CA2246754C - Cochleate delivery vehicles - Google Patents
Cochleate delivery vehicles Download PDFInfo
- Publication number
- CA2246754C CA2246754C CA002246754A CA2246754A CA2246754C CA 2246754 C CA2246754 C CA 2246754C CA 002246754 A CA002246754 A CA 002246754A CA 2246754 A CA2246754 A CA 2246754A CA 2246754 C CA2246754 C CA 2246754C
- Authority
- CA
- Canada
- Prior art keywords
- nutrient
- cochleate formulation
- component
- cochleate
- formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000002632 lipids Chemical class 0.000 claims abstract description 75
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 40
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 39
- 229920001184 polypeptide Polymers 0.000 claims abstract description 38
- 150000001768 cations Chemical class 0.000 claims abstract description 30
- 239000000203 mixture Substances 0.000 claims description 99
- 238000009472 formulation Methods 0.000 claims description 85
- 235000015097 nutrients Nutrition 0.000 claims description 30
- 239000003814 drug Substances 0.000 claims description 26
- 229940079593 drug Drugs 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 24
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- -1 echinomycine Chemical compound 0.000 claims description 17
- 239000011575 calcium Substances 0.000 claims description 13
- 239000000796 flavoring agent Substances 0.000 claims description 13
- 235000019634 flavors Nutrition 0.000 claims description 13
- 239000011782 vitamin Substances 0.000 claims description 13
- 229940088594 vitamin Drugs 0.000 claims description 13
- 150000001720 carbohydrates Chemical class 0.000 claims description 12
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 12
- 229930003231 vitamin Natural products 0.000 claims description 12
- 235000013343 vitamin Nutrition 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 239000011701 zinc Substances 0.000 claims description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 10
- 235000010755 mineral Nutrition 0.000 claims description 10
- 239000011707 mineral Substances 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims description 9
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- 150000004665 fatty acids Chemical class 0.000 claims description 9
- 235000019155 vitamin A Nutrition 0.000 claims description 9
- 239000011719 vitamin A Substances 0.000 claims description 9
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 claims description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- 235000001014 amino acid Nutrition 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 7
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 claims description 7
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 claims description 7
- 229960004150 aciclovir Drugs 0.000 claims description 7
- 229940045997 vitamin a Drugs 0.000 claims description 7
- 150000003722 vitamin derivatives Chemical class 0.000 claims description 7
- 239000000341 volatile oil Substances 0.000 claims description 7
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 6
- 150000001413 amino acids Chemical class 0.000 claims description 6
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- 229960000890 hydrocortisone Drugs 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 150000003431 steroids Chemical group 0.000 claims description 5
- MCCACAIVAXEFAL-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazole;nitric acid Chemical compound O[N+]([O-])=O.ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 MCCACAIVAXEFAL-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229940088597 hormone Drugs 0.000 claims description 4
- 239000005556 hormone Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229960005040 miconazole nitrate Drugs 0.000 claims description 4
- 239000000049 pigment Substances 0.000 claims description 4
- 229960004134 propofol Drugs 0.000 claims description 4
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 claims description 4
- 230000003637 steroidlike Effects 0.000 claims description 4
- 235000019166 vitamin D Nutrition 0.000 claims description 4
- 239000011710 vitamin D Substances 0.000 claims description 4
- 235000019165 vitamin E Nutrition 0.000 claims description 4
- 239000011709 vitamin E Substances 0.000 claims description 4
- 235000019168 vitamin K Nutrition 0.000 claims description 4
- 239000011712 vitamin K Substances 0.000 claims description 4
- YYPNLXNMXQFMHG-GSEHKNNPSA-N (3r,5s,8s,9s,10s,13s,14s,17s)-17-acetyl-3-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,12,14,15,16,17-tetradecahydrocyclopenta[a]phenanthren-11-one;[2-[(3r,5s,8s,9s,10s,13s,14s,17s)-3-hydroxy-10,13-dimethyl-11-oxo-1,2,3,4,5,6,7,8,9,12,14,15,16,17-tetradecahyd Chemical compound C([C@@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)C)[C@@]2(C)CC1=O.C([C@@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)COC(=O)C)[C@@]2(C)CC1=O YYPNLXNMXQFMHG-GSEHKNNPSA-N 0.000 claims description 3
- VPJHREHKRNIYDB-TZGXILGRSA-N (8r,9s,10r,13r,14s,17s)-17-(2-hydroxyacetyl)-13-(hydroxymethyl)-10-methyl-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one Chemical compound C([C@]1(CO)[C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C[C@@H]1[C@]1(C)C2=CC(=O)CC1 VPJHREHKRNIYDB-TZGXILGRSA-N 0.000 claims description 3
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 claims description 3
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 claims description 3
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 claims description 3
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 claims description 3
- 229930105110 Cyclosporin A Natural products 0.000 claims description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 claims description 3
- 108010036949 Cyclosporine Proteins 0.000 claims description 3
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 claims description 3
- 229930012538 Paclitaxel Natural products 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 229940009456 adriamycin Drugs 0.000 claims description 3
- 229960000473 altretamine Drugs 0.000 claims description 3
- 230000001093 anti-cancer Effects 0.000 claims description 3
- 230000000843 anti-fungal effect Effects 0.000 claims description 3
- 230000002924 anti-infective effect Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000010630 cinnamon oil Substances 0.000 claims description 3
- 229960004544 cortisone Drugs 0.000 claims description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 3
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 claims description 3
- 229960003529 diazepam Drugs 0.000 claims description 3
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 claims description 3
- 229960003444 immunosuppressant agent Drugs 0.000 claims description 3
- 239000003018 immunosuppressive agent Substances 0.000 claims description 3
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 3
- 229960001924 melphalan Drugs 0.000 claims description 3
- 230000002503 metabolic effect Effects 0.000 claims description 3
- 230000003641 microbiacidal effect Effects 0.000 claims description 3
- 229940124561 microbicide Drugs 0.000 claims description 3
- 229960002009 naproxen Drugs 0.000 claims description 3
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 claims description 3
- 229960001597 nifedipine Drugs 0.000 claims description 3
- 229960001592 paclitaxel Drugs 0.000 claims description 3
- 239000002574 poison Substances 0.000 claims description 3
- 231100000614 poison Toxicity 0.000 claims description 3
- 229960005205 prednisolone Drugs 0.000 claims description 3
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims description 3
- KEJXLQUPYHWCNM-UHFFFAOYSA-N propanidid Chemical compound CCCOC(=O)CC1=CC=C(OCC(=O)N(CC)CC)C(OC)=C1 KEJXLQUPYHWCNM-UHFFFAOYSA-N 0.000 claims description 3
- 229960004948 propanidid Drugs 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 3
- 229960001278 teniposide Drugs 0.000 claims description 3
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 3
- 239000003053 toxin Substances 0.000 claims description 3
- 231100000765 toxin Toxicity 0.000 claims description 3
- 229940125725 tranquilizer Drugs 0.000 claims description 3
- 239000003204 tranquilizing agent Substances 0.000 claims description 3
- 230000002936 tranquilizing effect Effects 0.000 claims description 3
- 230000000304 vasodilatating effect Effects 0.000 claims description 3
- 229960001722 verapamil Drugs 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 230000000699 topical effect Effects 0.000 claims description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims 4
- 239000002671 adjuvant Substances 0.000 claims 3
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims 2
- 229930003270 Vitamin B Natural products 0.000 claims 2
- 229930003316 Vitamin D Natural products 0.000 claims 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims 2
- 229930003427 Vitamin E Natural products 0.000 claims 2
- 229930003448 Vitamin K Natural products 0.000 claims 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 230000003444 anaesthetic effect Effects 0.000 claims 2
- 230000000840 anti-viral effect Effects 0.000 claims 2
- 125000000837 carbohydrate group Chemical group 0.000 claims 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims 2
- 230000001861 immunosuppressant effect Effects 0.000 claims 2
- 239000002855 microbicide agent Substances 0.000 claims 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 claims 2
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 claims 2
- 239000008107 starch Substances 0.000 claims 2
- 229940063683 taxotere Drugs 0.000 claims 2
- 235000019156 vitamin B Nutrition 0.000 claims 2
- 239000011720 vitamin B Substances 0.000 claims 2
- 150000003710 vitamin D derivatives Chemical class 0.000 claims 2
- 229940046009 vitamin E Drugs 0.000 claims 2
- 150000003721 vitamin K derivatives Chemical class 0.000 claims 2
- 229940046008 vitamin d Drugs 0.000 claims 2
- 229940046010 vitamin k Drugs 0.000 claims 2
- 108091033319 polynucleotide Proteins 0.000 abstract description 45
- 102000040430 polynucleotide Human genes 0.000 abstract description 45
- 239000002157 polynucleotide Substances 0.000 abstract description 45
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 30
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 30
- 241000699670 Mus sp. Species 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 239000000872 buffer Substances 0.000 description 23
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 22
- 241000700605 Viruses Species 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- 229960005486 vaccine Drugs 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 108020004414 DNA Proteins 0.000 description 18
- 230000004044 response Effects 0.000 description 18
- 241001465754 Metazoa Species 0.000 description 17
- 239000002244 precipitate Substances 0.000 description 17
- 102000004877 Insulin Human genes 0.000 description 15
- 108090001061 Insulin Proteins 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 235000012000 cholesterol Nutrition 0.000 description 15
- 229940125396 insulin Drugs 0.000 description 15
- 239000002502 liposome Substances 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 14
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 14
- 108090000288 Glycoproteins Proteins 0.000 description 14
- 102000003886 Glycoproteins Human genes 0.000 description 14
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 13
- 239000007994 TES buffer Substances 0.000 description 13
- 239000000725 suspension Substances 0.000 description 13
- 235000013601 eggs Nutrition 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 241000711408 Murine respirovirus Species 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 230000003053 immunization Effects 0.000 description 10
- 238000002649 immunization Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000427 antigen Substances 0.000 description 8
- 206010022000 influenza Diseases 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 230000003612 virological effect Effects 0.000 description 8
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 239000001110 calcium chloride Substances 0.000 description 7
- 229910001628 calcium chloride Inorganic materials 0.000 description 7
- 235000011148 calcium chloride Nutrition 0.000 description 7
- 238000000502 dialysis Methods 0.000 description 7
- 239000011536 extraction buffer Substances 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 238000010348 incorporation Methods 0.000 description 7
- 210000004072 lung Anatomy 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 150000003904 phospholipids Chemical class 0.000 description 7
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 210000000987 immune system Anatomy 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 210000004988 splenocyte Anatomy 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000000692 anti-sense effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001472 cytotoxic effect Effects 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 210000003437 trachea Anatomy 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000287828 Gallus gallus Species 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000000799 fusogenic effect Effects 0.000 description 4
- 230000035931 haemagglutination Effects 0.000 description 4
- 230000002163 immunogen Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000000527 sonication Methods 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 241000712461 unidentified influenza virus Species 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- 238000003260 vortexing Methods 0.000 description 4
- 102000053642 Catalytic RNA Human genes 0.000 description 3
- 108090000994 Catalytic RNA Proteins 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 3
- 239000000232 Lipid Bilayer Substances 0.000 description 3
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 3
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 3
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 3
- 230000005875 antibody response Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 239000003599 detergent Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000035622 drinking Effects 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 108010030416 proteoliposomes Proteins 0.000 description 3
- 108091092562 ribozyme Proteins 0.000 description 3
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 3
- 229960001052 streptozocin Drugs 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 108010041986 DNA Vaccines Proteins 0.000 description 2
- 229940021995 DNA vaccine Drugs 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012062 aqueous buffer Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000006701 autoxidation reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 229940084769 humulin r Drugs 0.000 description 2
- 150000002433 hydrophilic molecules Chemical class 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000007523 nucleic acids Chemical group 0.000 description 2
- 229940125395 oral insulin Drugs 0.000 description 2
- 229940126578 oral vaccine Drugs 0.000 description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- AZSNMRSAGSSBNP-UHFFFAOYSA-N 22,23-dihydroavermectin B1a Natural products C1CC(C)C(C(C)CC)OC21OC(CC=C(C)C(OC1OC(C)C(OC3OC(C)C(O)C(OC)C3)C(OC)C1)C(C)C=CC=C1C3(C(C(=O)O4)C=C(C)C(O)C3OC1)O)CC4C2 AZSNMRSAGSSBNP-UHFFFAOYSA-N 0.000 description 1
- SPBDXSGPUHCETR-JFUDTMANSA-N 8883yp2r6d Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O[C@@H]([C@@H](C)CC4)C(C)C)O3)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1C[C@H](C)[C@@H]([C@@H](C)CC)O[C@@]21O[C@H](C\C=C(C)\[C@@H](O[C@@H]1O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C1)[C@@H](C)\C=C\C=C/1[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\1)O)C[C@H]4C2 SPBDXSGPUHCETR-JFUDTMANSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-BJUDXGSMSA-N Chromium-51 Chemical compound [51Cr] VYZAMTAEIAYCRO-BJUDXGSMSA-N 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 108010062580 Concanavalin A Proteins 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KYHUYMLIVQFXRI-SJPGYWQQSA-N Didemnin B Chemical compound CN([C@H](CC(C)C)C(=O)N[C@@H]1C(=O)N[C@@H]([C@H](CC(=O)O[C@H](C(=O)[C@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(OC)=CC=2)C(=O)O[C@@H]1C)C(C)C)O)[C@@H](C)CC)C(=O)[C@@H]1CCCN1C(=O)[C@H](C)O KYHUYMLIVQFXRI-SJPGYWQQSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 239000004097 EU approved flavor enhancer Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- 108010059724 Micrococcal Nuclease Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000003715 calcium chelating agent Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 210000003477 cochlea Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- KYHUYMLIVQFXRI-UHFFFAOYSA-N didemnin B Natural products CC1OC(=O)C(CC=2C=CC(OC)=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC(C)C)NC(=O)C(C)C(=O)C(C(C)C)OC(=O)CC(O)C(C(C)CC)NC(=O)C1NC(=O)C(CC(C)C)N(C)C(=O)C1CCCN1C(=O)C(C)O KYHUYMLIVQFXRI-UHFFFAOYSA-N 0.000 description 1
- 108010061297 didemnins Proteins 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 235000021321 essential mineral Nutrition 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 230000035611 feeding Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 235000019264 food flavour enhancer Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 108091008147 housekeeping proteins Proteins 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 244000000056 intracellular parasite Species 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960002418 ivermectin Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 210000003126 m-cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-M naproxen(1-) Chemical compound C1=C([C@H](C)C([O-])=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-M 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 235000021085 polyunsaturated fats Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229960003471 retinol Drugs 0.000 description 1
- 235000020944 retinol Nutrition 0.000 description 1
- 239000011607 retinol Substances 0.000 description 1
- 125000002523 retinol group Chemical group 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1274—Non-vesicle bilayer structures, e.g. liquid crystals, tubules, cubic phases or cochleates; Sponge phases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
- A61K2039/542—Mucosal route oral/gastrointestinal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18811—Sendai virus
- C12N2760/18834—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Virology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The instant disclosure relates to cochleates comprising a) a biologically relevant molecule component, b) a negatively charged lipid component, and c) a divalent cation component. The cochleate has an extended shelf life, even in a desiccated state. Advantageously, the cochleate can be ingested. The biologically relevant molecule can be a polynucleotide or a polypeptide.
Description
r COCHLEATE DELIVERY VEHICLES
Portions of the subject matter disclosed herein were supported in part by movies or grants from the United States Government.
This is a continuation in part of WO 96/25942 filed 22 February, 1996, which is a continuation-in-part of U.S. Patent No. 5,840,707 filed 22 February 1995, which is a continuation-in-part of U.S. Patent No. 5,643,574 filed 4 October 1993.
FIELD OF THE INVENTION
The instant invention relates to cochleates and use thereof to stabilize biologic molecules, such as carbohydrates, vitamins, minerals, ' polynucleotides, polypeptides, lipids and the like.
Cochleates are insoluble stable lipid-divalent cation structures into which is incorporated the biologic molecule. Because cochleates can be biologically compatible, cochleates can be administered to hosts by conventional routes and can serve to deliver the biologic molecule to a targeted site in a host.
BACKGROUND OF THE INVENTION
Plain lipid cochleates (Figure 1) have been described previously. Protein-cochleates or peptide-cochleates have been described heretofore and patented by the .instant inventors, as intermediate structures which can be converted to protein-lipid vesicles (proteoliposomes) (Figure 2) by the addition of calcium chelating agents (see U.S. Pat. No. 4,663,161 and U.S. Pat. No.
