CA2349288C - Microorganism reduction methods and compositions for food - Google Patents
Microorganism reduction methods and compositions for food Download PDFInfo
- Publication number
- CA2349288C CA2349288C CA002349288A CA2349288A CA2349288C CA 2349288 C CA2349288 C CA 2349288C CA 002349288 A CA002349288 A CA 002349288A CA 2349288 A CA2349288 A CA 2349288A CA 2349288 C CA2349288 C CA 2349288C
- Authority
- CA
- Canada
- Prior art keywords
- food
- sodium
- toxicologically
- compositions
- acceptable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 91
- 235000013305 food Nutrition 0.000 title claims abstract description 68
- 244000005700 microbiome Species 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims description 22
- 230000009467 reduction Effects 0.000 title description 35
- 150000001768 cations Chemical class 0.000 claims abstract description 34
- 239000004094 surface-active agent Substances 0.000 claims abstract description 34
- 239000003599 detergent Substances 0.000 claims abstract description 20
- 239000003792 electrolyte Substances 0.000 claims abstract description 17
- 239000000872 buffer Substances 0.000 claims abstract description 13
- 235000019629 palatability Nutrition 0.000 claims abstract description 11
- 239000011591 potassium Substances 0.000 claims abstract description 10
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 10
- 125000000129 anionic group Chemical group 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 29
- 239000011734 sodium Substances 0.000 claims description 22
- 229910052708 sodium Inorganic materials 0.000 claims description 20
- 150000003839 salts Chemical class 0.000 claims description 18
- 239000000344 soap Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 11
- 239000003352 sequestering agent Substances 0.000 claims description 10
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 9
- 239000003755 preservative agent Substances 0.000 claims description 9
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000388 Polyphosphate Polymers 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 229910001424 calcium ion Inorganic materials 0.000 claims description 6
- 239000001205 polyphosphate Substances 0.000 claims description 6
- 235000011176 polyphosphates Nutrition 0.000 claims description 6
- 230000002335 preservative effect Effects 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 4
- 230000002411 adverse Effects 0.000 claims description 3
- 239000008365 aqueous carrier Substances 0.000 claims description 3
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- 150000004679 hydroxides Chemical class 0.000 claims description 3
- ONQDVAFWWYYXHM-UHFFFAOYSA-M potassium lauryl sulfate Chemical compound [K+].CCCCCCCCCCCCOS([O-])(=O)=O ONQDVAFWWYYXHM-UHFFFAOYSA-M 0.000 claims description 2
- 229940116985 potassium lauryl sulfate Drugs 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 abstract description 21
- -1 potassium alkyl sulfate Chemical class 0.000 abstract description 11
- 235000012055 fruits and vegetables Nutrition 0.000 abstract description 9
- 238000004140 cleaning Methods 0.000 abstract description 7
- 235000021120 animal protein Nutrition 0.000 abstract description 3
- 238000011109 contamination Methods 0.000 abstract description 3
- 239000012669 liquid formulation Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 31
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 21
- 229920001223 polyethylene glycol Polymers 0.000 description 21
- 235000002639 sodium chloride Nutrition 0.000 description 21
- 235000015424 sodium Nutrition 0.000 description 19
- 235000019832 sodium triphosphate Nutrition 0.000 description 18
- 101710194948 Protein phosphatase PhpP Proteins 0.000 description 14
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical class [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 13
- 239000000047 product Substances 0.000 description 11
- 235000011121 sodium hydroxide Nutrition 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 235000019645 odor Nutrition 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000004744 fabric Substances 0.000 description 9
- 229960003975 potassium Drugs 0.000 description 9
- 235000021474 generally recognized As safe (food) Nutrition 0.000 description 8
- 235000021473 generally recognized as safe (food ingredients) Nutrition 0.000 description 8
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 7
- 150000008051 alkyl sulfates Chemical class 0.000 description 7
- CBXWGGFGZDVPNV-UHFFFAOYSA-N so4-so4 Chemical compound OS(O)(=O)=O.OS(O)(=O)=O CBXWGGFGZDVPNV-UHFFFAOYSA-N 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 235000008504 concentrate Nutrition 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- 235000019640 taste Nutrition 0.000 description 6
- 239000003945 anionic surfactant Substances 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 235000011118 potassium hydroxide Nutrition 0.000 description 5
- 238000011012 sanitization Methods 0.000 description 5
- 239000001488 sodium phosphate Chemical class 0.000 description 5
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229960005069 calcium Drugs 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 3
- 239000005639 Lauric acid Substances 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000020971 citrus fruits Nutrition 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 230000037406 food intake Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000002304 perfume Substances 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 229960003339 sodium phosphate Drugs 0.000 description 3
- 235000011008 sodium phosphates Nutrition 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical class C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 244000089742 Citrus aurantifolia Species 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 2
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 2
- 235000011092 calcium acetate Nutrition 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 229960002713 calcium chloride Drugs 0.000 description 2
- 235000011148 calcium chloride Nutrition 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 229960002079 calcium pantothenate Drugs 0.000 description 2
- 239000001506 calcium phosphate Chemical class 0.000 description 2
- 229960001714 calcium phosphate Drugs 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229940116349 dibasic ammonium phosphate Drugs 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 239000000686 essence Substances 0.000 description 2
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013350 formula milk Nutrition 0.000 description 2
- 239000010651 grapefruit oil Substances 0.000 description 2
- 239000008233 hard water Substances 0.000 description 2
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical compound [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000006193 liquid solution Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical class [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 235000012254 magnesium hydroxide Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000006174 pH buffer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical group [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000001508 potassium citrate Substances 0.000 description 2
- 229960002635 potassium citrate Drugs 0.000 description 2
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 2
- 235000011082 potassium citrates Nutrition 0.000 description 2
- 235000007715 potassium iodide Nutrition 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 229940083542 sodium Drugs 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 235000011150 stannous chloride Nutrition 0.000 description 2
- 239000001119 stannous chloride Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 2
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- USQUOCZKEJSQHD-KVVVOXFISA-N (z)-octadec-9-enoic acid;sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O USQUOCZKEJSQHD-KVVVOXFISA-N 0.000 description 1
- KWJPTZSGVFKSDH-UHFFFAOYSA-N 1-(3-nitrophenyl)piperazine;dihydrochloride Chemical compound Cl.Cl.[O-][N+](=O)C1=CC=CC(N2CCNCC2)=C1 KWJPTZSGVFKSDH-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- MHGOKSLTIUHUBF-UHFFFAOYSA-N 2-ethylhexyl sulfate Chemical compound CCCCC(CC)COS(O)(=O)=O MHGOKSLTIUHUBF-UHFFFAOYSA-N 0.000 description 1
- OAVRWNUUOUXDFH-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;manganese(2+) Chemical compound [Mn+2].[Mn+2].[Mn+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O OAVRWNUUOUXDFH-UHFFFAOYSA-H 0.000 description 1
- JTNCEQNHURODLX-UHFFFAOYSA-N 2-phenylethanimidamide Chemical compound NC(=N)CC1=CC=CC=C1 JTNCEQNHURODLX-UHFFFAOYSA-N 0.000 description 1
- CDOUZKKFHVEKRI-UHFFFAOYSA-N 3-bromo-n-[(prop-2-enoylamino)methyl]propanamide Chemical class BrCCC(=O)NCNC(=O)C=C CDOUZKKFHVEKRI-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- MOMKYJPSVWEWPM-UHFFFAOYSA-N 4-(chloromethyl)-2-(4-methylphenyl)-1,3-thiazole Chemical compound C1=CC(C)=CC=C1C1=NC(CCl)=CS1 MOMKYJPSVWEWPM-UHFFFAOYSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical class N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- HSEYYGFJBLWFGD-UHFFFAOYSA-N 4-methylsulfanyl-2-[(2-methylsulfanylpyridine-3-carbonyl)amino]butanoic acid Chemical class CSCCC(C(O)=O)NC(=O)C1=CC=CN=C1SC HSEYYGFJBLWFGD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 1
- 239000004151 Calcium iodate Substances 0.000 description 1
- 239000002970 Calcium lactobionate Chemical class 0.000 description 1
- BCZXFFBUYPCTSJ-UHFFFAOYSA-L Calcium propionate Chemical compound [Ca+2].CCC([O-])=O.CCC([O-])=O BCZXFFBUYPCTSJ-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010076119 Caseins Chemical class 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241000675108 Citrus tangerina Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- 241000333459 Citrus x tangelo Species 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical compound [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- AANLCWYVVNBGEE-IDIVVRGQSA-L Disodium inosinate Chemical compound [Na+].[Na+].O[C@@H]1[C@H](O)[C@@H](COP([O-])([O-])=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 AANLCWYVVNBGEE-IDIVVRGQSA-L 0.000 description 1
- SHWNNYZBHZIQQV-UHFFFAOYSA-J EDTA monocalcium diisodium salt Chemical compound [Na+].[Na+].[Ca+2].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O SHWNNYZBHZIQQV-UHFFFAOYSA-J 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005955 Ferric phosphate Substances 0.000 description 1
- 239000004277 Ferrous carbonate Substances 0.000 description 1
- PMVSDNDAUGGCCE-TYYBGVCCSA-L Ferrous fumarate Chemical compound [Fe+2].[O-]C(=O)\C=C\C([O-])=O PMVSDNDAUGGCCE-TYYBGVCCSA-L 0.000 description 1
- DKKCQDROTDCQOR-UHFFFAOYSA-L Ferrous lactate Chemical compound [Fe+2].CC(O)C([O-])=O.CC(O)C([O-])=O DKKCQDROTDCQOR-UHFFFAOYSA-L 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- SNVFDPHQAOXWJZ-UHFFFAOYSA-N Furcelleran Chemical class CCOC(=O)C1=C(C)NC(C=2C=CC=CC=2)=C(C(=O)OCC=2C=CC=CC=2)C1C#CC1=CC=CC=C1 SNVFDPHQAOXWJZ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 239000005980 Gibberellic acid Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229920002257 Plurafac® Polymers 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 239000004153 Potassium bromate Chemical class 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 239000004283 Sodium sorbate Substances 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- WHMDKBIGKVEYHS-IYEMJOQQSA-L Zinc gluconate Chemical compound [Zn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O WHMDKBIGKVEYHS-IYEMJOQQSA-L 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical class [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical class [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 229940103272 aluminum potassium sulfate Drugs 0.000 description 1
- NSFYKDVWNTWJOK-UHFFFAOYSA-K aluminum;pyridine-3-carboxylate Chemical compound [Al+3].[O-]C(=O)C1=CC=CN=C1.[O-]C(=O)C1=CC=CN=C1.[O-]C(=O)C1=CC=CN=C1 NSFYKDVWNTWJOK-UHFFFAOYSA-K 0.000 description 1
- ZQKXOSJYJMDROL-UHFFFAOYSA-H aluminum;trisodium;diphosphate Chemical class [Na+].[Na+].[Na+].[Al+3].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O ZQKXOSJYJMDROL-UHFFFAOYSA-H 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 229940044197 ammonium sulfate Drugs 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- GLMQHZPGHAPYIO-UHFFFAOYSA-L azanium;2-hydroxypropane-1,2,3-tricarboxylate;iron(2+) Chemical compound [NH4+].[Fe+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O GLMQHZPGHAPYIO-UHFFFAOYSA-L 0.000 description 1
- XFOZBWSTIQRFQW-UHFFFAOYSA-M benzyl-dimethyl-prop-2-enylazanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC1=CC=CC=C1 XFOZBWSTIQRFQW-UHFFFAOYSA-M 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- 235000010376 calcium ascorbate Nutrition 0.000 description 1
- 239000011692 calcium ascorbate Substances 0.000 description 1
- 229940047036 calcium ascorbate Drugs 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- 229960004256 calcium citrate Drugs 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- 239000001201 calcium disodium ethylene diamine tetra-acetate Substances 0.000 description 1
- 235000011188 calcium disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 1
- 229940095618 calcium glycerophosphate Drugs 0.000 description 1
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 1
- 235000019981 calcium hexametaphosphate Nutrition 0.000 description 1
- 229940095643 calcium hydroxide Drugs 0.000 description 1
- 235000019390 calcium iodate Nutrition 0.000 description 1
- UHWJJLGTKIWIJO-UHFFFAOYSA-L calcium iodate Chemical compound [Ca+2].[O-]I(=O)=O.[O-]I(=O)=O UHWJJLGTKIWIJO-UHFFFAOYSA-L 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 235000019307 calcium lactobionate Nutrition 0.000 description 1
- 229940050954 calcium lactobionate Drugs 0.000 description 1
- 229920005551 calcium lignosulfonate Chemical class 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229940087373 calcium oxide Drugs 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 235000010331 calcium propionate Nutrition 0.000 description 1
- 239000004330 calcium propionate Substances 0.000 description 1
- 229940043256 calcium pyrophosphate Drugs 0.000 description 1
- MCFVRESNTICQSJ-RJNTXXOISA-L calcium sorbate Chemical compound [Ca+2].C\C=C\C=C\C([O-])=O.C\C=C\C=C\C([O-])=O MCFVRESNTICQSJ-RJNTXXOISA-L 0.000 description 1
- 235000010244 calcium sorbate Nutrition 0.000 description 1
- 239000004303 calcium sorbate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- BLORRZQTHNGFTI-ZZMNMWMASA-L calcium-L-ascorbate Chemical compound [Ca+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] BLORRZQTHNGFTI-ZZMNMWMASA-L 0.000 description 1
- RHEMCSSAABKPLI-SQCCMBKESA-L calcium;(2r,3r,4r,5r)-2,3,5,6-tetrahydroxy-4-[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhexanoate Chemical class [Ca+2].[O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O.[O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O RHEMCSSAABKPLI-SQCCMBKESA-L 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- RYAGRZNBULDMBW-UHFFFAOYSA-L calcium;3-(2-hydroxy-3-methoxyphenyl)-2-[2-methoxy-4-(3-sulfonatopropyl)phenoxy]propane-1-sulfonate Chemical class [Ca+2].COC1=CC=CC(CC(CS([O-])(=O)=O)OC=2C(=CC(CCCS([O-])(=O)=O)=CC=2)OC)=C1O RYAGRZNBULDMBW-UHFFFAOYSA-L 0.000 description 1
- 239000001768 carboxy methyl cellulose Chemical class 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229940108925 copper gluconate Drugs 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IQDXNHZDRQHKEF-UHFFFAOYSA-N dialuminum;dicalcium;dioxido(oxo)silane Chemical compound [Al+3].[Al+3].[Ca+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O IQDXNHZDRQHKEF-UHFFFAOYSA-N 0.000 description 1
- YXVFQADLFFNVDS-UHFFFAOYSA-N diammonium citrate Chemical compound [NH4+].[NH4+].[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O YXVFQADLFFNVDS-UHFFFAOYSA-N 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 235000013766 direct food additive Nutrition 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- PVBRXXAAPNGWGE-LGVAUZIVSA-L disodium 5'-guanylate Chemical compound [Na+].[Na+].C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP([O-])([O-])=O)[C@@H](O)[C@H]1O PVBRXXAAPNGWGE-LGVAUZIVSA-L 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 239000004198 disodium guanylate Substances 0.000 description 1
- 235000013896 disodium guanylate Nutrition 0.000 description 1
- 239000004194 disodium inosinate Substances 0.000 description 1
- 235000013890 disodium inosinate Nutrition 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical class [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- OPGYRRGJRBEUFK-UHFFFAOYSA-L disodium;diacetate Chemical compound [Na+].[Na+].CC([O-])=O.CC([O-])=O OPGYRRGJRBEUFK-UHFFFAOYSA-L 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical class CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940032296 ferric chloride Drugs 0.000 description 1
- 229960002413 ferric citrate Drugs 0.000 description 1
- 235000007144 ferric diphosphate Nutrition 0.000 description 1
- 239000011706 ferric diphosphate Substances 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- CADNYOZXMIKYPR-UHFFFAOYSA-B ferric pyrophosphate Chemical compound [Fe+3].[Fe+3].[Fe+3].[Fe+3].[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O.[O-]P([O-])(=O)OP([O-])([O-])=O CADNYOZXMIKYPR-UHFFFAOYSA-B 0.000 description 1
- 229940036404 ferric pyrophosphate Drugs 0.000 description 1
- 229940032950 ferric sulfate Drugs 0.000 description 1
- 229960001459 ferrous ascorbate Drugs 0.000 description 1
- 235000019268 ferrous carbonate Nutrition 0.000 description 1
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 description 1
- 229960004652 ferrous carbonate Drugs 0.000 description 1
- 235000019850 ferrous citrate Nutrition 0.000 description 1
- 239000011640 ferrous citrate Substances 0.000 description 1
- 235000002332 ferrous fumarate Nutrition 0.000 description 1
- 239000011773 ferrous fumarate Substances 0.000 description 1
- 229960000225 ferrous fumarate Drugs 0.000 description 1
- 235000013924 ferrous gluconate Nutrition 0.000 description 1
- 239000004222 ferrous gluconate Substances 0.000 description 1
- 229960001645 ferrous gluconate Drugs 0.000 description 1
- 235000013925 ferrous lactate Nutrition 0.000 description 1
- 239000004225 ferrous lactate Substances 0.000 description 1
- 229940037907 ferrous lactate Drugs 0.000 description 1
- 229960001781 ferrous sulfate Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 235000021472 generally recognized as safe Nutrition 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Chemical class OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 1
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical class C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000019692 hotdogs Nutrition 0.000 description 1
- 235000019977 hydrated sodium calcium aluminosilicate Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical class ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000000011 iron ammonium citrate Nutrition 0.000 description 1
- 239000004313 iron ammonium citrate Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000015 iron(II) carbonate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000014666 liquid concentrate Nutrition 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229960001078 lithium Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- DIXGJWCZQHXZNR-UHFFFAOYSA-L magnesium citrate Chemical compound [Mg+2].OC(=O)CC(O)(C([O-])=O)CC([O-])=O DIXGJWCZQHXZNR-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229960000816 magnesium hydroxide Drugs 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229960000869 magnesium oxide Drugs 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 229960003390 magnesium sulfate Drugs 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 235000014872 manganese citrate Nutrition 0.000 description 1
- 239000011564 manganese citrate Substances 0.000 description 1
- 229940097206 manganese citrate Drugs 0.000 description 1
- 235000014012 manganese gluconate Nutrition 0.000 description 1
- 239000011683 manganese gluconate Substances 0.000 description 1
- 229940072543 manganese gluconate Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- OXHQNTSSPHKCPB-IYEMJOQQSA-L manganese(2+);(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Mn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OXHQNTSSPHKCPB-IYEMJOQQSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- 235000016337 monopotassium tartrate Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 235000010408 potassium alginate Nutrition 0.000 description 1
- 239000000737 potassium alginate Substances 0.000 description 1
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical class [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- KYKNRZGSIGMXFH-ZVGUSBNCSA-M potassium bitartrate Chemical compound [K+].OC(=O)[C@H](O)[C@@H](O)C([O-])=O KYKNRZGSIGMXFH-ZVGUSBNCSA-M 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- PHZLMBHDXVLRIX-UHFFFAOYSA-M potassium lactate Chemical compound [K+].CC(O)C([O-])=O PHZLMBHDXVLRIX-UHFFFAOYSA-M 0.000 description 1
- 235000011085 potassium lactate Nutrition 0.000 description 1
- 239000001521 potassium lactate Substances 0.000 description 1
- 229960001304 potassium lactate Drugs 0.000 description 1
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 1
- 229940043349 potassium metabisulfite Drugs 0.000 description 1
- 235000010263 potassium metabisulphite Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000013594 poultry meat Nutrition 0.000 description 1
- 235000014483 powder concentrate Nutrition 0.000 description 1
- 235000020610 powder formula Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 235000014102 seafood Nutrition 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019980 sodium acid phosphate Nutrition 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 1
- GJPYYNMJTJNYTO-UHFFFAOYSA-J sodium aluminium sulfate Chemical class [Na+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GJPYYNMJTJNYTO-UHFFFAOYSA-J 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Chemical class 0.000 description 1
- 229940080237 sodium caseinate Drugs 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 235000017454 sodium diacetate Nutrition 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 235000019983 sodium metaphosphate Nutrition 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000001476 sodium potassium tartrate Substances 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 235000018341 sodium sesquicarbonate Nutrition 0.000 description 1
- 229910000031 sodium sesquicarbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- LROWVYNUWKVTCU-STWYSWDKSA-M sodium sorbate Chemical compound [Na+].C\C=C\C=C\C([O-])=O LROWVYNUWKVTCU-STWYSWDKSA-M 0.000 description 1
- 235000019250 sodium sorbate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- JZBRFIUYUGTUGG-UHFFFAOYSA-J tetrapotassium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [K+].[K+].[K+].[K+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O JZBRFIUYUGTUGG-UHFFFAOYSA-J 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- KRSIWAJXDVVKLZ-UHFFFAOYSA-H tricalcium;2,4,6,8,10,12-hexaoxido-1,3,5,7,9,11-hexaoxa-2$l^{5},4$l^{5},6$l^{5},8$l^{5},10$l^{5},12$l^{5}-hexaphosphacyclododecane 2,4,6,8,10,12-hexaoxide Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P1(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])(=O)OP([O-])(=O)O1 KRSIWAJXDVVKLZ-UHFFFAOYSA-H 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- WCTAGTRAWPDFQO-UHFFFAOYSA-K trisodium;hydrogen carbonate;carbonate Chemical compound [Na+].[Na+].[Na+].OC([O-])=O.[O-]C([O-])=O WCTAGTRAWPDFQO-UHFFFAOYSA-K 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 229960001939 zinc chloride Drugs 0.000 description 1
- 235000011478 zinc gluconate Nutrition 0.000 description 1
- 239000011670 zinc gluconate Substances 0.000 description 1
- 229960000306 zinc gluconate Drugs 0.000 description 1
- 229960005494 zinc methionine sulfate Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229940057977 zinc stearate Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical class [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B2/00—Preservation of foods or foodstuffs, in general
- A23B2/70—Preservation of foods or foodstuffs, in general by treatment with chemicals
- A23B2/725—Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of liquids or solids
- A23B2/729—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B2/00—Preservation of foods or foodstuffs, in general
- A23B2/70—Preservation of foods or foodstuffs, in general by treatment with chemicals
- A23B2/725—Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of liquids or solids
- A23B2/729—Organic compounds; Microorganisms; Enzymes
- A23B2/767—Organic compounds containing sulfur
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B4/00—Preservation of meat, sausages, fish or fish products
- A23B4/14—Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
- A23B4/18—Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
- A23B4/20—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10
- A23B7/153—Preserving or ripening with chemicals not covered by group A23B7/08 or A23B7/10 in the form of liquids or solids
- A23B7/154—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/57—Chemical peeling or cleaning of harvested fruits, vegetables or other foodstuffs
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/044—Hydroxides or bases
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/48—Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Microbiology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Detergent Compositions (AREA)
- Preparation Of Fruits And Vegetables (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
Abstract
Basic cleaning compositions using toxicologically-acceptable ingredients for treating food such as produce, e.g., fruits and vegetables, and edible animal proteins are provided. Liquid formulations comprising anionic and/or nonionic detergent surfactant such as potassium alkyl sulfate, that does not affect palatability, electrolyte to provide at least about 0.04 molarity of cations and basic buffer to provide a pH of at least 8.5 are applied to food products immediately before consumption and can significantly reduce microorganism contamination in less than about one minute. The food can be consumed without rinsing.</SDOAB >
Description
~tICROORG.~\IS~.i REDUCTION yiETHODS AND CO~-iPOSITIONS
FOR FOOD
S
TECHNICAL FIELD
The present invention relates to methods for reduction in microorganisms, especially for the purpose of making food, more especially produce, safe for human i 0 consumption, and to compositions, especially in concentrated, or the corresponding diluted liquid form, which are especially suitable for practicing said methods.
BACKGROUND OF THE INVENTION
Fruits and vegetables, food preparation surfaces, and sometimes other food products such as meats, are desirably washed prior to ingestion in order to remove soils 15 and other unwanted residues which may be undesirably clinging to the surfaces thereof. It is also desirable to reduce microorganisms, thus ensuring safety.
It is especially desirable to provide effective, toxicologically-acceptable compositions for food, including fruits and vegetables and/or meats that can be sold in concentrated form and used to create dilute low-sudsing liquid solutions which can be 20 used to effect antimicrobial action and which desirably provide palatable food without removal. Dilute liquid solutions are convenient for the user, since they can be applied directly to soiled fruits and vegetables, or by simple immersion, thus ensuring that all parts of the food are treated. Clarity of the dilute liquids connotes cleanliness to the user and is thus highly desirable. Low sudsing is an important attribute so that the elimination 25 of any suds is achieved quickly and easily. It is also of advantage if such concentrates can be diluted by the consumer using water that is not safe for use, since that is sometimes the only water that is available.
SUMMARY OF THE INVENTION
The present invention encompasses compositions and methods for treating food, 30 including produce, especially fruits and vegetables, (and compositions, as disclosed hereinafter, for practicing said methods) at a basic pH, even without rinsing, to effect microorganism reduction in a short time period, especially while maintaining palatability.
Ill 1tS broadest aspect, it comprises a method for treating food to reduce the level of microorganisms, said treatment occurring just prior to consumption, comprising the step of contacting the surface of said food with an aqueous treatment composition comprising:
anionic and/or nonionic detergent surfactant at a level of at least about 0.015%; basic buffer to provide a pH of greater than about 8.5; and an electrolyte concentration providing at least about U.04 molarity of canons, for a period of time up to about one minute, the composition preferably being essentially free of any material that adversely affects palatability so that said food does not need to be rinsed before consumption.
In one embodiment there is provided a method for treating food to clean and reduce the level of microorganisms on the surface of said food, said method comprising treatment occurring just prior to consumption, comprising the step of contacting the surface of said food with a aqueous dilute treatment composition comprising toxicologically-acceptable I 5 anionic and/or nonionic detergent surfactant; total electrolyte to provide at least about 0.04 molarity of canons; and toxicologically-acceptable basic buffer to provide a pH of greater than about 8.5; the composition being essentially free of any material that adversely affects safety or palatability, so that said food is not rinsed before consumption, said composition comprising: (a) greater than about 0.015% by weight of a member selected from the group consisting of sodium or potassium lauryl sulfate, potassium C8-14 soaps, and mixtures thereof; (b) toxicologically-acceptable basic buffer selected from the group consisting of water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pl-i cof from about 8.5 to about 13 (c) sufficient electrolyte to provide at least about 0.04 molarity of canons without considering any surfactant canons: (d) optionally, from about 0.0005% to about 3% by weight of calcium ion sequestrant selected from the group consisting of water soluble salts of polyphosphates, organic polycarboxylic acid, and mixtures thereof; (e) optionally, toxicologically-acceptable preservative; (f) optionally, toxicologically acceptable suds suppressor; (g) the balance comprising an aqueous carrier containing from 3.5% to 10%, by weight, of ethanol.
2a The present invention comprises several more specific aspects including:
I. A method for making food, including produce and/or meat, safe to eat comprising contacting the surfaces of said food, shortly before ingestion so as to minimize the chances for recontamination, by direct application of a dilute aqueous treatment composition having a pH above about 8.5, typically comprising:
(a) at least about 0.015%, preferably less than about 5%, more preferably less than about 2%, and even more preferably less than about 1%, by weight of anionic and/or nonionic detergent surfactant, preferably C6_,g alkyl sulfate, sulfonate, and/or soap, more preferably about C,~ alkyl, and preferably sufficient to reduce the surface tension and to maintain the viscosity to less than about 50 cp., preferably to less than about 10 cp., and more preferably to less than about 5 cp., to help maximize surface wetting and/or drainage thus minimizing residue, bul preferably less than an amount that will affect palatability, of toxicologically-acceptable detergent surfactant;
(b) toxicologically-acceptable basic buffer, preferably water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pH
of from about 8.5 to about 13, preferably from about 10 to about 12.5, more preferably from about 10.5 to about 12.3, but preferably with low reserve alkalinity ("reserve alkalinity" as used herein is equal to the percent of HC1 equivalent needed to lower the pH of the dilute treatment composition to 9.5), that is typically less than about 10, preferably less than about 7, and even more preferably less than about 4, so as to maximize safety, and the level of ortho-phosphate, when present, being from about 0.01°ro to about 3%, preferably from about 0.05% to about 1%, more preferably from about 0.1% to about 0.5% of ortho-phosphoric acid equivalent;
S (c) sufficient electrolyte to provide at least about 0.04 molarity of cations, preferably at least about 0.08, and more preferably at least about 0.12;
(d) optionally, from about 0.0005% to about 3%, preferably from about 0.001%
to about 1%, and more preferably from about 0.003% to about 0.5%, by weight of calcium ion sequestrant, preferably polyphosphate detergent builder such as the sodium salt of tripolyphosphate (referred to hereinafter as "STPP") or, a salt of an organic polycarboxylic acid, such as the sodium salt of ethylenediaminetetraacetic acid (referred to hereinafter as "EDTA".) and/or a salt of citric acid to sequester calcium in hard water to control calcium precipitates;
(e} optionally, toxicologically-acceptable preservative;
(f) optionally, toxicologically-acceptable suds suppresser; and (g) the balance comprising an aqueous carrier selected from water and, optionally, low levels of low molecular weight, toxicologically-acceptable organic solvent such as ethanol, glycerol, etc. and/or minor ingredients;
all of the acidic materials above being, of course, neutralized under the alkaline conditions of the product, and said composition being essentially free of any material that is not toxicologically acceptable, said treatment being able to effect at least a one log reduction - of E-coli in less than about 1 minute, optionally followed by draining and/or drying, even without rinsing, said food being then ready for consumption and having desirable palatability. For the purposes of this invention any anionic surfactant and its counter ion are not included in the determination of the salt level.
The inventions disclosed herein encompass concentrated compositions suitable for use in preparing such dilute compositions for treating food at a basic pH
above about 8.5, by diluting with water using from about 0.1% to about 5%, preferably from about 0.5% to about 2%, of the concentrated composition, by weight of the dilute composition, said concentrated composition comprising:
FOR FOOD
S
TECHNICAL FIELD
The present invention relates to methods for reduction in microorganisms, especially for the purpose of making food, more especially produce, safe for human i 0 consumption, and to compositions, especially in concentrated, or the corresponding diluted liquid form, which are especially suitable for practicing said methods.
BACKGROUND OF THE INVENTION
Fruits and vegetables, food preparation surfaces, and sometimes other food products such as meats, are desirably washed prior to ingestion in order to remove soils 15 and other unwanted residues which may be undesirably clinging to the surfaces thereof. It is also desirable to reduce microorganisms, thus ensuring safety.
It is especially desirable to provide effective, toxicologically-acceptable compositions for food, including fruits and vegetables and/or meats that can be sold in concentrated form and used to create dilute low-sudsing liquid solutions which can be 20 used to effect antimicrobial action and which desirably provide palatable food without removal. Dilute liquid solutions are convenient for the user, since they can be applied directly to soiled fruits and vegetables, or by simple immersion, thus ensuring that all parts of the food are treated. Clarity of the dilute liquids connotes cleanliness to the user and is thus highly desirable. Low sudsing is an important attribute so that the elimination 25 of any suds is achieved quickly and easily. It is also of advantage if such concentrates can be diluted by the consumer using water that is not safe for use, since that is sometimes the only water that is available.
SUMMARY OF THE INVENTION
The present invention encompasses compositions and methods for treating food, 30 including produce, especially fruits and vegetables, (and compositions, as disclosed hereinafter, for practicing said methods) at a basic pH, even without rinsing, to effect microorganism reduction in a short time period, especially while maintaining palatability.
Ill 1tS broadest aspect, it comprises a method for treating food to reduce the level of microorganisms, said treatment occurring just prior to consumption, comprising the step of contacting the surface of said food with an aqueous treatment composition comprising:
anionic and/or nonionic detergent surfactant at a level of at least about 0.015%; basic buffer to provide a pH of greater than about 8.5; and an electrolyte concentration providing at least about U.04 molarity of canons, for a period of time up to about one minute, the composition preferably being essentially free of any material that adversely affects palatability so that said food does not need to be rinsed before consumption.
In one embodiment there is provided a method for treating food to clean and reduce the level of microorganisms on the surface of said food, said method comprising treatment occurring just prior to consumption, comprising the step of contacting the surface of said food with a aqueous dilute treatment composition comprising toxicologically-acceptable I 5 anionic and/or nonionic detergent surfactant; total electrolyte to provide at least about 0.04 molarity of canons; and toxicologically-acceptable basic buffer to provide a pH of greater than about 8.5; the composition being essentially free of any material that adversely affects safety or palatability, so that said food is not rinsed before consumption, said composition comprising: (a) greater than about 0.015% by weight of a member selected from the group consisting of sodium or potassium lauryl sulfate, potassium C8-14 soaps, and mixtures thereof; (b) toxicologically-acceptable basic buffer selected from the group consisting of water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pl-i cof from about 8.5 to about 13 (c) sufficient electrolyte to provide at least about 0.04 molarity of canons without considering any surfactant canons: (d) optionally, from about 0.0005% to about 3% by weight of calcium ion sequestrant selected from the group consisting of water soluble salts of polyphosphates, organic polycarboxylic acid, and mixtures thereof; (e) optionally, toxicologically-acceptable preservative; (f) optionally, toxicologically acceptable suds suppressor; (g) the balance comprising an aqueous carrier containing from 3.5% to 10%, by weight, of ethanol.
2a The present invention comprises several more specific aspects including:
I. A method for making food, including produce and/or meat, safe to eat comprising contacting the surfaces of said food, shortly before ingestion so as to minimize the chances for recontamination, by direct application of a dilute aqueous treatment composition having a pH above about 8.5, typically comprising:
(a) at least about 0.015%, preferably less than about 5%, more preferably less than about 2%, and even more preferably less than about 1%, by weight of anionic and/or nonionic detergent surfactant, preferably C6_,g alkyl sulfate, sulfonate, and/or soap, more preferably about C,~ alkyl, and preferably sufficient to reduce the surface tension and to maintain the viscosity to less than about 50 cp., preferably to less than about 10 cp., and more preferably to less than about 5 cp., to help maximize surface wetting and/or drainage thus minimizing residue, bul preferably less than an amount that will affect palatability, of toxicologically-acceptable detergent surfactant;
(b) toxicologically-acceptable basic buffer, preferably water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pH
of from about 8.5 to about 13, preferably from about 10 to about 12.5, more preferably from about 10.5 to about 12.3, but preferably with low reserve alkalinity ("reserve alkalinity" as used herein is equal to the percent of HC1 equivalent needed to lower the pH of the dilute treatment composition to 9.5), that is typically less than about 10, preferably less than about 7, and even more preferably less than about 4, so as to maximize safety, and the level of ortho-phosphate, when present, being from about 0.01°ro to about 3%, preferably from about 0.05% to about 1%, more preferably from about 0.1% to about 0.5% of ortho-phosphoric acid equivalent;
S (c) sufficient electrolyte to provide at least about 0.04 molarity of cations, preferably at least about 0.08, and more preferably at least about 0.12;
(d) optionally, from about 0.0005% to about 3%, preferably from about 0.001%
to about 1%, and more preferably from about 0.003% to about 0.5%, by weight of calcium ion sequestrant, preferably polyphosphate detergent builder such as the sodium salt of tripolyphosphate (referred to hereinafter as "STPP") or, a salt of an organic polycarboxylic acid, such as the sodium salt of ethylenediaminetetraacetic acid (referred to hereinafter as "EDTA".) and/or a salt of citric acid to sequester calcium in hard water to control calcium precipitates;
(e} optionally, toxicologically-acceptable preservative;
(f) optionally, toxicologically-acceptable suds suppresser; and (g) the balance comprising an aqueous carrier selected from water and, optionally, low levels of low molecular weight, toxicologically-acceptable organic solvent such as ethanol, glycerol, etc. and/or minor ingredients;
all of the acidic materials above being, of course, neutralized under the alkaline conditions of the product, and said composition being essentially free of any material that is not toxicologically acceptable, said treatment being able to effect at least a one log reduction - of E-coli in less than about 1 minute, optionally followed by draining and/or drying, even without rinsing, said food being then ready for consumption and having desirable palatability. For the purposes of this invention any anionic surfactant and its counter ion are not included in the determination of the salt level.
The inventions disclosed herein encompass concentrated compositions suitable for use in preparing such dilute compositions for treating food at a basic pH
above about 8.5, by diluting with water using from about 0.1% to about 5%, preferably from about 0.5% to about 2%, of the concentrated composition, by weight of the dilute composition, said concentrated composition comprising:
(a) from about 0.1 % to about SO°io, preferably from about 0.5°ro to about 20%, and more preferably from about 1% to about 10%, by weight of toxicologically-acceptable anionic and,-'or nonionic detergent surfactant, preferably base-stable anionic surfactant, and more preferably, a C6_i~ alkyl sulfate ancL'or Cg_14 S soap;
(b) toxicologically-acceptable basic buffer, preferably potassium and/or sodium and/or calcium hydroxide, orthophosphate, carbonate, and/or bicarbonate, to provide a pH of from about 8.5 to about 13, preferably from about 10 to about . 12.5, more preferably from about 10.5 to about 12.3, in said dilute composition, but with low reserve alkalinity in said dilute composition, preferably less than about I0, more preferably less than about 7 and even more preferably less than about 4, to avoid damage to a human, the level of orthophosphate, when present, being from about 3% to about 60%, preferably from about 5% to about 60%, more preferably from about 10% to about 55%, by weight of ortho-phosphoric acid equivalent;
(c) suffcient electrolyte to provide at least about 0.04 molarity of cations once diluted for use, preferably at least about 0.08, and more preferably at least about 0.12;
(d) optionally, from about 0.1 to about 35%, preferably from about 1 to about 25%, more preferably from about 2 to about 20%, of toxicologically-acceptable calcium ion sequestrant, preferably polyphosphate or organic polycarboxylate, more preferably STPP or EDTA, or combinations of the two, to control calcium ions;
(d) optionally, toxicologically-acceptable preservative;
(e) optionally, toxicologically-acceptable suds suppresser; and (fj the balance comprising compatible, toxicologically-acceptable inert and/or minor ingredients.
In all of the above lists of components, if an ingredient can be classified in more than one place, it will be classified in the first place it can appear.
Preferably all ingredients are food grade, since they may be ingested.
S
A more specific method for preparing food, especially produce such as fruits and vegetables involves exposing the food to a dilute aqueous solution having a basic pH of more than about 8.~ as described above, for a period of time of up to about one minute, said aqueous cleaning solution comprising potassium cations andlor sodium canons.
These cations are desirable in the diet for many reasons. Therefore, their presence in a composition for use in treating food materials like vegetables and fruits without rinsing is desirable. Also, the potassium canon is more useful than the sodium cation for soaps, since the potassium soaps are quite soluble as compared to the sodium soaps, especially at low temperatures.
An alkaline method for treating food can comprise contacting the surfaces of produce with an aqueous solution prepared by creating a solution having a pH
of from about 8.5 to about 13, preferably from about 10 to about 12.5, more preferably from about 10.5 to about 12.3, using the concentrated composition above and impure water, to provide pure solutions that kill microorganisms on the surface of food. It is important to reduce the level of microorganisms on the surface of food.
Another preferred variation in the above methods for treating food such as produce involves placing concentrated compositions, as disclosed herein, into containers in association with instructions to use the composition to form said dilute solutions to treat food. Such instructions are very important, since the amount of dilution, the time of treatment, special instructions regarding rinsing , and the ability to use impure water to form the treatment solution are not intuitive. It is also important that the instructions be as simple and clear as possible, so that using pictures and/or icons is desirable.
The balance of the composition can comprise various optional adjunct materials, pH-adjusting~gents, perfumes or essences, preservatives, suds suppressors, and the like.
The ingredients in the above concentrated compositions are preferably "food grade" and selected and used in proportions which provide substantially clear dilute compositions. "Substantially clear" includes only minimal haziness, and preferably the compositions are completely clear. The ingredients are also selected to have minimal odor, both initially and after storage. The lack of objectionable odor is especially important in compositions for use on food.
In order to mask any objectionable odor, the compositions can contain a food grade or GRAS (defined hereinafter) perfume, or essence, ingredient. Especially preferred for this use are oils derived from citrus fruit, e.g., oranges, lemons, limes, grapefruits, tangerines, tangelos, etc. which contain relatively large amounts of terpenes.
Preferred compositions for use herein contain only materials that are food grade or GRAS, including, of course, direct food additives affirmed as GRAS, to protect against possible misuse by the consumer. Traditionally, most suggestions for cleaning of fruits and/or vegetables have contemplated a commercial scale where there is typically more control over the conditions, especially the amount and thoroughness of rinsing. The present invention includes use by individual consumers without rinsing, so that it is essential that extra safety be built into the product. Failure to rinse thoroughly after cleaning is less of a concern if all of the ingredients are GRAS and/or food grade.
The use and selection of cleaning ingredients for the purpose of washing fruits and vegetables is described by the United States Code of Federal Regulations, Title 21, Section 173.315: "Ingredients for use in washing or lye peeling of fruits and vegetables".
These regulations restrict the ingredients that may be used for direct contact with food to those described as "generally recognized as safe" (GRAS}, and a few other selected ingredients. These sections also provide certain limitations on the amount of material that can be used in a given context. However, there are no regulations, or suggestions, for methods of making food safe for consumption using aqueous compositions that do not need to be removed. Also, there is no known method for killing microbes using materials like hypochlorite, iodine, etc. at low levels that provide desirable palatability.
DETAILED DESCRIPTION OF THE INVENTION
The following toxicologically-acceptable ingredients are used in the preparation of the preferred compositions herein. By "toxicologically-acceptable" is meant that any residues from the ingredients of the compositions which may remain on the fruits or vegetables cleansed therewith are safe for ingestion by humans and/or lower animals.
Detergent Surfactant Synthetic Anionic Surfactant - Base stable anionic surfactants can be employed, e.g., as allowed in the United States by the United States Code of Federal Regulations (CFR), Title 21, Section 173.315. Specific mention is made of salts of dodecylbenzene sulfonate, typically at levels up to 0.2°~0. Also described in the CFR
are phosphate esters of ethylene ancfor ethylene/propylene oxide adducts of aliphatic alcohols, dioctyl sulfosuccinate, and 2-ethylhexyl sulfate.
The anionic surfactant is preferably selected from materials known in the art, such as C6_Ig alkyl sulfates and/or sulfonates; C6_IS alkylbenzene sulfonates; di-C6_10 alkyl sulfosuccinates, etc. The alkyl sulfates are preferred, for antimicrobial effectiveness and palatability, especially as the sodium salts. Potassium Cg_ 14 soaps are also preferred.
Mixtures of such alkyl sulfates and soaps are also preferred.
Nonionic Surfactant - Nonionic surfactants, when used, are preferably selected from materials known in the art, such as alkylene oxide (ethylene oxide and/or propylene oxide) adducts of C10-18 aliphatic alcohols or acids, polysorbates, C10-18 aliphatic alcohol adducts of glucose (alkyl polyglucosides). The specific nonionic surfactant selected ideally has a hydrophilic-lipophilic balance (HLB) greater than about 10, and a cloud point above about 35°C in the composition. The United States Code of Federal Regulations (CFR) specifically describes an ethylene oxide/propylene oxide adduct of C12-18 aliphatic alcohol of molecular weight of about 800. Such a material is available ~rM
as PLURAFAC RA-20 (BASF).
In compositions containing soap, the alkoxylated alcohol functions mainly as a dispersant for any soap curd which may form during the cleansing operation.
Further, it is recognized that the selection of non-nitrogen containing nonionics can minimize the possibility of microbial growth in the dilute surfactant compositions.
Fatt~Salts - The compositions herein can contain soap, especially a Cg_14 soap like coconut fatty acid middle cut soap. Lauric acid is convenient for this use. Specific solubilizing surfactants in higher proportions can be used to solubilize these soaps.
However, soaps should not be used in large quantities because of taste considerations.
The presence of the detergent surfactant is important for microorganism reduction, especially at a pH of less than about 10. The detergent surfactant also is used for reduction of the surface tension and controlling viscosity. It is highly desirable that the dilute treatment compositions have a low viscosity, typically less than about 50, preferably less than about 10, and more preferably less than about ~. The low viscosity improves the completeness of the treatment by promoting spreading over the surface of the food, especially where there are layers, rugosities, etc. The low viscosity also improves drainage, thus providing at least some soil removal. Low viscosity also improves speed of drying, if that is desired. Thus, the detergent surfactant provides highly important advantages in terms of treatment.
In combination with salt, the detergent surfactant improves antimicrobial action.
The presence of the surfactant, and especially the alkyl sulfate, provides improved kill and/or rate of kill, especially for short times and/or lower pH.
It is important that the detergent surfactant not affect palatability.
Accordingly, the level should be low. As discussed before, soap is not usually used in large amounts because of taste considerations and food grade surfactants are highly desirable for taste considerations.
Alkaline Buffer Toxicologically-acceptable basic buffers are used in the compositions herein to maintain product pH in the desired range. For ease of formulatability, it is often desirable that such basic buffers be in their potassium salt form, especially in liquid concentrates that utilize neutralized fatty acid surfactants. Sodium salts are acceptable, and even preferred, in solid, e.g., powder formulas or in conjunction with alkyl sulfate/sulfonate surfactants. Potassium/sodium carbonate and/or potassium/sodium ortho-phosphate are convenient and preferred basic pH buffers. Calcium and/or magnesium hydroxides can also be used to create a basic pH, especially if the composition does not contain calcium ion sequestrant. Sodium and potassium hydroxides can be used as part of alkaline buffer systems. TI~e levels and identities of the ingredients are adjusted to provide dilute products having the desired viscosities as set forth herein, e.g., less than about 50, preferably less than about 10, more preferably less than about 5 centipoise under shear of > ~ 1000 sec' 1.
The pH is preferably not greater than about 13, and especially does not contain large amounts of buffer at higher pHs for consumer safety, especially when the compositions are not fully removed. Reserve alkalinity should be from about 0.
I to about 10, preferably from about 0.2 to about 7, and more preferably from about 0.3 to about 4.
The pH buffer is also part of the electrolyte, discussed hereinafter.
Electrolyte In combination with the surfactant, a sufficiently high electrolyte concentration is essential for effective microorganism reduction in short times and/or at a low pH.
Suitable electrolytes include: calcium disodium ethylenediaminetetraacetate (EDTA), disodium EDTA, potassium nitrate, sodium nitrate, sodium nitrite, stannous chloride, aluminum nicotinate, calcium pantothenate, calcium chloride double salt, potassium iodide, zinc methionine sulfate, calcium silicate, iron ammonium citrate, disodium guanylate, disodium inosinate, salts of carrageenan, salts of furcelleran, calcium lignosulfonate, calcium lactobionate, gibberellic acid and its potassium salt, potassium bromate, dioctyl sodium sulfosuccinate, sodium acid pyrophosphate, aluminum sulfate, aluminum ammonium sulfate, aluminum potassium sulfate, aluminum sodium sulfate, calcium phosphate, sodium carboxymethylcellulose, sodium caseinate, sodium phosphate, sodium aluminum phosphate, sodium tripolyphosphate, aluminum calcium silicate, .i calcium silicate, magnesium silicate, sodium aluminosilicate, sodium calcium aluminosilicate, hydrated tricalcium silicate, calcium ascorbate, calcium sorbate, potassium bisulfate, potassium metabisulfite, potassium sorbate, sodium ascorbate, sodium bisulfate, sodium metabisulfite, sodium sorbate, sodium sulfite, sodium acid phosphate, calcium diacetate, calcium hexametaphosphate, monobasic calcium phosphate, dipotassium phosphate, disodium phosphate, sodium hexametaphosphate, sodium metaphosphate, sodium phosphate, sodium pyrophosphate, tetra sodium pyrophosphate, sodium tripolyphosphate, calcium phosphate, calcium pyrophosphate, sodium phosphate, zinc chloride, zinc gluconate, zinc oxide, zinc stearate, zinc sulfate, potassium acid tartrate, ammonium bicarbonate, ammonium carbonate, ammonium chloride, ammonium 2~ hydroxide, ammonium citrate, dibasic ammonium phosphate, monobasic ammonium phosphate, dibasic ammonium sulfate, calcium acetate, calcium alginate, calcium carbonate, calcium chloride, calcium citrate, calcium gluconate, calcium glycerophosphate, calcium hydroxide, calcium iodate, calcium lactate, calcium oxide, calcium pantothenate, calcium propionate, calcium stearate, calcium sulfate, copper gluconate, copper sulfate, fernc ammonium citrate, ferric chloride, ferric citrate, ferric phosphate, ferric pyrophosphate, ferric sulfate, ferrous ascorbate, ferrous carbonate, ferrous citrate, ferrous fumarate, ferrous gluconate, ferrous lactate, ferrous sulfate, iron, elemental, magnesium carbonate, magnesium chloride, magnesium citrate dibasic , magnesium hydroxide, magnesium oxide, magnesium phosphate, magnesium sulfate, manganese chloride, manganese citrate, manganese gluconate, manganese sulfate, monosodium phosphate derivatives of mono- and diglycerides, nickel, potassium alginate, potassium bicarbonate, potassium carbonate, potassium chloride, potassium citrate, potassium hydroxide, potassium iodide, potassium iodate, potassium lactate, potassium sulfate, sodium acetate, sodium alginate, sodium benzoate, sodium bicarbonate, sodium carbonate, sodium chloride, sodium citrate, sodium diacetate, sodium hydroxide, sodium 10 hypophosphite, sodium lactate, sodium metasilicate, sodium propionate, sodium sesquicarbonate, sodium tartrate, sodium potassium tartrate, sodium thiosulfate, stannous chloride (anhydrous and dihydrated).
It will be recognized that the above electrolyte salts should preferably be used in w,ounts that are non-toxic and which do not cause unacceptable taste and/or feel in the mouth when the salts are not removed. The molarity of cations is preferably at least 0.04, more preferably at least about 0.08, and even more preferably at least about 0.12.
SeQuestrant/Builder The preferred sequestrant and/or builder herein is polyphosphate salt or organic polycarboxylic salt, e.g., sodium and/or potassium citrate, and/or sodium and/or potassium ethylenediaminetetraacetate, which are standard items of commerce and are GRAS. Other organic polycarboxylic acids, especially those that are GRAS, such as citric, tartaric, malic, etc. acids, can also be used. A preferred version of polyphosphate is an anhydrous Fast Dissolving STPP manufactured by the FMC corporation. Complex phosphates can also be used, and are highly useful to maintain the clarity of dilute solutions made from hard water, but are generally avoided due to regulatory considerations where phosphate levels are specifically forbidden or highly restricted.
Typically, the sequestrant/builder is present at a level of from about 0.0005%
to about 3%, preferably from about 0.001% to about 0.5%, and more preferably from about 0.003% to about 0.2%, by weight of the dilute composition.
Sequestrant/builders can maintain the efficacy of the formulas in the presence of hardness.
Sequestrant/builders are a special case of the electrolyte and are considered in the computation of the electrolyte molarity.
Preservative Formulating the present concentrated compositions with essential surfactant and electrolyte reduces the tendency for biological growth of contaminants, such as bacteria, fungi, or molds. However, preservatives can help insure the lack of biological growth through contamination in making or in use. Standard food-grade preservatives such as ethylenediaminetetraacetic acid and/or the salts thereof, at a level of from about 0.001%
to about 0.2% of ethylenediaminetetraacetic acid, or its sodium and/or potassium salts, can be used although, in general, the compositions herein do not require a preservative.
Fluid Carrier The major proportion, e.g., more than about two thirds, (typically, approximately 80%-99.7%, by weight) of the dilute compositions herein comprises water as the fluid carrier for the ingredients. As noted in the Examples hereinafter, water-ethanol can also be employed and is especially preferred when formulating the basic pH
compositions herein. The ethanol level in the dilute composition preferably should not exceed 10% in the solution used to treat the produce, to avoid an alcoholic odor. Other compatible, water-soluble, low molecular weight solvents such as glycerol can also be used. Glycerol can also be used in solid compositions to minimize fines. It is an advantage of this invention, that one can use impure water to prepare the dilute composition, the microorganisms being killed by the high pH and/or surfactant and/or builder and/or electrolyte. As used herein, "impure water" is water that is impure by reason of microorganisms being present.
Optional Ingredients Polyethylene Glycol - The water-soluble polyethylene glycol polymer (PEG) employed which can be employed herein is the known article of commerce and is available under a variety of trade marks, of which CARBOWAX (Union Carbide Corporation) is exemplary. PEG's in the average molecular weight range of from about 200 to about 20,000 can be used herein, and PEG as CARBOWAX in the average molecular weight range of at least about 200, typically 300 to about 9500, is convenient and preferred. The dilute compositions herein can comprise at least about 0.001 %, by weight, of the PEG and will typically comprise from about 0.005% to about 0.1 %, by weight, of PEG. The amounts used can vary with the molecular weight of the PEG, the amount of surfactant used in the composition, the desired viscosity of the composition, and like factors within the discretion of the formulator. In a typical mode, the prefenred compositions herein that have an improved tactile impression will comprise surfactant/PEG weight ratios in the range from about 1:2 to about 30:I, preferably from about I:1 to about 15:1.
The compositions herein which contain the polyethylene glycol are characterized not only by their excellent cleaning performance and sudsing/rinsability properties, but also by their improved "feel". The improved feel of the compositions which come into contact with the users' hands is a qualitative tactile impression. However, this improved, "non-slippery", "non-soapy" improvement in skin feel can be demonstrated by rubbing Test (PEG-containing) and Control (no PEG) compositions on the hands or inner forearms of volunteer graders. Even in such rudimentary tests, the graders can readily distinguish the improved tactile impression of the compositions.
Antioxidants The use of surfactants, and especially soaps, can be complicated by development of off odors and/or yellowing of the compositions in which they appear.
These undesirable properties are believed to be caused by complex side reactions initiated by the reaction of oxygen with primarily the polyunsaturated components of the fatty acid stock. These results can be avoided, or minimized, by avoiding contact with air, or by controlling the quality of the fatty acid stock so that the amount and type of polyunsaturates are minimized as described above, and/or by the addition of chelants and/or antioxidants.
It has been found, that the addition of tocopherols (e.g., Vitamin E, or tocopherol acetates) in alkaline fonmulations is advantageous, as they do not degrade, nor do they impart a strong color. They inhibit the development of off odors for extended periods of time so that the need for masking scents is minimized, or eliminated, particularly for oleic acid stocks of high quality, as described above. The use of butylated phenols, such as BHT and BHA is also useful, but their effectiveness appears more limited and they can impart stronger colors to the compositions. Other food grade antioxidants such as Vitamin C, sorbates, and sulfites, are desirable to prevent deterioration of the compositions by the action of oxygen, but care must be taken since vitamin C
can suffer color degradation and sulfites can cause odor problems. Sulfites also have been the target of potential health concerns.
Suds suppressors. (Silicones and their derivatives) At low levels, suds suppressors or antifoamers can be used, especially in the case where a certain surfactant level is desired for wetting and/or efficacy, but the degree of foam generated in the washing of produce is desired to be kept low. The amount of suds suppresser can be tailored in yM TM
conjunction with the type and level of surfactant used. DC-4270 and DC2-4242 from Dow Corning are useful suds suppressors.
The PEG, previously discussed, can alternately be used as a carrier or binder material for a silicone suds suppresser particle in dry powder concentrate formulas.
Typically the PEG molecular weights are such that the PEG is a solid at room temperature to contain the silicone. A preferred M.W. in this case is 8000.
In the case where PEG is an integral part of the carrier for silicone in a power concentrate, I S caution should be used in the processing of the material to avoid excessive shearing of the dry product. PEG can be soft enough that excessive shear could alter the integrity of the particle formed with it.
Mild fragrances. Odor ingredients can be useful at low levels in concentrates.
They can give a concentrate a favorable odor, but under dilution are not noticeable in solution or on treated items.
Conventional halogen antimicrobials. One of the advantages of the present invention is that it makes it unnecessary to use hypochlorite, or iodine, as a means of reducing microorganism populations. Such materials are known to have undesirable tastes, and can add to environmental pollution. However, it is sometimes desirable to have a small amount of hypochlorite salt, typically lithium, sodium, potassium, calcium, and/or magnesium, and/or a source of iodine, present at a low level for additional kill of m~croorgamsms.
Usage The concentrated compositions herein are preferably used by placing them in a container, such as a pan, with water, preferably pure, to form the dilute compositions and l4 facilitate immersion of the food, or by dilution and then application to the surface to be treated.
A typical use involves treating individual items of food in a "bath" followed by draining the food and/or drying, to minimize the amount of composition left on the food.
In an optional process for using the dilute compositions described herein, the food product is rinsed, cleaned, rubbed, and/or wiped off with a suitable clean material like cloth, sponge, a paper towel, etc. In another optional process, potentially impure water is treated with the concentrated composition to kill microorganisms and this "treated" water is used to rinse food that has been treated with the dilute treatment composition in another vessel. This protects against the undetected gradual contamination of the original treatment composition. The "rinse" composition can contain lower levels of the concentrate, since all that is needed is to kill the microorganisms in the water itself.
Surprisingly, the compositions and processes described herein can provide effective disinfectancy/sanitization. In order to provide good kill of microor~anisms_ especially bacteria, one should use high concentrations and/or longer exposure times.
Typically, the dilute compositions should be used full strength and allowed to remain on the food for up to about one half minute, preferably up to about one minute.
Longer exposure times (i.e., the time that the bacteria are in contact with the product) are not required to observe antimicrobial benefits.
Higher pHs are also better, in general.
The methods herein can comprise forming the dilute treatment composition using either (a) pure and/or (b) impure water and after application by immersion and/or spray, then either (1) not rinsing so that any removal is by mechanical means, absorption, and/or draining; (2) rinsing with pure water if it is available; and/or (3) treating impure water with the dilute treatment composition to create "pure" rinse water and then rinsing.
Food All kinds of foods can be treated. Examples include: produce including fruits and vegetables such as apples, grapes, peaches, potatoes, lettuce, tomatoes, celery, and the like, that are to be eaten aRer treatment, and edible animal protein, especially meat, seafood and poultry, including foodstuffs which are comprised essentially of the protein found in such foods sources including, but not limited to, beef, pork, chicken, turkey, fish, shellfish and game meats such as venison, rabbit and the like. Said edible animal protein includes the processed forms of said protein sources, including, but not limited to, such forms as around beef, ground turkey, bologna, hot dogs, sausages, fish cakes, and the like.
The food is preferably ready to eat after treatment, and is eaten shortly thereafter to S minimize recontamination.
The compositions can also be used for cleaning (especially spot removal), disinfectancy, or sanitization, on non-food (i.e., any surface which is not used as food, even those which are not in contact with food), inanimate, household surfaces, especially those used in food production and other food-contacting surfaces (surfaces that come in 10 contact with food). E.g., cutting boards, counter tops, utensils, dishes, colanders, sinks, sponges, towels, dish cloths, cloth napkins (serviettes), table cloths, and other surfaces that come in contact with food. It is desirable to disinfect/sanitize before the surfaces come in contact with the food, and is desirable to redisinfect/sanitize whenever the surfaces become recontaminated. The products herein, containing all GRAS
and/or food 15 grade ingredients, are perfect for this purpose. On hard surfaces, of course, the compositions can be removed, after sufficient time has elapsed, by rinsing if pure water is available, or by absorption/wiping with an appropriate object, e.g., paper towel, sponge, squeegee, etc.
The compositions of this invention can also be used to treat/clean other non-food inanimate household surfaces, such as fabrics, e.g., clothing, shoes, and shower curtains, especially those that are used by infants, especially toys, diapers (napkins), and bibs. The contaminated fabrics can be disinfected/sanitized, then allowed to drain and/or dry, while minimizing the risk if the infant puts the fabric or other article in its mouth. However, it is desirable to rinse fabrics, at least with water that contains less alkalinity. The fabric can be treated totally, or by spot treatment, then the composition is preferably removed, at least partially, e.g., by draining, absorbency, and/or mechanical force. The products can also be used to treat animals and humans to disinfect skin, hair, etc. Care should be used to avoid damage if the product has a high pH.
Packaging the products herein in a container with instructions for usage in terms of timing and proper dilution in order to provide disinfectancy/sanitization, will help the individual consumer by providing information for proper usage in order to remove/kill microorganisms. It is a special advantage of the product that it can be used for this purpose at a time in the food production process where recontamination is minimized.
The instructions desirably provide assurance that short tirr~es are acceptable and/or that rinsing is not needed in order to avoid possible recontamination by rinsing with impure water.
For fabrics, the pH of the compositions is preferably below about 11.5, more preferably below 1 I.O.
For fabric and hard surfaces, the distribution of the compositions of this invention can be achieved by using a spray device, a roller, a pad, etc., or dipping in a "bath" of said compositions. Spraying is a preferred method.
All parts, percentages, and ratios herein are"by weight" unless otherwise stated.
All number values are approximate unless otherwise stated.
The following Examples illustrate the compositions and processes of this invention, but are not intended to be limiting thereof. The exemplified basic liquid dilute IS treatment compositions can be prepared at pH 8.5-13 by dissolving the concentrated compositions, or the individual ingredients, in water or water-ethanol using conventional mixing apparatus. In a convenient mode, e.g., the concentrate of Example Q , water is placed in a treatment vessel. Sodium lauryl sulfate, trisodium phosphate crystals, and sodium chloride are added in the named sequence, with stirring.
The following examples depict the bacteria kill efficacy of the proposed invention as determined by a standard AOAC germicidal and detergent sanitizing test.
Test organisms E. coii, ATCC I 1229, or Staphylococcus aureus, ATCC 6538, are prepared in an inoculum with a 5% organic soil load (horse serum) prepared with French culture bottles to achieve higher cfu/ml. The test exposure temperature is 25°C
and incubation time for survivor count is 48-54 hours at 35°C.
As used herein, total cation molarity does not include any cation from the surfactant.
EXAMPLES
The following solutions (A-F) were prepared and tested for efficacy.
Examples where no surfactant, but above our specified salt level, are insufficient.
Comparative Comparative Example A Example B
Nominal Wt % Nominal Wt o NaHC03 2.0 NaHC03 2.0 NaOH 0.19 NaOH 0.19 Ethanol 2.0 Water balance Water balance pH 10.5 pH 10.5 Total canon 0.289 molarity Total cation molarity 0.289 Log reduction E-Coli 0.23 @ 1 minute Log reduction E-Coli 0.29 @ 1 minute Example where low surfactant and low salt is insufficient.
Comparative Example C
Nominal Wt Sodium Lauryl Sulfate 0.01 Na3P04~ 12Hz0 0.46 Water balance pH 10.5 Total cationmolarity 0.036 Log reduction E-Coli 0.05 @ 1 minute Example showing where Oleic acid (C,a) is not preferred.
Comparative Example D
Nominal Wt Oleic acid 0.44 NaHCO, 2,0 KOH 1.81 Ethanol 2.0 Citric acid 0.52 PEG 3350 0.1 Water balance pH 10.5 Total cation molarity 0.359 Log reduction E-Coli 0.47 @ 1 minute Examples showing where low total salt cation molarity, even with preferred surfactants, is insufficient.
Comparative Example E
Nominal Wt Sodium Lauryl Sulfate0.2 Na3P0:~ 12H20 0.175 Na2C03 -STPP 0.1 Water balance pH 11.5 Total cation molarity 0.027 Log reduction E-Coli 0 @ 1 minute Comparative Comparative Example F Example G
Nominal Wt '_~ominal % Wt Sodium Lauryl 0.15 SodiumLauryl 0.1 Sulfate Sulfate Na,PO.~ 12Hz0 0.225 Na3P0.~ 12Hz0 0.275 STPP 0.1 STPP 0.1 Water balance Water balance pH 11.5 pH --11.5 Total cation molarity0.031 Total cation molarity0.035 Log reduction 0 @ 1 minute Log reduction E-Coli0 @ 1 minute E-Coli Comparative Comparative Example H Example I
Nominal Wt Nominal % Wt Sodium Lauryl 0.05 SodiumLauryl 0.04 Sulfate Sulfate Na3P0,~ 12H20 0.325 Na3P04 12HZ0 0.335 STPP 0.1 STPP 0.1 Water balance Water balance pH 11.5 pH 11.5 Total cation 0.039 Total cation molarity0.04 molarity Log reduction 0 @ 1 minute Log reduction E-Coli0 @ 1 minute E-Coli Examples A-R show a combination of specific surfactant at the required level, and specified total salt cation molarity, gives surprisingly successful results.
A B
Nominal Wt Nominal % Wt%
Sodium Lauryl 0.063 SodiumLauryl Sulfate0.5 Sulfate NazPO.~ 12H20 0.176 NaOH 0.05 NaZC03 0.25 NaHCOz 2.0 STPP - Water balance Water balance pH g.5 pH 11.5 Total cation molarity0.062 Total cation molarity0.253 Log reduction 1.5 @ 1 minuteLog reduction E-Coli4.5 @. 1 E-Coli minute C D
Nominal Wt Nominal Wt %
Sodium Lauryl 0.05 SodiumLauryl 0.5 Sulfate Sulfate NaOH 0.8 NaOH 0.1 NaHC03 2.0 NaHC03 0.25 NazS04 - NaZS04 3.0 Water balance Water balance pH 10.5 pH 10.5 Total cation molarity0.442 Total cation 0.482 molarity Log reduction 1.7 @ 0.5 minuteLog reduction E-Coli1.5 @ 0.5 E-Coli minute 3.3 @ 1 minute 4 @ 1 minute E F
Nominal Wt ,% Nominal Wt ~o Lauric Acid 1.87 SodiumLauryl 0.11 Sulfate KOH 2.25 NaOH 1.25 KHC03 2.38 NaHC03 2.0 Ethanol 2.0 Ethanol 3.5 Na2EDTA 0.003 Na~EDTA 0.003 Citric Acid 0.52 Citric Acid 0.52 PEG 3350 0.50 Water balance Water balance pH 11.5 pH 10.8 Total cation 0.551 Total cation 0.557 molarity molarity Log reduction 3.1 @ 0.5 minuteLog reduction 6.7 @ 0.5 minute Staph. Staph.
Aureus Aureus 3.4 @ 1 minute 6.9 @ I minute G H
Nominal Wt % Nominal Wt Lauric Acid I.87 SodiumLauryl 0.5 Sulfate KOH 2.26 NaOH 0.62 NaHC03 2.0 NaHC03 0.55 Ethanol 7.5 Ethanol 2.0 Na2EDTA 0.003 Na2EDTA 0.003 Citric Acid 0.52 Na Acetate 0.10 PEG 3350 0.50 Citric Acid 0.54 Water balance PEG 200 0.10 pH 11.5 Water balance WO 00/30460 PCT/lJS99/26886 pH 11.57 Total cation molarity 0.552 Total cation 0.223 molarity Log reduction Staph. 2.7 @ 0.~ minute Log reduction Staph. 3.9 @ 0.~ minute Aureus Aureus 3.4 @ 1 minute 4.1 @ 1 minute I
Nominal Wt % Nominal Wt Sodium Lauryl 0.02 SodiumLauryl 0.02 Sulfate Sulfate Na3POa 12HZ0 0.36 Na3P04 12H20 0.31 NazC03 0.05 NaZCO~ 0.15 STPP 0.05 STPP _ Water balance Water balance pH ~ 11.5 pH ~ 11.5 Total cation molarity0.045 Total cation 0.054 molarity Log reduction 5.2 @ 0.5 minuteLog reduction 1.1 @ 0.5 E-Coli E-Coli minute 7 @ 1 minute 3.1 @ 1 minute K
Nominal Wt Sodium Lauryl Sulfate 0.02 Na3P0~~ 12H20 0.26 NaZC03 0.2 STPP
ii'ater balance pH -1 I.S
Total cation molarity 0.059 Log reduction E-Coli 1 @. 0.~ minute 2.7 ~1 minute L M
Nominal Wt % Nominal Wt Sodium Lauryl 0.125 SodiumLauryl 0.125 Sulfate Sulfate NazPOa 12H20 0.2 Na3POa 12H20 0. I 5 Na2C03 0.15 Na2C03 0.2 Water balance Water balance pH 11.5 pH ~1I.5 Total cation 0.044 Totalcation molarity0.051 molarity Log reduction 1.4 @ 0.5 minuteLog reduction 1 @ 0.5 E-Coli E-Coli minute 1.3 @ 1 minute 1.2 @ 1 minute S
N O
Nominal Wt Nominal Wt %
Sodium Lauryl 0.075 SodiumLauryl 0.1 Sulfate Sulfate Na~PO.~ 12Hz0 0.21 Na3P0.~ 12HZ0 0.28 Na2C03 0.3 Na2C03 0.4 Water balance Water balance pH 11.5 pH 11.5 Total cation molarity 0.074 Total cation 0.099 molarity Log reduction E-Coli 3.2 @ 0.~ minute Log reduction E-Coli S @ 0.5 minute 3.8 @ 1 minute 3.7 @. 1 minute P Q
Nominal Wt Nominal % Wt Sodium Lauryl 0.016 SodiumLauryl 0.125 Sulfate Sulfate Na3P0:~ 12Hz0 0.285 Na3P04 12H20 0.33 NaCI 0.2 NaCI 0.5 STPP 0.08 STPP _ Water balance Water balance pH 11.5 pH 11.5 Total cation molarity0.069 Total cation molarity0.112 Log reduction 7 @ 1 minute Log reduction E-Coli7 @ 1 minute E-Coli R
Nominal Wt Sodium Lauryl 0.2 Sulfate Oleic acid 0.05 NaHC 03 2.0 NaOH 1.3 Ethano 1 4.5 Na2EDTA2Hz0 0.003 Citric acid ~ 0.54 Grapefruit oil 0.05 Water balance pH 11.5 Total cation molarity 0.569 Log reduction E-Goli >> @ 0.5 minute STPP is sodium tripolyphosphate and PEG is polyethylene glycol with the indicated molecular weight.
A pleasant citrus odor in solution can also be obtained by using citrus extracts such as Lime 63 or distilled Grapefruit oil which are food grade flavorants/perfumes.
Produce washed in the soak solutions are determined to have no negative effects on it in regards to taste or palatability even without a rinse.
(b) toxicologically-acceptable basic buffer, preferably potassium and/or sodium and/or calcium hydroxide, orthophosphate, carbonate, and/or bicarbonate, to provide a pH of from about 8.5 to about 13, preferably from about 10 to about . 12.5, more preferably from about 10.5 to about 12.3, in said dilute composition, but with low reserve alkalinity in said dilute composition, preferably less than about I0, more preferably less than about 7 and even more preferably less than about 4, to avoid damage to a human, the level of orthophosphate, when present, being from about 3% to about 60%, preferably from about 5% to about 60%, more preferably from about 10% to about 55%, by weight of ortho-phosphoric acid equivalent;
(c) suffcient electrolyte to provide at least about 0.04 molarity of cations once diluted for use, preferably at least about 0.08, and more preferably at least about 0.12;
(d) optionally, from about 0.1 to about 35%, preferably from about 1 to about 25%, more preferably from about 2 to about 20%, of toxicologically-acceptable calcium ion sequestrant, preferably polyphosphate or organic polycarboxylate, more preferably STPP or EDTA, or combinations of the two, to control calcium ions;
(d) optionally, toxicologically-acceptable preservative;
(e) optionally, toxicologically-acceptable suds suppresser; and (fj the balance comprising compatible, toxicologically-acceptable inert and/or minor ingredients.
In all of the above lists of components, if an ingredient can be classified in more than one place, it will be classified in the first place it can appear.
Preferably all ingredients are food grade, since they may be ingested.
S
A more specific method for preparing food, especially produce such as fruits and vegetables involves exposing the food to a dilute aqueous solution having a basic pH of more than about 8.~ as described above, for a period of time of up to about one minute, said aqueous cleaning solution comprising potassium cations andlor sodium canons.
These cations are desirable in the diet for many reasons. Therefore, their presence in a composition for use in treating food materials like vegetables and fruits without rinsing is desirable. Also, the potassium canon is more useful than the sodium cation for soaps, since the potassium soaps are quite soluble as compared to the sodium soaps, especially at low temperatures.
An alkaline method for treating food can comprise contacting the surfaces of produce with an aqueous solution prepared by creating a solution having a pH
of from about 8.5 to about 13, preferably from about 10 to about 12.5, more preferably from about 10.5 to about 12.3, using the concentrated composition above and impure water, to provide pure solutions that kill microorganisms on the surface of food. It is important to reduce the level of microorganisms on the surface of food.
Another preferred variation in the above methods for treating food such as produce involves placing concentrated compositions, as disclosed herein, into containers in association with instructions to use the composition to form said dilute solutions to treat food. Such instructions are very important, since the amount of dilution, the time of treatment, special instructions regarding rinsing , and the ability to use impure water to form the treatment solution are not intuitive. It is also important that the instructions be as simple and clear as possible, so that using pictures and/or icons is desirable.
The balance of the composition can comprise various optional adjunct materials, pH-adjusting~gents, perfumes or essences, preservatives, suds suppressors, and the like.
The ingredients in the above concentrated compositions are preferably "food grade" and selected and used in proportions which provide substantially clear dilute compositions. "Substantially clear" includes only minimal haziness, and preferably the compositions are completely clear. The ingredients are also selected to have minimal odor, both initially and after storage. The lack of objectionable odor is especially important in compositions for use on food.
In order to mask any objectionable odor, the compositions can contain a food grade or GRAS (defined hereinafter) perfume, or essence, ingredient. Especially preferred for this use are oils derived from citrus fruit, e.g., oranges, lemons, limes, grapefruits, tangerines, tangelos, etc. which contain relatively large amounts of terpenes.
Preferred compositions for use herein contain only materials that are food grade or GRAS, including, of course, direct food additives affirmed as GRAS, to protect against possible misuse by the consumer. Traditionally, most suggestions for cleaning of fruits and/or vegetables have contemplated a commercial scale where there is typically more control over the conditions, especially the amount and thoroughness of rinsing. The present invention includes use by individual consumers without rinsing, so that it is essential that extra safety be built into the product. Failure to rinse thoroughly after cleaning is less of a concern if all of the ingredients are GRAS and/or food grade.
The use and selection of cleaning ingredients for the purpose of washing fruits and vegetables is described by the United States Code of Federal Regulations, Title 21, Section 173.315: "Ingredients for use in washing or lye peeling of fruits and vegetables".
These regulations restrict the ingredients that may be used for direct contact with food to those described as "generally recognized as safe" (GRAS}, and a few other selected ingredients. These sections also provide certain limitations on the amount of material that can be used in a given context. However, there are no regulations, or suggestions, for methods of making food safe for consumption using aqueous compositions that do not need to be removed. Also, there is no known method for killing microbes using materials like hypochlorite, iodine, etc. at low levels that provide desirable palatability.
DETAILED DESCRIPTION OF THE INVENTION
The following toxicologically-acceptable ingredients are used in the preparation of the preferred compositions herein. By "toxicologically-acceptable" is meant that any residues from the ingredients of the compositions which may remain on the fruits or vegetables cleansed therewith are safe for ingestion by humans and/or lower animals.
Detergent Surfactant Synthetic Anionic Surfactant - Base stable anionic surfactants can be employed, e.g., as allowed in the United States by the United States Code of Federal Regulations (CFR), Title 21, Section 173.315. Specific mention is made of salts of dodecylbenzene sulfonate, typically at levels up to 0.2°~0. Also described in the CFR
are phosphate esters of ethylene ancfor ethylene/propylene oxide adducts of aliphatic alcohols, dioctyl sulfosuccinate, and 2-ethylhexyl sulfate.
The anionic surfactant is preferably selected from materials known in the art, such as C6_Ig alkyl sulfates and/or sulfonates; C6_IS alkylbenzene sulfonates; di-C6_10 alkyl sulfosuccinates, etc. The alkyl sulfates are preferred, for antimicrobial effectiveness and palatability, especially as the sodium salts. Potassium Cg_ 14 soaps are also preferred.
Mixtures of such alkyl sulfates and soaps are also preferred.
Nonionic Surfactant - Nonionic surfactants, when used, are preferably selected from materials known in the art, such as alkylene oxide (ethylene oxide and/or propylene oxide) adducts of C10-18 aliphatic alcohols or acids, polysorbates, C10-18 aliphatic alcohol adducts of glucose (alkyl polyglucosides). The specific nonionic surfactant selected ideally has a hydrophilic-lipophilic balance (HLB) greater than about 10, and a cloud point above about 35°C in the composition. The United States Code of Federal Regulations (CFR) specifically describes an ethylene oxide/propylene oxide adduct of C12-18 aliphatic alcohol of molecular weight of about 800. Such a material is available ~rM
as PLURAFAC RA-20 (BASF).
In compositions containing soap, the alkoxylated alcohol functions mainly as a dispersant for any soap curd which may form during the cleansing operation.
Further, it is recognized that the selection of non-nitrogen containing nonionics can minimize the possibility of microbial growth in the dilute surfactant compositions.
Fatt~Salts - The compositions herein can contain soap, especially a Cg_14 soap like coconut fatty acid middle cut soap. Lauric acid is convenient for this use. Specific solubilizing surfactants in higher proportions can be used to solubilize these soaps.
However, soaps should not be used in large quantities because of taste considerations.
The presence of the detergent surfactant is important for microorganism reduction, especially at a pH of less than about 10. The detergent surfactant also is used for reduction of the surface tension and controlling viscosity. It is highly desirable that the dilute treatment compositions have a low viscosity, typically less than about 50, preferably less than about 10, and more preferably less than about ~. The low viscosity improves the completeness of the treatment by promoting spreading over the surface of the food, especially where there are layers, rugosities, etc. The low viscosity also improves drainage, thus providing at least some soil removal. Low viscosity also improves speed of drying, if that is desired. Thus, the detergent surfactant provides highly important advantages in terms of treatment.
In combination with salt, the detergent surfactant improves antimicrobial action.
The presence of the surfactant, and especially the alkyl sulfate, provides improved kill and/or rate of kill, especially for short times and/or lower pH.
It is important that the detergent surfactant not affect palatability.
Accordingly, the level should be low. As discussed before, soap is not usually used in large amounts because of taste considerations and food grade surfactants are highly desirable for taste considerations.
Alkaline Buffer Toxicologically-acceptable basic buffers are used in the compositions herein to maintain product pH in the desired range. For ease of formulatability, it is often desirable that such basic buffers be in their potassium salt form, especially in liquid concentrates that utilize neutralized fatty acid surfactants. Sodium salts are acceptable, and even preferred, in solid, e.g., powder formulas or in conjunction with alkyl sulfate/sulfonate surfactants. Potassium/sodium carbonate and/or potassium/sodium ortho-phosphate are convenient and preferred basic pH buffers. Calcium and/or magnesium hydroxides can also be used to create a basic pH, especially if the composition does not contain calcium ion sequestrant. Sodium and potassium hydroxides can be used as part of alkaline buffer systems. TI~e levels and identities of the ingredients are adjusted to provide dilute products having the desired viscosities as set forth herein, e.g., less than about 50, preferably less than about 10, more preferably less than about 5 centipoise under shear of > ~ 1000 sec' 1.
The pH is preferably not greater than about 13, and especially does not contain large amounts of buffer at higher pHs for consumer safety, especially when the compositions are not fully removed. Reserve alkalinity should be from about 0.
I to about 10, preferably from about 0.2 to about 7, and more preferably from about 0.3 to about 4.
The pH buffer is also part of the electrolyte, discussed hereinafter.
Electrolyte In combination with the surfactant, a sufficiently high electrolyte concentration is essential for effective microorganism reduction in short times and/or at a low pH.
Suitable electrolytes include: calcium disodium ethylenediaminetetraacetate (EDTA), disodium EDTA, potassium nitrate, sodium nitrate, sodium nitrite, stannous chloride, aluminum nicotinate, calcium pantothenate, calcium chloride double salt, potassium iodide, zinc methionine sulfate, calcium silicate, iron ammonium citrate, disodium guanylate, disodium inosinate, salts of carrageenan, salts of furcelleran, calcium lignosulfonate, calcium lactobionate, gibberellic acid and its potassium salt, potassium bromate, dioctyl sodium sulfosuccinate, sodium acid pyrophosphate, aluminum sulfate, aluminum ammonium sulfate, aluminum potassium sulfate, aluminum sodium sulfate, calcium phosphate, sodium carboxymethylcellulose, sodium caseinate, sodium phosphate, sodium aluminum phosphate, sodium tripolyphosphate, aluminum calcium silicate, .i calcium silicate, magnesium silicate, sodium aluminosilicate, sodium calcium aluminosilicate, hydrated tricalcium silicate, calcium ascorbate, calcium sorbate, potassium bisulfate, potassium metabisulfite, potassium sorbate, sodium ascorbate, sodium bisulfate, sodium metabisulfite, sodium sorbate, sodium sulfite, sodium acid phosphate, calcium diacetate, calcium hexametaphosphate, monobasic calcium phosphate, dipotassium phosphate, disodium phosphate, sodium hexametaphosphate, sodium metaphosphate, sodium phosphate, sodium pyrophosphate, tetra sodium pyrophosphate, sodium tripolyphosphate, calcium phosphate, calcium pyrophosphate, sodium phosphate, zinc chloride, zinc gluconate, zinc oxide, zinc stearate, zinc sulfate, potassium acid tartrate, ammonium bicarbonate, ammonium carbonate, ammonium chloride, ammonium 2~ hydroxide, ammonium citrate, dibasic ammonium phosphate, monobasic ammonium phosphate, dibasic ammonium sulfate, calcium acetate, calcium alginate, calcium carbonate, calcium chloride, calcium citrate, calcium gluconate, calcium glycerophosphate, calcium hydroxide, calcium iodate, calcium lactate, calcium oxide, calcium pantothenate, calcium propionate, calcium stearate, calcium sulfate, copper gluconate, copper sulfate, fernc ammonium citrate, ferric chloride, ferric citrate, ferric phosphate, ferric pyrophosphate, ferric sulfate, ferrous ascorbate, ferrous carbonate, ferrous citrate, ferrous fumarate, ferrous gluconate, ferrous lactate, ferrous sulfate, iron, elemental, magnesium carbonate, magnesium chloride, magnesium citrate dibasic , magnesium hydroxide, magnesium oxide, magnesium phosphate, magnesium sulfate, manganese chloride, manganese citrate, manganese gluconate, manganese sulfate, monosodium phosphate derivatives of mono- and diglycerides, nickel, potassium alginate, potassium bicarbonate, potassium carbonate, potassium chloride, potassium citrate, potassium hydroxide, potassium iodide, potassium iodate, potassium lactate, potassium sulfate, sodium acetate, sodium alginate, sodium benzoate, sodium bicarbonate, sodium carbonate, sodium chloride, sodium citrate, sodium diacetate, sodium hydroxide, sodium 10 hypophosphite, sodium lactate, sodium metasilicate, sodium propionate, sodium sesquicarbonate, sodium tartrate, sodium potassium tartrate, sodium thiosulfate, stannous chloride (anhydrous and dihydrated).
It will be recognized that the above electrolyte salts should preferably be used in w,ounts that are non-toxic and which do not cause unacceptable taste and/or feel in the mouth when the salts are not removed. The molarity of cations is preferably at least 0.04, more preferably at least about 0.08, and even more preferably at least about 0.12.
SeQuestrant/Builder The preferred sequestrant and/or builder herein is polyphosphate salt or organic polycarboxylic salt, e.g., sodium and/or potassium citrate, and/or sodium and/or potassium ethylenediaminetetraacetate, which are standard items of commerce and are GRAS. Other organic polycarboxylic acids, especially those that are GRAS, such as citric, tartaric, malic, etc. acids, can also be used. A preferred version of polyphosphate is an anhydrous Fast Dissolving STPP manufactured by the FMC corporation. Complex phosphates can also be used, and are highly useful to maintain the clarity of dilute solutions made from hard water, but are generally avoided due to regulatory considerations where phosphate levels are specifically forbidden or highly restricted.
Typically, the sequestrant/builder is present at a level of from about 0.0005%
to about 3%, preferably from about 0.001% to about 0.5%, and more preferably from about 0.003% to about 0.2%, by weight of the dilute composition.
Sequestrant/builders can maintain the efficacy of the formulas in the presence of hardness.
Sequestrant/builders are a special case of the electrolyte and are considered in the computation of the electrolyte molarity.
Preservative Formulating the present concentrated compositions with essential surfactant and electrolyte reduces the tendency for biological growth of contaminants, such as bacteria, fungi, or molds. However, preservatives can help insure the lack of biological growth through contamination in making or in use. Standard food-grade preservatives such as ethylenediaminetetraacetic acid and/or the salts thereof, at a level of from about 0.001%
to about 0.2% of ethylenediaminetetraacetic acid, or its sodium and/or potassium salts, can be used although, in general, the compositions herein do not require a preservative.
Fluid Carrier The major proportion, e.g., more than about two thirds, (typically, approximately 80%-99.7%, by weight) of the dilute compositions herein comprises water as the fluid carrier for the ingredients. As noted in the Examples hereinafter, water-ethanol can also be employed and is especially preferred when formulating the basic pH
compositions herein. The ethanol level in the dilute composition preferably should not exceed 10% in the solution used to treat the produce, to avoid an alcoholic odor. Other compatible, water-soluble, low molecular weight solvents such as glycerol can also be used. Glycerol can also be used in solid compositions to minimize fines. It is an advantage of this invention, that one can use impure water to prepare the dilute composition, the microorganisms being killed by the high pH and/or surfactant and/or builder and/or electrolyte. As used herein, "impure water" is water that is impure by reason of microorganisms being present.
Optional Ingredients Polyethylene Glycol - The water-soluble polyethylene glycol polymer (PEG) employed which can be employed herein is the known article of commerce and is available under a variety of trade marks, of which CARBOWAX (Union Carbide Corporation) is exemplary. PEG's in the average molecular weight range of from about 200 to about 20,000 can be used herein, and PEG as CARBOWAX in the average molecular weight range of at least about 200, typically 300 to about 9500, is convenient and preferred. The dilute compositions herein can comprise at least about 0.001 %, by weight, of the PEG and will typically comprise from about 0.005% to about 0.1 %, by weight, of PEG. The amounts used can vary with the molecular weight of the PEG, the amount of surfactant used in the composition, the desired viscosity of the composition, and like factors within the discretion of the formulator. In a typical mode, the prefenred compositions herein that have an improved tactile impression will comprise surfactant/PEG weight ratios in the range from about 1:2 to about 30:I, preferably from about I:1 to about 15:1.
The compositions herein which contain the polyethylene glycol are characterized not only by their excellent cleaning performance and sudsing/rinsability properties, but also by their improved "feel". The improved feel of the compositions which come into contact with the users' hands is a qualitative tactile impression. However, this improved, "non-slippery", "non-soapy" improvement in skin feel can be demonstrated by rubbing Test (PEG-containing) and Control (no PEG) compositions on the hands or inner forearms of volunteer graders. Even in such rudimentary tests, the graders can readily distinguish the improved tactile impression of the compositions.
Antioxidants The use of surfactants, and especially soaps, can be complicated by development of off odors and/or yellowing of the compositions in which they appear.
These undesirable properties are believed to be caused by complex side reactions initiated by the reaction of oxygen with primarily the polyunsaturated components of the fatty acid stock. These results can be avoided, or minimized, by avoiding contact with air, or by controlling the quality of the fatty acid stock so that the amount and type of polyunsaturates are minimized as described above, and/or by the addition of chelants and/or antioxidants.
It has been found, that the addition of tocopherols (e.g., Vitamin E, or tocopherol acetates) in alkaline fonmulations is advantageous, as they do not degrade, nor do they impart a strong color. They inhibit the development of off odors for extended periods of time so that the need for masking scents is minimized, or eliminated, particularly for oleic acid stocks of high quality, as described above. The use of butylated phenols, such as BHT and BHA is also useful, but their effectiveness appears more limited and they can impart stronger colors to the compositions. Other food grade antioxidants such as Vitamin C, sorbates, and sulfites, are desirable to prevent deterioration of the compositions by the action of oxygen, but care must be taken since vitamin C
can suffer color degradation and sulfites can cause odor problems. Sulfites also have been the target of potential health concerns.
Suds suppressors. (Silicones and their derivatives) At low levels, suds suppressors or antifoamers can be used, especially in the case where a certain surfactant level is desired for wetting and/or efficacy, but the degree of foam generated in the washing of produce is desired to be kept low. The amount of suds suppresser can be tailored in yM TM
conjunction with the type and level of surfactant used. DC-4270 and DC2-4242 from Dow Corning are useful suds suppressors.
The PEG, previously discussed, can alternately be used as a carrier or binder material for a silicone suds suppresser particle in dry powder concentrate formulas.
Typically the PEG molecular weights are such that the PEG is a solid at room temperature to contain the silicone. A preferred M.W. in this case is 8000.
In the case where PEG is an integral part of the carrier for silicone in a power concentrate, I S caution should be used in the processing of the material to avoid excessive shearing of the dry product. PEG can be soft enough that excessive shear could alter the integrity of the particle formed with it.
Mild fragrances. Odor ingredients can be useful at low levels in concentrates.
They can give a concentrate a favorable odor, but under dilution are not noticeable in solution or on treated items.
Conventional halogen antimicrobials. One of the advantages of the present invention is that it makes it unnecessary to use hypochlorite, or iodine, as a means of reducing microorganism populations. Such materials are known to have undesirable tastes, and can add to environmental pollution. However, it is sometimes desirable to have a small amount of hypochlorite salt, typically lithium, sodium, potassium, calcium, and/or magnesium, and/or a source of iodine, present at a low level for additional kill of m~croorgamsms.
Usage The concentrated compositions herein are preferably used by placing them in a container, such as a pan, with water, preferably pure, to form the dilute compositions and l4 facilitate immersion of the food, or by dilution and then application to the surface to be treated.
A typical use involves treating individual items of food in a "bath" followed by draining the food and/or drying, to minimize the amount of composition left on the food.
In an optional process for using the dilute compositions described herein, the food product is rinsed, cleaned, rubbed, and/or wiped off with a suitable clean material like cloth, sponge, a paper towel, etc. In another optional process, potentially impure water is treated with the concentrated composition to kill microorganisms and this "treated" water is used to rinse food that has been treated with the dilute treatment composition in another vessel. This protects against the undetected gradual contamination of the original treatment composition. The "rinse" composition can contain lower levels of the concentrate, since all that is needed is to kill the microorganisms in the water itself.
Surprisingly, the compositions and processes described herein can provide effective disinfectancy/sanitization. In order to provide good kill of microor~anisms_ especially bacteria, one should use high concentrations and/or longer exposure times.
Typically, the dilute compositions should be used full strength and allowed to remain on the food for up to about one half minute, preferably up to about one minute.
Longer exposure times (i.e., the time that the bacteria are in contact with the product) are not required to observe antimicrobial benefits.
Higher pHs are also better, in general.
The methods herein can comprise forming the dilute treatment composition using either (a) pure and/or (b) impure water and after application by immersion and/or spray, then either (1) not rinsing so that any removal is by mechanical means, absorption, and/or draining; (2) rinsing with pure water if it is available; and/or (3) treating impure water with the dilute treatment composition to create "pure" rinse water and then rinsing.
Food All kinds of foods can be treated. Examples include: produce including fruits and vegetables such as apples, grapes, peaches, potatoes, lettuce, tomatoes, celery, and the like, that are to be eaten aRer treatment, and edible animal protein, especially meat, seafood and poultry, including foodstuffs which are comprised essentially of the protein found in such foods sources including, but not limited to, beef, pork, chicken, turkey, fish, shellfish and game meats such as venison, rabbit and the like. Said edible animal protein includes the processed forms of said protein sources, including, but not limited to, such forms as around beef, ground turkey, bologna, hot dogs, sausages, fish cakes, and the like.
The food is preferably ready to eat after treatment, and is eaten shortly thereafter to S minimize recontamination.
The compositions can also be used for cleaning (especially spot removal), disinfectancy, or sanitization, on non-food (i.e., any surface which is not used as food, even those which are not in contact with food), inanimate, household surfaces, especially those used in food production and other food-contacting surfaces (surfaces that come in 10 contact with food). E.g., cutting boards, counter tops, utensils, dishes, colanders, sinks, sponges, towels, dish cloths, cloth napkins (serviettes), table cloths, and other surfaces that come in contact with food. It is desirable to disinfect/sanitize before the surfaces come in contact with the food, and is desirable to redisinfect/sanitize whenever the surfaces become recontaminated. The products herein, containing all GRAS
and/or food 15 grade ingredients, are perfect for this purpose. On hard surfaces, of course, the compositions can be removed, after sufficient time has elapsed, by rinsing if pure water is available, or by absorption/wiping with an appropriate object, e.g., paper towel, sponge, squeegee, etc.
The compositions of this invention can also be used to treat/clean other non-food inanimate household surfaces, such as fabrics, e.g., clothing, shoes, and shower curtains, especially those that are used by infants, especially toys, diapers (napkins), and bibs. The contaminated fabrics can be disinfected/sanitized, then allowed to drain and/or dry, while minimizing the risk if the infant puts the fabric or other article in its mouth. However, it is desirable to rinse fabrics, at least with water that contains less alkalinity. The fabric can be treated totally, or by spot treatment, then the composition is preferably removed, at least partially, e.g., by draining, absorbency, and/or mechanical force. The products can also be used to treat animals and humans to disinfect skin, hair, etc. Care should be used to avoid damage if the product has a high pH.
Packaging the products herein in a container with instructions for usage in terms of timing and proper dilution in order to provide disinfectancy/sanitization, will help the individual consumer by providing information for proper usage in order to remove/kill microorganisms. It is a special advantage of the product that it can be used for this purpose at a time in the food production process where recontamination is minimized.
The instructions desirably provide assurance that short tirr~es are acceptable and/or that rinsing is not needed in order to avoid possible recontamination by rinsing with impure water.
For fabrics, the pH of the compositions is preferably below about 11.5, more preferably below 1 I.O.
For fabric and hard surfaces, the distribution of the compositions of this invention can be achieved by using a spray device, a roller, a pad, etc., or dipping in a "bath" of said compositions. Spraying is a preferred method.
All parts, percentages, and ratios herein are"by weight" unless otherwise stated.
All number values are approximate unless otherwise stated.
The following Examples illustrate the compositions and processes of this invention, but are not intended to be limiting thereof. The exemplified basic liquid dilute IS treatment compositions can be prepared at pH 8.5-13 by dissolving the concentrated compositions, or the individual ingredients, in water or water-ethanol using conventional mixing apparatus. In a convenient mode, e.g., the concentrate of Example Q , water is placed in a treatment vessel. Sodium lauryl sulfate, trisodium phosphate crystals, and sodium chloride are added in the named sequence, with stirring.
The following examples depict the bacteria kill efficacy of the proposed invention as determined by a standard AOAC germicidal and detergent sanitizing test.
Test organisms E. coii, ATCC I 1229, or Staphylococcus aureus, ATCC 6538, are prepared in an inoculum with a 5% organic soil load (horse serum) prepared with French culture bottles to achieve higher cfu/ml. The test exposure temperature is 25°C
and incubation time for survivor count is 48-54 hours at 35°C.
As used herein, total cation molarity does not include any cation from the surfactant.
EXAMPLES
The following solutions (A-F) were prepared and tested for efficacy.
Examples where no surfactant, but above our specified salt level, are insufficient.
Comparative Comparative Example A Example B
Nominal Wt % Nominal Wt o NaHC03 2.0 NaHC03 2.0 NaOH 0.19 NaOH 0.19 Ethanol 2.0 Water balance Water balance pH 10.5 pH 10.5 Total canon 0.289 molarity Total cation molarity 0.289 Log reduction E-Coli 0.23 @ 1 minute Log reduction E-Coli 0.29 @ 1 minute Example where low surfactant and low salt is insufficient.
Comparative Example C
Nominal Wt Sodium Lauryl Sulfate 0.01 Na3P04~ 12Hz0 0.46 Water balance pH 10.5 Total cationmolarity 0.036 Log reduction E-Coli 0.05 @ 1 minute Example showing where Oleic acid (C,a) is not preferred.
Comparative Example D
Nominal Wt Oleic acid 0.44 NaHCO, 2,0 KOH 1.81 Ethanol 2.0 Citric acid 0.52 PEG 3350 0.1 Water balance pH 10.5 Total cation molarity 0.359 Log reduction E-Coli 0.47 @ 1 minute Examples showing where low total salt cation molarity, even with preferred surfactants, is insufficient.
Comparative Example E
Nominal Wt Sodium Lauryl Sulfate0.2 Na3P0:~ 12H20 0.175 Na2C03 -STPP 0.1 Water balance pH 11.5 Total cation molarity 0.027 Log reduction E-Coli 0 @ 1 minute Comparative Comparative Example F Example G
Nominal Wt '_~ominal % Wt Sodium Lauryl 0.15 SodiumLauryl 0.1 Sulfate Sulfate Na,PO.~ 12Hz0 0.225 Na3P0.~ 12Hz0 0.275 STPP 0.1 STPP 0.1 Water balance Water balance pH 11.5 pH --11.5 Total cation molarity0.031 Total cation molarity0.035 Log reduction 0 @ 1 minute Log reduction E-Coli0 @ 1 minute E-Coli Comparative Comparative Example H Example I
Nominal Wt Nominal % Wt Sodium Lauryl 0.05 SodiumLauryl 0.04 Sulfate Sulfate Na3P0,~ 12H20 0.325 Na3P04 12HZ0 0.335 STPP 0.1 STPP 0.1 Water balance Water balance pH 11.5 pH 11.5 Total cation 0.039 Total cation molarity0.04 molarity Log reduction 0 @ 1 minute Log reduction E-Coli0 @ 1 minute E-Coli Examples A-R show a combination of specific surfactant at the required level, and specified total salt cation molarity, gives surprisingly successful results.
A B
Nominal Wt Nominal % Wt%
Sodium Lauryl 0.063 SodiumLauryl Sulfate0.5 Sulfate NazPO.~ 12H20 0.176 NaOH 0.05 NaZC03 0.25 NaHCOz 2.0 STPP - Water balance Water balance pH g.5 pH 11.5 Total cation molarity0.062 Total cation molarity0.253 Log reduction 1.5 @ 1 minuteLog reduction E-Coli4.5 @. 1 E-Coli minute C D
Nominal Wt Nominal Wt %
Sodium Lauryl 0.05 SodiumLauryl 0.5 Sulfate Sulfate NaOH 0.8 NaOH 0.1 NaHC03 2.0 NaHC03 0.25 NazS04 - NaZS04 3.0 Water balance Water balance pH 10.5 pH 10.5 Total cation molarity0.442 Total cation 0.482 molarity Log reduction 1.7 @ 0.5 minuteLog reduction E-Coli1.5 @ 0.5 E-Coli minute 3.3 @ 1 minute 4 @ 1 minute E F
Nominal Wt ,% Nominal Wt ~o Lauric Acid 1.87 SodiumLauryl 0.11 Sulfate KOH 2.25 NaOH 1.25 KHC03 2.38 NaHC03 2.0 Ethanol 2.0 Ethanol 3.5 Na2EDTA 0.003 Na~EDTA 0.003 Citric Acid 0.52 Citric Acid 0.52 PEG 3350 0.50 Water balance Water balance pH 11.5 pH 10.8 Total cation 0.551 Total cation 0.557 molarity molarity Log reduction 3.1 @ 0.5 minuteLog reduction 6.7 @ 0.5 minute Staph. Staph.
Aureus Aureus 3.4 @ 1 minute 6.9 @ I minute G H
Nominal Wt % Nominal Wt Lauric Acid I.87 SodiumLauryl 0.5 Sulfate KOH 2.26 NaOH 0.62 NaHC03 2.0 NaHC03 0.55 Ethanol 7.5 Ethanol 2.0 Na2EDTA 0.003 Na2EDTA 0.003 Citric Acid 0.52 Na Acetate 0.10 PEG 3350 0.50 Citric Acid 0.54 Water balance PEG 200 0.10 pH 11.5 Water balance WO 00/30460 PCT/lJS99/26886 pH 11.57 Total cation molarity 0.552 Total cation 0.223 molarity Log reduction Staph. 2.7 @ 0.~ minute Log reduction Staph. 3.9 @ 0.~ minute Aureus Aureus 3.4 @ 1 minute 4.1 @ 1 minute I
Nominal Wt % Nominal Wt Sodium Lauryl 0.02 SodiumLauryl 0.02 Sulfate Sulfate Na3POa 12HZ0 0.36 Na3P04 12H20 0.31 NazC03 0.05 NaZCO~ 0.15 STPP 0.05 STPP _ Water balance Water balance pH ~ 11.5 pH ~ 11.5 Total cation molarity0.045 Total cation 0.054 molarity Log reduction 5.2 @ 0.5 minuteLog reduction 1.1 @ 0.5 E-Coli E-Coli minute 7 @ 1 minute 3.1 @ 1 minute K
Nominal Wt Sodium Lauryl Sulfate 0.02 Na3P0~~ 12H20 0.26 NaZC03 0.2 STPP
ii'ater balance pH -1 I.S
Total cation molarity 0.059 Log reduction E-Coli 1 @. 0.~ minute 2.7 ~1 minute L M
Nominal Wt % Nominal Wt Sodium Lauryl 0.125 SodiumLauryl 0.125 Sulfate Sulfate NazPOa 12H20 0.2 Na3POa 12H20 0. I 5 Na2C03 0.15 Na2C03 0.2 Water balance Water balance pH 11.5 pH ~1I.5 Total cation 0.044 Totalcation molarity0.051 molarity Log reduction 1.4 @ 0.5 minuteLog reduction 1 @ 0.5 E-Coli E-Coli minute 1.3 @ 1 minute 1.2 @ 1 minute S
N O
Nominal Wt Nominal Wt %
Sodium Lauryl 0.075 SodiumLauryl 0.1 Sulfate Sulfate Na~PO.~ 12Hz0 0.21 Na3P0.~ 12HZ0 0.28 Na2C03 0.3 Na2C03 0.4 Water balance Water balance pH 11.5 pH 11.5 Total cation molarity 0.074 Total cation 0.099 molarity Log reduction E-Coli 3.2 @ 0.~ minute Log reduction E-Coli S @ 0.5 minute 3.8 @ 1 minute 3.7 @. 1 minute P Q
Nominal Wt Nominal % Wt Sodium Lauryl 0.016 SodiumLauryl 0.125 Sulfate Sulfate Na3P0:~ 12Hz0 0.285 Na3P04 12H20 0.33 NaCI 0.2 NaCI 0.5 STPP 0.08 STPP _ Water balance Water balance pH 11.5 pH 11.5 Total cation molarity0.069 Total cation molarity0.112 Log reduction 7 @ 1 minute Log reduction E-Coli7 @ 1 minute E-Coli R
Nominal Wt Sodium Lauryl 0.2 Sulfate Oleic acid 0.05 NaHC 03 2.0 NaOH 1.3 Ethano 1 4.5 Na2EDTA2Hz0 0.003 Citric acid ~ 0.54 Grapefruit oil 0.05 Water balance pH 11.5 Total cation molarity 0.569 Log reduction E-Goli >> @ 0.5 minute STPP is sodium tripolyphosphate and PEG is polyethylene glycol with the indicated molecular weight.
A pleasant citrus odor in solution can also be obtained by using citrus extracts such as Lime 63 or distilled Grapefruit oil which are food grade flavorants/perfumes.
Produce washed in the soak solutions are determined to have no negative effects on it in regards to taste or palatability even without a rinse.
Claims
1. A method for treating food to clean and reduce the level of microorganisms on the surface of said food, said method comprising treatment occurring just prior to consumption, comprising the step of contacting the surface of said food with a aqueous dilute treatment composition comprising toxicologically-acceptable anionic and/or nonionic detergent surfactant; total electrolyte to provide at least about 0.04 molarity of cations; and toxicologically-acceptable basic buffer to provide a pH of greater than about 8.5; the composition being essentially free of any material that adversely affects safety or palatability, so that said food is not rinsed before consumption, said composition comprising:
(a) greater than about 0.015% by weight of a member selected from the group consisting of sodium or potassium lauryl sulfate, potassium C8-14 soaps, and mixtures thereof;
(b) toxicologically-acceptable basic buffer selected from the group consisting of water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pH of from about 8.5 to about 13 (c) sufficient electrolyte to provide at least about 0.04 molarity of cations without considering any surfactant cations:
(d) optionally, from about 0.0005% to about 3% by weight of calcium ion sequestrant selected from the group consisting of water soluble salts of polyphosphates, organic polycarboxylic acid, and mixtures thereof;
(e) optionally, toxicologically-acceptable preservative;
(f) optionally, toxicologically acceptable suds suppressor;
(g) the balance comprising an aqueous carrier containing from 3.5% to 10%, by weight, of ethanol.
(a) greater than about 0.015% by weight of a member selected from the group consisting of sodium or potassium lauryl sulfate, potassium C8-14 soaps, and mixtures thereof;
(b) toxicologically-acceptable basic buffer selected from the group consisting of water soluble borates, hydroxides, ortho-phosphates, carbonates, and/or bicarbonates, to provide a pH of from about 8.5 to about 13 (c) sufficient electrolyte to provide at least about 0.04 molarity of cations without considering any surfactant cations:
(d) optionally, from about 0.0005% to about 3% by weight of calcium ion sequestrant selected from the group consisting of water soluble salts of polyphosphates, organic polycarboxylic acid, and mixtures thereof;
(e) optionally, toxicologically-acceptable preservative;
(f) optionally, toxicologically acceptable suds suppressor;
(g) the balance comprising an aqueous carrier containing from 3.5% to 10%, by weight, of ethanol.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10905898P | 1998-11-19 | 1998-11-19 | |
US60/109,058 | 1998-11-19 | ||
PCT/US1999/026886 WO2000030460A1 (en) | 1998-11-19 | 1999-11-12 | Microorganism reduction methods and compositions for food |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2349288A1 CA2349288A1 (en) | 2000-06-02 |
CA2349288C true CA2349288C (en) | 2004-12-14 |
Family
ID=22325573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002349288A Expired - Fee Related CA2349288C (en) | 1998-11-19 | 1999-11-12 | Microorganism reduction methods and compositions for food |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP1128734A1 (en) |
JP (1) | JP4294224B2 (en) |
CN (1) | CN1337853A (en) |
AU (1) | AU2148700A (en) |
BR (1) | BR9915529A (en) |
CA (1) | CA2349288C (en) |
EG (1) | EG22221A (en) |
TR (1) | TR200101372T2 (en) |
WO (1) | WO2000030460A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103504454A (en) * | 2013-09-11 | 2014-01-15 | 江南大学 | Food dipping method based on strong electrolyte ion current controlled by function signal |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GR1004505B (en) * | 2001-08-09 | 2004-03-26 | ΚΥΡΙΑΚΙΔΗΣ Δ. & Γ. Ο.Ε. με δ.τ. RED, BLUE AND YELLOW | Composition for cleaning surfaces which consists of components which are encountered in nature |
US8541472B2 (en) | 2001-12-05 | 2013-09-24 | Aseptica, Inc. | Antiseptic compositions, methods and systems |
US20040071845A1 (en) | 2002-06-07 | 2004-04-15 | Hekal Ihab M. | Methods for preserving fresh produce |
US7332227B2 (en) * | 2003-03-14 | 2008-02-19 | Becton, Dickinson And Company | Non-volatile lubricant system for medical devices |
US7090882B2 (en) | 2003-06-12 | 2006-08-15 | Cargill, Incorporated | Antimicrobial salt solutions for food safety applications |
US7658959B2 (en) | 2003-06-12 | 2010-02-09 | Cargill, Incorporated | Antimicrobial salt solutions for food safety applications |
US7588696B2 (en) | 2003-06-12 | 2009-09-15 | Cargill, Incorporated | Antimicrobial water softener salt and solutions |
US7883732B2 (en) | 2003-06-12 | 2011-02-08 | Cargill, Incorporated | Antimicrobial salt solutions for cheese processing applications |
US8101221B2 (en) | 2003-08-28 | 2012-01-24 | Mantrose-Haeuser Co., Inc. | Methods for preserving fresh produce |
PL1718169T3 (en) * | 2004-02-23 | 2013-02-28 | Novozymes As | Meat based food product comprising lactobionic acid |
US8147889B2 (en) * | 2007-01-12 | 2012-04-03 | Giant Trading Inc. | Method for treating raw and processed grains and starches |
ES2323737T5 (en) † | 2007-06-12 | 2020-06-04 | Unilever Nv | Bottled concentrate to prepare a broth or soup comprising modified starch |
EP2070552A1 (en) * | 2007-12-11 | 2009-06-17 | Bundesrepublik Deutschland vertreten durch das Bundesminsterium für Gesundheit, dieses vertr. durch das Robert-Koch-Institut | A formulation for broad-range disinfection including prion decontamination |
CN102106590A (en) * | 2009-12-25 | 2011-06-29 | 南通远大生物科技发展有限公司 | Sleeve-fish inflation agent and using method thereof |
US8338347B2 (en) * | 2010-09-09 | 2012-12-25 | Mareya Shawki Ibrahim | System for reducing bacteria on unprocessed food surfaces while extending shelf life |
JP2013226090A (en) * | 2012-04-26 | 2013-11-07 | Okuno Chemical Industries Co Ltd | Freshness keeping agent for vegetable |
CN105839120A (en) * | 2016-05-31 | 2016-08-10 | 无锡伊佩克科技有限公司 | Low-temperature stable degreasing agent and preparation method thereof |
CN106665798A (en) * | 2016-12-05 | 2017-05-17 | 浙江海洋大学 | Biological preservative for preserving shrimps and application thereof |
ES2719235T3 (en) | 2016-12-21 | 2019-07-09 | Benjamin Amit Singh | Method for preserving fresh products, solid composition for the application of the method of preservation of fresh products and preserved fresh products |
CN116600649A (en) | 2020-10-16 | 2023-08-15 | 本杰明·阿米特·辛格 | Ways to Preserve Fresh Food |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE175318T1 (en) * | 1993-11-01 | 1999-01-15 | Procter & Gamble | CLEANING METHOD AND CLEANING COMPOSITION FOR FOOD AND FEED |
US5500143A (en) * | 1993-11-01 | 1996-03-19 | The Procter & Gamble Company | Cleaning compositions for produce |
US6557568B1 (en) * | 1995-06-27 | 2003-05-06 | The Procter & Gamble Company | Cleaning/sanitizing methods, compositions, and/or articles for produce |
CN1193341A (en) * | 1995-06-27 | 1998-09-16 | 普罗格特-甘布尔公司 | Cleaning/cleansing method, composition, and/or article for fabric |
US5932527A (en) * | 1995-10-24 | 1999-08-03 | The Procter & Gamble Company | Cleaning/sanitizing methods, compositions, and/or articles for produce |
BR9712710A (en) * | 1996-10-30 | 1999-10-26 | Procter & Gamble Comapany | Articles, methods and compositions for cleaning edible product and animal protein |
MA24577A1 (en) * | 1997-06-26 | 1998-12-31 | Procter & Gamble | METHODS AND COMPOSITIONS FOR REDUCING MICROORGANISM FOR FOOD PRODUCTS |
-
1999
- 1999-11-12 TR TR2001/01372T patent/TR200101372T2/en unknown
- 1999-11-12 WO PCT/US1999/026886 patent/WO2000030460A1/en not_active Application Discontinuation
- 1999-11-12 CA CA002349288A patent/CA2349288C/en not_active Expired - Fee Related
- 1999-11-12 AU AU21487/00A patent/AU2148700A/en not_active Abandoned
- 1999-11-12 JP JP2000583357A patent/JP4294224B2/en not_active Expired - Fee Related
- 1999-11-12 CN CN99815713A patent/CN1337853A/en active Pending
- 1999-11-12 BR BR9915529-0A patent/BR9915529A/en not_active IP Right Cessation
- 1999-11-12 EP EP99965797A patent/EP1128734A1/en not_active Withdrawn
- 1999-11-18 EG EG147999A patent/EG22221A/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103504454A (en) * | 2013-09-11 | 2014-01-15 | 江南大学 | Food dipping method based on strong electrolyte ion current controlled by function signal |
CN103504454B (en) * | 2013-09-11 | 2015-01-07 | 江南大学 | A food dipping and processing method based on strong electrolyte ion current controlled by function signal |
Also Published As
Publication number | Publication date |
---|---|
AU2148700A (en) | 2000-06-13 |
BR9915529A (en) | 2001-07-31 |
EP1128734A1 (en) | 2001-09-05 |
TR200101372T2 (en) | 2001-12-21 |
CN1337853A (en) | 2002-02-27 |
JP4294224B2 (en) | 2009-07-08 |
CA2349288A1 (en) | 2000-06-02 |
EG22221A (en) | 2002-10-31 |
WO2000030460A1 (en) | 2000-06-02 |
JP2002530097A (en) | 2002-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2295125C (en) | Microorganism reduction methods and compositions for food | |
CA2349288C (en) | Microorganism reduction methods and compositions for food | |
CA2225678C (en) | Cleaning/sanitizing methods, and/or articles for edible animal protein | |
CA2415407C (en) | Cleaning or sanitizing methods, compositions and articles for surfaces used by infants | |
US5914302A (en) | Cleaning/sanitizing methods, compositions, and/or articles | |
US6773737B1 (en) | Microorganism reduction methods and compositions for food | |
US5879470A (en) | Cleaning/sanitizing methods for non-food inanimate surfaces | |
US6808729B1 (en) | Microorganism reduction methods and compositions for food | |
US20100173816A1 (en) | Microorganism Reduction Methods and Compositions for Food with Controlled Foam Generation | |
MXPA00000145A (en) | Microorganism reduction methods and compositions for food | |
US20010014652A1 (en) | Cleaning/sanitizing methods, compositions, and/or articles for non-food inanimate surfaces | |
CZ469299A3 (en) | Method of treating foodstuffs in order to reduce microbes and preparation for such method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20181113 |