CA2214096C - Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives - Google Patents
Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives Download PDFInfo
- Publication number
- CA2214096C CA2214096C CA002214096A CA2214096A CA2214096C CA 2214096 C CA2214096 C CA 2214096C CA 002214096 A CA002214096 A CA 002214096A CA 2214096 A CA2214096 A CA 2214096A CA 2214096 C CA2214096 C CA 2214096C
- Authority
- CA
- Canada
- Prior art keywords
- polysaccharide
- organic solvent
- particles
- particles obtained
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229920001282 polysaccharide Polymers 0.000 title claims abstract description 24
- 239000005017 polysaccharide Substances 0.000 title claims abstract description 24
- 125000003118 aryl group Chemical group 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 150000004676 glycans Chemical class 0.000 title claims abstract 6
- 239000002245 particle Substances 0.000 claims abstract description 35
- 239000003960 organic solvent Substances 0.000 claims abstract description 19
- 239000000243 solution Substances 0.000 claims abstract description 17
- -1 polysaccharide carbamates Chemical class 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims abstract description 15
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000004094 surface-active agent Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- 238000004587 chromatography analysis Methods 0.000 claims abstract description 8
- 239000000839 emulsion Substances 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 7
- 238000009835 boiling Methods 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- 239000007787 solid Substances 0.000 claims abstract description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical group ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 30
- 230000005526 G1 to G0 transition Effects 0.000 claims description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- LFZIJOSZIHCAKI-UHFFFAOYSA-N heptyl(phenyl)carbamic acid Chemical compound CCCCCCCN(C(O)=O)C1=CC=CC=C1 LFZIJOSZIHCAKI-UHFFFAOYSA-N 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 150000004292 cyclic ethers Chemical class 0.000 claims description 2
- 150000008282 halocarbons Chemical class 0.000 claims description 2
- 150000002576 ketones Chemical class 0.000 claims description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 13
- 238000013375 chromatographic separation Methods 0.000 abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- 229920002678 cellulose Polymers 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 10
- 150000004804 polysaccharides Chemical class 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229920002284 Cellulose triacetate Polymers 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical class O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 230000001788 irregular Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 238000007613 slurry method Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 2
- 229920000856 Amylose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 1
- MJTFENDZXOFBLA-UHFFFAOYSA-N 1,2,3-tritert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1C(C)(C)C MJTFENDZXOFBLA-UHFFFAOYSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- KKZUMAMOMRDVKA-UHFFFAOYSA-N 2-chloropropane Chemical group [CH2]C(C)Cl KKZUMAMOMRDVKA-UHFFFAOYSA-N 0.000 description 1
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- ZONYXWQDUYMKFB-UHFFFAOYSA-N SJ000286395 Natural products O1C2=CC=CC=C2C(=O)CC1C1=CC=CC=C1 ZONYXWQDUYMKFB-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229940076134 benzene Drugs 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 229960001701 chloroform Drugs 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940087091 dichlorotetrafluoroethane Drugs 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930003949 flavanone Natural products 0.000 description 1
- 150000002207 flavanone derivatives Chemical class 0.000 description 1
- 235000011981 flavanones Nutrition 0.000 description 1
- 150000002243 furanoses Chemical group 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229940073584 methylene chloride Drugs 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- BSCCSDNZEIHXOK-UHFFFAOYSA-N phenyl carbamate Chemical compound NC(=O)OC1=CC=CC=C1 BSCCSDNZEIHXOK-UHFFFAOYSA-N 0.000 description 1
- 238000000711 polarimetry Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003214 pyranose derivatives Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N trans-Stilbene Natural products C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229920001221 xylan Polymers 0.000 description 1
- 150000004823 xylans Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B57/00—Separation of optically-active compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/282—Porous sorbents
- B01J20/285—Porous sorbents based on polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/29—Chiral phases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The invention relates to a process for the preparation of polysaccharide-N- arylcarbamate particles in suitable form as supports for chromatography, said process comprises adding to polysaccharide carbamates, which may be substituted in the aryl moiety, a 1- (lower-alkyl)- N-aryl-carbamate-containing solution of an organic solvent, with vigorous stirring, until the polysaccharide derivative is completely dissolved and then adding thereto an aqueous solution containing a high molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them. The organic solvent has a boiling point less th an that of water. The polysaccharide derivatives so obtained can be used as support materials for the chromatographic separation of enantiomers.
Description
WO 9612?639 PCTlEP96/00732 Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives The invention relates to a process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives which find utility as support materials for the chromatographic separation of enantiomers.
In Chemistry Letters, pp. 739-742 (1984), Y.Okamoto et al describe a separation material suitable for chromatography, which material consists of a macroporous silica gel coated with cellulose triacetate or cellulose tribenzoate. This support material is expensive. In addition, only the cellulose derivative layer is available for the separation of the enantiomers so that the separation capacity is not entirely satisfactory.
In J. of Chromatography, 351, pp. 346-350 (1986), K.-H. Rimbock propose using as stationary phase powdered microcrystalline tribenzoyl cellulose obtained by simple precipitation from a solution. The separation capacity of the powdered material is insufficient. Furthermore, the particle size and the outer particle shape cannot be controlled when this process is used.
EP-A-0 025 639 discloses a process for the preparation of spherical porous cellulose particles. In this process, an organic solution of cellulose triacetate containing a long-chain alcohol is suspended, with stirring, in an aqueous phase containing a high molecular weight surfactant, typically polyvinyl alcohol or gelatin. After removal of the organic solvent, the cellulose triacetate particles so obtained are isolated and purified and then saponified. Our own tests showed that the cellulose triacetate particles obtained according to this process have only a small specific surface area and only low separating power for enantiomers when used as stationary phase in liquid chromatographic processes.
EP-A-0 316 270 discloses finely particulate cellulose esters of aromatic or aromatic-aliphatic carboxylic acids in the form of essentially round partially crystalline particles, which may indeed be used as stationary phase in chromatographic processes, in particular for the separation of enantiomers, but which are not suitable for all compound classes.
EP-A-0 157 364, EP-A-0 147 801 and EP-A-0 157 356 disclose polysaccharide carbamates which are suitable for separating enantiomers, but in the case of said polymers it has to be taken into consideration that they can be used only after being applied to a support, typically silica gel.
In Chemistry Letters, pp. 739-742 (1984), Y.Okamoto et al describe a separation material suitable for chromatography, which material consists of a macroporous silica gel coated with cellulose triacetate or cellulose tribenzoate. This support material is expensive. In addition, only the cellulose derivative layer is available for the separation of the enantiomers so that the separation capacity is not entirely satisfactory.
In J. of Chromatography, 351, pp. 346-350 (1986), K.-H. Rimbock propose using as stationary phase powdered microcrystalline tribenzoyl cellulose obtained by simple precipitation from a solution. The separation capacity of the powdered material is insufficient. Furthermore, the particle size and the outer particle shape cannot be controlled when this process is used.
EP-A-0 025 639 discloses a process for the preparation of spherical porous cellulose particles. In this process, an organic solution of cellulose triacetate containing a long-chain alcohol is suspended, with stirring, in an aqueous phase containing a high molecular weight surfactant, typically polyvinyl alcohol or gelatin. After removal of the organic solvent, the cellulose triacetate particles so obtained are isolated and purified and then saponified. Our own tests showed that the cellulose triacetate particles obtained according to this process have only a small specific surface area and only low separating power for enantiomers when used as stationary phase in liquid chromatographic processes.
EP-A-0 316 270 discloses finely particulate cellulose esters of aromatic or aromatic-aliphatic carboxylic acids in the form of essentially round partially crystalline particles, which may indeed be used as stationary phase in chromatographic processes, in particular for the separation of enantiomers, but which are not suitable for all compound classes.
EP-A-0 157 364, EP-A-0 147 801 and EP-A-0 157 356 disclose polysaccharide carbamates which are suitable for separating enantiomers, but in the case of said polymers it has to be taken into consideration that they can be used only after being applied to a support, typically silica gel.
EP-A-0 527 236 discloses aromatic and araliphatic polysaccharide carbamates which are used ~~s stationary phase for the chromatographic separation of enantiomers.
It is emphasised that the materials so obtained can be used as such without being applied to a support. However, extensive experiments on our part showed that the materials so obtained cannot be used according to the indicated conditions for the chromatographic separation of enantiiomers.
The invention relates to a process for the preparation of polysaccharide-N-arylcarbamate particles in suitable form as supports for chromatography, said process comprises adding to polys~iccharide N-aryl-caxbamates, which may be substituted in the aryl moiety, a 1-(lower-alkyl)-N-aryl-carbamate-containing solution of an organic solvent, with vigorous stirring, until the polysaccharide derivative is completely dissolved, said organic solvent having a boiling point less than that of water, and then adding thereto an aqueous solution containing a high. molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
The polysaccharide particles are obtained in a particle size of 5-150 p,m and, in particular, of 10-30 ~,m in rounded or also in irregular shape.
The specific surface area is preferably 1-100 mz/g, but particularly preferably 3-35 m2/g.
The specific surface area can be influenced by the reaction conditions, typically by the choice. of solvent and by the way in which the reaction is carried out, e.g.
by the rate of addition, stirring and evaporation, as well as by the ratios of solvent, water and high molecular weight surfactant.
High molecular weight surfactants are preferably polyvinyl alcohol or carboxy-methy:lcellulose. It is also possible to use other surfactants such as those described in National Standard Reference Data System (NSRDS), Nat. Bur. Stand. (U.S.) 36, pages :Z4-32, U.S. Government Printing Office (1971), typically C8_C16 sulfuric acid semies,ter, e.g. lauryl sulfate.
Surprisingly, the polysaccharide-N-arylcarbamates so obtained can be used in excellent manner as supports for the chromatographic separation of enantiomers without prior application to a support, e.g. silica gel,.
WO 96!27639 PCTIEP96100732 The invention relates in particular to a process for the preparation of polysaccharide-N-phenylcarbamates in suitable form as supports for chromatography, which process comprises adding to polysaccharide carbamates, which may be substituted in the phenyl moiety, a N-phenyl-1-heptylcarbamate-containing solution of an organic solvent, preferably methylene chloride, with vigorous stirnng, until the polysaccharide derivative is completely dissolved and then adding thereto an aqueous solution containing a high molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
The invention relates in particular to the compounds obtained in the Examples.
In the above as well as hereinafter, lower radicals and compounds will be understood as meaning typically those containing up to and including 7 carbon atoms.
Polysaccharides are typically cellulose, amylose, chitosan, dextran, xylan and inulin, which are available as polysaccharides in a high degree of purity.
It is preferred to use polysaccharides having a degree of polymerisation (number of the pyranose and furanose rings) of at least 5 and, particularly preferably, of at least 10 but, to ensure simple handling, 1000 should not be exceeded.
Lower alkyl is typically Cl-C4alkyl, e.g. methyl, ethyl, propyl or butyl, each of which can also be substituted by halogen, typically fluoro or chloro, for example trifluoromethyl and trichloromethyl.
Aryl as such is typically phenyl or naphthyl, e.g. 1- or 2-naphthyl, or substituted phenyl or naphthyl, typically phenyl or naphthyl which are substituted by lower alkyl, halo-lower alkyl, hydroxy, lower alkoxy, lower alkanoyloxy, halogen, cyano and/or nitro.
Aryl is preferably phenyl which is unsubstituted or substituted as indicated above and, more preferably, phenyl which is substituted by lower alkyl, typically methyl and, most preferably, unsubstituted phenyl.
Lower alkoxy is typically n-propoxy, isopropoxy, n-butoxy or tert-butoxy, preferably ethoxy and methoxy.
It is emphasised that the materials so obtained can be used as such without being applied to a support. However, extensive experiments on our part showed that the materials so obtained cannot be used according to the indicated conditions for the chromatographic separation of enantiiomers.
The invention relates to a process for the preparation of polysaccharide-N-arylcarbamate particles in suitable form as supports for chromatography, said process comprises adding to polys~iccharide N-aryl-caxbamates, which may be substituted in the aryl moiety, a 1-(lower-alkyl)-N-aryl-carbamate-containing solution of an organic solvent, with vigorous stirring, until the polysaccharide derivative is completely dissolved, said organic solvent having a boiling point less than that of water, and then adding thereto an aqueous solution containing a high. molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
The polysaccharide particles are obtained in a particle size of 5-150 p,m and, in particular, of 10-30 ~,m in rounded or also in irregular shape.
The specific surface area is preferably 1-100 mz/g, but particularly preferably 3-35 m2/g.
The specific surface area can be influenced by the reaction conditions, typically by the choice. of solvent and by the way in which the reaction is carried out, e.g.
by the rate of addition, stirring and evaporation, as well as by the ratios of solvent, water and high molecular weight surfactant.
High molecular weight surfactants are preferably polyvinyl alcohol or carboxy-methy:lcellulose. It is also possible to use other surfactants such as those described in National Standard Reference Data System (NSRDS), Nat. Bur. Stand. (U.S.) 36, pages :Z4-32, U.S. Government Printing Office (1971), typically C8_C16 sulfuric acid semies,ter, e.g. lauryl sulfate.
Surprisingly, the polysaccharide-N-arylcarbamates so obtained can be used in excellent manner as supports for the chromatographic separation of enantiomers without prior application to a support, e.g. silica gel,.
WO 96!27639 PCTIEP96100732 The invention relates in particular to a process for the preparation of polysaccharide-N-phenylcarbamates in suitable form as supports for chromatography, which process comprises adding to polysaccharide carbamates, which may be substituted in the phenyl moiety, a N-phenyl-1-heptylcarbamate-containing solution of an organic solvent, preferably methylene chloride, with vigorous stirnng, until the polysaccharide derivative is completely dissolved and then adding thereto an aqueous solution containing a high molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
The invention relates in particular to the compounds obtained in the Examples.
In the above as well as hereinafter, lower radicals and compounds will be understood as meaning typically those containing up to and including 7 carbon atoms.
Polysaccharides are typically cellulose, amylose, chitosan, dextran, xylan and inulin, which are available as polysaccharides in a high degree of purity.
It is preferred to use polysaccharides having a degree of polymerisation (number of the pyranose and furanose rings) of at least 5 and, particularly preferably, of at least 10 but, to ensure simple handling, 1000 should not be exceeded.
Lower alkyl is typically Cl-C4alkyl, e.g. methyl, ethyl, propyl or butyl, each of which can also be substituted by halogen, typically fluoro or chloro, for example trifluoromethyl and trichloromethyl.
Aryl as such is typically phenyl or naphthyl, e.g. 1- or 2-naphthyl, or substituted phenyl or naphthyl, typically phenyl or naphthyl which are substituted by lower alkyl, halo-lower alkyl, hydroxy, lower alkoxy, lower alkanoyloxy, halogen, cyano and/or nitro.
Aryl is preferably phenyl which is unsubstituted or substituted as indicated above and, more preferably, phenyl which is substituted by lower alkyl, typically methyl and, most preferably, unsubstituted phenyl.
Lower alkoxy is typically n-propoxy, isopropoxy, n-butoxy or tert-butoxy, preferably ethoxy and methoxy.
Lower alkanoyloxy is typically propionyloxy or pivaloyloxy and, preferably, acetyloxy.
Halogen is typically chloro or fluoro and also bromo and iodo.
Halo-lower alkyl is typically 2- or 3-halo-lower alkyl, such as 2-halo-lower alkyl, e.g.
2-halopropyl, 3-halopiopyl or 3-halo-2-methylpropyl and may be, for example, 2-chloropropyl, 3-chloropropyl or 3-chloro-2-methylpropyl.
The organic solvent used in the reaction of this process usefully has a lower boiling point than water. Suitable solvents are typically aromatic hydrocarbons, halogenated hydrocarbons, preferably fluoro- and/or chlorohydrocarbons, cyclic ethers, carboxylic acid esters and ketones. It is possible to use, for example, benzene, methylene chloride, chloroform, trichlorofluoromethane, chloroethane, trifluorotrichloroethane, dichlorotetrafluoroethane, acetone, methyl ethyl ketone, diethyl ketone, cyclohexane, tetrahydrofuran and dioxan, or mixtures of such solvents. Methylene chloride and tetrahydrofuran are particularly preferred.
The process can be carried out by adding the solution of the polysaccharide carbamate, which may be substituted in the aryl moiety, typically polysaccharide-3>5-dimethyl-phenylcarbamate or polysaccharide phenylcarbamate, dropwise to the aqueous phase, with stirring, and then, with continued stirring, removing the organic solvent, conveniently by distillation and with heating to the boiling point of the solvent and/or under vacuum. The particles are then isolated, typically by filtration or decanting. The particles so obtained are then purified, typically by washing them with a hydrophilic solvent, e.g.
a C1-C4alkanol or also with an aqueous mixture thereof.
Washing is preferably carried out with methanol.
The polysaccharide carbamates used in the process of this invention, which may be substituted in the aryl moiety, are obtained by reacting a polysaccharide, typically cellulose or amylose, in a manner known per se with an unsubstituted or substituted aryl isocyanate.
The reaction is preferably carried out with an unsubstituted or substituted phenyl isocyanate.
The carbamate is usually prepared by reaction with a suitable isocyanate in the presence of a suitable catalyst. The catalysts used may be Lewis bases, typically tertiary amines, or WO 96!27639 PCTYEP96/00732 also Lewis acids, e.g. a tin compound. The reaction is preferably carried out in the presence of a tertiary base, typically in the presence of pyridine or quinoline serving at the same time as solvents, but it is also preferred to use as tertiary base 4-(N,N-dimethyl-amino)pyridine as a reaction catalyst. The conversion of the OH groups into the corresponding carbamates is preferably carried out with unsubstituted or substituted phenyl isocyanates.
It is preferred to use methyl-substituted, preferably mono- or disubstituted, phenyl isocyanates, or unsubstituted phenyl isocyanates, and the methyl groups can be in meta- or ortho-position to each other.
With the novel process described at the outset, polysaccharide-N-arylcarbamates in rounded or also in irregular shape are surprisingly obtained which have a certain porosity (specific surface area) and a partially crystalline character. This is important with respect to the specific chromatographic separation of enantiomers as a surprisingly high efficiency of separation is achieved in this case.
The invention also relates to the use of the polysaccharide derivatives obtained according to the novel process as stationary phase in chromatographic processes, in particular for separating enantiomers.
The following Examples illustrate the invention in more detail. Temperatures are given in degrees centigrade and pressure, where indicated, is given in bar.
Example 1 4 g of cellulose-3,5-dimethylphenylcarbamate are moistened with 15 ml of methanol and then a solution of 12.8 g of N-phenyl-1-heptylcarbamate in 105 ml of methylene chloride is added. This solution is then stirred until the cellulose derivative is completely dissolved.
To this solution are then added dropwise 96 ml of a 5% aqueous solution of polyvinyl alcohol (Serva, molecular weight c. 90 000) over 2 1/2 h at room temperature and with vigorous stirring (500 rpm). The emulsion is then slowly heated to 42°C
and the methylene chloride is distilled off (c.2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and then with 200 ml of methanol.
The product so obtained is twice in succession suspended in 200 ml of methanol, stirred and isolated by filtration. Subsequently, the product is dried at room temperature.
Yield: 3.7 g.
Halogen is typically chloro or fluoro and also bromo and iodo.
Halo-lower alkyl is typically 2- or 3-halo-lower alkyl, such as 2-halo-lower alkyl, e.g.
2-halopropyl, 3-halopiopyl or 3-halo-2-methylpropyl and may be, for example, 2-chloropropyl, 3-chloropropyl or 3-chloro-2-methylpropyl.
The organic solvent used in the reaction of this process usefully has a lower boiling point than water. Suitable solvents are typically aromatic hydrocarbons, halogenated hydrocarbons, preferably fluoro- and/or chlorohydrocarbons, cyclic ethers, carboxylic acid esters and ketones. It is possible to use, for example, benzene, methylene chloride, chloroform, trichlorofluoromethane, chloroethane, trifluorotrichloroethane, dichlorotetrafluoroethane, acetone, methyl ethyl ketone, diethyl ketone, cyclohexane, tetrahydrofuran and dioxan, or mixtures of such solvents. Methylene chloride and tetrahydrofuran are particularly preferred.
The process can be carried out by adding the solution of the polysaccharide carbamate, which may be substituted in the aryl moiety, typically polysaccharide-3>5-dimethyl-phenylcarbamate or polysaccharide phenylcarbamate, dropwise to the aqueous phase, with stirring, and then, with continued stirring, removing the organic solvent, conveniently by distillation and with heating to the boiling point of the solvent and/or under vacuum. The particles are then isolated, typically by filtration or decanting. The particles so obtained are then purified, typically by washing them with a hydrophilic solvent, e.g.
a C1-C4alkanol or also with an aqueous mixture thereof.
Washing is preferably carried out with methanol.
The polysaccharide carbamates used in the process of this invention, which may be substituted in the aryl moiety, are obtained by reacting a polysaccharide, typically cellulose or amylose, in a manner known per se with an unsubstituted or substituted aryl isocyanate.
The reaction is preferably carried out with an unsubstituted or substituted phenyl isocyanate.
The carbamate is usually prepared by reaction with a suitable isocyanate in the presence of a suitable catalyst. The catalysts used may be Lewis bases, typically tertiary amines, or WO 96!27639 PCTYEP96/00732 also Lewis acids, e.g. a tin compound. The reaction is preferably carried out in the presence of a tertiary base, typically in the presence of pyridine or quinoline serving at the same time as solvents, but it is also preferred to use as tertiary base 4-(N,N-dimethyl-amino)pyridine as a reaction catalyst. The conversion of the OH groups into the corresponding carbamates is preferably carried out with unsubstituted or substituted phenyl isocyanates.
It is preferred to use methyl-substituted, preferably mono- or disubstituted, phenyl isocyanates, or unsubstituted phenyl isocyanates, and the methyl groups can be in meta- or ortho-position to each other.
With the novel process described at the outset, polysaccharide-N-arylcarbamates in rounded or also in irregular shape are surprisingly obtained which have a certain porosity (specific surface area) and a partially crystalline character. This is important with respect to the specific chromatographic separation of enantiomers as a surprisingly high efficiency of separation is achieved in this case.
The invention also relates to the use of the polysaccharide derivatives obtained according to the novel process as stationary phase in chromatographic processes, in particular for separating enantiomers.
The following Examples illustrate the invention in more detail. Temperatures are given in degrees centigrade and pressure, where indicated, is given in bar.
Example 1 4 g of cellulose-3,5-dimethylphenylcarbamate are moistened with 15 ml of methanol and then a solution of 12.8 g of N-phenyl-1-heptylcarbamate in 105 ml of methylene chloride is added. This solution is then stirred until the cellulose derivative is completely dissolved.
To this solution are then added dropwise 96 ml of a 5% aqueous solution of polyvinyl alcohol (Serva, molecular weight c. 90 000) over 2 1/2 h at room temperature and with vigorous stirring (500 rpm). The emulsion is then slowly heated to 42°C
and the methylene chloride is distilled off (c.2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and then with 200 ml of methanol.
The product so obtained is twice in succession suspended in 200 ml of methanol, stirred and isolated by filtration. Subsequently, the product is dried at room temperature.
Yield: 3.7 g.
The material consists of rounded particles having a particle size from 20 to 30 u.m.
Specific surface area according to BET: 3.7 M2/g.
Column packing:
2.5 g of the material so obtained are suspended in 25 ml of a mixture of hexane/2-propanol (85:15, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm) at a flow rate of 2 ml/min over 3 h.
Example 2 g of cellulose phenylcarbamate are moistened with 15 ml of methanol and then a solution of 16 g of N-phenyl-1-heptylcarbamate in 150 ml of methylene chloride is added.
This solution is stirred until the cellulose derivative is completely dissolved. To this solution are then added dropwise 120 ml of a 5% aqueous solution of polyvinyl alcohol (Serva, molecular weight c. 90 000) over 2 1/2 h at room temperature and with vigorous stirnng (400 rpm). The emulsion is then slowly heated to 42°C and the methylene chloride is distilled off (c.2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and in conclusion suspended with 200 ml of methanol, stirred and isolated by filtration. Subsequently, the product is dried at room temperature.
Yield: 4.5 g.
The material consists of rounded particles having a particle size from 10 to 30 Nxn.
Specific surface area according to BET: 31.0 m2/g.
Column packing:
2.5 g of the material obtained are suspended in 25 ml of ethanol and stirred for 1 h. The suspension is then subjected to filtration and the filter cake is suspended in 25 ml of a mixture of hexane/2-propanol (90:10, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm) at a flow rate of 2 ml/min over 3 h.
Examgle 3 5 g of cellulosephenylcarbamate are moistened with 15 ml of methanol and then a solution of 16 g of N-phenyl-1-heptylcarbamate in 300 ml of methylene chloride is added. This solution is stirred until the cellulose derivative is completely dissolved. To this solution ' are added dropwise 240 ml of a 1 % aqueous solution of carboxymethylcellulose (highly viscous) over 2 1/2 h at room temperature and with vigorous stirring (400 rpm).
The emulsion is then slowly heated to 42°C and the methylene chloride is distilled off (c. 2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and in conclusion with 200 ml of methanol. The product so obtained is WO 96127639 ' PCT/EP96/00732 _7_ twice in succession suspended in 200 ml of methanol, stirred and isolated by filtration.
Subsequently, the product is dried at room temperature.
Yield: 4.7 g.
4 The material consists of irregular particles having a particle size of c. 10 il,m. Specific surface area according to BET: 5.1 m2/g.
Column packing:
2.5 g of the material so obtained are suspended in 25 ml of ethanol and stirred for 1 h. The suspension is then subjected to filtration and the filter cake is suspended in 25 ml of a mixture of hexane/2-propanol (90:10, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm ) at a flow rate of 2 ml/min over 3h.
Testing of the chiral stationary phases:
The phases of Examples 1-3 were tested with different racemates (Table 1).
HPL chromatography is in each case carried out with a Shimadzu LC-6A
arrangement at a flow rate of 0.7-1 ml/min and at room temperature.
Detection is carried out using UV spectroscopy and polarimetry (Perkin Elmer 241 LC).
The separating factor a was determined as measurement value.
a = k'2/k'1= (t2-to)/(tl-to), where k'2 and k'1 are the capacity factors of the second and first eluted enantiomers, and t2 and t1 are the retention times thereof.
to is the elution time of tri-tert-butylbenzene (non-retained compound).
Table 1 Support Example 1 Example 2 Example Racemate k' 1 a k' 1 k' 1 a a trans-stilbene 1.32 2.192.78 2.1 1.55 oxide 1.34 benzoin 3.82 1.65- - 19.7 1.16 phenylvinyl sulfoxide- - 29.4 29.0 1.25 1.08 flavanone 2.42 1.40- - 9.23 1.09 2-naphthyl ethanol3.28 1.80- - - -
Specific surface area according to BET: 3.7 M2/g.
Column packing:
2.5 g of the material so obtained are suspended in 25 ml of a mixture of hexane/2-propanol (85:15, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm) at a flow rate of 2 ml/min over 3 h.
Example 2 g of cellulose phenylcarbamate are moistened with 15 ml of methanol and then a solution of 16 g of N-phenyl-1-heptylcarbamate in 150 ml of methylene chloride is added.
This solution is stirred until the cellulose derivative is completely dissolved. To this solution are then added dropwise 120 ml of a 5% aqueous solution of polyvinyl alcohol (Serva, molecular weight c. 90 000) over 2 1/2 h at room temperature and with vigorous stirnng (400 rpm). The emulsion is then slowly heated to 42°C and the methylene chloride is distilled off (c.2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and in conclusion suspended with 200 ml of methanol, stirred and isolated by filtration. Subsequently, the product is dried at room temperature.
Yield: 4.5 g.
The material consists of rounded particles having a particle size from 10 to 30 Nxn.
Specific surface area according to BET: 31.0 m2/g.
Column packing:
2.5 g of the material obtained are suspended in 25 ml of ethanol and stirred for 1 h. The suspension is then subjected to filtration and the filter cake is suspended in 25 ml of a mixture of hexane/2-propanol (90:10, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm) at a flow rate of 2 ml/min over 3 h.
Examgle 3 5 g of cellulosephenylcarbamate are moistened with 15 ml of methanol and then a solution of 16 g of N-phenyl-1-heptylcarbamate in 300 ml of methylene chloride is added. This solution is stirred until the cellulose derivative is completely dissolved. To this solution ' are added dropwise 240 ml of a 1 % aqueous solution of carboxymethylcellulose (highly viscous) over 2 1/2 h at room temperature and with vigorous stirring (400 rpm).
The emulsion is then slowly heated to 42°C and the methylene chloride is distilled off (c. 2 h). After cooling, the residue is isolated by filtration, washed incrementally with 500 ml of water and in conclusion with 200 ml of methanol. The product so obtained is WO 96127639 ' PCT/EP96/00732 _7_ twice in succession suspended in 200 ml of methanol, stirred and isolated by filtration.
Subsequently, the product is dried at room temperature.
Yield: 4.7 g.
4 The material consists of irregular particles having a particle size of c. 10 il,m. Specific surface area according to BET: 5.1 m2/g.
Column packing:
2.5 g of the material so obtained are suspended in 25 ml of ethanol and stirred for 1 h. The suspension is then subjected to filtration and the filter cake is suspended in 25 ml of a mixture of hexane/2-propanol (90:10, vol%) and packed by the slurry method into a steel column (25 cm x 0.4 cm ) at a flow rate of 2 ml/min over 3h.
Testing of the chiral stationary phases:
The phases of Examples 1-3 were tested with different racemates (Table 1).
HPL chromatography is in each case carried out with a Shimadzu LC-6A
arrangement at a flow rate of 0.7-1 ml/min and at room temperature.
Detection is carried out using UV spectroscopy and polarimetry (Perkin Elmer 241 LC).
The separating factor a was determined as measurement value.
a = k'2/k'1= (t2-to)/(tl-to), where k'2 and k'1 are the capacity factors of the second and first eluted enantiomers, and t2 and t1 are the retention times thereof.
to is the elution time of tri-tert-butylbenzene (non-retained compound).
Table 1 Support Example 1 Example 2 Example Racemate k' 1 a k' 1 k' 1 a a trans-stilbene 1.32 2.192.78 2.1 1.55 oxide 1.34 benzoin 3.82 1.65- - 19.7 1.16 phenylvinyl sulfoxide- - 29.4 29.0 1.25 1.08 flavanone 2.42 1.40- - 9.23 1.09 2-naphthyl ethanol3.28 1.80- - - -
Claims (16)
1. A process for the preparation of polysaccharide-N-arylcarbamate particles in suitable form as supports for chromatography, said process comprises adding to polysaccharide N-aryl-carbamates, which may be substituted in the aryl moiety, a 1-(lower-alkyl)-N-aryl-carbamate-containing solution of an organic solvent, with vigorous stirring, until the polysaccharide derivative is completely dissolved, said organic solvent having a boiling point less than that of water, and then adding thereto an aqueous solution containing a high molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
2. A process for the preparation of polysaccharide-N-phenylcarbamate particles in suitable form as supports for chromatography, said process comprises adding to polysaccharide N-phenyl-carbamates, which may be substituted in the phenyl moiety, a N-phenyl-1-heptyl-carbamate-containing solution of an organic solvent, with vigorous stirring, until the polysaccharide derivative is dissolved, said organic solvent having a boiling point less than that of water, and then adding thereto an aqueous solution containing a high molecular weight surfactant and, with continued stirring, removing the organic solvent from the emulsion so obtained and isolating the solid particles and washing and drying them.
3. A process according to claim 1 or 2, wherein the organic solvent is an aromatic hydrocarbon, a halogenated hydrocarbon, a cyclic ether or a ketone.
4. A process according to any one of claims 1-3, wherein the organic solvent is methylene chloride.
5. A process according to claim 1 or 2, wherein the high molecular weight surfactant is polyvinyl alcohol.
6. A process according to claim 1 or 2, wherein the high molecular weight surfactant is carboxymethylcellulose.
7. A process according to claim 1 or 2, wherein the average diameter of the particles obtained is from 5 to 150 µm.
8. A process according to claim 1 or 2, wherein the average diameter of the particles obtained is from 10 to 30 µm.
9. A process according to claim 1 or 2, wherein the specific surface area of the particles is from 1 to 100 m2/g.
10. A process according to claim 1 or 2, wherein the specific surface area of the particles obtained is from 3 to 35 m2/g.
11. The polysaccharide-N-arylcarbamate particles obtained by the process claimed in claim 1.
12. The polysaccharide-N-phenylcarbamate particles obtained by the process claimed in claim 2.
13. Use of polysaccharide-N-arylcarbamate particles obtained according to claim 1 as stationary phase in chromatographic processes.
14. Use of polysaccharide-N-phenylcarbamate particles obtained according to claim 2 as stationary phase in chromatographic processes.
15. Use of polysaccharide-N-arylcarbamate particles obtained according to claim 1 for separating enantiomers.
16. Use of polysaccharide-N-phenylcarbamate particles obtained according to claim 2 for separating enantiomers.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH63995 | 1995-03-07 | ||
CH639/95 | 1995-03-07 | ||
PCT/EP1996/000732 WO1996027639A1 (en) | 1995-03-07 | 1996-02-22 | Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2214096A1 CA2214096A1 (en) | 1996-09-12 |
CA2214096C true CA2214096C (en) | 2006-09-12 |
Family
ID=36999283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002214096A Expired - Fee Related CA2214096C (en) | 1995-03-07 | 1996-02-22 | Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA2214096C (en) |
-
1996
- 1996-02-22 CA CA002214096A patent/CA2214096C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2214096A1 (en) | 1996-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0156382B1 (en) | Separation agent comprising acyl-or carbamoyl-substituted polysaccharide | |
US4861872A (en) | Alkyl-phenylcarbamate derivative of polysaccharide | |
EP0238044B1 (en) | Alkyl-substituted phenylcarbamate derivative of polysaccaride | |
EP0158884B1 (en) | Separation agent comprising 1,3-glucan | |
US6117325A (en) | Packing material for high-performance liquid chromatography | |
US4786416A (en) | Resolving agent | |
JP3272354B2 (en) | Novel polysaccharide derivatives and separating agents | |
EP0813574B1 (en) | Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives | |
CA2214096C (en) | Process for the preparation of aromatic carbamoyl-substituted polysaccharide derivatives | |
JPS60226833A (en) | Separating agent consisting of aromatic ester derivative of polysaccharide | |
JPS61233633A (en) | Separation agent consisting of polysaccharide substituted aromatic carbamate derivative | |
JPWO2002083298A1 (en) | Filler for separating optical isomers, method for producing the same and method for using the same | |
US8679346B2 (en) | Optical-isomer-separating agent | |
MXPA97006801A (en) | Process for the preparation of depolisacarid derivatives substituted by carbamoilo aromat | |
JPH02289601A (en) | New polysaccharide and separating agent | |
JPH11255671A (en) | Chromatographic separation of optical isomer | |
WO2020241678A1 (en) | Chitosan compounds and optical isomer separating agent | |
WO1997049733A1 (en) | Thermally immobilized polysaccharide derivatives | |
JPS60216842A (en) | Isolating agent comprising polysaccharide derivative | |
JPS60214748A (en) | Separation agent consisting of heteroaromatic derivative of polysaccharide | |
CN1177969A (en) | Process for the preparation of aromatic carbomoyl-substituted polysaccharide derivatives | |
JPH0273045A (en) | Optical resolution of amine derivative | |
JPS61176538A (en) | Optical resolution of aralkyl alcohol | |
JPS61176558A (en) | Method of optical presolution of nitrile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20130222 |