4 , 871, 488)~
Freeze-fracture WO 97130725 PCTlUS97/02632 - 2 _ electron micrographs of protein-cochleates containing Sendai glycoproteins made by the DC
method show the rolled up lipid bilayer structures with a ''bumpy" surface. Plain phospholipid cochleates are smooth in that type of preparation.
The proteoliposomes resulting from polypeptide-cochleates have been shown to be effective immunogens when administered to animals by intraperitoneal and intramuscular routes of immunization (G. Goodasin-Snitkoff, et al. , J.
Immunol., Vol. 147, p.410 (1991); M.D. Miller, et al., J. Exu. Med., Vol. 176, p. 1739 (1992)).
Further, when the glycoproteins of Sendai or influenza ,virus are reconstituted by that method, the proteoliposa~mes are effective delivery vehicles for encapsulated proteins and DNA to animals and to cells in culture (R.J. Mannino and S.
Could-Fogerite, Biotechn,~g~,es, Vol. 6, No. 1, pp.
682-690 (1988); S. Could-Fogerite et al., Gene, Vol. 84, p. 429 (1989); M.D. Miller, et al., J.
Exp. Med., Vol. 176, p. 1739 (1992)).
It would be advantageous to provide a means for stabilizing or preserving biologic molecules in a form that is stable at room temperature, capable of desiccation and is suitable for oral administration. For example, it would be beneficial to have a formulation for stabilizing polynucleotides and which could be used for delivering polynucleotidss to a cell. A formulation comprised of drugs, nutrients and flavors would also be beneficial for the stabilization and delivery of the molecules to a cell.
Portions of the subject matter disclosed herein were supported in part by movies or grants from the United States Government.
This is a continuation in part of WO 96/25942 filed 22 February, 1996, which is a continuation-in-part of U.S. Patent No. 5,840,707 filed 22 February 1995, which is a continuation-in-part of U.S. Patent No. 5,643,574 filed 4 October 1993.
FIELD OF THE INVENTION
The instant invention relates to cochleates and use thereof to stabilize biologic molecules, such as carbohydrates, vitamins, minerals, ' polynucleotides, polypeptides, lipids and the like.
Cochleates are insoluble stable lipid-divalent cation structures into which is incorporated the biologic molecule. Because cochleates can be biologically compatible, cochleates can be administered to hosts by conventional routes and can serve to deliver the biologic molecule to a targeted site in a host.
BACKGROUND OF THE INVENTION
Plain lipid cochleates (Figure 1) have been described previously. Protein-cochleates or peptide-cochleates have been described heretofore and patented by the .instant inventors, as intermediate structures which can be converted to protein-lipid vesicles (proteoliposomes) (Figure 2) by the addition of calcium chelating agents (see U.S. Pat. No. 4,663,161 and U.S. Pat. No.
4 , 871, 488)~
Freeze-fracture WO 97130725 PCTlUS97/02632 - 2 _ electron micrographs of protein-cochleates containing Sendai glycoproteins made by the DC
method show the rolled up lipid bilayer structures with a ''bumpy" surface. Plain phospholipid cochleates are smooth in that type of preparation.
The proteoliposomes resulting from polypeptide-cochleates have been shown to be effective immunogens when administered to animals by intraperitoneal and intramuscular routes of immunization (G. Goodasin-Snitkoff, et al. , J.
Immunol., Vol. 147, p.410 (1991); M.D. Miller, et al., J. Exu. Med., Vol. 176, p. 1739 (1992)).
Further, when the glycoproteins of Sendai or influenza ,virus are reconstituted by that method, the proteoliposa~mes are effective delivery vehicles for encapsulated proteins and DNA to animals and to cells in culture (R.J. Mannino and S.
Could-Fogerite, Biotechn,~g~,es, Vol. 6, No. 1, pp.
682-690 (1988); S. Could-Fogerite et al., Gene, Vol. 84, p. 429 (1989); M.D. Miller, et al., J.
Exp. Med., Vol. 176, p. 1739 (1992)).
It would be advantageous to provide a means for stabilizing or preserving biologic molecules in a form that is stable at room temperature, capable of desiccation and is suitable for oral administration. For example, it would be beneficial to have a formulation for stabilizing polynucleotides and which could be used for delivering polynucleotidss to a cell. A formulation comprised of drugs, nutrients and flavors would also be beneficial for the stabilization and delivery of the molecules to a cell.
BU~MY OF TH8 INV8D1TION
Accordingly, it is an object of the instant invention to provide a means for stabilizing biologic molecules to yield a formulation with prolonged shelf life, which can be made into powder form and which later can be rehydrated to yield a biologically active molecule.
It also is an object of the instant invention to provide a formulation suitable for use as a vehicle to administer a biologically active molecule to a host. The formulation can be used to deliver a biologic molecule to the gut for absorption or to a targeted organ, tissue or cell.
A suitable biologic molecule is a polynucleotide or a bioactive compound such as a lipophilic drug.
other suitable biologic molecules are polypeptides such as hormones and cytokines or nutrients such as vitamins, minerals, and fatty acids.
Yet other suitable biologic molecules are essential oils which impart flavor.
Those and other objects have been obtained by providing a cochleate formulation comprising the following components:
a) a biologically relevant molecule component to be stabilized or delivered, b) a negatively charged lipid component, and c) a divalent cation component.
In a preferred embodiment, the cochleate formulation is administered orally.
The instant invention further provides a WO 97/30725 PCTIUS97l02632 -cochleate formulation containing a polynucleotide wherein said polynucleotide-cochleate comprises the following components:
a) a polynucleotide component, b) a negatively charged lipid component, and c) a divalent cation co~tponent.
The polynucleotide can be one which is expressed to yield a biologically active polypeptide or polynucleotide. Thus, the polypeptide may serve as an immunogen or, for example, have enzymatic activity. The polynucleotide may have catalytic activity, for example, be a ribozyme, or may serve as an inhibitor of transcription or translation, that is, be an antisense molecule. If expressed, the polynucleotide would include the necessary regulatory elements, such as a promoter, as known in the art.
The instant invention further provides a cochleate formulation containing a polypeptide, wherein said polypeptide-cochleate comprises the following components:
a) a polypeptide component b) a negatively charged lipid component, and c) a divalent cation component.
A specific example is an insulin cochleate.
The instant invention also provides a cochleate formulation containing a lipophilic drug, wherein said drug-cochleate comprises the following components:
a) at least one drug, b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Thus, the drug may be an inhibitor of viral replication such as that used in the treatment of HERPES (acyclovir), or one prescribed for it~s antifungal effect on mycotic infections (miconazole nitrate). The drugs may also be those with specific targeted effects on different physiological systems such as anesthetics (propofol) which effect the nervous system, or immunosuppressants, such as cyclosporin A, which inhibit immune cell function.
Other lipophilic drugs may also be selected from the groups of anti-infectious, anti-cancer, steroidal anti-inflammatory, non-steroidal anti-inflammatory, tranquilizer, or vasodilatory agents.
The instant invention further provides a cochleate formulation containing a nutrient, wherein said nutrient-cochleate comprises the following components:
a) at least one nutrient, b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Specific examples include vitamin A-, polyunsaturated fatty acids- and mineral-cochleates.
The instant invention further provides a cochleate formulation containing a flavor, wherein said flavor-cochleate comprises the following components:
a) at least one essential oil or extract, WO 97!30725 PCT/US97/02632 b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Examples include flavor substances generally associated with essential oils and extracts obtained from botanical sources such as herbs, citrus, spices and seeds. Oils/extracts are sensitive to degradation by oxidation, and because the processing of the natural oils and extracts often involves multiettp operations, costs are generally considered to be higher. The advantage of an oil/extract-cochleate would be in the stabilization of these otherwise volatile and expensive flavor substances. Flavor-cochleates can also be incorporated into consumable food preparations as flavor enhancers.
The advantages of cochleates are numerous.
The cochleates have a nonaqueous structure while not having an internal aqueous space, and therefore cochleates:
(a) are more stable than liposomes because the lipids in cochleates ate less susceptible to oxidation;
(b) can be stored lyophilized which provides the potential to be stored for long periods of time at room temperatures, which would be advantageous for worldwide shipping and storage prior to administration;.
(c) maintain structure even after lyophilization, whereas liposom~ structures are destroyed by lyophilization;
(d) exhibit efficient incorporation of biological molecules, particularly with hydrophobic -moieties into the lipid bilayer of the cochleate structure;
(e) have the potential for slow or timed release of the biologic molecule in vivo as cochleates slowly unwind or otherwise dissociate;
(f) have a lipid bilayer matrix which serves as a carrier and is composed of simple lipids which are found in animal and plant cell membranes, so that the lipids are non-toxic, non-immunogenic and non-inflammatory;
(g) contain high concentration of divalent cation, such as, calcium, an essential mineral;
(h) are safe, the cochleates are non-living subunit formulations, and as a result the cochleates have none of the risks associated with use of live vaccines, or with vectors containing transforming sequences, such as life threatening infections in immunocompromised individuals or reversion to wild type infectivity which poses a danger to even healthy people;
(i) are produced easily and safely; and (j) can be produced as defined formulations composed of predetermined amounts and ratios of biologically relevant molecules, including polypeptides, carbohydrates and polynucleotides, such as DNA, lipophilic drugs, and nutrients such as vitamins, minerals and fatty acids.
The advantages of oral administration also are numerous. An oral route has been chosen by the WHO
Children's Vaccine Initiative because of ease of administration. Oral vaccines are less expensive and much safer to administer than parenterally (intramuscular or subcutaneous) administered vaccines. The use of needles adds to the cost, and - g -also, unfortunately, in the field, needles are often reused.
~EBCRIPTI~~ OF THE DRANINAB
Figure 1 is a schematic representation of a plain lipid cochleate.
Figure 2 shows the structure of polypeptide-lipid vesicles with integrated membrane proteins.
Figure 3 summarizes the various alternative procedures for the preparation of cochleates.
Figures 4(A) and 4(B) show serum antibody titers in mine following oral administration of influenza poiypeptide-cochleates.
Figure 5 is a graph showing the results of oral administration of polypeptide-cochleates when challenged with live virus.
Figure 6 is a graphic representation of serum antibody titers in mice following oral administration of Sendai-cochleates.
Figure 7 is a graph depicting the induction of antigen-specific cytotoxic splenocytes following oral administration of Sendai cochleates.
Figure 8 provides a series of bar graphs depicting serum glucose levels before and after oral insulin administration.
DL"fl~rIhED DESCRIPTIOI~T OF THE INVED1TION
The instant inventors have now found surprisingly and have demonstrated that cochleates themselves be used as means for stabilizing and delivering biologic molecules. The cochleates survive the harsh acid environment of the stomach, protecting the susceptible biologic molecules immersed therein, probably by virtue of their unique multilayered precipitate structure. It is likely that cochleates then are taken up by microfold cells (M cells) in the small intestine.
The instant inventors have demonstrated that oral administration by drinking cochleates containing the glycoproteins and viral lipids from the surface of influenza or Sendai viruses plus phosphatidylserine and cholesterol, stimulate both mucosal and circulating antibody responses. In addition, strong helper cell (proliferative) and killer (cytotoxic) cell responses also are generated. Perhaps most impressively, oral administration of the influenza cochleates protects against intranasal challenge with live virus.
Those results are unexpected for a number of reasons.
It was not known and was nat expected that the cochleates would survive the stomach and protect the polypeptides associated with them from the acid environment and degradative enzymes. It is known that without the presence of at least 3 mM calcium, the cochleates begin to unwind and form liposomes.
It was possible, in fact likely, that the cochleates would not remain intact during the transit from the mouth, down the esophagus and through the stomach. If cochleates did come apart, they would be digested as food.
Also, having survived the stomach, that the cochleates would interact in an effective way with the mucosal and circulating immune systems was unknown and unexpected. Everyone ingests large quantities of proteins, fats and sugars on a daily basis which simply get digested and used as fuel, without stimulating any kind of mucosal or circulating immune responses. Thus, the cochleates deliver molecules Which retain biologic activity at the delivery site within the host.
As used herein, the term "immune response"
means either antibody, cellular, proliferative or cytotoxic activities, or secretion of cytokines.
Also, as used herein, the term "antigen" is meant to indicate the polypeptide to which an immune response is directed or an expressible polynucleotide encoding that polypeptide.
"Polynucleotide" includes DNA or RNA, as well as antisense and enzymatically active molecules.
Thus the biologically relevant molecule can be the polynucleotide itself, the transcript thereof or the translated polypeptide encoded thereby.
"Polypeptide" is any oligomer or polymer of amino acids . The amino acids can be L-amino acids or D-amino acids.
A "biologically relevant molecule" is one that has a role in the life proces es of a living organism. The molecule may be organic or inorganic, a monomer or a polymer, endogenous to a host organism or not, naturally occurring or synthesized in vitro and the like. Thus, examples include, vitamins, minerals, amino acids, toxins, microbicides, microbistats, co-factors, enzymes, polypeptides, polypeptide aggregates, polynucleotides, lipids, carbohydrates, nucleotides, starches, pigments, fatty acids, fatty acids of polyunsaturated form, flavored essential oils or extracts, hormones, cytokines, viruses, organelles, steroids and other multi-ring structures, saccharides, metals, metabolic poisons, drugs and the like.
The instant invention also can be practiced using whole cells other subcellular replicative entities, such as viruses and viroids. Hence, bacteria, yeasts, cell lines, viruses and the like can be mixed with the relevant lipid solution, caused to precipitate to yield structures wherein the cells and the like are fixed within the cochleate structure.
Polypeptides are suitable molecules to be incorporated with cochleates. The procedure for preparing cochleates ie set forth in greater detail hersinbelow. The polypeptide is suspended in a suitable aqueous buffer. The lipids are dried to form a thin film. Then the aqueous buffer is added to the lipid film. The vessel is vortexed and then the sample dialyzed against a cation-containing buffer.
In that way, for example, cochleates carrying insulin can be obtained. The insulin cochleates were made with a 1 mg/ml solution of insulin, but various other beginning concentrations of insulin can be used to obtain cochleates loaded with varying concentrations of insulin.
Recent studies indicate that the direct injection of DNA plasmids can lead to the expression of the proteins encoded by those plasmids resulting in humoral and cell mediated immune responses, see, for example, Wang et al., Proc. Natl Acad. Sci. 90: 4156'4160 (1993); Zhu et al., Science 261: 209-211 (1993). Those studies indicate that DNA vaccines could provide a safe and effective alternative for human vaccination. Those studies also suggest that DNA vaccines could benefit from simple, more efficient delivery systems.
The use of lipids to facilitate the delivery, entry and expression of DNA in animal cells is well documented, see, for example, Philip et al., Col.
dell Biol. 14: 2411-2418 (1994). Indeed, DNA-lipid complexes currently form the basis for a number of human gene therapy protocols.
Because cochleates are stable structures which can withstand a variety of physiologic conditions, cochleates are suitable means for delivering biologic molecules, such as, polypeptides or polynucleotides, to a selected site in a host. The polypeptide or polynucleotide is incorporated into and integral with the cochleate structure. Thus the polygeptide or polynucleotide, which may need to be expressed, are protected from degrading proteases and nucleases.
The cochl.eates used in the instant invention can be prepared by known methods such as those described in U.S. Patent No. 4,663,161, filed 22 April 1985, U.S. Patent No. 4,871,488, filed 13 April 1987, S. Could-Fogerite et al., Analytical Biochemistry, Vol. 148, pages 15-25 (1985); S.
Could-Fogerite et al., ~ van es in Membrane Biochemistry a_f~1 Bioen~~g~etics, edited by Kim, C.H., Tedaschi, T., Diwan, J.J., and Salerno, J.C., Plenum Press, New York, pages 569-586 (1988); S.
Could-Fogerite et al., en , Vol. 84, pages 429-438 (1989); Litiosome Technoloav, 2nd Edition, Vol. I, Liposome Preparation and Related Techniques, Vol. II, Entrapment of Drugs and Other Materials, and Vol. III, Interactions of Liposomes with the Biological Milieu, all edited by Gregory Gregoriadis (CRC Press, Boca Raton, Ann Arbor, London, Tokyo), Chapter 4, pp 69-80, Chapter 10, pp 167-184, and Chapter 17, pp. 261-276 (1993); and R.J. Mannino and S. Gould-Fogerite, Liposome Mediated Gene Transfer, Biotechniaues, Vol. 6, No.
