ethylparaben, butylparaben, sodium benzoate, potassium sorbate, benzalkonium chloride, and 20 disodium salt ethylenediamine tetraacetic acid (hereinafter referred to as EDTA) or other EDTA salts (sequestrenes). Sequestrene is a series of complexing agents and metal complexes general of ethylenediaminetetraacetic acid and salts. The total quantity of stability agents should be in the range of 0.1 %
to 4.0%
by weight of the composition.
The composition of the present invention may further comprise from 0.02%
to 5.0% by weight of said composition of an emollient or moisturiser.
Preferably the emollient is water soluble and includes polyhydric alcohols, such as propylene glycol, glycerin, and also water soluble lanolin derivatives.
In preparing wet wipe products according to the present invention, the composition is applied to at least one surface of the substrate material. The composition can be applied at any time during the manufacture of the wet wipe.
Preferably the composition can be applied to the substrate after the substrate has been dried. Any variety of application methods that evenly distribute lubricious materials having a molten or liquid consistency can be used.
Suitable methods include spraying, printing, (e.g. flexographic printing), coating (e.g.
gravure coating or flood coating) extrusion whereby the composition is forced through tubes in contact with the substrate whilst the substrate passes across the tube or combinations of these application techniques. For example spraying the composition on a rotating surface such as calender roll that then transfers the composition to the surface of the substrate. The composition can be applied either to one surface of the substrate or both surfaces, preferably both surfaces.
The preferred application method is extrusion coating.
The composition can also ~e applied uniformly or non uniformly to the surfaces of the substrate. By non uniform it is meant that for example the amount, pattern of distribution of the composition can vary over the surface of the substrate. For example some of the surface of the substrate can have greater or lesser amounts of composition, including portions of the surface that do not have any composition on it. Preferably however the composition is uniformly applied to the surfaces of the wipes. The composition is typically applied in an amount of from about 0.5 g to 10 g per gram of substrate, preferably from 1.0 g to 5 g per gram of substrate, most preferably from 2 g to 4 g per gram of dry substrate.
Preferably, the composition can be applied to the substrate at any point after it has been dried. For example the composition can be applied to the substrate prior to calendering or after calendering and prior to being wound up onto a parent roll. Typically, the application will be carried out on a substrate unwound from a roll having a width equal to a substantial number of wipes it is intended to produce. The substrate with the composition applied thereto is then subsequently perforated utilizing standard techniques such as in order to produce the desired perforation line.
EXAMPLE I
A) Carrier Preparation The carrier is a air laid nonwoven substrate comprising 70% pulp, 15%
PET and 15% latex. The substrate has a basis weight of 73g/m2.
B) Liquid composition Preparation A liquid composition is prepared from the ingredients shown in Table I.
Table I
Inaredients: Percentaae i Distilled Water 87 Salicylic acid 0.03 Hydrogen Peroxide 1.0 Ethanol 9.4 C-12 Amine Oxide 0.4 Geraniol 0.04 Thymol I 0.025 Citric acid 0.07 Glycol butyl ether 1.4 To formulate the composition all the components are mixed together and then heated to 140°F (45.8°C).
C) Appl~g the liauid composition to the Carrier The liquid composition prepared in step B is applied to the carrier by spraying. 3.25g of lotion per gram of substrate material is applied to the carrier.
The coated carrier is then perforated, folded and stacked. The stack is then sealed to yield finished product wipe.
Examples Sample REF REF 9 4 1 3 Bonded area length 0.8 1.0 0.8 0.8 0.8. 0.8 (mm) Primary slit length 4 3 4 6.4 3.9 6.5 (mm) Secondary slit length - - 1.3 1.5 1.4 1.3 (mm) No. bonded areas 1 1 5 5 2 4 No. primary slits 1 1 1 1 1 1 No. secondary slits - - 4 4 1 3 Ratio of total slit 5 3 9.2:4 3.1 3.3 3.25 length Tensile strength (N/inch)1.8 2.5 2.9 2.3 1.6 1.65 No. of patterns 1 1 1 1 1 1 No. of repeat patterns35 42 ; ~ 10 25 12 per 13 erforation line
Claims (10)
1. A sheet of material, said sheet comprising at least one a traverse perforation line, said perforation line having at least one first repeating pattern, characterized in that each of said repeating patterns has at least one primary perforation slit, at least one secondary perforation slit and at least 2 bonded areas, wherein the length ratio of said primary perforation slit to said secondary perforation slit is from 100:1 to 1.5:1 and wherein the ratio of the total length of said bonded areas to the total length of said primary and secondary perforation slits along said perforation line is from 1:1 to 1:6.
