CA2325917C - Method and apparatus for deployment, mounting and coupling of downhole geophones - Google Patents
Method and apparatus for deployment, mounting and coupling of downhole geophones Download PDFInfo
- Publication number
- CA2325917C CA2325917C CA002325917A CA2325917A CA2325917C CA 2325917 C CA2325917 C CA 2325917C CA 002325917 A CA002325917 A CA 002325917A CA 2325917 A CA2325917 A CA 2325917A CA 2325917 C CA2325917 C CA 2325917C
- Authority
- CA
- Canada
- Prior art keywords
- wellbore
- acoustic
- casing
- tubing
- tubing string
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010168 coupling process Methods 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000008878 coupling Effects 0.000 title claims abstract description 22
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 22
- 238000004873 anchoring Methods 0.000 claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 239000012530 fluid Substances 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/40—Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
- G01V1/52—Structural details
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V11/00—Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
- G01V11/002—Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
- G01V11/005—Devices for positioning logging sondes with respect to the borehole wall
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geophysics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Geophysics And Detection Of Objects (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Earth Drilling (AREA)
Abstract
A method and apparatus for placing acoustic devices in wellbores is provided. The method comprises: providing a tubing with at least one anchoring device in the wellbore, where the anchoring device is extendable to the wellbore to exert a force on the wellbore; attaching at least one acoustic device to at least one anchoring device; placing the tubing in the at least one acoustic device attached to the at least one anchoring device in the wellbore;
and setting the anchoring device to extend to the wellbore to exert a force on the wellbore, thereby coupling the acoustic device to the wellbore. The wellbore system comprises a tubing that has an annular space between the tubing and the wellbore. At least one anchoring device is disposed on an outer surface of the tubing and extends to and exerts a force on the wellbore.
An acoustic device is attached to the at least one anchoring device.
and setting the anchoring device to extend to the wellbore to exert a force on the wellbore, thereby coupling the acoustic device to the wellbore. The wellbore system comprises a tubing that has an annular space between the tubing and the wellbore. At least one anchoring device is disposed on an outer surface of the tubing and extends to and exerts a force on the wellbore.
An acoustic device is attached to the at least one anchoring device.
Description
METHOD AND APPARATUS FOR DEPLOYMENT, MOUNTING AND COUPLING OF DOWNHOLE GEOPHON~S
BACKGROUND OF THE INVENTION
1. Field of the Invention This invention relates to downhole seismic services and more particularly to ~o a method for deployment, mounting and coupling of motion sensors and sources downhole.
BACKGROUND OF THE INVENTION
1. Field of the Invention This invention relates to downhole seismic services and more particularly to ~o a method for deployment, mounting and coupling of motion sensors and sources downhole.
2. Description of the Related Art Seismic sources and sensors are often deployed in wellbores for a variety ~5 of oilfield operations, including monitoring of injection well operations, fracturing operations, performing "seismic-profiling" surveys to obtain enhanced subsurface seismic maps and monitoring downhole vibrations. Such operations include slim-to large-diameter boreholes, vertical to horizontal wells, open and cased holes, and high pressure and high temperature wells. Downhole sensors are sometimes ao utilized in combination with other logging services, either wireline, coiled tubing-conveyed, or with pipe to provide additional reservoir information.
Seismic sensors deployed in wellbores are particularly useful to monitor fracturing and injection well operations, to generate cross-well information and to as obtain seismic measurements over time, to obtain enhanced subsurface maps and to improve reservoir modeling. However, the majority of seismic data gathering is accomplished by wireline methods or by deploying seismic sensors such as geophones on coiled tubing or production pipe. Multi-component geophones are usually preferred for such applications. Multi-component geophones sense motion s in one or more directions. An example is the classical three (3) component geophone which detects particle motion in three mutually orthogonal directions (x, y and z directions).
An inherent problem with commonly utilized deployment methods for motion o sensors in wellbores is the presence of high amplitude vibrations. The high amplitude vibrations may be due to the motion of the wireline or tubing used to carry these sensors in the wellbore. Even when these motion sensors are attached to the tubing, the sensors are subjected to substantial undesired motion due to the movement of the tubing in the wellbore or other operating factors. Ideally, a sensor deployment system should be free of all motion, thus enabling the sensors to accurately detect motion due to induced acoustic signals. Presence of spurious motion associated with movement of the tubing in the wellbore can significantly reduce the signal to noise ratio and mask the desired seismic signal in a high amplitude noise field.
Thus there is a need for a method and apparatus that reduces motion and noise associated with movement of tubing in the wellbore.
SUMMARY OF THE INVENTION
Geophones which are rigidly coupled to the wellbore, .particularly in production wells, can provide high fidelity signals, i.e., with high signal to noise ratio.
Such sensors are less likely to resonate. Distributed sensors can provide s measurements useful for a number of applications, including monitoring of fracturing, seismic-profiling surveys, cross-well tomography and monitoring of injection operations.
Directly coupling of the seismic receivers to the borehole, wherein the o coupling force is substantially greater than the radial and axial force on the sensor due to operating conditions, provides signals with the desired high fidelity.
Inadequate or defective coupling, however, induces distortion of seismic wavelets, including data amplitude loss, phase change and bandwidth reduction. Downhole ambient noise can swamp recorded data. It is also well known that the quality of the data detected by the motion sensors improves with the use of receiver arrays (distributed sensors) and with the acquisition of redundant data.
Seismic sources are also placed in wellbores to induce acoustic waves in the formation for the kinds of operations described above with respect to receivers.
ao Vibratory sources are often used as the acoustic sources. Directly coupling of the acoustic source in the wellbore greatly impacts the amount of energy transmitted into the formation. Smaller sources can be utilized with direct coupling because the energy loss between the source location and the receivers) is reduced.
Seismic sensors deployed in wellbores are particularly useful to monitor fracturing and injection well operations, to generate cross-well information and to as obtain seismic measurements over time, to obtain enhanced subsurface maps and to improve reservoir modeling. However, the majority of seismic data gathering is accomplished by wireline methods or by deploying seismic sensors such as geophones on coiled tubing or production pipe. Multi-component geophones are usually preferred for such applications. Multi-component geophones sense motion s in one or more directions. An example is the classical three (3) component geophone which detects particle motion in three mutually orthogonal directions (x, y and z directions).
An inherent problem with commonly utilized deployment methods for motion o sensors in wellbores is the presence of high amplitude vibrations. The high amplitude vibrations may be due to the motion of the wireline or tubing used to carry these sensors in the wellbore. Even when these motion sensors are attached to the tubing, the sensors are subjected to substantial undesired motion due to the movement of the tubing in the wellbore or other operating factors. Ideally, a sensor deployment system should be free of all motion, thus enabling the sensors to accurately detect motion due to induced acoustic signals. Presence of spurious motion associated with movement of the tubing in the wellbore can significantly reduce the signal to noise ratio and mask the desired seismic signal in a high amplitude noise field.
Thus there is a need for a method and apparatus that reduces motion and noise associated with movement of tubing in the wellbore.
SUMMARY OF THE INVENTION
Geophones which are rigidly coupled to the wellbore, .particularly in production wells, can provide high fidelity signals, i.e., with high signal to noise ratio.
Such sensors are less likely to resonate. Distributed sensors can provide s measurements useful for a number of applications, including monitoring of fracturing, seismic-profiling surveys, cross-well tomography and monitoring of injection operations.
Directly coupling of the seismic receivers to the borehole, wherein the o coupling force is substantially greater than the radial and axial force on the sensor due to operating conditions, provides signals with the desired high fidelity.
Inadequate or defective coupling, however, induces distortion of seismic wavelets, including data amplitude loss, phase change and bandwidth reduction. Downhole ambient noise can swamp recorded data. It is also well known that the quality of the data detected by the motion sensors improves with the use of receiver arrays (distributed sensors) and with the acquisition of redundant data.
Seismic sources are also placed in wellbores to induce acoustic waves in the formation for the kinds of operations described above with respect to receivers.
ao Vibratory sources are often used as the acoustic sources. Directly coupling of the acoustic source in the wellbore greatly impacts the amount of energy transmitted into the formation. Smaller sources can be utilized with direct coupling because the energy loss between the source location and the receivers) is reduced.
According to one aspect of the present invention there is provided a method of placing at least one acoustic device in a wellbore, comprising:
(a) providing a tubing string for one of production and injection of fluid in said wellbore with at least one anchoring device, said tubing string having a s fluid flowing therein, said at least one anchoring device attached to an external section of said tubing string through an acoustic isolator, said at least one anchoring device having a plurality of slips extendable to a casing disposed in the wellbore to exert a force on the casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts force on said casing;
(b) attaching the at least one acoustic device to the at least one anchoring device so that the at least one acoustic device is located in an annulus between the tubing string and the casing when the tubing string is placed in the wellbore;
i5 (c) placing said tubing string with the at least one acoustic device attached to said at least one anchoring device in the wellbore; and (d) extending the at least one anchoring device to the casing to exert force on the casing, thereby firmly setting said teeth into the casing and coupling the at least one acoustic device to the casing.
Multiple spaced-apart acoustic devices may also be used. For example, spaced-apart acoustic detectors may be used in the wellbore, forming an array of detectors for detecting seismic wavelets.
(a) providing a tubing string for one of production and injection of fluid in said wellbore with at least one anchoring device, said tubing string having a s fluid flowing therein, said at least one anchoring device attached to an external section of said tubing string through an acoustic isolator, said at least one anchoring device having a plurality of slips extendable to a casing disposed in the wellbore to exert a force on the casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts force on said casing;
(b) attaching the at least one acoustic device to the at least one anchoring device so that the at least one acoustic device is located in an annulus between the tubing string and the casing when the tubing string is placed in the wellbore;
i5 (c) placing said tubing string with the at least one acoustic device attached to said at least one anchoring device in the wellbore; and (d) extending the at least one anchoring device to the casing to exert force on the casing, thereby firmly setting said teeth into the casing and coupling the at least one acoustic device to the casing.
Multiple spaced-apart acoustic devices may also be used. For example, spaced-apart acoustic detectors may be used in the wellbore, forming an array of detectors for detecting seismic wavelets.
The acoustic device used may be any one of a plurality of geophones, at least one source; or a combination including at least one acoustic source and at least one acoustic detector. The anchoring device may be any one of a hook-wall packer, an inflatable packer, a tubing anchor, a tubing hanger, a s whipstock packer, a sump packer, a tubing centralizer, or a mechanically expandable elastomeric packer.
According to another aspect of the present invention there is provided a wellbore system for placing at least one acoustic device in a wellbore for io oilfield operations, comprising:
(a) a tubing string for one of production and injection of fluid placed in said wellbore with an annular space between the tubing string and a casing disposed in the wellbore, said tubing string having a fluid flowing therein;
(b) at least one anchoring device attached through an acoustic isolator to i5 an outer periphery of said tubing string, said at least one anchoring device having a plurality of slips extending to and exerting a force upon said casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts said force on said casing; and (c) at least one acoustic device attached to said tubing string and said at ao least one anchoring device prior to placement of said tubing string in said wellbore.
When the anchoring device is set in the wellbore, it couples the acoustic sensor with the wellbore. A line attached to the acoustic device provides power (electrical, optical, hydraulic, etc.) to the acoustic device.
This line also provides data communication and control between the acoustic device and surface control units, such as a processor, which may be a computer or another data processing and control unit such as a micro-processor-based unit.
Examples of the more important features of the invention have been to summarized rather broadly in order that the detailed description that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto.
BRIEF DESCRIPTION OF THE DRAWINGS
For detailed understanding of the present invention, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements ao have been given like numerals and wherein:
5a Figure 1 shows a schematic diagram of mechanically coupling a multi-component motion sensor to a well casing or liner, according to one method of the present invention; and, s Figure 2 shows the deployment of a distributed sensors in a wellbore according to one method of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention provides a method for directly coupling acoustic o sources and motion sensors to a wellbore with a coupling force substantially greater than the radial or vertical force received by such devices during normal wellbore operations. In one method, the device is positioned contiguous to or as an integral part of a tubing-to-casing (or tubing-to-open hole) anchoring device utilized for anchoring to the production wellbore, thereby providing direct coupling of the device to the wellbore. Multi-component geophones are preferred acoustic detectors.
Such a coupling method minimizes coupling losses associated with commonly utilized methods of deploying such devices in wellbores. Each anchored location of the device provides an acoustic node, either an acoustic source node or a seismic detection node.
Figure 1 shows a schematic for the placement of an acoustic device in a production well 10. The well 10 shown is a cased well wherein a casing or liner 14 is set in the well with cement 16 between the well 10 and the casing 14.
Typical production wells, i.e. wells that have been completed for producing oil/gas (formation fluid), include production tubing such as tubing 18. Often such tubing has a plurality of spaced-apart anchoring devices such as an anchor 20 which mechanically couples the tubing 18 to the well casing 14 and thus the wellbore 10.
Such anchoring devices are mechanical devices and are disposed radially around s the tubing 18. Such anchoring devices are commercially available and are thus not described in detail herein. For the purpose of illustration of the present invention and not as a limitation, Figure 1 shows the preferred type of mechanical anchor 20 that has an upper slip cone 24 and a lower slip cone 26. A plurality of slips usually three to four, 30a-30m are provided in the anchor between the upper slip 24 and the o lower slip 26. Each of the slips 30a-30m is designed to retractably extend from the anchor 20 to make contact with the casing 14. Each slip further includes a set of teeth which are designed to firmly set into the casing 14 when the corresponding slip is extended. Figure 1 shows teeth 31a-31m respectively on slips 30a-30m.
The slips 30a-30m may be set (extended to contact the casing 14) hydraulically via tubing pressure or via a separate capillary tubing (not shown), preferably affixed externally to the casing 14.
The anchor 20 also includes a top sub 34 above the upper slip cone 24 and a bottom sub 36 below the lower slip cone 26. The top sub 34 and the bottom sub ao 36 are threaded into the anchor body 21. In a production well, the casing 14 is set in the well 10 with cement 16 in the annulus 11 between the casing 14 and the inside wall 13 of the wellbore 10. After the casing 14 has been set, a production tubing 18 with a plurality of spaced apart anchoring devices (also referred to herein as anchor or anchors) along with other production equipment and devices (not shown, as such devices are well known in the art) is placed inside the casing 14.
The production tubing usually extends to the lowest producing zone. There is usually an annulus space, such as space 15 between the production tubing 18 and the casing 14. Figure 1 shows a pair of orthogonally-oriented three-component s geophones 40 and 41. Elements 40x, 40y and 40z represent the three x, y, and z components of the sensor 40.
The use of the annular space 15 enables the orthogonal orientation of the individual geophone sets. Annular positioning also allows for redundant positioning 0 of more than one set of geophones for differential operations. Direct coupling of the devices to the casing or wellbore - as part of the anchoring system -minimizes typical coupling efficiency losses. The annular mounting can also utilize acoustic isolation systems, thus preferentially decoupling the geophones from the tubing string and hence reducing the tubing-conducted noise while maintaining the preferred direct coupling of the device to the casing or the wellbore. Annular mounting enables geophysical surveying and data gathering without interfering with the production operations. The formation fluid may be produced through tubing during any operation of the devices coupled to the wellbore according to the present invention. The devices may also be coupled to open holes, i.e., wellbores without ao the casing. In such wellbores, the anchor device is directly coupled to the wellbore interior. The coupling system described above is equally applicable to such open hole completions.
In the present invention, the force exerted on the wellbore by the anchor is substantially greater than any lateral (also referred to herein as radial) force or longitudinal or axial force received by the device during normal wellbore operations.
Although mechanical anchors are preferred as the anchoring devices, any number s of different devices may be utilized. Such devices may include, hook-wall packers, inflatable packers, tubing anchors, tubing hangers, whipstock packers, sump packers, tubing centralizers, and mechanically expandable elastomeric packers.
A power, control and data communication line or link 50 runs from the to surface to the device 20. The line 50 is preferably run along the outside of the tubing 18 so that line 50 will be positioned in the annular space 15 and will not interfere with any wellbore production or maintenance operations. Any suitable conductors or combinations of different types of lines may be used.' Fiber optic lines may be used if the devices used require optical energy or optical data transfer to the surface equipment. Other sensors that measure such parameters as acoustic pressure, temperature, reservoir pressure, and compass orientation can be included along with the motion sensors) on a common physical installation.
Figure 2 shows a plurality of devices 120a-120rn, in annulus 115 ao disposed around a tubing 118 suitably coupled to a wellbore 110 formed from a surface location 101 and penetrating a producing formation 117. Formation fluid (oil and gas) 119 from the producing formation 117 flows into the tubing via the perforations 123 and then to the surface 101. The location of each of the devices 120a-120m provides an acoustic node along wellbore 110. Acoustic devices 140a-140m respectively are attached or coupled to devices 120a-120m respectively. One or more lines, such as line 150, extending from the surface, provide power to the devices 140a-140m and data communication, and control between the devices and surface equipment.
Particularly, energy to the devices 140 is provided by a source 152. A
processor s or control unit that may be a computer or a micro-processor-based unit receives sensor signals from the sensors 140 and provides and processes such data according to programs and models provided thereto. The control unit 154 also controls the operation of any acoustic sources deployed at any of the acoustic nodes N,-Nn. The wellbore depicted in Figure 2 is a vertical well. The devices are o equally applicable to horizontal and multi-lateral well configurations.
The above-described system and method provide direct coupling of acoustic devices to the wellbore. The direct coupling force is substantially greater than any motion force observed by the device in the wellbore. This provides a more stable platform for those devices sensitive to the motion than do current methods.
The response of the acoustic sensors, such as multiple-component geophones, provide better signals compared to conventional coupling methods. The acoustic devices coupled to the wellbores according to the methods of the present invention may be used for any application that requires deployment of acoustic sources and/or zo detectors in the wellbore. Such uses may include, but are not limited to cross-well tomography, vertical seismic and reverse vertical seismic profiling surveys, monitoring and control of injection well and fracturing operations.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope and the s spirit of the invention. It is intended that the following claims be interpreted to embrace all such modifications and changes.
According to another aspect of the present invention there is provided a wellbore system for placing at least one acoustic device in a wellbore for io oilfield operations, comprising:
(a) a tubing string for one of production and injection of fluid placed in said wellbore with an annular space between the tubing string and a casing disposed in the wellbore, said tubing string having a fluid flowing therein;
(b) at least one anchoring device attached through an acoustic isolator to i5 an outer periphery of said tubing string, said at least one anchoring device having a plurality of slips extending to and exerting a force upon said casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts said force on said casing; and (c) at least one acoustic device attached to said tubing string and said at ao least one anchoring device prior to placement of said tubing string in said wellbore.
When the anchoring device is set in the wellbore, it couples the acoustic sensor with the wellbore. A line attached to the acoustic device provides power (electrical, optical, hydraulic, etc.) to the acoustic device.
This line also provides data communication and control between the acoustic device and surface control units, such as a processor, which may be a computer or another data processing and control unit such as a micro-processor-based unit.
Examples of the more important features of the invention have been to summarized rather broadly in order that the detailed description that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto.
BRIEF DESCRIPTION OF THE DRAWINGS
For detailed understanding of the present invention, references should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements ao have been given like numerals and wherein:
5a Figure 1 shows a schematic diagram of mechanically coupling a multi-component motion sensor to a well casing or liner, according to one method of the present invention; and, s Figure 2 shows the deployment of a distributed sensors in a wellbore according to one method of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention provides a method for directly coupling acoustic o sources and motion sensors to a wellbore with a coupling force substantially greater than the radial or vertical force received by such devices during normal wellbore operations. In one method, the device is positioned contiguous to or as an integral part of a tubing-to-casing (or tubing-to-open hole) anchoring device utilized for anchoring to the production wellbore, thereby providing direct coupling of the device to the wellbore. Multi-component geophones are preferred acoustic detectors.
Such a coupling method minimizes coupling losses associated with commonly utilized methods of deploying such devices in wellbores. Each anchored location of the device provides an acoustic node, either an acoustic source node or a seismic detection node.
Figure 1 shows a schematic for the placement of an acoustic device in a production well 10. The well 10 shown is a cased well wherein a casing or liner 14 is set in the well with cement 16 between the well 10 and the casing 14.
Typical production wells, i.e. wells that have been completed for producing oil/gas (formation fluid), include production tubing such as tubing 18. Often such tubing has a plurality of spaced-apart anchoring devices such as an anchor 20 which mechanically couples the tubing 18 to the well casing 14 and thus the wellbore 10.
Such anchoring devices are mechanical devices and are disposed radially around s the tubing 18. Such anchoring devices are commercially available and are thus not described in detail herein. For the purpose of illustration of the present invention and not as a limitation, Figure 1 shows the preferred type of mechanical anchor 20 that has an upper slip cone 24 and a lower slip cone 26. A plurality of slips usually three to four, 30a-30m are provided in the anchor between the upper slip 24 and the o lower slip 26. Each of the slips 30a-30m is designed to retractably extend from the anchor 20 to make contact with the casing 14. Each slip further includes a set of teeth which are designed to firmly set into the casing 14 when the corresponding slip is extended. Figure 1 shows teeth 31a-31m respectively on slips 30a-30m.
The slips 30a-30m may be set (extended to contact the casing 14) hydraulically via tubing pressure or via a separate capillary tubing (not shown), preferably affixed externally to the casing 14.
The anchor 20 also includes a top sub 34 above the upper slip cone 24 and a bottom sub 36 below the lower slip cone 26. The top sub 34 and the bottom sub ao 36 are threaded into the anchor body 21. In a production well, the casing 14 is set in the well 10 with cement 16 in the annulus 11 between the casing 14 and the inside wall 13 of the wellbore 10. After the casing 14 has been set, a production tubing 18 with a plurality of spaced apart anchoring devices (also referred to herein as anchor or anchors) along with other production equipment and devices (not shown, as such devices are well known in the art) is placed inside the casing 14.
The production tubing usually extends to the lowest producing zone. There is usually an annulus space, such as space 15 between the production tubing 18 and the casing 14. Figure 1 shows a pair of orthogonally-oriented three-component s geophones 40 and 41. Elements 40x, 40y and 40z represent the three x, y, and z components of the sensor 40.
The use of the annular space 15 enables the orthogonal orientation of the individual geophone sets. Annular positioning also allows for redundant positioning 0 of more than one set of geophones for differential operations. Direct coupling of the devices to the casing or wellbore - as part of the anchoring system -minimizes typical coupling efficiency losses. The annular mounting can also utilize acoustic isolation systems, thus preferentially decoupling the geophones from the tubing string and hence reducing the tubing-conducted noise while maintaining the preferred direct coupling of the device to the casing or the wellbore. Annular mounting enables geophysical surveying and data gathering without interfering with the production operations. The formation fluid may be produced through tubing during any operation of the devices coupled to the wellbore according to the present invention. The devices may also be coupled to open holes, i.e., wellbores without ao the casing. In such wellbores, the anchor device is directly coupled to the wellbore interior. The coupling system described above is equally applicable to such open hole completions.
In the present invention, the force exerted on the wellbore by the anchor is substantially greater than any lateral (also referred to herein as radial) force or longitudinal or axial force received by the device during normal wellbore operations.
Although mechanical anchors are preferred as the anchoring devices, any number s of different devices may be utilized. Such devices may include, hook-wall packers, inflatable packers, tubing anchors, tubing hangers, whipstock packers, sump packers, tubing centralizers, and mechanically expandable elastomeric packers.
A power, control and data communication line or link 50 runs from the to surface to the device 20. The line 50 is preferably run along the outside of the tubing 18 so that line 50 will be positioned in the annular space 15 and will not interfere with any wellbore production or maintenance operations. Any suitable conductors or combinations of different types of lines may be used.' Fiber optic lines may be used if the devices used require optical energy or optical data transfer to the surface equipment. Other sensors that measure such parameters as acoustic pressure, temperature, reservoir pressure, and compass orientation can be included along with the motion sensors) on a common physical installation.
Figure 2 shows a plurality of devices 120a-120rn, in annulus 115 ao disposed around a tubing 118 suitably coupled to a wellbore 110 formed from a surface location 101 and penetrating a producing formation 117. Formation fluid (oil and gas) 119 from the producing formation 117 flows into the tubing via the perforations 123 and then to the surface 101. The location of each of the devices 120a-120m provides an acoustic node along wellbore 110. Acoustic devices 140a-140m respectively are attached or coupled to devices 120a-120m respectively. One or more lines, such as line 150, extending from the surface, provide power to the devices 140a-140m and data communication, and control between the devices and surface equipment.
Particularly, energy to the devices 140 is provided by a source 152. A
processor s or control unit that may be a computer or a micro-processor-based unit receives sensor signals from the sensors 140 and provides and processes such data according to programs and models provided thereto. The control unit 154 also controls the operation of any acoustic sources deployed at any of the acoustic nodes N,-Nn. The wellbore depicted in Figure 2 is a vertical well. The devices are o equally applicable to horizontal and multi-lateral well configurations.
The above-described system and method provide direct coupling of acoustic devices to the wellbore. The direct coupling force is substantially greater than any motion force observed by the device in the wellbore. This provides a more stable platform for those devices sensitive to the motion than do current methods.
The response of the acoustic sensors, such as multiple-component geophones, provide better signals compared to conventional coupling methods. The acoustic devices coupled to the wellbores according to the methods of the present invention may be used for any application that requires deployment of acoustic sources and/or zo detectors in the wellbore. Such uses may include, but are not limited to cross-well tomography, vertical seismic and reverse vertical seismic profiling surveys, monitoring and control of injection well and fracturing operations.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope and the s spirit of the invention. It is intended that the following claims be interpreted to embrace all such modifications and changes.
Claims (9)
1. A method of placing at least one acoustic device in a wellbore, comprising:
(a) providing a tubing string for one of production and injection of fluid in said wellbore with at least one anchoring device, said tubing string having a fluid flowing therein, said at least one anchoring device attached to an external section of said tubing string through an acoustic isolator, said at least one anchoring device having a plurality of slips extendable to a casing disposed in the wellbore to exert a force on the casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts force on said casing;
(b) attaching the at least one acoustic device to the at least one anchoring device so that the at least one acoustic device is located in an annulus between the tubing string and the casing when the tubing string is placed in the wellbore;
(c) placing said tubing string with the at least one acoustic device attached to said at least one anchoring device in the wellbore; and (d) extending the at least one anchoring device to the casing to exert force on the casing, thereby firmly setting said teeth into the casing and coupling the at least one acoustic device to the casing.
(a) providing a tubing string for one of production and injection of fluid in said wellbore with at least one anchoring device, said tubing string having a fluid flowing therein, said at least one anchoring device attached to an external section of said tubing string through an acoustic isolator, said at least one anchoring device having a plurality of slips extendable to a casing disposed in the wellbore to exert a force on the casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts force on said casing;
(b) attaching the at least one acoustic device to the at least one anchoring device so that the at least one acoustic device is located in an annulus between the tubing string and the casing when the tubing string is placed in the wellbore;
(c) placing said tubing string with the at least one acoustic device attached to said at least one anchoring device in the wellbore; and (d) extending the at least one anchoring device to the casing to exert force on the casing, thereby firmly setting said teeth into the casing and coupling the at least one acoustic device to the casing.
2. The method of claim 1, wherein said at least one acoustic device includes at least one of (i) a plurality of seismic motion sensors, (ii) at least one source; and (iii) a combination including at least one acoustic source and at least one acoustic detector.
3. The method of claim 1 or 2, wherein the at least one anchoring device is selected from the group consisting of (i) a hook-wall packer, (ii) an inflatable packer, (iii) a tubing anchor, (iv) a tubing hanger, (v) a whipstock packer, (vi) a sump packer, (vii) a tubing centralizer, and (viii) a mechanically expandable elastomeric packer.
4. The method of claim 1, wherein attaching the at least one acoustic device includes at least partially embedding the at least one acoustic device in a section of the at least one anchoring device.
5. The method of any one of claims 1 to 4, wherein the wellbore is one of (i) a production wellbore and (ii) an injection wellbore.
6. A wellbore system for placing at least one acoustic device in a wellbore for oilfield operations, comprising:
(a) a tubing string for one of production and injection of fluid placed in said wellbore with an annular space between the tubing string and a casing disposed in the wellbore, said tubing string having a fluid flowing therein;
(b) at least one anchoring device attached through an acoustic isolator to an outer periphery of said tubing string, said at least one anchoring device having a plurality of slips extending to and exerting a force upon said casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts said force on said casing; and (c) at least one acoustic device attached to said tubing string and said at least one anchoring device prior to placement of said tubing string in said wellbore.
(a) a tubing string for one of production and injection of fluid placed in said wellbore with an annular space between the tubing string and a casing disposed in the wellbore, said tubing string having a fluid flowing therein;
(b) at least one anchoring device attached through an acoustic isolator to an outer periphery of said tubing string, said at least one anchoring device having a plurality of slips extending to and exerting a force upon said casing, each of said slips having at least one set of teeth mounted to firmly set into the casing when said plurality of slips exerts said force on said casing; and (c) at least one acoustic device attached to said tubing string and said at least one anchoring device prior to placement of said tubing string in said wellbore.
7. The wellbore system of claim 6, wherein the at least one acoustic device includes one of (i) a plurality of seismic motion sensors, (ii) at least one source; and (iii) a combination including at least one acoustic source and at least one acoustic detector.
8. The wellbore system of claim 6 or 7, wherein the at least one anchoring device is selected from the group consisting of (i) a hook-wall packer, (ii) an inflatable packer, (iii) a tubing anchor, (iv) a tubing hanger, (v) a whipstock packer, (vi) a sump packer, (vii) a tubing centralizer, and (viii) a mechanically expandable elastomeric packer.
9. The wellbore system of any one of claims 6 to 8, wherein the wellbore is one of (i) a production wellbore and (ii) an injection wellbore.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16527299P | 1999-11-12 | 1999-11-12 | |
US60/165,272 | 1999-11-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2325917A1 CA2325917A1 (en) | 2001-05-12 |
CA2325917C true CA2325917C (en) | 2005-10-04 |
Family
ID=22598206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002325917A Expired - Fee Related CA2325917C (en) | 1999-11-12 | 2000-11-14 | Method and apparatus for deployment, mounting and coupling of downhole geophones |
Country Status (4)
Country | Link |
---|---|
AU (1) | AU779196B2 (en) |
CA (1) | CA2325917C (en) |
GB (1) | GB2356209B (en) |
NO (1) | NO333419B1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7020045B2 (en) | 2001-10-17 | 2006-03-28 | Read Asa | Block and module for seismic sources and sensors |
US20030218939A1 (en) * | 2002-01-29 | 2003-11-27 | Baker Hughes Incorporated | Deployment of downhole seismic sensors for microfracture detection |
GB2405930B (en) * | 2002-04-25 | 2006-11-22 | Quantx Wellbore Instrumentatio | System and method for acquiring seismic and micro-seismic data in deviated wellbores |
US20040065437A1 (en) * | 2002-10-06 | 2004-04-08 | Weatherford/Lamb Inc. | In-well seismic sensor casing coupling using natural forces in wells |
US7219729B2 (en) | 2002-11-05 | 2007-05-22 | Weatherford/Lamb, Inc. | Permanent downhole deployment of optical sensors |
US6986389B2 (en) * | 2003-05-02 | 2006-01-17 | Weatherford/Lamb, Inc. | Adjustable deployment apparatus for an actively clamped tubing-conveyed in-well seismic station |
US7639562B2 (en) * | 2006-05-31 | 2009-12-29 | Baker Hughes Incorporated | Active noise cancellation through the use of magnetic coupling |
US8069913B2 (en) | 2008-03-26 | 2011-12-06 | Schlumberger Technology Corporation | Method and apparatus for detecting acoustic activity in a subsurface formation |
CN106907124A (en) * | 2015-12-22 | 2017-06-30 | 中国石油天然气股份有限公司 | Packer center tube and packer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2636741B1 (en) * | 1988-09-21 | 1991-03-22 | Inst Francais Du Petrole | SYSTEM FOR RECEIVING SIGNALS THAT CAN BE COUPLED WITH THE WALL OF A WELL OR WELL |
FR2656034B1 (en) * | 1989-12-20 | 1992-04-24 | Inst Francais Du Petrole | WELL PROBE THAT CAN BE DECOUPLED WITH A RIGID CONNECTION THAT CONNECTS TO THE SURFACE. |
FR2674029B1 (en) * | 1991-03-11 | 1993-06-11 | Inst Francais Du Petrole | METHOD AND APPARATUS FOR ACOUSTIC WAVE PROSPECTING IN PRODUCTION WELLS. |
US5829520A (en) * | 1995-02-14 | 1998-11-03 | Baker Hughes Incorporated | Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device |
FR2787503B1 (en) * | 1998-12-18 | 2001-03-30 | Inst Francais Du Petrole | SYSTEM FOR THE PERMANENT INSTALLATION OF MEASUREMENT PROBES WITHIN A FLUID PRESSURE REMOVABLE LOCK |
-
2000
- 2000-11-13 NO NO20005740A patent/NO333419B1/en not_active IP Right Cessation
- 2000-11-13 GB GB0027658A patent/GB2356209B/en not_active Expired - Fee Related
- 2000-11-13 AU AU71579/00A patent/AU779196B2/en not_active Ceased
- 2000-11-14 CA CA002325917A patent/CA2325917C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU7157900A (en) | 2001-08-02 |
NO333419B1 (en) | 2013-06-03 |
GB2356209B (en) | 2004-03-24 |
NO20005740D0 (en) | 2000-11-13 |
AU779196B2 (en) | 2005-01-13 |
GB0027658D0 (en) | 2000-12-27 |
CA2325917A1 (en) | 2001-05-12 |
NO20005740L (en) | 2001-05-14 |
GB2356209A (en) | 2001-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6712141B1 (en) | Method and apparatus for deployment, mounting and coupling of downhole geophones | |
US6896074B2 (en) | System and method for installation and use of devices in microboreholes | |
EP1335105B1 (en) | A method for collecting geological data | |
US6131658A (en) | Method for permanent emplacement of sensors inside casing | |
US5926437A (en) | Method and apparatus for seismic exploration | |
US6986389B2 (en) | Adjustable deployment apparatus for an actively clamped tubing-conveyed in-well seismic station | |
US9036449B2 (en) | Methods and systems for deploying seismic devices | |
US20040065437A1 (en) | In-well seismic sensor casing coupling using natural forces in wells | |
WO2003065076A2 (en) | Deployment of downhole seismic sensors for microfracture detection | |
CA2325917C (en) | Method and apparatus for deployment, mounting and coupling of downhole geophones | |
US7263029B2 (en) | System and method for acquiring seismic and micro-seismic data in deviated wellbores | |
Pevedel et al. | New developments in long-term downhole monitoring arrays | |
Hornby et al. | Reservoir monitoring using permanent in-well seismic | |
JPS62288595A (en) | Stratum searching method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20161114 |