1 (1988), pp. 682-690.
The polynucleotide can be one which expresses a polypeptide, that is, pathogen membrane polypeptides, aberrant or atypical cell polypeptides, viral polypeptides and the like, which are known or which are suitable targets for host immune system recognition in the development of immunity thereto.
The polynucleotide may express a polypeptide which is biologically active, such as, an enzyme or structural or housekeeping protein.
Also, the polynucleotide may be one which necessarily is not expressed as a polypeptide but nevertheless exerts a biologic effect. Examples are antisense molecules and RNA's with catalytic activity. Thu~c, the ~xpressed sequence may on transcription produce an RNA which is complementary to a message which, if inactivated, would negate an undesired phenotype, or produce an RNA which recognizes specific nucleic acid sequences and cleaves same at or about that site and again, the non-expression of which would negate an undesired phenotype.
The polynucleotide need not be expressed but may be used as is. Thus, the polynucleotide may be an antisense molecule or a ribozyme. Also, the polynucleotide may be an immunogen.
Thus, for polynucleotides, the relevant coding sequence is subcloned downstream from a suitable promoter, other regulatory sequences can be incorporated as needed, in a vector which is expanded in an appropriate host, practicing methods and using materials known and available in the art.
For examplt, two plasmids, pDOLHIVenv (AIDS
Research and Reference Reagent Program, Jan. 1991 catalog p. 113; Freed et al. J. Virol. 63: 4670 (1989)) and pCMVHIVLenv (Dr. Eric Freed, Laboratory of Molecular Immunology, NJAID, NIH) are suitable expression plasmids for use in polynucleotide-cochleates.
The plasmids contain the open reading frames for the env, tat and rev coding regions of HIV-1 (LAV strain).
pDOLHIVenv was constructed by introducing the SalI-XhoI fragment from the full length infectious molecular clone pNL4-3 into the SalI site of the retrovirus vector, pDOL (Korman et al. ~~roc. Natl.
Acad. Sci. 84: 2150 (1987)). Expression is from the Moloney murine virus LTR.
pCMVHIVLenv was constructed by cloning the same SalI-XhoI fragment into the XhoI site of the cytomegalovirus (CMV)-based expression vector p763.
The polynucleotide can be configured to encode multiple epitopes or epitopes conjugated to a known immunogenic peptide to enhance immune system recognition, particularly if an epitope is only a few amino acids in size.
To form cochleate precipitates, a majority of the lipid present should be negatively charged.
One type of lipid can be used or a mixture of lipids can be used. Phosphatidylserine or WO 9?/30725 PCT/US97/02632 phosphatidylglycerol generally have been used.
Phosphatidylinositol also forms a precipitate which converts to ligosomes on contact with EDTA. A
substantial proportion of the lipid can, however, be neutral or positively charged. The instant inventors have included up to 40 mol% cholesterol based on total lipid present and routinely make polypeptide-lipid or polynucleotide-lipid cochleates which contain 10 mol% cholesterol and 2 0 % v i r a 1 m a m b r a n a 1 i p i d s .
Phosphatidylethanolamine, plain or cross-linked to polypeptides, also can be incorporated into cochleates.
While negatively charged lipid can be used, a negatively charged phospholipid is preferred, and of those phosphatidylserine, phoaphatidylinositol, phosphatidic acid and phosphatidylglycerol are most pref erred .
One skilled in the art can determine readily how much lipid must be negatively charged by preparing a mixture with known concentrations of negative and non-negative lipids and by any of the procedures described herein, determining whether precipitates form.
Th~re are several known procedures for making the cochleates of the instant invention and those are schematized in Figure 3.
A suitable procedure for making cochleates is one wherein a negatively charged lipid such as phosphatidylserine, phosphatidylinositol, phosphatidic acid or phosphatidylglycerol in the absence or presence of cholesterol (up to 3:1, preferably 9:1 w/w) are utilized to produce a suspension of multilamellar lipid vesicles containing or surrounded by a biologically relevant molecule (polypeptide, polysaccharide or polynucleotide, such as DNA) which are converted to small unilamellar protein lipid vesicles by sonication under nitrogen. Alternatively, to avoid daaage, the biologically relevant molecule can be added to the solution following sonication. The vesicles are dialyzed at room temperature against buffered divalent cation, e.g., calcium chloride, resulting in the formation of an insoluble precipitate which may be presented in a form referred to as a cochleate cylinder. After centrifugation, the resulting pellet can be taken up in buffer to yield the c~hleate solution utilized in the instant invention.
In an alternative and preferred embodiment, an amount of negatively charged lipid, e.g., phosphatidylserine and optionally, cholesterol in the same proportions as above and equal to from about 1 to 10 times the weight, preferably equal to four times the weight of the viral or other additional lipids (including polyunsaturated fatty acids or essential oils) are utilized to prepare the cochleates. Either a polypeptide, a mineral such as calcium, magnesium, barium, iron or zinc, a vitamin such as vitamins A, D, E or K, a lipophilic drug, a flavor, a carbohydrate or polynucleotide, such as DNA, is added to the solution. That solution then is dialyzed against buffered divalent cation, e.g., calcium chloride, to produce a precipitate which can be called a DC (for direct calcium dialysis) cochleate.
An additional, related method for reconstituting cochleates has been developed and is called the LC method (liposomes before cochleates).
The initial steps involving addition of extracted polypeptide, polysaccharide,polynucleotide, such as DNA or combinations thereof, to dried down negatively charged lipid and cholesterol are the same as for the DC method. However, the solution next is dialyzed against buffer (e.g., 2 mM TES, 2 mM L-histidine, 100 mM NaCl, pH 7.4) to form small liposomes containing the polypeptide, polynucleotide, such as DNA, and/or polysaccharide.
A divalent cation, e.g., calcium, then is added either directly or by dialysis to form a precipitate which can consist of cochleates.
In the above procedures for making the cochleates of the instant invention, the divalent cation can be any divalent cation that can induce the formation of a cochleate or other insoluble lipid-antigen structures. Examples of suitable divalent cations include Ca;z, Mg+Z, Ba'2, and Zn~z or Fe~2 other elements capable of forming divalent ions or other structures having multiple positive charges capable of chelating and bridging negatively charged lipids.
Cochleates made with different cations have different structures and convert to liposomes at different rates. Because of those structural differences, the rate of release of the biologically relevant molecules contained therewith varies. Accordingly, by combining cochleates made with different cations, formulations which will release the biologically relevant molecule over a protracted period of time are obtainable.
The amount of biologically relevant molecule incorporated into the cochleates can vary. Because of the advantageous properties of cochleates generally, lesser amounts of biologically relevant molecule can be used to achieve the same end result as compared to using known delivery means.
An artisan can determine without undue experimentation the optimal lipid: biologically relevant molecule ratio for the targeted purposes.
Various ratios are configured and the progress of precipitation of each sample is monitored visually under a phase contrast microscope. Precipitation to fona, for example, cochleates, is monitored readily. Then, the precipitates can be administered to the targeted host to ascertain the nature and tenor of the biologic response to the administered cochleates.
It should be evident that the optimized ratio for any one use may range from a high ratio, for example, to minimize the use of a rare biologically relevant molecule, to a low ratio to obtain maximal amount of biologically relevant molecule in the cochleates.
Cochleates can be lyophilized and stored at room temperature indefinitely or can be stored in a divalent cation-containing buffer at 4°C for at least six months.
The cochleate formulations also can be prepared both with and without fusogenic molecules, such as Sendai virus envelope polypeptides. Prior studies with proteoliposomes have demonstrated that cytoplasmic delivery of lipo:ome contents requires a fusogenic liposome bilayer. The exact role of Sendai virus enwelope polypeptides in facilitating the immune response to polypeptide-cochleates as yet is not clear.
It is preferred to use cochleates without fusogenic molecules over fu:ogenic molecule cochleates because of a more simple structure and ease of preparation favors eventual use in humans.
Because polynucleotides are hydrophilic molecules and cochleates are hydrophobic molecules that do not contain an internal aqueous space, it is surprising polynucleotid~s can be integrated into cochleates. The polynucleotida: are not exposed on the surface of the cochleates because the polynucleotides are resistant to nucleases.
In the case of polynucleotide cochleates, considerations for dosage parallel the standard methodologies regarding vaccines as known in the art. Also, methods for using polynucieotides in liposomes and the "nak~sd DNA" are available to serve as a baseline for empirically determining a suitable dosing regimen, practicing known methods.
For example, a suitable scheme for determining dosing is as follows.
The initial dose of polynucleotides in cochleates admin~.stered by injection to animals is selected to be about 50 fig, although it is know that as little as 2~g of tested plasmids is effective. That dose is proposed to maximize the probability of observing a positive response following a single administration of a cochleate.
Any formulations which do not elicit a response at that dose are to be considered ineffective but retained for further study.
Developing formulations which can be administered easily and non-invasively is desirable. Thus, PO administration of cochleates will be targeted and higher doses will be tried initially (100 ~Cg/animal and 200 ~,g/animal).
However, lower. doses are required for parenteral routes.
Then graded doses will be used to develop a dose response curve for each formulation. Thus, cochleates containing 50 fig, l0 ~cg, 2 ~cg, 0.4 and 0 ~g polynucleotide/animal will be inoculated with at least l0 animals per group.
Immune response or enzymatic activity are responses easily monitored when expression of the polynucleotide is required. Altered phenotype is another response for tracking efficacy of antisense or ribozyme type molecules. In the case of immune system monitoring, T cell proliferation, CTL and antibody presence at specific body sites can be evaluated, using known methods, to assess the state of specific immune response.
To determine the duration of activity of cochleate formulations, groups which have responded to a single immunization are monitored periodically for up to a year or more to determine the effective life of a cochlea~te on administration.
Animals which fail to develop a detectable response on first exposure can be re-inoculated (boosted) to provide insights into the ability of the low dose formulations to prime the immune system for later stimulation.
Pharmaceutical formulations can be of solid form including tablets, capsules, pills, bulk or unit dose powders and granules or of liquid form including solutions, fluid emulsions, fluid suspensions, semisolids and the like. In addition to the active ingredient, the formulation would comprise suitable art-recognized diluents, carriers, fillers, binders, emulsifiers, surfactants, water-soluble vehicles, buffers, solubilizers and preservatives.
An advantage of the cochleates is the stability of the composition. Thus, cochleates can be administered orally or by instillation without concern, as well as by the more traditional routes, such as topical, subcutaneous, intradernal, intramuscular and the like, Dirtct application to mucosal surfaces is an attractive delivery means made possible with cochleates.
The skilled artisan can determine the most efficacious and therapeutic means for effecting treatment practicing the instant invention.
Reference can also be made to any of numerous authorities and references including, for example, "Goodman & Gilman's, The Pharmaceutical Basis for Therapeutics", (6th Ed., Goodman, et al., eds., MacMillan Publ. Co., New York, 1980).
The cochleates of the instant invention can be used as a means to transfect cells with an efficacy greater than using currently known delivery means, such as liposomes. Hence, the polynucleotide cochleates of the instant invention provide a superior delivery means for the various avenue of gene therapy, Mulligan, Science 260: 926-931 (1993). As Mulligan noted, the many possibilities of treating disease by gene-based methods will be enhanced by improved methods of gene delivery.
The cochleates of the instant invention also serve as excellent means for delivering other biologically relevant molecules to a host. Such biologically relevant molecules include nutrients, vitamins such as vitamins A, D, E or K, co-factors, enzymes, fatty acids such as polyunsaturated forms, minerals including divalent cations such as calcium, magnesium, zinc, iron or barium, flavors and the like. Because the biologically relevant molecule is contained within the cochleate, in a non-aqueous environment, the biologically relevant molecule essentially is stabilized and preserved.
As described hereinabove, the biologically relevant molecule is added to the lipid solution and processed to form a precipitated structure comprising lipid and biologically relevant molecule. As demonstrated herein, hydrophilic molecules can be "cochleated", that is, can be made part of the cochleate structure, with little difficulty.
Also, suitable lipophilic biologically relevant molecules, such as drugs and other therapeutic compounds, are amenable to cochleation.
For example, lipophilic drugs such as eyclosporin, ivermectin and amphoterioin are readily cochleated.
Other lipophilic drugs which are amenable to incorporation into cochleates are acyclovir, propanidid, propofol, alphadione, echinomycine, miconazole nitrate, teniposide, didemnin B, hexamethylmelamine, taxol, taxatere, melphalan, adriamycin, 18-hydroxydeoxycorticosterone, rapamycine, prednisolone, dexamethazone, cortisone, hydrocortisone, pyroxicam, naproxen, diazepam, verapamil, nifedipine.
The instant invention now will be described by means of specific examples which are not meant to limit the invention.
Bovine brain phosphatidylserine in chloroform was purchased from Avanti Polar Lipids, Birmingham, Alabama in glass ampules and stored under nitrogen at -20°C. Cholesterol (porcine liver) grade I, a-D-octyl-glucopyranoside (OCG), fluorescein isothiocyanate (FITC)-dextran (average mol. wt.
67,000), metriza~mide grade I, and cheaicals for buffers and protein and phosphate determinations, were obtained from Sigma Chemical Company, St.
Louis, Missouri. Organic solvents were purchased from Fisher Scientific Co., Fairlawn, New Jersey.
Reagents for polyacrylamide gel electrophoresis were from BioRad Laboratories, Richmond, California. SloflO Sephacryl Superfine was obtained from Pharmacies, Piscataway, New Jers~y. Thick walled polycarbonate centrifuge tubes (10 ml capacity) from Beckman Instruments, Palo Alto, California, were used for vesicle preparations, washes, and gradients. A bath type sonicator, Model G112SPiG, from Laboratory Supplies Company, Hicksville, New York was used for sonications.
Virus was grown and purified essentially as describ~d by M.C. Hsu et al., Vjroloav, Vol. 95, page 476 (1979). Sendai (parainfluenza type I) and influenza (A/PR8/34) viruses were propagated in the allantoic sac of 10 or 11 day old smbryonated chicken eggs. Eggs were inoculated with 1-100 egg infectious doses (103 to 105 viral particles as determined by HA titer) in 0.1 ml of phosphate buffered saline (0.2 gm/L KC1, 0.2 gm/L KH2P0', 8.0 gm/L NaCl, 1.14 gm/L NazFI-P04, 0.1 gm/L CaCl2, 0.1 gm/L MgC126H20 (pH 7.2)). Eggs were incubated at 37°C for 48 to 72 hours, followed by incubation at 4°C for 24 to 48 hours. Allantoic fluid was collected and clarified at 2,000 rpm for 20 minutes at 5°C in a Damon IEC/PR-J centrifuge. The supernatant was then centrifuged at 13,000 rpm for 60 minutes. This and all subsequent centrifugations were performed in a Sorvall RC2-B
centrifuge at 5°C using a GG rotor. The pellets were resuspended in phosphate buffered saline (pH
7.2) by vortexing and sonicating, followed by centrifugation at 5,000 rpm for 20 minutes. The pellet was resuspended by vortexing and sonicating, diluting, and centrifuging again at 5,000 rpm for 20 minutes. The two 5,000 rpm supernatants were combined and centrifuged at 13,000 rpm for 60 minutes. The resulting pellets were resuspended in phosphate-buffered saline by vortexing and sonicating, aliquoted, and stored at -70°C.
Sterile technique and materials were used throughout viral inoculation, isolation, and purification.
Virus stored at -70°C was thawed, transferred to sterile thick-walled polycarbonate tubes and diluted with buffer A (2 mM TES, 2 mM L-histidine, 100 mM NaCl (pH 7.4)). Virus was gelleted at 30,000 rpm for 1 hour at 5°C in a Beckman TY65 rotor. The supernatant was removed and the pellet resuspended to a concentration of 2 mg viral protein per ml of extraction buffer (EB) (2 M NaCl, 0.02 M sodium phosphate buffer (pH 7.4)) by vortexing and sonicating. The nonionic detergent a-D-octyl-glucopyranoside was then added to a concentration of 2% (w/v). The suspension was mixed, sonicated for 5 seconds and placed in a 37°C
water bath for 45 minutes. At 15, 30 and 45 minute incubation times, the suspension was removed briefly for mixing and sonication. Nucleocapsids were pelleted by centrifugation at 30,000 rpm for 45 minutes in a TY65 rotor. The resulting clear supernatant was removed and used in the formation of viral glycoprotein-containing cochleates. Some modification of the above procedure may have to be employed with other membrane proteins. Such modifications are well known to those skilled in the art.
A. DC Cochleat~s.
An amount of phosphatidylserine and cholesterol (9:1 wt ratio) in extraction buffer and non-ionic detergent as described hereinabove was mixed with a pre-selected concentration of polynucleotide and the solution was vortexed for 5 minutes. The clear, colorless solution which resulted was dialyzed at room temperature against three changes (minimum 4 hours per change) of buffer A (2 mM TES N-Tris[hydroxymethyl]-methyl-2 aminoethane sulfc~nic acid, 2 mM L-histidine, 10o mM
NaCl, pH 7.4, also identified as TES buffer) containing 3 mM CaCl2. The final dialysis routinely used is 6 mM Ca2', although 3 mM Caz' is sufficient and other concentrations may be compatible with cochleate formation. The ratio of dialyzate to buffer for each change was a minimum of 1:100. The resulting white calcium-phospholipid precipitates have been termed DC cochleates. When examined by light microscopy (x 1000, phase contrast, oil), the suspension contains numerous particulate structures up to several microns in diameter, as well as needle-like structures.
B. LC Cochleates.
An amount of phosphatidylserine and cholesterol (9:1 wt ratio) in extraction buffer and non-ionic detergent as described hereinabove was mixed with a pre-selected concentration of polynucleotide and the solution was vortexed for 5 minutes. The solution first was dialyzed overnight using a maximum ratio of 1:200 (v/v) of dialysate to buffer A without divalent cations, followed by three additional changes of buffer leading to the formation of small protein lipid vesicles. The vesicles were converted to a cochleate precipitate, either by the direct addition of Caz' ions, or by dialysis against two changes of buffer A containing 3 mM Ca2+ ions, followed by one containing buffer A
with 6 mM Ca2+.
IM1LONE RBB~O;~BB TO OI~tAL~Y
DEL~CVERRD PROT:~,;~~COC LB~lIT~ VACCI118B
To make the vaccine, influenza virus was grown, purified, and the glycoproteins and lipids extracted and isolated as described in Example 1.
Protein-cochleates were made according to the '~LC
cochleate~' procedure described above.
Cochleate vaccines containing the glycoproteins and lipids from the envelope of influenza virus and phosphatidylserine and cholesterol were given to mice by gradually dispensing 0.1 ml liquid into the mouth and allowing it to be comfortably swallowed. Figures 4(A) (from Experiment A) and 4(B) (from Experiment B) show resulting total circulating antibody levels specific for influenza glycoproteins, as determined by ELISA. Antibody titer is defined as the highest dilution that still gives the optimal density of the negative control.
In Experiment A that generated the data shown in Figure 4(A), initial vaccine doses of 50, 25, 12.5 or 6.25 ~cg of glycoproteins (groups 1 through 4 respectively) were administered at 0 and 3 weeks.
The third and fourth immunizations (6 and 19 weeks) were at one fourth the dose used for the initial two immunizations. Bleed 1 - Bleed 6 occurred at 0, 3, 6, 9, 19, and 21 weeks. The data demonstrate that high circulating antibody titers can be achieved by simply drinking cochleate vaccines containing viral glycoproteins. The response is boostable, increasing with repeated administration, and is directly related to the amount of glycoprotein in the vaccine.
Those observations were confirmed and extended in Experiment B that generated the data shown in Figure 4(B). The dose range was expanded to include 100 dug and 3.1 ~g initial doses. Vaccine was given at 0, 3 and 15 weeks, with the third immunization at one fourth the dose of the initial two. Bleed 1 to Bleed 6 occurred at 0, 3, 6, 15 and 16 weeks. Circulating influenza glycoprotein-specific responses were detectable after a single administration for the top five doses, and for all groups after two feedings. The WO 97!30725 PCT/US97102632 data shown is for pooled sera from each group, but all mice given the four highest doses, and four of five mice in groups f ive and s ix, responded to the vaccine with circulating antibody titers ranging from 100 to 102,400. Group seven, which received no vaccine, had titers less than 50 for ml! mice at all time points.
The antibody response is long lived. Titers 13 weeks after the third immunization (Figure 4(A), bleed 5) and 12 weeks after the second immunization (Figure 4(B), bleed 4) remained the same or within one dilution higher or lower than seen at 3 weeks after the previous boost.
To determine whether oral administration of the subunit vaccine described in Example 2 could lead to protective immunity in the respiratory tract, the mice described in Experiment B of Example 2 were immunized with cochleates at 0, 3 and 15 weeks. The immunized mice were challenged by intranasal application of 2.5 x 109 particles of influenza virus at 16 weeks. Three days after viral challenge, mice were sacrificed, and lungs and trachea were obtained. The entire lung or trachea was triturated and sonicated, and aliquots were injected into embryonated chicken eggs to allow amplification of any virus present. After three days at 37°C, allantoic fluid was obtained from individual eggs and hemagglutination (HA) titers were performed.
Mice were also challenged with live influenza intranasally following oral cochleate administration in Experiment A of Example 2. Lungs were obtained three days later and cultured to detect presence of virus.
_ 29 _ The combined data for the two experiments is given in Table 1. The results also are shown graphically in Figure 5.
Vaccine Tracheal Lung~Z Lunga9 Doee J~9 Infected/TotInfected/TotInfected/Tota Protein al al 1 6.25 0/5 5/5 6/10 3.12 4/5 5/5 5/5 I
1. Mice from Experiment B.
2. Mice from Experiment B.
3. Mice from Experiments A and B.
The data in Table 1 shows that all five of the unvaccinated mice had sufficient virus in the trachea to infect the embryonated chicken eggs (greater than 103 particles per trachea or at least one egg infectious dose {EID) per 0.1 ml of suspension). In contrast, the oral vaccine provided a high degree of protection from viral replication in the trachea. All mice in groups 1, 3 and 5 of Experiment B were negative for virus. Two mice in group 2, 1 in group 4, and 4 in group 6 (the lowest vaccine dose) of Experiment B had sufficient virus to test positive in this very sensitive assay used to detect presence of virus.
The oral protein cochleate vaccine also provided protection against viral replication in the lungs. All twenty mice which received the four highest doses of vaccine were negative for virus when lung suspensions were cultured in embryonated chicken eggs (Table 1). All mice in the groups immunized with 6.25 beg and 3.1 ~cg glycoproteins and all mice in the unvaccinated control were positive for virus.
Even in the lowest two vaccine doses, there was some inhibition of viral replication. When lung suspensions were diluted 1/10 and inoculated into eggs, only one animal in the groups immunized with 6.25 ~cg was positive, as compared to three in the groups immunized with 3.12 ~g and three in the unvaccinated control. Culturing of 1/100 dilutions resulted in one positive animal in each of the groups immunized with 6.25 and 3.12 fig, but 3 of 5 remained positive in the unvaccinated group. In addition, for the two animals in the group that was immunized with 3.12 ~cg, but Which were negative at 1/100, only 50% of the eggs were infected at 1/10 and had low HA titers. In contrast, for the unvaccinated group, all eggs were infected and produced maximal amounts of virus at 1/10 and 1/100 dilutions.
C57BL/6 mice were given cochleates containing Sendai virus glycoproteins orally at 0 and 3 weeks. They were bled at 0 (bleed 1), 3 (bleed 2}, and 6 (bleed 3) weeks. Group 1 received approximately 50 ~cg protein, Group 2 about 25 ~cg, Group 3 about 12.5 fig, Group 4 about 6.25 fig, and Group 5 (negative control) received 0 ~g protein. The levels of Sendai specific antibodies in the serum pooled from 5 mice in each dose group were determined by ELISA. The results are shown in Figure 6.
It can be seen that strong antibody responses were generated, that the magnitude of the response was directly related to the immunizing dose, and that the magnitude of the response increased (boosted) after a second immunization.
The response was extremely long-lived. The response is predominantly IgG, indicative of the involvement in T cell help and establishment of long-term memory cells associated with a secondary immune response. Surprisingly, the lowest dose which initially had the loawest response, now had the highest circulating antibody levels. This may be due to the immune system's down regulation of the very high responses originally but allowing the low response to slowly climb. This may also indicate a persistence and slow release of antigen. It is also interesting and consistent with the use of the oral route of immunization that significant IgA titers are generated and maintained.
A 50 ~g protein dose of Sendai glycoprotein-containing cochleates was given orally. Two weeks later the animal (BALB/c mouse) was sacrificed and spleen cells obtained. Cytolytic activity of the spleen cells was measured by their ability to cause the release of chromium-51 from target cells presenting Sendai antigens. The non-immunized mouse did not kill Sendai virus (SV) pulsed cells with in culture restimulation (N/SV/SV) or non-Sendai presenting cells (N/N/N). (Figure 7) In contrast, Sendai cochleate immunized mice killed SV pulsed targets to a very high degree and rion-pulsed targets to a lesser degree.
Cytolytic activity is crucial to clearance of cells infected viruses, or intracellular parasites or to cancer cells. It is a highly desirable activity for a vaccine to induce, but classically has not been seen with most non-living vaccines.
This is an important feature of protein-cochleate vaccines.
Eight week old BALB/c female mice were immunized IM
twice with various polynucleotide-cochleate formulations, polynucleotide alone and controls and then splenocytes from the mice were tested for the ability to proliferate in response to a protein encoded by the polynucleotide.
Cochleates with and without fusogenic Sendai virus protein were prepared as described hereinabove. The polynucleotide used was the pCMVHIVLenv plasmid. The solution containing lipid and extracted Sendai virus envelop proteins as described hereinabove and polynucleotide were mixed at a 10:1 (w/w) ratio and 50:1 (w/w) ratio. That protocol yielded four groups, cochleate/DNA, 10:1; cochleate/DNA, 50:1;
SV-cochleate/DNA, 10:1; and SV-cochleate/DNA, 50:1. Naked DNA
was used at a rate of 10 ~g/mouse and 50 ~g/mouse. The control was buffer alone. Mice were immunized twice, 15 days apart at 50 ~1/mouse.
Splenocytes were obtained and tested in a T-cell proliferation assay using tritiated thymidine, as known in the art. Control cultures contained no antigen or con A. The antigen used was p18 peptide, at 1 mM, 3 mM and 6 mM. Cells were harvested at days 2, 4 and 6 following preparation of the splenocyte cultures.
The naked DNA provided a marginal response above background. All four cochleate preparations yielded a p18-specific response which increased over time. At six days, the response was about four times above background.
The DNA concentration range at the 10:1 ratio was about 120-170 ;eg/ml. At the 50:1 (w/w) ratio; the DNA concentration was about 25-35 ~g/ml.
The polynucleotide-cochleates were exposed to micrococcal nuclease and little or no nucleic acid degradation was observed.
The polynucleotide encapsulation efficiency was found to be about 50% based on quantificat ~n of free DNA from lipid, that is present in the supernatar- following a precipitation reaction. After washing the precipitate and opening the structures by removing cation about 35% of the DNA was recovered.
EX~MBhE 5 In similar fashion, splenocytes from animals immunized as described in Example 4, were tested for antigen specific cytotoxic activity using a chromium release assay using labelled H-2 compatible target cells known to express an HIV protein, such as gp160. The responder cells can be stimulated by brief exposure to purified HIV peptides.
On prestimulation, animals exposed to polynucleotide cochleates demonstrated specific cytotoxic splenocytes directed to gpl6o, with nearly 100% cytotoxicity observed at an effector:target ratio of 100.
Fifteen mg of insulin were added to 15 ml of extraction buffer (EB) in a 50 ml plastic tube. Then 300 mg of OCG were added to the mixture. The resulting suspension was colloidal and not clear at pH '~.4. The solution was titrated with 1 N
NaOH to pH 8.5, resulting in a clear solution.
In a separate vessel, 6.8 ml of a 10 mg/ml solution of phosphatidylserine and 1.5 ml of a 5 mg/ml solution of cholesterol were mixed amd then dried to yield a thin film. The insulin solution was added to the vessel yielding a colloidal suspension. The suspension was vortexed for seven minutes and then set on ice for one hour. The pH of the solution was adjusted to 9-9.5 with 1 N NaOH, the sample was filter sterilized and placed in dialysis tubing at about 2 ml per bag.
Two different dialysis schedules were used.
A. DC cochleates:
1. +z 100Zm1 overnight 1 x TES pH 9.0 containing+2 3 mM +Ca , Zn or Mg 2. +Z 2502 ml 4h 1 x TES pH 8.5 containing+Z 3 mM Ca , Zn or Mg I
3, 2502m1 4h 1 x TES pH 8.0 containing 3 +
+2 Zn or Mg Ca , mM
2502m1 4h lxTES pH 7.4 containing 6 ;
;Z Zn or ~ Mg Ca , mM
~g, LC cochleates:
1, 100 overnight x TES, pH 9.0 ml 1 2, 250 4h, 1 x TES, pH 9.0 ml 3, 250 4h 1 x TES, pH 9.0 ml 4, 1002m1 overnight x TES, pH 9.0 containing 3 ; 1 ;
;
+Z Zn or Mg Ca , mM
5, ' 250 4h 1 x TES, pH 8.5 containing ml 'z ' or Mg' 3 mM Ca , Zni 6, 250 4h 1 x TES, pH 7.4 contair~ing ml +z +
Z
or Mg 6 mM Ca , Zn' Following dialysis, the resulting precipitate was found to comprise numerous cochleates.
EgAMPLE 7 Mice were given insulin cochleate samples orally. Serum glucose levels were measured at 0 time, (prior to cochleate administration), 30 min. and 60 min. post administration using standard methods. Cochleate formulations of Example 6 with a starting concentration of 1 mg insulin/ml solution were used.
Each mouse was administered 100 u1 or 200 ul.of the designated preparations as indicated: For comparison, one mouse was given the standard commercial human insulin, Humulin R, by intraperitoneal administration.
* Trademark Sample Volume Given Serum Glucose mg/dl 0 Time 30 min. 60 min.
LC Ca++ 200 u1 100 49.12 43 I~C Ca++ 200 u1 102.9 252.4 61.9 .
Humulin R 200 u1 88.8 66 48.5 *
Oral administration of insulin affected serum glucose levels. .
EB,AMPLE 8 Insulin cochleates as produced in Example . were fed orally to three-month-old female BALB/c mice made diabetic through intraperitoneal injection of streptozotocin, practicing known methods. Two days after exposure to streptozotocin, the mice were allocated into groups of five and administered with oral insulin cochleates at.200 ~1 per mouse. Other mice were injected with 2 IU of Fiumulin R.
Serum samples were'obtained at time 0, prior.
to insulin dosing, and two hours post insulin administration. Glucose levels were measured using a kit from Sigma (St. houis). Control animals were untreated, that is, received no streptozotocin or * Trademark SUBSTITUTE SI~IEET (RULE 26) Figure 8. orally administered insulin, simply by drinking, was effective in reducing blood glucose levels. No reduction in blood glucose was observed in control animals.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
NOTRIENT-COCHLEATES
Vitamin A in cochleates Vitamin A (retinol) is sensitive to air-oxidation and is inactivated by ultraviolet light.
Stability of vitamin A is enhanced by its encapsulation into the intra-bilayers of cochleates. Incorporation of vitamin A into the intra-bilayer phospholipid region of a cochleate was achieved as follows: appropriate proportions of vitamin A, phosphatidylserine and cholesterol were dissolved in an organic solvent such as chloroform or a 1:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a lipid-vitamin film. Buffer was added and the mixture was vortexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaCl2. Vitamin A-cochleates were obtained as a precipitate.
~E11~IPLE 4 Bol~runaaty~at.d fatty a~~aids is coahleatee Unsaturated fatty acids are biologically important in that they control the level of cholesterol in blood and are the precursors of prostaglandins. The limitation in incorporating polyunsaturated fats in food is their susceptibility to oxidation. In the presence of oxygen, unsaturated fatty acids undergo a series of reactions called autoxidation, whose final products are aldehydes and ketones, which provide fishy unpleasant odor and flavor. An interesting way to control autoxidation of unsaturated fats is to incorporate them into the bilayers of a cochleate.
The polyunsaturated fatty acids (PUFA) will be placed in close contact with oxygen-stable saturated fatty esters of the phosphatide.
Incorporation, for example, of fish oils (which are rich in PUFA) into the intra-bilayer phospholipid region of a cochleate was achieved as follows:
appropriate proportions of fish oil, phosphatidylser~.ne and cholesterol (or optionally alpha-tocopherol as a stablizer and autoxidant), were dissolved in organic solvent such as chloroform or a 1:1 methanol: chloroform mixture.
The solvent was then removed under reduced pressure to yield a lipid film. Buffer was added and the mixture was vbrtexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaCl2. PUFA-cochleates were obtained as a precipitate.
B~~~PhE 10 Flavors are volatile and sensitive to oxidation. Controlled release and enhanced physical and chemical stability can be achieved by the encapsulation of flavors into cochleates.
Incorporation of a flavor based on cinnamon oil into the intra-bilayer phospholipid region of a cochleate can be achieved as follows:
phosphatidylserine and cholesterol were dissolved in an organic solvent such as chloroform or a 1:i methanol: chloroform mixture, and an appropriate proportion of cinnamon oil dissolved in ethanol was added. The solvent was then removed under reduced pressure to yield a film. Huffer was added and the mixture was vortexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaClz. Cinnamon oil-cochleates were obtained as a precipitate.
hjPOPBILIC DROG COC8L8~1T$I~
~a~L$ ii llcyclo~rir in aoch~,oat~s Incorporation of acyclovir into the intra-bilayer phospholipid region of a cochleate can be achieved as follows: acyclovir/phosphatidylserine in an appropriate drug to lipid ratio was dissolved in an organic solvent such as chloroform or a 1:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a homogenous film. Buffer was added and the mixture was vortexed for several minutes at a temperature above the transition temperature of the lipid. The excess drug, if any, was separated from the liposome containing acyclovir by repeated washing with PBS and centrifugation, the supernatant was discarded, and the pellet resuspended in PBS. The liposome suspension was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaClZ. Acyclovir-cochleates were obtained as a precipitate.
~~~L~ iz 8y~~ oaort,~sons ~y c~,g9~hll~ata Incorporation of hydrocortisone into the intra-bilayer phospholipid region of a cochleate c a n b a a c h i a v a d a s f o 1 1 o w s hydrocortisone/phosphatidylserine in an appropriate drug to lipid ratio were dissolved in an organic solvent such as chloroform or a 2:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a homogeneous film. Buffer was added and the mixture was vortexed for several minutes at a temperature above the transition temperature of the lipid. The excess drug, if any, was separated from the liposome containing hydrocortisone by repeated washing with PBS and centrifugation, the supernatant was discarded, and the pellet resuspended in PBS. The liposome suspension was then dialyzed at room temperature as in example 2.A
against three changes of buffer A containing 3 mM
CaCl2. Hydrocortisone-cochleates were obtained as a precipitate.
Accordingly, it is an object of the instant invention to provide a means for stabilizing biologic molecules to yield a formulation with prolonged shelf life, which can be made into powder form and which later can be rehydrated to yield a biologically active molecule.
It also is an object of the instant invention to provide a formulation suitable for use as a vehicle to administer a biologically active molecule to a host. The formulation can be used to deliver a biologic molecule to the gut for absorption or to a targeted organ, tissue or cell.
A suitable biologic molecule is a polynucleotide or a bioactive compound such as a lipophilic drug.
other suitable biologic molecules are polypeptides such as hormones and cytokines or nutrients such as vitamins, minerals, and fatty acids.
Yet other suitable biologic molecules are essential oils which impart flavor.
Those and other objects have been obtained by providing a cochleate formulation comprising the following components:
a) a biologically relevant molecule component to be stabilized or delivered, b) a negatively charged lipid component, and c) a divalent cation component.
In a preferred embodiment, the cochleate formulation is administered orally.
The instant invention further provides a WO 97/30725 PCTIUS97l02632 -cochleate formulation containing a polynucleotide wherein said polynucleotide-cochleate comprises the following components:
a) a polynucleotide component, b) a negatively charged lipid component, and c) a divalent cation co~tponent.
The polynucleotide can be one which is expressed to yield a biologically active polypeptide or polynucleotide. Thus, the polypeptide may serve as an immunogen or, for example, have enzymatic activity. The polynucleotide may have catalytic activity, for example, be a ribozyme, or may serve as an inhibitor of transcription or translation, that is, be an antisense molecule. If expressed, the polynucleotide would include the necessary regulatory elements, such as a promoter, as known in the art.
The instant invention further provides a cochleate formulation containing a polypeptide, wherein said polypeptide-cochleate comprises the following components:
a) a polypeptide component b) a negatively charged lipid component, and c) a divalent cation component.
A specific example is an insulin cochleate.
The instant invention also provides a cochleate formulation containing a lipophilic drug, wherein said drug-cochleate comprises the following components:
a) at least one drug, b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Thus, the drug may be an inhibitor of viral replication such as that used in the treatment of HERPES (acyclovir), or one prescribed for it~s antifungal effect on mycotic infections (miconazole nitrate). The drugs may also be those with specific targeted effects on different physiological systems such as anesthetics (propofol) which effect the nervous system, or immunosuppressants, such as cyclosporin A, which inhibit immune cell function.
Other lipophilic drugs may also be selected from the groups of anti-infectious, anti-cancer, steroidal anti-inflammatory, non-steroidal anti-inflammatory, tranquilizer, or vasodilatory agents.
The instant invention further provides a cochleate formulation containing a nutrient, wherein said nutrient-cochleate comprises the following components:
a) at least one nutrient, b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Specific examples include vitamin A-, polyunsaturated fatty acids- and mineral-cochleates.
The instant invention further provides a cochleate formulation containing a flavor, wherein said flavor-cochleate comprises the following components:
a) at least one essential oil or extract, WO 97!30725 PCT/US97/02632 b) at least one negatively charged lipid component, and c) at least one divalent cation component.
Examples include flavor substances generally associated with essential oils and extracts obtained from botanical sources such as herbs, citrus, spices and seeds. Oils/extracts are sensitive to degradation by oxidation, and because the processing of the natural oils and extracts often involves multiettp operations, costs are generally considered to be higher. The advantage of an oil/extract-cochleate would be in the stabilization of these otherwise volatile and expensive flavor substances. Flavor-cochleates can also be incorporated into consumable food preparations as flavor enhancers.
The advantages of cochleates are numerous.
The cochleates have a nonaqueous structure while not having an internal aqueous space, and therefore cochleates:
(a) are more stable than liposomes because the lipids in cochleates ate less susceptible to oxidation;
(b) can be stored lyophilized which provides the potential to be stored for long periods of time at room temperatures, which would be advantageous for worldwide shipping and storage prior to administration;.
(c) maintain structure even after lyophilization, whereas liposom~ structures are destroyed by lyophilization;
(d) exhibit efficient incorporation of biological molecules, particularly with hydrophobic -moieties into the lipid bilayer of the cochleate structure;
(e) have the potential for slow or timed release of the biologic molecule in vivo as cochleates slowly unwind or otherwise dissociate;
(f) have a lipid bilayer matrix which serves as a carrier and is composed of simple lipids which are found in animal and plant cell membranes, so that the lipids are non-toxic, non-immunogenic and non-inflammatory;
(g) contain high concentration of divalent cation, such as, calcium, an essential mineral;
(h) are safe, the cochleates are non-living subunit formulations, and as a result the cochleates have none of the risks associated with use of live vaccines, or with vectors containing transforming sequences, such as life threatening infections in immunocompromised individuals or reversion to wild type infectivity which poses a danger to even healthy people;
(i) are produced easily and safely; and (j) can be produced as defined formulations composed of predetermined amounts and ratios of biologically relevant molecules, including polypeptides, carbohydrates and polynucleotides, such as DNA, lipophilic drugs, and nutrients such as vitamins, minerals and fatty acids.
The advantages of oral administration also are numerous. An oral route has been chosen by the WHO
Children's Vaccine Initiative because of ease of administration. Oral vaccines are less expensive and much safer to administer than parenterally (intramuscular or subcutaneous) administered vaccines. The use of needles adds to the cost, and - g -also, unfortunately, in the field, needles are often reused.
~EBCRIPTI~~ OF THE DRANINAB
Figure 1 is a schematic representation of a plain lipid cochleate.
Figure 2 shows the structure of polypeptide-lipid vesicles with integrated membrane proteins.
Figure 3 summarizes the various alternative procedures for the preparation of cochleates.
Figures 4(A) and 4(B) show serum antibody titers in mine following oral administration of influenza poiypeptide-cochleates.
Figure 5 is a graph showing the results of oral administration of polypeptide-cochleates when challenged with live virus.
Figure 6 is a graphic representation of serum antibody titers in mice following oral administration of Sendai-cochleates.
Figure 7 is a graph depicting the induction of antigen-specific cytotoxic splenocytes following oral administration of Sendai cochleates.
Figure 8 provides a series of bar graphs depicting serum glucose levels before and after oral insulin administration.
DL"fl~rIhED DESCRIPTIOI~T OF THE INVED1TION
The instant inventors have now found surprisingly and have demonstrated that cochleates themselves be used as means for stabilizing and delivering biologic molecules. The cochleates survive the harsh acid environment of the stomach, protecting the susceptible biologic molecules immersed therein, probably by virtue of their unique multilayered precipitate structure. It is likely that cochleates then are taken up by microfold cells (M cells) in the small intestine.
The instant inventors have demonstrated that oral administration by drinking cochleates containing the glycoproteins and viral lipids from the surface of influenza or Sendai viruses plus phosphatidylserine and cholesterol, stimulate both mucosal and circulating antibody responses. In addition, strong helper cell (proliferative) and killer (cytotoxic) cell responses also are generated. Perhaps most impressively, oral administration of the influenza cochleates protects against intranasal challenge with live virus.
Those results are unexpected for a number of reasons.
It was not known and was nat expected that the cochleates would survive the stomach and protect the polypeptides associated with them from the acid environment and degradative enzymes. It is known that without the presence of at least 3 mM calcium, the cochleates begin to unwind and form liposomes.
It was possible, in fact likely, that the cochleates would not remain intact during the transit from the mouth, down the esophagus and through the stomach. If cochleates did come apart, they would be digested as food.
Also, having survived the stomach, that the cochleates would interact in an effective way with the mucosal and circulating immune systems was unknown and unexpected. Everyone ingests large quantities of proteins, fats and sugars on a daily basis which simply get digested and used as fuel, without stimulating any kind of mucosal or circulating immune responses. Thus, the cochleates deliver molecules Which retain biologic activity at the delivery site within the host.
As used herein, the term "immune response"
means either antibody, cellular, proliferative or cytotoxic activities, or secretion of cytokines.
Also, as used herein, the term "antigen" is meant to indicate the polypeptide to which an immune response is directed or an expressible polynucleotide encoding that polypeptide.
"Polynucleotide" includes DNA or RNA, as well as antisense and enzymatically active molecules.
Thus the biologically relevant molecule can be the polynucleotide itself, the transcript thereof or the translated polypeptide encoded thereby.
"Polypeptide" is any oligomer or polymer of amino acids . The amino acids can be L-amino acids or D-amino acids.
A "biologically relevant molecule" is one that has a role in the life proces es of a living organism. The molecule may be organic or inorganic, a monomer or a polymer, endogenous to a host organism or not, naturally occurring or synthesized in vitro and the like. Thus, examples include, vitamins, minerals, amino acids, toxins, microbicides, microbistats, co-factors, enzymes, polypeptides, polypeptide aggregates, polynucleotides, lipids, carbohydrates, nucleotides, starches, pigments, fatty acids, fatty acids of polyunsaturated form, flavored essential oils or extracts, hormones, cytokines, viruses, organelles, steroids and other multi-ring structures, saccharides, metals, metabolic poisons, drugs and the like.
The instant invention also can be practiced using whole cells other subcellular replicative entities, such as viruses and viroids. Hence, bacteria, yeasts, cell lines, viruses and the like can be mixed with the relevant lipid solution, caused to precipitate to yield structures wherein the cells and the like are fixed within the cochleate structure.
Polypeptides are suitable molecules to be incorporated with cochleates. The procedure for preparing cochleates ie set forth in greater detail hersinbelow. The polypeptide is suspended in a suitable aqueous buffer. The lipids are dried to form a thin film. Then the aqueous buffer is added to the lipid film. The vessel is vortexed and then the sample dialyzed against a cation-containing buffer.
In that way, for example, cochleates carrying insulin can be obtained. The insulin cochleates were made with a 1 mg/ml solution of insulin, but various other beginning concentrations of insulin can be used to obtain cochleates loaded with varying concentrations of insulin.
Recent studies indicate that the direct injection of DNA plasmids can lead to the expression of the proteins encoded by those plasmids resulting in humoral and cell mediated immune responses, see, for example, Wang et al., Proc. Natl Acad. Sci. 90: 4156'4160 (1993); Zhu et al., Science 261: 209-211 (1993). Those studies indicate that DNA vaccines could provide a safe and effective alternative for human vaccination. Those studies also suggest that DNA vaccines could benefit from simple, more efficient delivery systems.
The use of lipids to facilitate the delivery, entry and expression of DNA in animal cells is well documented, see, for example, Philip et al., Col.
dell Biol. 14: 2411-2418 (1994). Indeed, DNA-lipid complexes currently form the basis for a number of human gene therapy protocols.
Because cochleates are stable structures which can withstand a variety of physiologic conditions, cochleates are suitable means for delivering biologic molecules, such as, polypeptides or polynucleotides, to a selected site in a host. The polypeptide or polynucleotide is incorporated into and integral with the cochleate structure. Thus the polygeptide or polynucleotide, which may need to be expressed, are protected from degrading proteases and nucleases.
The cochl.eates used in the instant invention can be prepared by known methods such as those described in U.S. Patent No. 4,663,161, filed 22 April 1985, U.S. Patent No. 4,871,488, filed 13 April 1987, S. Could-Fogerite et al., Analytical Biochemistry, Vol. 148, pages 15-25 (1985); S.
Could-Fogerite et al., ~ van es in Membrane Biochemistry a_f~1 Bioen~~g~etics, edited by Kim, C.H., Tedaschi, T., Diwan, J.J., and Salerno, J.C., Plenum Press, New York, pages 569-586 (1988); S.
Could-Fogerite et al., en , Vol. 84, pages 429-438 (1989); Litiosome Technoloav, 2nd Edition, Vol. I, Liposome Preparation and Related Techniques, Vol. II, Entrapment of Drugs and Other Materials, and Vol. III, Interactions of Liposomes with the Biological Milieu, all edited by Gregory Gregoriadis (CRC Press, Boca Raton, Ann Arbor, London, Tokyo), Chapter 4, pp 69-80, Chapter 10, pp 167-184, and Chapter 17, pp. 261-276 (1993); and R.J. Mannino and S. Gould-Fogerite, Liposome Mediated Gene Transfer, Biotechniaues, Vol. 6, No.
1 (1988), pp. 682-690.
The polynucleotide can be one which expresses a polypeptide, that is, pathogen membrane polypeptides, aberrant or atypical cell polypeptides, viral polypeptides and the like, which are known or which are suitable targets for host immune system recognition in the development of immunity thereto.
The polynucleotide may express a polypeptide which is biologically active, such as, an enzyme or structural or housekeeping protein.
Also, the polynucleotide may be one which necessarily is not expressed as a polypeptide but nevertheless exerts a biologic effect. Examples are antisense molecules and RNA's with catalytic activity. Thu~c, the ~xpressed sequence may on transcription produce an RNA which is complementary to a message which, if inactivated, would negate an undesired phenotype, or produce an RNA which recognizes specific nucleic acid sequences and cleaves same at or about that site and again, the non-expression of which would negate an undesired phenotype.
The polynucleotide need not be expressed but may be used as is. Thus, the polynucleotide may be an antisense molecule or a ribozyme. Also, the polynucleotide may be an immunogen.
Thus, for polynucleotides, the relevant coding sequence is subcloned downstream from a suitable promoter, other regulatory sequences can be incorporated as needed, in a vector which is expanded in an appropriate host, practicing methods and using materials known and available in the art.
For examplt, two plasmids, pDOLHIVenv (AIDS
Research and Reference Reagent Program, Jan. 1991 catalog p. 113; Freed et al. J. Virol. 63: 4670 (1989)) and pCMVHIVLenv (Dr. Eric Freed, Laboratory of Molecular Immunology, NJAID, NIH) are suitable expression plasmids for use in polynucleotide-cochleates.
The plasmids contain the open reading frames for the env, tat and rev coding regions of HIV-1 (LAV strain).
pDOLHIVenv was constructed by introducing the SalI-XhoI fragment from the full length infectious molecular clone pNL4-3 into the SalI site of the retrovirus vector, pDOL (Korman et al. ~~roc. Natl.
Acad. Sci. 84: 2150 (1987)). Expression is from the Moloney murine virus LTR.
pCMVHIVLenv was constructed by cloning the same SalI-XhoI fragment into the XhoI site of the cytomegalovirus (CMV)-based expression vector p763.
The polynucleotide can be configured to encode multiple epitopes or epitopes conjugated to a known immunogenic peptide to enhance immune system recognition, particularly if an epitope is only a few amino acids in size.
To form cochleate precipitates, a majority of the lipid present should be negatively charged.
One type of lipid can be used or a mixture of lipids can be used. Phosphatidylserine or WO 9?/30725 PCT/US97/02632 phosphatidylglycerol generally have been used.
Phosphatidylinositol also forms a precipitate which converts to ligosomes on contact with EDTA. A
substantial proportion of the lipid can, however, be neutral or positively charged. The instant inventors have included up to 40 mol% cholesterol based on total lipid present and routinely make polypeptide-lipid or polynucleotide-lipid cochleates which contain 10 mol% cholesterol and 2 0 % v i r a 1 m a m b r a n a 1 i p i d s .
Phosphatidylethanolamine, plain or cross-linked to polypeptides, also can be incorporated into cochleates.
While negatively charged lipid can be used, a negatively charged phospholipid is preferred, and of those phosphatidylserine, phoaphatidylinositol, phosphatidic acid and phosphatidylglycerol are most pref erred .
One skilled in the art can determine readily how much lipid must be negatively charged by preparing a mixture with known concentrations of negative and non-negative lipids and by any of the procedures described herein, determining whether precipitates form.
Th~re are several known procedures for making the cochleates of the instant invention and those are schematized in Figure 3.
A suitable procedure for making cochleates is one wherein a negatively charged lipid such as phosphatidylserine, phosphatidylinositol, phosphatidic acid or phosphatidylglycerol in the absence or presence of cholesterol (up to 3:1, preferably 9:1 w/w) are utilized to produce a suspension of multilamellar lipid vesicles containing or surrounded by a biologically relevant molecule (polypeptide, polysaccharide or polynucleotide, such as DNA) which are converted to small unilamellar protein lipid vesicles by sonication under nitrogen. Alternatively, to avoid daaage, the biologically relevant molecule can be added to the solution following sonication. The vesicles are dialyzed at room temperature against buffered divalent cation, e.g., calcium chloride, resulting in the formation of an insoluble precipitate which may be presented in a form referred to as a cochleate cylinder. After centrifugation, the resulting pellet can be taken up in buffer to yield the c~hleate solution utilized in the instant invention.
In an alternative and preferred embodiment, an amount of negatively charged lipid, e.g., phosphatidylserine and optionally, cholesterol in the same proportions as above and equal to from about 1 to 10 times the weight, preferably equal to four times the weight of the viral or other additional lipids (including polyunsaturated fatty acids or essential oils) are utilized to prepare the cochleates. Either a polypeptide, a mineral such as calcium, magnesium, barium, iron or zinc, a vitamin such as vitamins A, D, E or K, a lipophilic drug, a flavor, a carbohydrate or polynucleotide, such as DNA, is added to the solution. That solution then is dialyzed against buffered divalent cation, e.g., calcium chloride, to produce a precipitate which can be called a DC (for direct calcium dialysis) cochleate.
An additional, related method for reconstituting cochleates has been developed and is called the LC method (liposomes before cochleates).
The initial steps involving addition of extracted polypeptide, polysaccharide,polynucleotide, such as DNA or combinations thereof, to dried down negatively charged lipid and cholesterol are the same as for the DC method. However, the solution next is dialyzed against buffer (e.g., 2 mM TES, 2 mM L-histidine, 100 mM NaCl, pH 7.4) to form small liposomes containing the polypeptide, polynucleotide, such as DNA, and/or polysaccharide.
A divalent cation, e.g., calcium, then is added either directly or by dialysis to form a precipitate which can consist of cochleates.
In the above procedures for making the cochleates of the instant invention, the divalent cation can be any divalent cation that can induce the formation of a cochleate or other insoluble lipid-antigen structures. Examples of suitable divalent cations include Ca;z, Mg+Z, Ba'2, and Zn~z or Fe~2 other elements capable of forming divalent ions or other structures having multiple positive charges capable of chelating and bridging negatively charged lipids.
Cochleates made with different cations have different structures and convert to liposomes at different rates. Because of those structural differences, the rate of release of the biologically relevant molecules contained therewith varies. Accordingly, by combining cochleates made with different cations, formulations which will release the biologically relevant molecule over a protracted period of time are obtainable.
The amount of biologically relevant molecule incorporated into the cochleates can vary. Because of the advantageous properties of cochleates generally, lesser amounts of biologically relevant molecule can be used to achieve the same end result as compared to using known delivery means.
An artisan can determine without undue experimentation the optimal lipid: biologically relevant molecule ratio for the targeted purposes.
Various ratios are configured and the progress of precipitation of each sample is monitored visually under a phase contrast microscope. Precipitation to fona, for example, cochleates, is monitored readily. Then, the precipitates can be administered to the targeted host to ascertain the nature and tenor of the biologic response to the administered cochleates.
It should be evident that the optimized ratio for any one use may range from a high ratio, for example, to minimize the use of a rare biologically relevant molecule, to a low ratio to obtain maximal amount of biologically relevant molecule in the cochleates.
Cochleates can be lyophilized and stored at room temperature indefinitely or can be stored in a divalent cation-containing buffer at 4°C for at least six months.
The cochleate formulations also can be prepared both with and without fusogenic molecules, such as Sendai virus envelope polypeptides. Prior studies with proteoliposomes have demonstrated that cytoplasmic delivery of lipo:ome contents requires a fusogenic liposome bilayer. The exact role of Sendai virus enwelope polypeptides in facilitating the immune response to polypeptide-cochleates as yet is not clear.
It is preferred to use cochleates without fusogenic molecules over fu:ogenic molecule cochleates because of a more simple structure and ease of preparation favors eventual use in humans.
Because polynucleotides are hydrophilic molecules and cochleates are hydrophobic molecules that do not contain an internal aqueous space, it is surprising polynucleotid~s can be integrated into cochleates. The polynucleotida: are not exposed on the surface of the cochleates because the polynucleotides are resistant to nucleases.
In the case of polynucleotide cochleates, considerations for dosage parallel the standard methodologies regarding vaccines as known in the art. Also, methods for using polynucieotides in liposomes and the "nak~sd DNA" are available to serve as a baseline for empirically determining a suitable dosing regimen, practicing known methods.
For example, a suitable scheme for determining dosing is as follows.
The initial dose of polynucleotides in cochleates admin~.stered by injection to animals is selected to be about 50 fig, although it is know that as little as 2~g of tested plasmids is effective. That dose is proposed to maximize the probability of observing a positive response following a single administration of a cochleate.
Any formulations which do not elicit a response at that dose are to be considered ineffective but retained for further study.
Developing formulations which can be administered easily and non-invasively is desirable. Thus, PO administration of cochleates will be targeted and higher doses will be tried initially (100 ~Cg/animal and 200 ~,g/animal).
However, lower. doses are required for parenteral routes.
Then graded doses will be used to develop a dose response curve for each formulation. Thus, cochleates containing 50 fig, l0 ~cg, 2 ~cg, 0.4 and 0 ~g polynucleotide/animal will be inoculated with at least l0 animals per group.
Immune response or enzymatic activity are responses easily monitored when expression of the polynucleotide is required. Altered phenotype is another response for tracking efficacy of antisense or ribozyme type molecules. In the case of immune system monitoring, T cell proliferation, CTL and antibody presence at specific body sites can be evaluated, using known methods, to assess the state of specific immune response.
To determine the duration of activity of cochleate formulations, groups which have responded to a single immunization are monitored periodically for up to a year or more to determine the effective life of a cochlea~te on administration.
Animals which fail to develop a detectable response on first exposure can be re-inoculated (boosted) to provide insights into the ability of the low dose formulations to prime the immune system for later stimulation.
Pharmaceutical formulations can be of solid form including tablets, capsules, pills, bulk or unit dose powders and granules or of liquid form including solutions, fluid emulsions, fluid suspensions, semisolids and the like. In addition to the active ingredient, the formulation would comprise suitable art-recognized diluents, carriers, fillers, binders, emulsifiers, surfactants, water-soluble vehicles, buffers, solubilizers and preservatives.
An advantage of the cochleates is the stability of the composition. Thus, cochleates can be administered orally or by instillation without concern, as well as by the more traditional routes, such as topical, subcutaneous, intradernal, intramuscular and the like, Dirtct application to mucosal surfaces is an attractive delivery means made possible with cochleates.
The skilled artisan can determine the most efficacious and therapeutic means for effecting treatment practicing the instant invention.
Reference can also be made to any of numerous authorities and references including, for example, "Goodman & Gilman's, The Pharmaceutical Basis for Therapeutics", (6th Ed., Goodman, et al., eds., MacMillan Publ. Co., New York, 1980).
The cochleates of the instant invention can be used as a means to transfect cells with an efficacy greater than using currently known delivery means, such as liposomes. Hence, the polynucleotide cochleates of the instant invention provide a superior delivery means for the various avenue of gene therapy, Mulligan, Science 260: 926-931 (1993). As Mulligan noted, the many possibilities of treating disease by gene-based methods will be enhanced by improved methods of gene delivery.
The cochleates of the instant invention also serve as excellent means for delivering other biologically relevant molecules to a host. Such biologically relevant molecules include nutrients, vitamins such as vitamins A, D, E or K, co-factors, enzymes, fatty acids such as polyunsaturated forms, minerals including divalent cations such as calcium, magnesium, zinc, iron or barium, flavors and the like. Because the biologically relevant molecule is contained within the cochleate, in a non-aqueous environment, the biologically relevant molecule essentially is stabilized and preserved.
As described hereinabove, the biologically relevant molecule is added to the lipid solution and processed to form a precipitated structure comprising lipid and biologically relevant molecule. As demonstrated herein, hydrophilic molecules can be "cochleated", that is, can be made part of the cochleate structure, with little difficulty.
Also, suitable lipophilic biologically relevant molecules, such as drugs and other therapeutic compounds, are amenable to cochleation.
For example, lipophilic drugs such as eyclosporin, ivermectin and amphoterioin are readily cochleated.
Other lipophilic drugs which are amenable to incorporation into cochleates are acyclovir, propanidid, propofol, alphadione, echinomycine, miconazole nitrate, teniposide, didemnin B, hexamethylmelamine, taxol, taxatere, melphalan, adriamycin, 18-hydroxydeoxycorticosterone, rapamycine, prednisolone, dexamethazone, cortisone, hydrocortisone, pyroxicam, naproxen, diazepam, verapamil, nifedipine.
The instant invention now will be described by means of specific examples which are not meant to limit the invention.
Bovine brain phosphatidylserine in chloroform was purchased from Avanti Polar Lipids, Birmingham, Alabama in glass ampules and stored under nitrogen at -20°C. Cholesterol (porcine liver) grade I, a-D-octyl-glucopyranoside (OCG), fluorescein isothiocyanate (FITC)-dextran (average mol. wt.
67,000), metriza~mide grade I, and cheaicals for buffers and protein and phosphate determinations, were obtained from Sigma Chemical Company, St.
Louis, Missouri. Organic solvents were purchased from Fisher Scientific Co., Fairlawn, New Jersey.
Reagents for polyacrylamide gel electrophoresis were from BioRad Laboratories, Richmond, California. SloflO Sephacryl Superfine was obtained from Pharmacies, Piscataway, New Jers~y. Thick walled polycarbonate centrifuge tubes (10 ml capacity) from Beckman Instruments, Palo Alto, California, were used for vesicle preparations, washes, and gradients. A bath type sonicator, Model G112SPiG, from Laboratory Supplies Company, Hicksville, New York was used for sonications.
Virus was grown and purified essentially as describ~d by M.C. Hsu et al., Vjroloav, Vol. 95, page 476 (1979). Sendai (parainfluenza type I) and influenza (A/PR8/34) viruses were propagated in the allantoic sac of 10 or 11 day old smbryonated chicken eggs. Eggs were inoculated with 1-100 egg infectious doses (103 to 105 viral particles as determined by HA titer) in 0.1 ml of phosphate buffered saline (0.2 gm/L KC1, 0.2 gm/L KH2P0', 8.0 gm/L NaCl, 1.14 gm/L NazFI-P04, 0.1 gm/L CaCl2, 0.1 gm/L MgC126H20 (pH 7.2)). Eggs were incubated at 37°C for 48 to 72 hours, followed by incubation at 4°C for 24 to 48 hours. Allantoic fluid was collected and clarified at 2,000 rpm for 20 minutes at 5°C in a Damon IEC/PR-J centrifuge. The supernatant was then centrifuged at 13,000 rpm for 60 minutes. This and all subsequent centrifugations were performed in a Sorvall RC2-B
centrifuge at 5°C using a GG rotor. The pellets were resuspended in phosphate buffered saline (pH
7.2) by vortexing and sonicating, followed by centrifugation at 5,000 rpm for 20 minutes. The pellet was resuspended by vortexing and sonicating, diluting, and centrifuging again at 5,000 rpm for 20 minutes. The two 5,000 rpm supernatants were combined and centrifuged at 13,000 rpm for 60 minutes. The resulting pellets were resuspended in phosphate-buffered saline by vortexing and sonicating, aliquoted, and stored at -70°C.
Sterile technique and materials were used throughout viral inoculation, isolation, and purification.
Virus stored at -70°C was thawed, transferred to sterile thick-walled polycarbonate tubes and diluted with buffer A (2 mM TES, 2 mM L-histidine, 100 mM NaCl (pH 7.4)). Virus was gelleted at 30,000 rpm for 1 hour at 5°C in a Beckman TY65 rotor. The supernatant was removed and the pellet resuspended to a concentration of 2 mg viral protein per ml of extraction buffer (EB) (2 M NaCl, 0.02 M sodium phosphate buffer (pH 7.4)) by vortexing and sonicating. The nonionic detergent a-D-octyl-glucopyranoside was then added to a concentration of 2% (w/v). The suspension was mixed, sonicated for 5 seconds and placed in a 37°C
water bath for 45 minutes. At 15, 30 and 45 minute incubation times, the suspension was removed briefly for mixing and sonication. Nucleocapsids were pelleted by centrifugation at 30,000 rpm for 45 minutes in a TY65 rotor. The resulting clear supernatant was removed and used in the formation of viral glycoprotein-containing cochleates. Some modification of the above procedure may have to be employed with other membrane proteins. Such modifications are well known to those skilled in the art.
A. DC Cochleat~s.
An amount of phosphatidylserine and cholesterol (9:1 wt ratio) in extraction buffer and non-ionic detergent as described hereinabove was mixed with a pre-selected concentration of polynucleotide and the solution was vortexed for 5 minutes. The clear, colorless solution which resulted was dialyzed at room temperature against three changes (minimum 4 hours per change) of buffer A (2 mM TES N-Tris[hydroxymethyl]-methyl-2 aminoethane sulfc~nic acid, 2 mM L-histidine, 10o mM
NaCl, pH 7.4, also identified as TES buffer) containing 3 mM CaCl2. The final dialysis routinely used is 6 mM Ca2', although 3 mM Caz' is sufficient and other concentrations may be compatible with cochleate formation. The ratio of dialyzate to buffer for each change was a minimum of 1:100. The resulting white calcium-phospholipid precipitates have been termed DC cochleates. When examined by light microscopy (x 1000, phase contrast, oil), the suspension contains numerous particulate structures up to several microns in diameter, as well as needle-like structures.
B. LC Cochleates.
An amount of phosphatidylserine and cholesterol (9:1 wt ratio) in extraction buffer and non-ionic detergent as described hereinabove was mixed with a pre-selected concentration of polynucleotide and the solution was vortexed for 5 minutes. The solution first was dialyzed overnight using a maximum ratio of 1:200 (v/v) of dialysate to buffer A without divalent cations, followed by three additional changes of buffer leading to the formation of small protein lipid vesicles. The vesicles were converted to a cochleate precipitate, either by the direct addition of Caz' ions, or by dialysis against two changes of buffer A containing 3 mM Ca2+ ions, followed by one containing buffer A
with 6 mM Ca2+.
IM1LONE RBB~O;~BB TO OI~tAL~Y
DEL~CVERRD PROT:~,;~~COC LB~lIT~ VACCI118B
To make the vaccine, influenza virus was grown, purified, and the glycoproteins and lipids extracted and isolated as described in Example 1.
Protein-cochleates were made according to the '~LC
cochleate~' procedure described above.
Cochleate vaccines containing the glycoproteins and lipids from the envelope of influenza virus and phosphatidylserine and cholesterol were given to mice by gradually dispensing 0.1 ml liquid into the mouth and allowing it to be comfortably swallowed. Figures 4(A) (from Experiment A) and 4(B) (from Experiment B) show resulting total circulating antibody levels specific for influenza glycoproteins, as determined by ELISA. Antibody titer is defined as the highest dilution that still gives the optimal density of the negative control.
In Experiment A that generated the data shown in Figure 4(A), initial vaccine doses of 50, 25, 12.5 or 6.25 ~cg of glycoproteins (groups 1 through 4 respectively) were administered at 0 and 3 weeks.
The third and fourth immunizations (6 and 19 weeks) were at one fourth the dose used for the initial two immunizations. Bleed 1 - Bleed 6 occurred at 0, 3, 6, 9, 19, and 21 weeks. The data demonstrate that high circulating antibody titers can be achieved by simply drinking cochleate vaccines containing viral glycoproteins. The response is boostable, increasing with repeated administration, and is directly related to the amount of glycoprotein in the vaccine.
Those observations were confirmed and extended in Experiment B that generated the data shown in Figure 4(B). The dose range was expanded to include 100 dug and 3.1 ~g initial doses. Vaccine was given at 0, 3 and 15 weeks, with the third immunization at one fourth the dose of the initial two. Bleed 1 to Bleed 6 occurred at 0, 3, 6, 15 and 16 weeks. Circulating influenza glycoprotein-specific responses were detectable after a single administration for the top five doses, and for all groups after two feedings. The WO 97!30725 PCT/US97102632 data shown is for pooled sera from each group, but all mice given the four highest doses, and four of five mice in groups f ive and s ix, responded to the vaccine with circulating antibody titers ranging from 100 to 102,400. Group seven, which received no vaccine, had titers less than 50 for ml! mice at all time points.
The antibody response is long lived. Titers 13 weeks after the third immunization (Figure 4(A), bleed 5) and 12 weeks after the second immunization (Figure 4(B), bleed 4) remained the same or within one dilution higher or lower than seen at 3 weeks after the previous boost.
To determine whether oral administration of the subunit vaccine described in Example 2 could lead to protective immunity in the respiratory tract, the mice described in Experiment B of Example 2 were immunized with cochleates at 0, 3 and 15 weeks. The immunized mice were challenged by intranasal application of 2.5 x 109 particles of influenza virus at 16 weeks. Three days after viral challenge, mice were sacrificed, and lungs and trachea were obtained. The entire lung or trachea was triturated and sonicated, and aliquots were injected into embryonated chicken eggs to allow amplification of any virus present. After three days at 37°C, allantoic fluid was obtained from individual eggs and hemagglutination (HA) titers were performed.
Mice were also challenged with live influenza intranasally following oral cochleate administration in Experiment A of Example 2. Lungs were obtained three days later and cultured to detect presence of virus.
_ 29 _ The combined data for the two experiments is given in Table 1. The results also are shown graphically in Figure 5.
Vaccine Tracheal Lung~Z Lunga9 Doee J~9 Infected/TotInfected/TotInfected/Tota Protein al al 1 6.25 0/5 5/5 6/10 3.12 4/5 5/5 5/5 I
1. Mice from Experiment B.
2. Mice from Experiment B.
3. Mice from Experiments A and B.
The data in Table 1 shows that all five of the unvaccinated mice had sufficient virus in the trachea to infect the embryonated chicken eggs (greater than 103 particles per trachea or at least one egg infectious dose {EID) per 0.1 ml of suspension). In contrast, the oral vaccine provided a high degree of protection from viral replication in the trachea. All mice in groups 1, 3 and 5 of Experiment B were negative for virus. Two mice in group 2, 1 in group 4, and 4 in group 6 (the lowest vaccine dose) of Experiment B had sufficient virus to test positive in this very sensitive assay used to detect presence of virus.
The oral protein cochleate vaccine also provided protection against viral replication in the lungs. All twenty mice which received the four highest doses of vaccine were negative for virus when lung suspensions were cultured in embryonated chicken eggs (Table 1). All mice in the groups immunized with 6.25 beg and 3.1 ~cg glycoproteins and all mice in the unvaccinated control were positive for virus.
Even in the lowest two vaccine doses, there was some inhibition of viral replication. When lung suspensions were diluted 1/10 and inoculated into eggs, only one animal in the groups immunized with 6.25 ~cg was positive, as compared to three in the groups immunized with 3.12 ~g and three in the unvaccinated control. Culturing of 1/100 dilutions resulted in one positive animal in each of the groups immunized with 6.25 and 3.12 fig, but 3 of 5 remained positive in the unvaccinated group. In addition, for the two animals in the group that was immunized with 3.12 ~cg, but Which were negative at 1/100, only 50% of the eggs were infected at 1/10 and had low HA titers. In contrast, for the unvaccinated group, all eggs were infected and produced maximal amounts of virus at 1/10 and 1/100 dilutions.
C57BL/6 mice were given cochleates containing Sendai virus glycoproteins orally at 0 and 3 weeks. They were bled at 0 (bleed 1), 3 (bleed 2}, and 6 (bleed 3) weeks. Group 1 received approximately 50 ~cg protein, Group 2 about 25 ~cg, Group 3 about 12.5 fig, Group 4 about 6.25 fig, and Group 5 (negative control) received 0 ~g protein. The levels of Sendai specific antibodies in the serum pooled from 5 mice in each dose group were determined by ELISA. The results are shown in Figure 6.
It can be seen that strong antibody responses were generated, that the magnitude of the response was directly related to the immunizing dose, and that the magnitude of the response increased (boosted) after a second immunization.
The response was extremely long-lived. The response is predominantly IgG, indicative of the involvement in T cell help and establishment of long-term memory cells associated with a secondary immune response. Surprisingly, the lowest dose which initially had the loawest response, now had the highest circulating antibody levels. This may be due to the immune system's down regulation of the very high responses originally but allowing the low response to slowly climb. This may also indicate a persistence and slow release of antigen. It is also interesting and consistent with the use of the oral route of immunization that significant IgA titers are generated and maintained.
A 50 ~g protein dose of Sendai glycoprotein-containing cochleates was given orally. Two weeks later the animal (BALB/c mouse) was sacrificed and spleen cells obtained. Cytolytic activity of the spleen cells was measured by their ability to cause the release of chromium-51 from target cells presenting Sendai antigens. The non-immunized mouse did not kill Sendai virus (SV) pulsed cells with in culture restimulation (N/SV/SV) or non-Sendai presenting cells (N/N/N). (Figure 7) In contrast, Sendai cochleate immunized mice killed SV pulsed targets to a very high degree and rion-pulsed targets to a lesser degree.
Cytolytic activity is crucial to clearance of cells infected viruses, or intracellular parasites or to cancer cells. It is a highly desirable activity for a vaccine to induce, but classically has not been seen with most non-living vaccines.
This is an important feature of protein-cochleate vaccines.
Eight week old BALB/c female mice were immunized IM
twice with various polynucleotide-cochleate formulations, polynucleotide alone and controls and then splenocytes from the mice were tested for the ability to proliferate in response to a protein encoded by the polynucleotide.
Cochleates with and without fusogenic Sendai virus protein were prepared as described hereinabove. The polynucleotide used was the pCMVHIVLenv plasmid. The solution containing lipid and extracted Sendai virus envelop proteins as described hereinabove and polynucleotide were mixed at a 10:1 (w/w) ratio and 50:1 (w/w) ratio. That protocol yielded four groups, cochleate/DNA, 10:1; cochleate/DNA, 50:1;
SV-cochleate/DNA, 10:1; and SV-cochleate/DNA, 50:1. Naked DNA
was used at a rate of 10 ~g/mouse and 50 ~g/mouse. The control was buffer alone. Mice were immunized twice, 15 days apart at 50 ~1/mouse.
Splenocytes were obtained and tested in a T-cell proliferation assay using tritiated thymidine, as known in the art. Control cultures contained no antigen or con A. The antigen used was p18 peptide, at 1 mM, 3 mM and 6 mM. Cells were harvested at days 2, 4 and 6 following preparation of the splenocyte cultures.
The naked DNA provided a marginal response above background. All four cochleate preparations yielded a p18-specific response which increased over time. At six days, the response was about four times above background.
The DNA concentration range at the 10:1 ratio was about 120-170 ;eg/ml. At the 50:1 (w/w) ratio; the DNA concentration was about 25-35 ~g/ml.
The polynucleotide-cochleates were exposed to micrococcal nuclease and little or no nucleic acid degradation was observed.
The polynucleotide encapsulation efficiency was found to be about 50% based on quantificat ~n of free DNA from lipid, that is present in the supernatar- following a precipitation reaction. After washing the precipitate and opening the structures by removing cation about 35% of the DNA was recovered.
EX~MBhE 5 In similar fashion, splenocytes from animals immunized as described in Example 4, were tested for antigen specific cytotoxic activity using a chromium release assay using labelled H-2 compatible target cells known to express an HIV protein, such as gp160. The responder cells can be stimulated by brief exposure to purified HIV peptides.
On prestimulation, animals exposed to polynucleotide cochleates demonstrated specific cytotoxic splenocytes directed to gpl6o, with nearly 100% cytotoxicity observed at an effector:target ratio of 100.
Fifteen mg of insulin were added to 15 ml of extraction buffer (EB) in a 50 ml plastic tube. Then 300 mg of OCG were added to the mixture. The resulting suspension was colloidal and not clear at pH '~.4. The solution was titrated with 1 N
NaOH to pH 8.5, resulting in a clear solution.
In a separate vessel, 6.8 ml of a 10 mg/ml solution of phosphatidylserine and 1.5 ml of a 5 mg/ml solution of cholesterol were mixed amd then dried to yield a thin film. The insulin solution was added to the vessel yielding a colloidal suspension. The suspension was vortexed for seven minutes and then set on ice for one hour. The pH of the solution was adjusted to 9-9.5 with 1 N NaOH, the sample was filter sterilized and placed in dialysis tubing at about 2 ml per bag.
Two different dialysis schedules were used.
A. DC cochleates:
1. +z 100Zm1 overnight 1 x TES pH 9.0 containing+2 3 mM +Ca , Zn or Mg 2. +Z 2502 ml 4h 1 x TES pH 8.5 containing+Z 3 mM Ca , Zn or Mg I
3, 2502m1 4h 1 x TES pH 8.0 containing 3 +
+2 Zn or Mg Ca , mM
2502m1 4h lxTES pH 7.4 containing 6 ;
;Z Zn or ~ Mg Ca , mM
~g, LC cochleates:
1, 100 overnight x TES, pH 9.0 ml 1 2, 250 4h, 1 x TES, pH 9.0 ml 3, 250 4h 1 x TES, pH 9.0 ml 4, 1002m1 overnight x TES, pH 9.0 containing 3 ; 1 ;
;
+Z Zn or Mg Ca , mM
5, ' 250 4h 1 x TES, pH 8.5 containing ml 'z ' or Mg' 3 mM Ca , Zni 6, 250 4h 1 x TES, pH 7.4 contair~ing ml +z +
Z
or Mg 6 mM Ca , Zn' Following dialysis, the resulting precipitate was found to comprise numerous cochleates.
EgAMPLE 7 Mice were given insulin cochleate samples orally. Serum glucose levels were measured at 0 time, (prior to cochleate administration), 30 min. and 60 min. post administration using standard methods. Cochleate formulations of Example 6 with a starting concentration of 1 mg insulin/ml solution were used.
Each mouse was administered 100 u1 or 200 ul.of the designated preparations as indicated: For comparison, one mouse was given the standard commercial human insulin, Humulin R, by intraperitoneal administration.
* Trademark Sample Volume Given Serum Glucose mg/dl 0 Time 30 min. 60 min.
LC Ca++ 200 u1 100 49.12 43 I~C Ca++ 200 u1 102.9 252.4 61.9 .
Humulin R 200 u1 88.8 66 48.5 *
Oral administration of insulin affected serum glucose levels. .
EB,AMPLE 8 Insulin cochleates as produced in Example . were fed orally to three-month-old female BALB/c mice made diabetic through intraperitoneal injection of streptozotocin, practicing known methods. Two days after exposure to streptozotocin, the mice were allocated into groups of five and administered with oral insulin cochleates at.200 ~1 per mouse. Other mice were injected with 2 IU of Fiumulin R.
Serum samples were'obtained at time 0, prior.
to insulin dosing, and two hours post insulin administration. Glucose levels were measured using a kit from Sigma (St. houis). Control animals were untreated, that is, received no streptozotocin or * Trademark SUBSTITUTE SI~IEET (RULE 26) Figure 8. orally administered insulin, simply by drinking, was effective in reducing blood glucose levels. No reduction in blood glucose was observed in control animals.
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
NOTRIENT-COCHLEATES
Vitamin A in cochleates Vitamin A (retinol) is sensitive to air-oxidation and is inactivated by ultraviolet light.
Stability of vitamin A is enhanced by its encapsulation into the intra-bilayers of cochleates. Incorporation of vitamin A into the intra-bilayer phospholipid region of a cochleate was achieved as follows: appropriate proportions of vitamin A, phosphatidylserine and cholesterol were dissolved in an organic solvent such as chloroform or a 1:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a lipid-vitamin film. Buffer was added and the mixture was vortexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaCl2. Vitamin A-cochleates were obtained as a precipitate.
~E11~IPLE 4 Bol~runaaty~at.d fatty a~~aids is coahleatee Unsaturated fatty acids are biologically important in that they control the level of cholesterol in blood and are the precursors of prostaglandins. The limitation in incorporating polyunsaturated fats in food is their susceptibility to oxidation. In the presence of oxygen, unsaturated fatty acids undergo a series of reactions called autoxidation, whose final products are aldehydes and ketones, which provide fishy unpleasant odor and flavor. An interesting way to control autoxidation of unsaturated fats is to incorporate them into the bilayers of a cochleate.
The polyunsaturated fatty acids (PUFA) will be placed in close contact with oxygen-stable saturated fatty esters of the phosphatide.
Incorporation, for example, of fish oils (which are rich in PUFA) into the intra-bilayer phospholipid region of a cochleate was achieved as follows:
appropriate proportions of fish oil, phosphatidylser~.ne and cholesterol (or optionally alpha-tocopherol as a stablizer and autoxidant), were dissolved in organic solvent such as chloroform or a 1:1 methanol: chloroform mixture.
The solvent was then removed under reduced pressure to yield a lipid film. Buffer was added and the mixture was vbrtexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaCl2. PUFA-cochleates were obtained as a precipitate.
B~~~PhE 10 Flavors are volatile and sensitive to oxidation. Controlled release and enhanced physical and chemical stability can be achieved by the encapsulation of flavors into cochleates.
Incorporation of a flavor based on cinnamon oil into the intra-bilayer phospholipid region of a cochleate can be achieved as follows:
phosphatidylserine and cholesterol were dissolved in an organic solvent such as chloroform or a 1:i methanol: chloroform mixture, and an appropriate proportion of cinnamon oil dissolved in ethanol was added. The solvent was then removed under reduced pressure to yield a film. Huffer was added and the mixture was vortexed for several minutes. The resultant dispersion was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaClz. Cinnamon oil-cochleates were obtained as a precipitate.
hjPOPBILIC DROG COC8L8~1T$I~
~a~L$ ii llcyclo~rir in aoch~,oat~s Incorporation of acyclovir into the intra-bilayer phospholipid region of a cochleate can be achieved as follows: acyclovir/phosphatidylserine in an appropriate drug to lipid ratio was dissolved in an organic solvent such as chloroform or a 1:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a homogenous film. Buffer was added and the mixture was vortexed for several minutes at a temperature above the transition temperature of the lipid. The excess drug, if any, was separated from the liposome containing acyclovir by repeated washing with PBS and centrifugation, the supernatant was discarded, and the pellet resuspended in PBS. The liposome suspension was then dialyzed at room temperature as in example 2.A against three changes of buffer A containing 3 mM CaClZ. Acyclovir-cochleates were obtained as a precipitate.
~~~L~ iz 8y~~ oaort,~sons ~y c~,g9~hll~ata Incorporation of hydrocortisone into the intra-bilayer phospholipid region of a cochleate c a n b a a c h i a v a d a s f o 1 1 o w s hydrocortisone/phosphatidylserine in an appropriate drug to lipid ratio were dissolved in an organic solvent such as chloroform or a 2:1 methanol: chloroform mixture. The solvent was then removed under reduced pressure to yield a homogeneous film. Buffer was added and the mixture was vortexed for several minutes at a temperature above the transition temperature of the lipid. The excess drug, if any, was separated from the liposome containing hydrocortisone by repeated washing with PBS and centrifugation, the supernatant was discarded, and the pellet resuspended in PBS. The liposome suspension was then dialyzed at room temperature as in example 2.A
against three changes of buffer A containing 3 mM
CaCl2. Hydrocortisone-cochleates were obtained as a precipitate.
Claims (60)
EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS
FOLLOWS:
1. A nutrient-cochleate formulation comprising:
a) a nutrient component;
b) a negatively charged lipid component, and c) a divalent cation component.
a) a nutrient component;
b) a negatively charged lipid component, and c) a divalent cation component.
2. The nutrient-cochleate formulation of claim 1, wherein said nutrient is of a mineral, an amino acid, a vitamin, a lipid, a fatty acid, or a saccharide.
3. The nutrient-cochleate formulation of claim 1, wherein the nutrient is a mineral.
4. The nutrient-cochleate formulation of claim 1, wherein the nutrient is one of calcium, magnesium, zinc, barium, or iron.
5. The nutrient-cochleate formulation of claim 1, wherein the nutrient is an amino acid.
6. The nutrient-cochleate formulation of claim 1, wherein the nutrient is a vitamin.
.
.
7. The nutrient-cochleate formulation of claim 6, wherein the lipid soluble vitamin is one of vitamin A, vitamin D, vitamin E, or vitamin K.
8. The nutrient-cochleate formulation of claim 2, wherein the nutrient is a fatty acid.
9. The nutrient-cochleate formulation of claim 1, wherein the nutrient is one of a saturated or a polyunsaturated fatty acid.
10. The nutrient-cochleate formulation of claim 1, wherein the nutrient is a saccharide.
11. The nutrient-cochleate formulation of claim 1, wherein the nutrient is a lipid.
12. The nutrient-cochleate formulation of claim 1, wherein the nutrient is a steroid.
13. A use of a cochleate formulation comprising:
a) a nutrient component;
b) a negatively charged lipid component, and c) a divalent cation component;
for delivery of the nutrient to a cell in a host.
a) a nutrient component;
b) a negatively charged lipid component, and c) a divalent cation component;
for delivery of the nutrient to a cell in a host.
14. The use of the cochleate formulation of claim 13, wherein the nutrient is one member selected from the group consisting of a mineral, an amino acid, a vitamin, a lipid, a fatty acid, and a saccharide.
15. The use of the cochleate formulation of claim 13, wherein the nutrient is a mineral.
16. The use of the cochleate formulation of claim 13, wherein the nutrient is one of calcium, magnesium, zinc, barium, or iron.
17. The use of the cochleate formulation of claim 13, wherein the nutrient is an amino acid.
18. The use of the cochleate formulation of claim 13, wherein the nutrient is a vitamin.
19. The use of the cochleate formulation of claim 13, wherein the nutrient is one of vitamin A, vitamin D, vitamin E, or vitamin K.
20. The use of the cochleate formulation of claim 13, wherein the nutrient is a fatty acid.
21. The use of the cochleate formulation of claim 13, wherein the nutrient is a polyunsaturated fatty acid.
22. The use of the cochleate formulation of claim 13, wherein the nutrient is a saccharide.
23. The use of the cochleate formulation of claim 13, wherein the nutrient is a lipid.
24. The use of the cochleate formulation of claim 13, wherein the nutrient is a steroid.
25. A cochleate formulation comprising:
a) a soluble protein or soluble polypeptide;
b) a negatively charged lipid component, and c) a divalent cation component.
a) a soluble protein or soluble polypeptide;
b) a negatively charged lipid component, and c) a divalent cation component.
26. The cochleate formulation of claim 25, wherein said polypeptide is a toxin.
27. The cochleate formulation of claim 25, wherein said polypeptide is a conjugated protein.
28. The cochleate formulation of claim 25, wherein said protein is a hormone.
29. A use of a cochleate formulation comprising:
a) a soluble protein or soluble polypeptide;
b) a negatively charged lipid, and c) a divalent cation component;
for delivery of the protein or polypeptide to a cell in a host.
a) a soluble protein or soluble polypeptide;
b) a negatively charged lipid, and c) a divalent cation component;
for delivery of the protein or polypeptide to a cell in a host.
30. The use of the cochleate formulation of claim 29, wherein the polypeptide is one of a toxin, a conjugated protein or a hormone.
31. A drug-cochleate formulation comprising:
a) a drug;
b) a negatively charged lipid component, and c) a divalent canon component.
a) a drug;
b) a negatively charged lipid component, and c) a divalent canon component.
32. The formulation of claim 31, wherein the drug is one of an anti-viral, an anesthetic, an anti-infectious, an anti-fungal, an anti-cancer, an immunosuppressant, a steroidal anti-inflammatory, a non-steriodal anti-inflammatory, a tranquilizer, a vasodilatory agent, a steroid, a microbicide or a metabolic poison.
33. The formulation of claim 31, wherein the drug is one of acyclovir, propanidid, propofol, alphadione, echinomycine, miconazole nitrate, teniposide, vitamin B, hexamethylmelamine, taxol, taxotere, melphalan, adriamycin, cyclosporine A, 18-hydroxydeoxycorticosterone, rapamycine, prednisolone, dexamethazone, cortisone, hydrocortisone, pyroxicam, naproxen, diazepam, verapamil, or nifedipine.
34. A use of a cochleate formulation comprising:
a) a drug component;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the drug to a cell in a host.
a) a drug component;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the drug to a cell in a host.
35. The use of the cochleate formulation of claim 34, wherein the drug is one of an anti-viral, an anesthetic, an anti-infectious, an anti-fungal, an anti-cancer, an immunosuppressant, a steroidal anti-inflammatory, a non-steriodal anti-inflammatory, a tranquilizer, a vasodilatory agent, a steroid, a microbicide or a metabolic poison.
36. The use of the cochleate formulation of claim 34, wherein the drug is one of acyclovir, propanidid, propofol, alphadione, echinomycine, miconazole nitrate, teniposide, vitamin B, hexamethylmelamine, taxol, taxotere, melphalan, adriamycin, cyclosporine A, 18-hydroxydeoxycorticosterone, rapamycine, prednisolone, dexamethazone, cortisone, hydrocortisone, pyroxicam, naproxen, diazepam, verapamil, or nifedipine.
37. A pigment-cochleate formulation comprising:
a) a pigment;
b) a negatively charged lipid component, and c) a divalent cation component.
a) a pigment;
b) a negatively charged lipid component, and c) a divalent cation component.
38. A use of a cochleate formulation comprising:
a) a pigment;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the pigment to a cell in a host.
a) a pigment;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the pigment to a cell in a host.
39. A metal-cochleate formulation comprising:
a) a metal;
b) a negatively charged lipid component, and c) a divalent canon component.
a) a metal;
b) a negatively charged lipid component, and c) a divalent canon component.
40. The metal-cochleate formulation of claim 39, wherein the metal is one of Fe+2, Zn+2, Cu+2 or Mg+2.
41. A use of a cochleate formulation comprising:
a) a metal;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the metal to a cell in a host.
a) a metal;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the metal to a cell in a host.
42. The use of the cochleate formulation of claim 41, wherein the metal is one of Fe+2, Zn+2, Cu+2, or Mg+2.
43. A compound with a mufti-ring structure-cochleate formulation comprising:
a) a compound with a multi-ring structure;
b) a negatively charged lipid component, and c) a divalent canon component.
a) a compound with a multi-ring structure;
b) a negatively charged lipid component, and c) a divalent canon component.
44. A use of a cochleate formulation comprising:
a) a compound with a multi-ring structure;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the compound with a multi-ring structure to a cell in a host.
a) a compound with a multi-ring structure;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the compound with a multi-ring structure to a cell in a host.
45. A saccharide-cochleate formulation comprising;
a) a saccharide;
b) a negatively charged lipid component, and c) a divalent cation component.
a) a saccharide;
b) a negatively charged lipid component, and c) a divalent cation component.
46. The saccharide-cochleate formulation of claim 45, wherein the saccharide is starch.
47. A use of a cochleate formulation comprising:
a) a saccharide;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the saccharide to a cell in a host.
a) a saccharide;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the saccharide to a cell in a host.
48. The use of the cochleate formulation of claim 47, wherein the saccharide is starch.
49. An enzyme-cochleate formulation comprising:
a) an enzyme;
b) a negatively charged lipid component, and c) a divalent canon component.
a) an enzyme;
b) a negatively charged lipid component, and c) a divalent canon component.
50. A use of a cochleate formulation comprising:
a) a enzyme;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the enzyme to a cell in a host.
a) a enzyme;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the enzyme to a cell in a host.
51. A co-factor-cochleate formulation comprising:
a) a co-factor;
b) a negatively charged lipid component, and c) a divalent canon component.
a) a co-factor;
b) a negatively charged lipid component, and c) a divalent canon component.
52. A use of a cochleate formulation comprising:
a) a co-factor;
b) a negatively charged lipid component, and c) a divalent cation component;
for delivery of the co-factor to a cell in a host.
a) a co-factor;
b) a negatively charged lipid component, and c) a divalent cation component;
for delivery of the co-factor to a cell in a host.
53. An adjuvant-cochleate formulation comprising:
a) an adjuvant;
b) a negatively charged lipid component, and c) a divalent canon component.
a) an adjuvant;
b) a negatively charged lipid component, and c) a divalent canon component.
54. A use of a cochleate formulation comprising:
a) an adjuvant;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the adjuvant to a cell in a host.
a) an adjuvant;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the adjuvant to a cell in a host.
55. A use of a cochleate formulation comprising:
a) at least one biologically relevant molecule component;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the biologically relevant molecule to a cell in a host.
a) at least one biologically relevant molecule component;
b) a negatively charged lipid component, and c) a divalent canon component;
for delivery of the biologically relevant molecule to a cell in a host.
56. The use of the cochleate formulation of claim 55, wherein the cochleate formulation is for contacting the cell.
57. The use of the cochleate formulation of claim 55, for topical application to the host.
58. A flavor-cochleate formulation comprising:
a) at least one flavor b) at least one negatively charged lipid component b) at least one divalent cation component.
a) at least one flavor b) at least one negatively charged lipid component b) at least one divalent cation component.
59. A flavor-cochleate formulation of claim 58, wherein the flavor is one member selected from the group consisting of essential oils and extracts.
60. The flavor-cochleate formulation of claim 59, wherein the essential oil is cinnamon oil.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1996/001704 WO1996025942A1 (en) | 1995-02-22 | 1996-02-22 | Cochleate phospholipids in drug delivery |
WOPCT/US96/01704 | 1996-02-22 | ||
PCT/US1997/002632 WO1997030725A1 (en) | 1996-02-22 | 1997-02-21 | Cochleat delivery vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2246754A1 CA2246754A1 (en) | 1997-08-28 |
CA2246754C true CA2246754C (en) | 2002-10-22 |
Family
ID=22254697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002246754A Expired - Fee Related CA2246754C (en) | 1996-02-22 | 1997-02-21 | Cochleate delivery vehicles |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2246754C (en) |
WO (1) | WO1997030725A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9810051D0 (en) * | 1998-05-11 | 1998-07-08 | Nycomed Imaging As | Contrast media |
US6340591B1 (en) | 1998-12-14 | 2002-01-22 | University Of Maryland | Integrative protein-DNA cochleate formulations and methods for transforming cells |
US6153217A (en) | 1999-01-22 | 2000-11-28 | Biodelivery Sciences, Inc. | Nanocochleate formulations, process of preparation and method of delivery of pharmaceutical agents |
AU2007200813B2 (en) * | 1999-01-22 | 2010-06-03 | Biodelivery Sicencies, Inc. | Novel hydrogel isolated cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules |
CA2397792A1 (en) * | 2000-01-24 | 2001-07-26 | Biodelivery Sciences, Inc. | Cochleate formulations and their use for delivering biologically relevant molecules |
AU2003296923B2 (en) | 2002-11-01 | 2010-03-04 | Biodelivery Sciences International, Inc. | Geodate delivery vehicles |
WO2004064805A1 (en) * | 2003-01-15 | 2004-08-05 | Biodelivery Sciences International, Inc. | Cochleate preparations of fragile nutrients |
US20050013854A1 (en) | 2003-04-09 | 2005-01-20 | Mannino Raphael J. | Novel encochleation methods, cochleates and methods of use |
EP1631669A2 (en) | 2003-04-09 | 2006-03-08 | Biodelivery Sciences International, Inc. | Cochleate compositions directed against expression of proteins |
JP4422681B2 (en) * | 2003-10-15 | 2010-02-24 | 株式会社ナノエッグ | Method for producing polyvalent metal inorganic salt-coated retinoic acid nanoparticles and nanoparticles obtained by the production method |
CN1859906A (en) * | 2003-10-15 | 2006-11-08 | 株式会社纳米卵 | Composition containing retinoic acid nanoparticles coated with polyvalent metal inorganic salt |
WO2011016043A2 (en) | 2009-08-06 | 2011-02-10 | Technion Research & Development Foundation Ltd. | Antibiotic drug delivery and potentiation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4078052A (en) * | 1976-06-30 | 1978-03-07 | The United States Of America As Represented By The Secretary Of Health, Education And Welfare | Large unilamellar vesicles (LUV) and method of preparing same |
US4725442A (en) * | 1983-06-17 | 1988-02-16 | Haynes Duncan H | Microdroplets of water-insoluble drugs and injectable formulations containing same |
US4874795A (en) * | 1985-04-02 | 1989-10-17 | Yesair David W | Composition for delivery of orally administered drugs and other substances |
US4871488A (en) * | 1985-04-22 | 1989-10-03 | Albany Medical College Of Union University | Reconstituting viral glycoproteins into large phospholipid vesicles |
US4663161A (en) * | 1985-04-22 | 1987-05-05 | Mannino Raphael J | Liposome methods and compositions |
US4906476A (en) * | 1988-12-14 | 1990-03-06 | Liposome Technology, Inc. | Novel liposome composition for sustained release of steroidal drugs in lungs |
US5571517A (en) * | 1990-08-13 | 1996-11-05 | Yesair; David W. | Mixed lipid-bicarbonate colloidal particles for delivering drugs or calories |
-
1997
- 1997-02-21 WO PCT/US1997/002632 patent/WO1997030725A1/en active Search and Examination
- 1997-02-21 CA CA002246754A patent/CA2246754C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2246754A1 (en) | 1997-08-28 |
WO1997030725A1 (en) | 1997-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5994318A (en) | Cochleate delivery vehicles | |
CA2212382C (en) | Cochleate delivery vehicles | |
US11534497B2 (en) | Compositions and methods for delivery of RNA | |
AU689505B2 (en) | Protein- or peptide-cochleate vaccines and methods of immunizing using the same | |
CZ15094A3 (en) | Composition for inducing cytostatic response of t-lymphocytes | |
WO1992019752A1 (en) | Rna delivery vector | |
CA2246754C (en) | Cochleate delivery vehicles | |
Patel et al. | Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines | |
Bolhassani | Lipid-based delivery systems in development of genetic and subunit vaccines | |
EP1696954B1 (en) | Vaccine composition admixed with an alkylphosphatidylcholine | |
Adamina et al. | Clinical applications of virosomes in cancer immunotherapy | |
AU753008B2 (en) | Cochleate delivery vehicles | |
Hook et al. | Immune stimulating complexes (ISCOMs) and Quil-A containing particulate formulations as vaccine delivery systems | |
AU2006236007A1 (en) | Cochleate Delivery Vehicles | |
US20240115693A1 (en) | Sars-cov-2 antigen nanoparticles and uses there of |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20130221 |