2. A sheet of material according to claim 1, wherein said length ratio of said primary perforation slit to said secondary perforation slit as from 50:1 to 2:1.
3. A sheet of material according to claim 1, wherein said ratio of the total bonded area to the total length of the perforation slits along said perforation line is from 1:1.5 to 1:4.
4. A sheet of material according to claim 1 or claim 2, wherein the length of said primary perforation slit is from 3 mm to 10 mm, the length of said secondary perforation slit is from 0.5 mm to 2.5 mm, and the length of said bonded area is from 0.5 mm to 10
5. A sheet of material according to claim 4, wherein the length of said primary perforation slit is from 3 mm to 8 mm, the length of said secondary perforation slit is from 1 mm to 2 mm and the length of said bonded area is from 0.5 mm to 3 mm.
6. A sheet of material according to any one of claims 1-5, wherein said perforation line has a tensile strength of from 0.7 N/inch to 5 N/inch.
7. A sheet of material according to claim 6, wherein said perforation line has a tensile strength of from 1 N/inch to 4.5 N/inch.
8. A sheet of material according to any one of claims 1-7, wherein said repeating pattern comprises at least 1 of said primary perforation slits, at least 4 of said secondary perforation slits and at least 5 of said bonded areas.
9. A sheet of material according to any one of claims 1-8, wherein said material is an airlaid nonwoven comprising hydrophilic and hydrophobic fibres.
10. A sheet of material according to any one of claims 1-9, wherein said sheet comprises from 0.5 g to 10 g per gram of material of a liquid composition.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99101890A EP1023863A1 (en) | 1999-01-29 | 1999-01-29 | Perforated sheet of material |
EP99101890.4 | 1999-01-29 | ||
PCT/US2000/001388 WO2000044270A1 (en) | 1999-01-29 | 2000-01-20 | Perforated sheet of material |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2360526A1 CA2360526A1 (en) | 2000-08-03 |
CA2360526C true CA2360526C (en) | 2004-05-04 |
Family
ID=8237470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002360526A Expired - Fee Related CA2360526C (en) | 1999-01-29 | 2000-01-20 | Perforated sheet of material |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1023863A1 (en) |
JP (1) | JP3868743B2 (en) |
AU (1) | AU2969000A (en) |
BR (1) | BR0007849A (en) |
CA (1) | CA2360526C (en) |
CO (1) | CO5160282A1 (en) |
PE (1) | PE20010021A1 (en) |
TR (1) | TR200102164T2 (en) |
WO (1) | WO2000044270A1 (en) |
ZA (1) | ZA200105837B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6659391B1 (en) | 1999-04-30 | 2003-12-09 | Kimberly-Clark Worldwide, Inc. | Method for dispensing wet wipes |
US6682013B1 (en) | 1999-04-30 | 2004-01-27 | Kimberly Clark Worldwide, Inc. | Container for wet wipes |
US6705565B1 (en) | 1999-04-30 | 2004-03-16 | Kimberly-Clark Worldwide, Inc. | System and dispenser for dispensing wet wipes |
US6537631B1 (en) | 1999-04-30 | 2003-03-25 | Kimberly-Clark Worldwide, Inc. | Roll of wet wipes |
US6626395B1 (en) | 1999-04-30 | 2003-09-30 | Kimberly-Clark Worldwide, Inc. | Dispenser for premoistened wipes |
US6785946B2 (en) | 1999-04-30 | 2004-09-07 | Kimberly-Clark Worldwide, Inc. | System and method for refilling a dispenser |
US6702227B1 (en) | 1999-04-30 | 2004-03-09 | Kimberly-Clark Worldwide, Inc. | Wipes dispensing system |
US6827309B1 (en) * | 2000-09-12 | 2004-12-07 | Kimberly-Clark Worldwide, Inc. | Mounting system for a wet wipes dispenser |
DE20016858U1 (en) * | 2000-09-29 | 2001-01-04 | Imeco Einwegprodukte GmbH + Co., 63768 Hösbach | Usage cloth supply and device for producing a use cloth stock |
US6550633B2 (en) | 2001-05-31 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Process for joining wet wipes together and product made thereby |
US6612462B2 (en) | 2001-05-31 | 2003-09-02 | Kimberly-Clark Worldwide, Inc. | Stack of fan folded material and combinations thereof |
US6568625B2 (en) | 2001-07-27 | 2003-05-27 | Kimberly-Clark Worldwide, Inc. | Wet wipes dispenser and mounting system |
JP2003038381A (en) * | 2001-07-30 | 2003-02-12 | Japan Vilene Co Ltd | Non-woven fabric for skin cleansing |
US6805965B2 (en) | 2001-12-21 | 2004-10-19 | Kimberly-Clark Worldwide, Inc. | Method for the application of hydrophobic chemicals to tissue webs |
US6716309B2 (en) | 2001-12-21 | 2004-04-06 | Kimberly-Clark Worldwide, Inc. | Method for the application of viscous compositions to the surface of a paper web and products made therefrom |
US6761800B2 (en) | 2002-10-28 | 2004-07-13 | Kimberly-Clark Worldwide, Inc. | Process for applying a liquid additive to both sides of a tissue web |
US6991840B2 (en) | 2003-12-10 | 2006-01-31 | Kimberly-Clark Worldwide, Inc. | Separably joined relationship between adjoining wipes |
US7208217B2 (en) | 2004-07-13 | 2007-04-24 | Tredegar Film Products Corporation | Storage and delivery article for highly viscous fluid |
JP5258407B2 (en) * | 2008-06-18 | 2013-08-07 | 花王株式会社 | Anus or genital area cleaning sheet |
JP5258528B2 (en) * | 2008-11-28 | 2013-08-07 | 花王株式会社 | Anus or genital area cleaning sheet |
US8445032B2 (en) | 2010-12-07 | 2013-05-21 | Kimberly-Clark Worldwide, Inc. | Melt-blended protein composition |
US9149045B2 (en) | 2010-12-07 | 2015-10-06 | Kimberly-Clark Worldwide, Inc. | Wipe coated with a botanical emulsion having antimicrobial properties |
US10821085B2 (en) | 2010-12-07 | 2020-11-03 | Kimberly-Clark Worldwide, Inc. | Wipe coated with a botanical composition having antimicrobial properties |
US9832993B2 (en) | 2010-12-07 | 2017-12-05 | Kimberly-Clark Worldwide, Inc. | Melt processed antimicrobial composition |
US9648874B2 (en) | 2010-12-07 | 2017-05-16 | Kimberly-Clark Worldwide, Inc. | Natural, multiple use and re-use, user saturated wipes |
US8524264B2 (en) | 2010-12-07 | 2013-09-03 | Kimberly-Clark Worldwide, Inc. | Protein stabilized antimicrobial composition formed by melt processing |
CN103857613B (en) | 2011-08-31 | 2017-07-04 | Sca卫生用品公司 | The stacking and its manufacturing method and apparatus of folding sanitary product |
US8574628B2 (en) | 2011-12-19 | 2013-11-05 | Kimberly-Clark Worldwide, Inc. | Natural, multiple release and re-use compositions |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2702279A (en) | 1955-02-15 | Detergent compositions having | ||
US2082275A (en) | 1934-04-26 | 1937-06-01 | Gen Aniline Works Inc | Substituted betaines |
GB426244A (en) * | 1934-08-13 | 1935-03-29 | John William Moir | Improvements relating to webs or rolls of toilet paper and the like |
US2255082A (en) | 1938-01-17 | 1941-09-09 | Gen Aniline & Film Corp | Capillary active compounds and process of preparing them |
GB1082179A (en) | 1965-07-19 | 1967-09-06 | Citrique Belge Nv | Unsaturated carboxylic salt materials and derivatives thereof |
US3812044A (en) | 1970-12-28 | 1974-05-21 | Procter & Gamble | Detergent composition containing a polyfunctionally-substituted aromatic acid sequestering agent |
US3929678A (en) | 1974-08-01 | 1975-12-30 | Procter & Gamble | Detergent composition having enhanced particulate soil removal performance |
DE2706234A1 (en) | 1977-02-15 | 1978-08-17 | Erich O Ing Grad Riedel | Perforated paper tearing aid system - increases degree of weakening towards paper edges |
US4704233A (en) | 1986-11-10 | 1987-11-03 | The Procter & Gamble Company | Detergent compositions containing ethylenediamine-N,N'-disuccinic acid |
NZ227813A (en) | 1988-02-10 | 1990-03-27 | Richardson Vicks Inc | Oil in water emulsion having 3-40% oil and an amphipathic emulsifying agent in the range 0.02-2% and method of forming such emulsions |
US5562964A (en) * | 1994-12-14 | 1996-10-08 | Kimberly-Clark Corporation | Perforated rolled paper or nonwoven products with variable bonded length and method of manufacturing |
US5704566A (en) | 1995-10-31 | 1998-01-06 | James River Corporation Of Virginia | Paper towel roll with variegated perforations |
-
1999
- 1999-01-29 EP EP99101890A patent/EP1023863A1/en not_active Withdrawn
-
2000
- 2000-01-20 WO PCT/US2000/001388 patent/WO2000044270A1/en active Application Filing
- 2000-01-20 BR BR0007849-2A patent/BR0007849A/en not_active IP Right Cessation
- 2000-01-20 AU AU29690/00A patent/AU2969000A/en not_active Abandoned
- 2000-01-20 JP JP2000595577A patent/JP3868743B2/en not_active Expired - Fee Related
- 2000-01-20 CA CA002360526A patent/CA2360526C/en not_active Expired - Fee Related
- 2000-01-20 TR TR2001/02164T patent/TR200102164T2/en unknown
- 2000-01-24 CO CO00003683A patent/CO5160282A1/en unknown
- 2000-01-27 PE PE2000000064A patent/PE20010021A1/en not_active Application Discontinuation
-
2001
- 2001-07-16 ZA ZA200105837A patent/ZA200105837B/en unknown
Also Published As
Publication number | Publication date |
---|---|
BR0007849A (en) | 2001-10-23 |
AU2969000A (en) | 2000-08-18 |
CO5160282A1 (en) | 2002-05-30 |
PE20010021A1 (en) | 2001-02-16 |
TR200102164T2 (en) | 2002-06-21 |
ZA200105837B (en) | 2002-10-16 |
WO2000044270A1 (en) | 2000-08-03 |
EP1023863A1 (en) | 2000-08-02 |
JP2002535060A (en) | 2002-10-22 |
CA2360526A1 (en) | 2000-08-03 |
JP3868743B2 (en) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2360526C (en) | Perforated sheet of material | |
EP1018924B1 (en) | Wipes having a substrate with a discontinuous pattern of a high internal phase inverse emulsion disposed thereon and process of making | |
CA2447794C (en) | Printed wet wipes | |
US6548136B1 (en) | Perforated sheet of material | |
US7605096B2 (en) | Flushable hard surface cleaning wet wipe | |
EP1059032A1 (en) | Disinfecting wet wipe | |
EP1059378A1 (en) | Wet wipe with antifoaming agent | |
EP0978247A1 (en) | Stacked wet wipes having anti evaporation layers | |
EP1167232B1 (en) | Pop-up wipe dispensing system | |
WO2001032826A1 (en) | Container for wet wipes | |
US20050170150A1 (en) | Printed wet wipes | |
MXPA01007761A (en) | Perforated sheet of material | |
CA2549554C (en) | Flushable hard surface cleaning wet wipe | |
MXPA01001270A (en) | Stacked wet wipes having anti evaporation layers | |
MXPA00001471A (en) | Wipes having a substrate with a discontinuous pattern of a high internal phase inverse emulsion disposed thereon and process of making |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |