CA2160468C - Treated carbon or carbon-based cathodic components of aluminium production cells - Google Patents
Treated carbon or carbon-based cathodic components of aluminium production cells Download PDFInfo
- Publication number
- CA2160468C CA2160468C CA002160468A CA2160468A CA2160468C CA 2160468 C CA2160468 C CA 2160468C CA 002160468 A CA002160468 A CA 002160468A CA 2160468 A CA2160468 A CA 2160468A CA 2160468 C CA2160468 C CA 2160468C
- Authority
- CA
- Canada
- Prior art keywords
- component
- carbon
- colloid
- impregnated
- dried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 104
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 239000004411 aluminium Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 60
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 55
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 55
- 239000011734 sodium Substances 0.000 claims abstract description 55
- 238000000576 coating method Methods 0.000 claims abstract description 22
- 229910001610 cryolite Inorganic materials 0.000 claims abstract description 19
- 238000005470 impregnation Methods 0.000 claims abstract description 19
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 18
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 18
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 229910001947 lithium oxide Inorganic materials 0.000 claims abstract description 12
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims abstract description 10
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 10
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims abstract description 9
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 9
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 9
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims abstract description 9
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000004820 halides Chemical class 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000000084 colloidal system Substances 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 31
- 230000035515 penetration Effects 0.000 claims description 31
- 239000003575 carbonaceous material Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052684 Cerium Inorganic materials 0.000 claims description 14
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- 239000011819 refractory material Substances 0.000 claims description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 9
- 239000011253 protective coating Substances 0.000 claims description 8
- 238000007598 dipping method Methods 0.000 claims description 6
- 150000002902 organometallic compounds Chemical class 0.000 claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical class [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 150000001768 cations Chemical class 0.000 claims description 3
- 150000001805 chlorine compounds Chemical class 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 3
- 230000003750 conditioning effect Effects 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims 2
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000009830 intercalation Methods 0.000 abstract description 7
- 230000002687 intercalation Effects 0.000 abstract description 7
- 210000004027 cell Anatomy 0.000 description 40
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 13
- 229910033181 TiB2 Inorganic materials 0.000 description 13
- 239000002002 slurry Substances 0.000 description 9
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 8
- 239000002006 petroleum coke Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 5
- 239000003830 anthracite Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 210000003850 cellular structure Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000012229 microporous material Substances 0.000 description 4
- 239000011775 sodium fluoride Substances 0.000 description 4
- 235000013024 sodium fluoride Nutrition 0.000 description 4
- 150000001399 aluminium compounds Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 150000002642 lithium compounds Chemical class 0.000 description 3
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- 229940077746 antacid containing aluminium compound Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- ZBZHVBPVQIHFJN-UHFFFAOYSA-N trimethylalumane Chemical compound C[Al](C)C.C[Al](C)C ZBZHVBPVQIHFJN-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000009626 Hall-Héroult process Methods 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- ILVGMCVCQBJPSH-WDSKDSINSA-N Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO ILVGMCVCQBJPSH-WDSKDSINSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- XVVDIUTUQBXOGG-UHFFFAOYSA-N [Ce].FOF Chemical compound [Ce].FOF XVVDIUTUQBXOGG-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000011285 coke tar Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PSHMSSXLYVAENJ-UHFFFAOYSA-N dilithium;[oxido(oxoboranyloxy)boranyl]oxy-oxoboranyloxyborinate Chemical compound [Li+].[Li+].O=BOB([O-])OB([O-])OB=O PSHMSSXLYVAENJ-UHFFFAOYSA-N 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- -1 fullerene C6o or C Chemical compound 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- XKPJKVVZOOEMPK-UHFFFAOYSA-M lithium;formate Chemical compound [Li+].[O-]C=O XKPJKVVZOOEMPK-UHFFFAOYSA-M 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/08—Cell construction, e.g. bottoms, walls, cathodes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5027—Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Carbon or carbon-based cathodes and cell bottoms of electrolytic cells for the production of aluminium in particular by the electrolysis of alumina in a molten halide electrolyte such as cryolite, are treated to better resist intercalation of sodium in the cell operating conditions by impregnation and/or coating with colloidal alumina ceria, cerium acetate, silica, alumina, lithia, yttria, thoria, zirconia, magnesia or monoaluminium phosphate followed by drying and heat treatment.
Description
C~216d468 Treated Carbon or Carbon-Based Cathodic Components of Aluminium Production Cells Field of the Invention This invention relates to carbon or carbon-based cathodic cell components of electrolytic cells for the production of aluminium in particular by the electrolysis of alumina in a sodium-containing molten halide electrolyte such as cryolite.
Background Art Aluminium is produced conventionally by the Hall-Heroult process, by the electrolysis of alumina dissolved in cryolite-based molten electrolytes at temperatures up to around 950°C. A Hall-Heroult reduction cell typically has a steel shell provided with an insulating lining of refractory material, which in turn has a lining of carbon which contacts the molten constituents. Conductor bars connected to the negative pole of a direct current source are embedded in the carbon cathode substrate forming the cell bottom floor. The cathode substrate is usually an anthracite based carbon lining made of prebaked cathode blocks, joined with a ramming mixture of anthracite, coke, and coal tar.
In Hall-Heroult cells, a molten aluminium pool acts as the cathode. The carbon lining or cathode material has a useful life of three to eight years, or even less under adverse conditions. The deterioration of the cathode bottom is due to erosion and penetration of electrolyte and liquid aluminium as well as intercalation of sodium, which causes swelling and deformation of the cathode carbon blocks and ramming mix. In addition, the penetration of sodium species and other ingredients of cryolite or air leads to the formation of toxic compounds including cyanides.
..-~ 2160468 The problems associated with penetration of sodium into the carbon cathode have been extensively studied and discussed in the literature.
Several papers in Light Metals 1992 published by the The Minerals, Metals and Materials Society discuss these problems. A paper "Sodium, Its Influence on Cathode Life in Theory and Practice" by Mittag et al, page 789, emphasises the advantages of using graphitic carbon over anthracite. Reasons for the superiority of graphitic carbon were also set out in a paper "Change of the Physical Properties and the Structure in Carbon Materials under Electrolysis Test" by Ozaki et al, page 759. Another paper "Sodium and Bath Penetration into TiB2 Carbon Cathodes During Laboratory Aluminium Electrolysis" by Xue et al, page 773, presented results showing that the velocity of sodium penetration increased with increasing TiB2 content. Another paper "Laboratory Testing of the Expansion Under Pressure due to Sodium Intercalation in Carbon Cathode Materials for Aluminium Smelters" by Peyneau et al, page 801, also discusses these problems and describes methods of measuring the carbon expansion due to intercalation.
There have been several attempts to avoid or reduce the problems associated with the intercalation of sodium in carbon cathodes in aluminum production.
Some proposals have been made to dispense with carbon and instead use a cell bottom made entirely of alumina or a similar refractory material, with a cathode current supply arrangement employing composite current feeders using metals and refractory hard materials. See for example, EP-B-0 145 412, March 16, 1988; EP-A-0 215 555, March 25, 1987; EP-B-0 145 411, March 16, 1988; and EP-A-0 215 590, March 25, 1987. So far, commercialisation of these promising designs has been hindered due to the high cost of the refractory hard materials and difficulties in producing large pieces of such materials.
C~ 2160468 Other proposals have been made to re-design the cell bottom making use of alumina or similar refractory materials in such a way as to minimize the amount of carbon used for the cathode - see US Patent 5,071,533. Using these designs will reduce the problems associated with carbon, but the carbon is still subject to attack by sodium during cell start up.
There have been numerous proposals to improve the carbon materials by combining them with TiBz or other refractory hard materials, see e.g. US
Patent No.
Background Art Aluminium is produced conventionally by the Hall-Heroult process, by the electrolysis of alumina dissolved in cryolite-based molten electrolytes at temperatures up to around 950°C. A Hall-Heroult reduction cell typically has a steel shell provided with an insulating lining of refractory material, which in turn has a lining of carbon which contacts the molten constituents. Conductor bars connected to the negative pole of a direct current source are embedded in the carbon cathode substrate forming the cell bottom floor. The cathode substrate is usually an anthracite based carbon lining made of prebaked cathode blocks, joined with a ramming mixture of anthracite, coke, and coal tar.
In Hall-Heroult cells, a molten aluminium pool acts as the cathode. The carbon lining or cathode material has a useful life of three to eight years, or even less under adverse conditions. The deterioration of the cathode bottom is due to erosion and penetration of electrolyte and liquid aluminium as well as intercalation of sodium, which causes swelling and deformation of the cathode carbon blocks and ramming mix. In addition, the penetration of sodium species and other ingredients of cryolite or air leads to the formation of toxic compounds including cyanides.
..-~ 2160468 The problems associated with penetration of sodium into the carbon cathode have been extensively studied and discussed in the literature.
Several papers in Light Metals 1992 published by the The Minerals, Metals and Materials Society discuss these problems. A paper "Sodium, Its Influence on Cathode Life in Theory and Practice" by Mittag et al, page 789, emphasises the advantages of using graphitic carbon over anthracite. Reasons for the superiority of graphitic carbon were also set out in a paper "Change of the Physical Properties and the Structure in Carbon Materials under Electrolysis Test" by Ozaki et al, page 759. Another paper "Sodium and Bath Penetration into TiB2 Carbon Cathodes During Laboratory Aluminium Electrolysis" by Xue et al, page 773, presented results showing that the velocity of sodium penetration increased with increasing TiB2 content. Another paper "Laboratory Testing of the Expansion Under Pressure due to Sodium Intercalation in Carbon Cathode Materials for Aluminium Smelters" by Peyneau et al, page 801, also discusses these problems and describes methods of measuring the carbon expansion due to intercalation.
There have been several attempts to avoid or reduce the problems associated with the intercalation of sodium in carbon cathodes in aluminum production.
Some proposals have been made to dispense with carbon and instead use a cell bottom made entirely of alumina or a similar refractory material, with a cathode current supply arrangement employing composite current feeders using metals and refractory hard materials. See for example, EP-B-0 145 412, March 16, 1988; EP-A-0 215 555, March 25, 1987; EP-B-0 145 411, March 16, 1988; and EP-A-0 215 590, March 25, 1987. So far, commercialisation of these promising designs has been hindered due to the high cost of the refractory hard materials and difficulties in producing large pieces of such materials.
C~ 2160468 Other proposals have been made to re-design the cell bottom making use of alumina or similar refractory materials in such a way as to minimize the amount of carbon used for the cathode - see US Patent 5,071,533. Using these designs will reduce the problems associated with carbon, but the carbon is still subject to attack by sodium during cell start up.
There have been numerous proposals to improve the carbon materials by combining them with TiBz or other refractory hard materials, see e.g. US
Patent No.
4,466,996. But, as pointed out in the above-mentioned paper of Xue et al., with such composite materials, the penetration increases with increasing TiB2 content.
WO/93/20027 proposes applying a protective coating of refractory material to a carbon cathode by applying a micropyretic reaction layer from a slurry containing particulate reactants in a colloidal carrier, and initiating a micropyretic reaction. To assist rapid wetting of the cathode by molten aluminium, it was proposed to expose the coated cathode to a flux of molten aluminium containing a fluoride, a chloride or a borate of lithium and/or sodium. This improves the wetting of the cathode by molten aluminium, but does not address the problem of sodium attack on the carbon, which is liable to be increased due to the presence of TiB2.
No adequate solution has yet been proposed to substantially reduce or eliminate the problems associated with sodium penetration in carbon cathodes, namely swelling especially during cell start-up, displacement of the carbon blocks leading to inefficiency, reduced lifetime of the cell, the production of large quantities of toxic products that must be disposed of when the cell has to be overhauled, and the impossibility to use low density carbon.
-4- ~~~1~~~6r Summary of the Invention A primary object of the present invention is to improve the resistance of carbon cathodes of aluminium production cells or, more generally, of carbon-containing catholic components of such cells, to the penetration therein of molten electrolyte components and in particular to intercalation by sodium, thereby improving the resistance of the components to degradation during use.
The invention applies to cathodes or other catholic cell components made of carbon or other carbon-based microporous materials which have an open porosity which extends to the surfaces of the component which, in use, are exposed to the conditions in the cell.
The term carbon cathode is meant to include both pre-formed carbon blocks ready to be assembled into a cathode in the bottom of an aluminium production cell, as well as installed cathodes forming the cell bottom and the carbon side walls extending up from the bottom and which are also cathodically polarized and therefore subject to attack by sodium from the molten cell content. Other carbon catholic components include weirs and baffles secured on the cell bottom.
The invention provides a method of treating carbon-based catholic components of electrolytic cells for the production of aluminium in particular by the electrolysis of alumina in a sodium-containing molten halide electrolyte such as cryolite, in order to improve their resistance to attack in the aggressive environment in the cells, in particular their resistance to intercalation by sodium.
The method according to the invention comprises impregnating and/or coating the catholic cell component with colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia or monoaluminium phosphate and drying the colloid impregnated component.
WO/93/20027 proposes applying a protective coating of refractory material to a carbon cathode by applying a micropyretic reaction layer from a slurry containing particulate reactants in a colloidal carrier, and initiating a micropyretic reaction. To assist rapid wetting of the cathode by molten aluminium, it was proposed to expose the coated cathode to a flux of molten aluminium containing a fluoride, a chloride or a borate of lithium and/or sodium. This improves the wetting of the cathode by molten aluminium, but does not address the problem of sodium attack on the carbon, which is liable to be increased due to the presence of TiB2.
No adequate solution has yet been proposed to substantially reduce or eliminate the problems associated with sodium penetration in carbon cathodes, namely swelling especially during cell start-up, displacement of the carbon blocks leading to inefficiency, reduced lifetime of the cell, the production of large quantities of toxic products that must be disposed of when the cell has to be overhauled, and the impossibility to use low density carbon.
-4- ~~~1~~~6r Summary of the Invention A primary object of the present invention is to improve the resistance of carbon cathodes of aluminium production cells or, more generally, of carbon-containing catholic components of such cells, to the penetration therein of molten electrolyte components and in particular to intercalation by sodium, thereby improving the resistance of the components to degradation during use.
The invention applies to cathodes or other catholic cell components made of carbon or other carbon-based microporous materials which have an open porosity which extends to the surfaces of the component which, in use, are exposed to the conditions in the cell.
The term carbon cathode is meant to include both pre-formed carbon blocks ready to be assembled into a cathode in the bottom of an aluminium production cell, as well as installed cathodes forming the cell bottom and the carbon side walls extending up from the bottom and which are also cathodically polarized and therefore subject to attack by sodium from the molten cell content. Other carbon catholic components include weirs and baffles secured on the cell bottom.
The invention provides a method of treating carbon-based catholic components of electrolytic cells for the production of aluminium in particular by the electrolysis of alumina in a sodium-containing molten halide electrolyte such as cryolite, in order to improve their resistance to attack in the aggressive environment in the cells, in particular their resistance to intercalation by sodium.
The method according to the invention comprises impregnating and/or coating the catholic cell component with colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia or monoaluminium phosphate and drying the colloid impregnated component.
Colloidal alumina is preferred, and mixtures of colloidal alumina with the other colloids can also be used.
The method also includes optionally coating the surface of the component, or including in the surface of the component, an aluminium-wettable refractory material, such as titanium diboride. In this case, the material of the component under the aluminium-wettable refractory material must be impregnated with the colloid, in order to provide an effective barrier to penetration of sodium species.
Thus, when the component is coated with colloid, the colloid coating may optionally contain aluminium-wettable refractory components such as titanium diboride provided the component is impregnated with colloid in order to provide a barrier to sodium penetration. But the colloid coating may be devoid of aluminium-wettable refractory components particularly in the case where the component is coated with, for example, "thick" colloidal alumina, in which case the coating already provides a barrier to sodium penetration at the surface and the colloid need not penetrate so deeply into the carbon or carbon-based material.
Such impregnation and/or coating the carbon or carbon-based component, in particular with colloidal alumina, has been found to improve the resistance of the carbon to damage by sodium impregnation due to the fact that the colloids are stabilized by sodium or other monovalent ions. This stabilization, which occurs during use of the component in the cathodic environment of the aluminium production cell, makes the diffusion of fresh sodium difficult. Such stabilization is particularly effective when the sodium attack occurs through micropores in the carbon or carbon-based material. Therefore, to optimize the protective effect, it is preferred to impregnate the microporous carbon or carbon-based material with the colloid.
In addition, the colloid impregnation and/or coating prevents or inhibits cryolite penetration due to the fact that sodium impregnation in the surface generally makes the CA~1 b446~
The method also includes optionally coating the surface of the component, or including in the surface of the component, an aluminium-wettable refractory material, such as titanium diboride. In this case, the material of the component under the aluminium-wettable refractory material must be impregnated with the colloid, in order to provide an effective barrier to penetration of sodium species.
Thus, when the component is coated with colloid, the colloid coating may optionally contain aluminium-wettable refractory components such as titanium diboride provided the component is impregnated with colloid in order to provide a barrier to sodium penetration. But the colloid coating may be devoid of aluminium-wettable refractory components particularly in the case where the component is coated with, for example, "thick" colloidal alumina, in which case the coating already provides a barrier to sodium penetration at the surface and the colloid need not penetrate so deeply into the carbon or carbon-based material.
Such impregnation and/or coating the carbon or carbon-based component, in particular with colloidal alumina, has been found to improve the resistance of the carbon to damage by sodium impregnation due to the fact that the colloids are stabilized by sodium or other monovalent ions. This stabilization, which occurs during use of the component in the cathodic environment of the aluminium production cell, makes the diffusion of fresh sodium difficult. Such stabilization is particularly effective when the sodium attack occurs through micropores in the carbon or carbon-based material. Therefore, to optimize the protective effect, it is preferred to impregnate the microporous carbon or carbon-based material with the colloid.
In addition, the colloid impregnation and/or coating prevents or inhibits cryolite penetration due to the fact that sodium impregnation in the surface generally makes the CA~1 b446~
carbon or carbon-based material more wettable by cryolite. By limiting sodium penetration to the colloid surface, this enhances wettability of the surface by cryolite, which assists in keeping the cryolite at the surface. Hence, the enhanced resistance to sodium penetration unexpectedly is associated with an enhanced protection against damage by cryolite penetration.
This surprising synergistic effect leads to several further advantages. For example, as a consequence of the inhibition of sodium and cryolite penetration into the bulk of the carbon or carbon-based material, the formation of toxic components is greatly reduced.
Furthermore, the colloid impregnated in the carbon or carbon-containing surface, or coated on the surface, improves the resistance of the carbon or carbon-based material to abrasion by sludge that deposits on the cathode surface and may move with the cathodic pool of aluminium and thereby wear the surface.
Also, by protecting the carbonaceous cell components from attack by NaF or other aggressive ingredients of the electrolyte, the cell efficiency is improved.
Because NaF in the electrolyte no longer reacts with the carbon cell bottom and walls, the cell functions with a defined bath ratio without a need to replenish the electrolyte with NaF.
Impregnation and/or coating of the component is preferably followed by a heat treatment and may also be enhanced by preceding it with a heat treatment, for example at about 1000°C. Sometimes, a single impregnation suffices, but usually the impregnation and drying steps are repeated until the component is saturated with the colloid. Generally, impregnation will take place when the viscosity of the colloid is low, and the number of impregnations needed to saturate the material can be determined by measuring the weight gain. Coating will take place when the the colloid is thicker, i.e. paste-like. Impregnation with a C~21bfl468 _,_ low-viscosity colloid an be followed by coating with a pasty colloid.
The component is conventionally impregnated by dipping it into the colloid, which can take place in ambient conditions, but the impregnation may be assisted by the application of a pressure differential, by applying pressure or a vacuum.
Coating can be by dipping or other application techniques such as brushing.
The colloid may be derived from colloid precursors and reagents which are solutions of at least one salt such as chlorides, sulfates, nitrates, chlorates, perchlorates or metal organic compounds such as alkoxides, formates, acetates and mixtures thereof. The aforementioned solutions of metal organic compounds, principally metal alkoxides, may be of the general formula M(OR)Z where M is a metal or complex cation, R is an alkyl chain and z is a number usually from 1 to 12.
The colloid usually has a dry colloid content corresponding to up to 50 weight% of the colloid plus liquid carrier, preferably from 10 to 20 weight%.
The liquid carrier is usually water but could be non-aqueous.
The carbon or carbon-based microporous material making up the cathode or cathodic component usually has an open porosity usually from 5% to 40%, often from about 15% to about 30%. Such microporous materials are in particular liable to be attacked by the corrosive cell contents at the high operating temperatures.
Impregnation of the pores with a selected colloid greatly increases the materials' resistance to corrosion, as set out above.
It is advantageous for the carbon or other carbon-based microporous material making up to the cathode or the cathodic component to be impregnated with alumina or with colloidal monoaluminium phosphate which will be converted to alumina.
2'60468 _8_ Especially when the electrolyte in the aluminium production cell contains cerium, for instance cryolite containing cerium which maintains a protective cerium oxyfluoride coating on the anode, the carbon-based cathode component may be impregnated and/or coated with a cerium-based colloid, typically comprising at least one of colloidal ceria and colloidal cerium acetate. This cerium-based colloidal carrier may further comprise colloidal alumina or other colloids such as yttria, silica, thoria, zirconia, magnesia, lithia and/or monoaluminium phosphate. Colloid cerium impregnated in the microporous carbon or carbon-based material improves its performance when used as cathode or cell lining, while the cerium-based colloid is compatible with a cerium-containing fluoride-based electrolyte.
One advantageous impregnating agent greatly improving the material's resistance to penetration by sodium from the molten content of the cell, is colloidal lithia. The liquid carrier of the colloid, preferably colloidal alumina and/or colloidal lithia, is a solution containing at least one compound of lithium, sodium and potassium, preferably a lithium compound. Impregnation of carbon cathodes with colloidal lithia and/or with a colloid in a solution of a lithium, sodium or potassium salt, followed by heat treatment greatly improves the cathodes resistance to sodium impregnation, as taught in copending application SN 2,155,205.
A colloid impregnated cathode or cathodic component according to the invention can also be coated with a protective coating, typically containing an aluminium-wettable refractory hard metal compound such as the borides and carbides of metals of Group IVB (titanium, zirconium, hafnium) and Group VB (vanadium, niobium, tantalum) , usually applied after impregnation of the carbon or carbon-based material with the colloid.
_ -9-Such a protective coating may be formed by applying to the treated carbon cathode a micropyretic reaction layer from a slurry containing particulate reactants in a colloidal carrier, and initiating a micropyretic reaction as described in WO/93/20027. Such micropyretic slurry comprises particulate micropyretic reactants in combination with optional particulate of fibrous non-reactant fillers or moderators in a carrier of colloidal materials or other fluids such as water or other aqueous solutions, organic carriers such as acetone, urethanes, etc., or inorganic carriers such as colloidal metal oxides.
Such coatings may give an additional protection against sodium attack.
Protective coatings can also be formed from a colloidal slurry of particulate non-reactants, such as pre-formed TiB2, as described in WO/93/20026.
Such protective coatings applied directly to a carbon or carbon-based material in a colloidal carrier have good adherence to the substrate and good wettability by molten aluminium. However, as discussed in the Background Art section, the presence of aluminium-wettable refractory material such as titanium diboride enhances the penetration of sodium and inhibits the potential beneficial effect of the colloid as a barrier to sodium penetration. For this reason, components coated with aluminium-wettable refractory materials must be impregnated with the colloid in order to inhibit sodium penetration in accordance with the invention.
When the impregnated carbon or carbon-based cathode or catholic component is coated with a refractory coating forming a catholic surface in contact with the cathodically-produced aluminium, it can be used as a drained cathode. The refractory coating forms the catholic surface on which the aluminium is deposited cathodically usually with the component arranged upright or at a slope for the aluminium to drain from the catholic surface.
a ~~60468 It is advantageous for cathodes or cell bottoms of low density carbon to be impregnated with a colloid according to the invention. Low density carbon embraces various types of relatively inexpensive forms of carbon which are relatively porous and very conductive, but hitherto could not be used successfully in the environment of aluminium production cells on account of the fact that they were subject to excessive corrosion or oxidation. Now it is possible, by impregnating these low density carbons with a colloid according to the invention, to make use of them in these cells instead of the more expensive high density anthracite and graphite, taking advantage of their excellent conductivity and low cost.
The cathode or cathodic components may, for instance, be made of petroleum coke, metallurgical coke, anthracite, graphite, amorphous carbon, fullerene such as fullerene C6o or C,o or of a related family, low density carbon or mixtures thereof . Most usually, the component will be made of the usual grades of carbon used as cathodes in conventional Hall-Heroult cells.
The material making up the component may also be a carbon-based composite material comprising carbon and at least one further component selected from refractory oxycompounds, in particular alumina, and possibly also refractory hard metal borides, carbides and silicides, in particular titanium diboride, it being understood that any aluminium-wettable refractory material will be adjacent to the surface in which case the underlying carbon or carbon-based material will be impregnated with the colloid. Examples of such composite materials are described in copending application PCT/US93/05459(MOL0512).
The component of the invention may be a carbon cathode or a carbon cell bottom or lining advantageously Y
f r --C~~ 1 ~0~~8 impregnated with dried colloidal alumina and coated with a protective coating comprising a Refractory Hard Metal boride.
Alternatively the component may be a carbon cathode or a carbon cell bottom or lining impregnated and coated with dried colloidal alumina.
A further aspect of the invention is an electrolytic cell for the production of aluminium, in particular by the electrolysis of alumina in a sodium-containing molten halide electrolyte such as cryolite, comprising a cathodic component made of carbon or a carbon-based material, wherein the component is impregnated and/or coated with colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia or monoaluminium phosphate, as set out above.
The invention also concerns a method of producing aluminium by the electrolysis of alumina dissolved in molten cryolite in a cell having a colloid impregnated and/or coated carbon cathode as set out above; an electrolytic cell for producing aluminium by the electrolysis of alumina dissolved in molten cryolite provided with such a colloid impregnated and/or coated carbon; a method of conditioning carbon cathodes for use in such cells; as well as a method of reconditioning these electrolytic cells. The electrolyte may be cryolite or modified forms of cryolite in particular containing LiF, and may be at the usual operating temperature of about 950°C, or lower temperatures.
Detailed Description The invention will be further described in the following examples.
Example 1 Samples of cathode-grade carbon were impregnated with colloidal alumina by dipping them in NyacoIT"' colloidal alumina containing 20 wt% alumina for 5 minutes, removing CAZ1ba468 them and air drying in an oven for 1 hour at 200°C. This produced a weight uptake of approximately 1 .7%. The dipping process was repeated, but there was no further weight uptake, indicating that the sample was saturated with alumina.
These impregnated samples and corresponding non-impregnated samples were then subjected to a sodium penetration test. This test consisted of cathodically polarizing the samples in an approximately 33/67 wt% sodium fluoride/sodium chloride electrolyte at about 710°C and at a current density of 0.15 A/cm2 or 0.1 A/cm2 for variable test periods, usually between 5 and 10 hours. These test conditions simulate the effects of sodium penetration in commercial working conditions over much longer periods.
The impregnated samples showed a higher resistance to sodium penetration than the non-impregnated samples which showed signs of substantial degradation after only about 3 hours.
Several of the impregnated samples were sectioned and submitted to analyses to determine the extent of alumina penetration. Alumina was detected uniformly through the sample to a depth of 1 Omm, corresponding to the center of the sample.
The samples had a random distribution of narrow pores from the sample surface to a depth of 1 mm. Impregnation to the center of the sample took place through an interconnected inner pore system, in the carbon.
Example 2 Serval of the colloid-impregnated samples of Example 1 were further coated with a TiBz coating as follows.
A slurry was prepared from a dispersion of 10g TiB2, 99.5% pure, -325 mesh ( < 42 micrometer, in 25m1 of colloidal alumina containing about 20 weight% of solid alumina. Coatings with a thickness of 150 ~ 50 to 500 ~ 50 micrometer 2'60468 were applied to the faces of carbon blocks. Each layer of slurry was allowed to dry for several minutes before applying the next, followed by a final drying by baking in an oven at 100-150°C for 30 minutes to 1 hour.
The above procedure was repeated varying the amount of TiB2 in the slurry from 5 to 15g and varying the amount of colloidal alumina from 10m1 to 40m1.
Coatings were applied as before. Drying in air took 10 to 60 minutes depending on the dilution of the slurry and the thickness of the coatings. In all cases, an adherent layer of TiB2 was obtained.
The colloid-impregnated TiB2-coated samples showed an even higher resistance to sodium penetration than the colloid-impregnated uncoated samples, when submitted to the same sodium penetration test. These coated samples additionally exhibited improved wettability by molten aluminium. Compared to non-impregnated samples coated in the same way, the impregnated and coated samples showed a better resistance to sodium penetration.
Example 3 40m1 10% HCI in aqueous solution was added to 50g of a petroleum coke based particulate mixture and stirred for a sufficient time to wet the petroleum coke particles, followed by drying at 200°C for approximately 2 hours to dry the petroleum coke completely. The particulate mixture was made of 84 wt% petroleum coke ( 1-200 micrometerl, 15wt% A1203 (3 micrometer) and 1 wt% B203 ( 1 micrometer.
80 ml of colloidal alumina (AL-20 grade, 20% solid alumina) was added to the dried acidified petroleum coke based mixture and stirred well. The resulting slurry of petroleum coke, particulate alumina, colloid alumina and HCI mixture was then dried at 200°C in an air furnace for approximately 2 to 3 hours to produce a paste.
The resulting paste was pressed at 57 mPa into cylinder form. In the pressing process, some liquid was squeezed out. The cylinders were then held at 200°C in an air furnace until dried. The resulting material was a microporous carbon/alumina composite.
A specimen produced this way was impregnated with colloidal cerium acetate by dipping the dried cylinder in the colloid, then drying it again at 200°C.
Compared to non-impregnated cylinders, impregnated cylinders prepared this way were found to have enhanced resistance to sodium penetration when used as cathodes in a laboratory scale aluminium production cell.
Example 4 The above Examples can be repeated including in the liquid carrier of the colloid at least one compound of lithium, aluminium, cerium, calcium, sodium and/or potassium, preferably a soluble compound.
The lithium compound may be lithium acetate, lithium carbonate, lithium fluoride, lithium chloride, lithium oxalate, lithium nitride, lithium nitrate, lithium formate and lithium aryl, lithium tetraborate and mixtures thereof.
The aluminium compound is preferably a soluble compound, but some insoluble compounds can also be used. Soluble compounds include aluminium nitrate, carbonate, halides and borate. Insoluble aluminium carbide can also be used.
Preferably, there is at least one of these lithium compounds together with at least one of these aluminium compounds. These compounds react together and, when the component is made of carbon, with the carbon to form aluminium oxycarbide and/or aluminium carbide AI4C which act as an oxidation-resistant and electrically-conductive binder for the carbon and contribute to the great oxidation resistance of the material and make it wettable by molten cryolite. Altogether, the addition of these lithium and aluminium compounds greatly increases the stability of the material in the environment of an aluminium production cell.
For instance, a solution can be prepared by thoroughly mixing 5g of A1 N03.9H20(98%) and 5g of LiN03(99%) in 50m1 of water, and this carrier solution then mixed with colloidal alumina to provide a solid alumina colloid content of about to 20 weight% of the total. Cathode grades of carbon impregnated with this reagent-containing colloidal alumina followed by heat treatment at about 1000°C
10 show improved stability and greater resistance to penetration by sodium.
This surprising synergistic effect leads to several further advantages. For example, as a consequence of the inhibition of sodium and cryolite penetration into the bulk of the carbon or carbon-based material, the formation of toxic components is greatly reduced.
Furthermore, the colloid impregnated in the carbon or carbon-containing surface, or coated on the surface, improves the resistance of the carbon or carbon-based material to abrasion by sludge that deposits on the cathode surface and may move with the cathodic pool of aluminium and thereby wear the surface.
Also, by protecting the carbonaceous cell components from attack by NaF or other aggressive ingredients of the electrolyte, the cell efficiency is improved.
Because NaF in the electrolyte no longer reacts with the carbon cell bottom and walls, the cell functions with a defined bath ratio without a need to replenish the electrolyte with NaF.
Impregnation and/or coating of the component is preferably followed by a heat treatment and may also be enhanced by preceding it with a heat treatment, for example at about 1000°C. Sometimes, a single impregnation suffices, but usually the impregnation and drying steps are repeated until the component is saturated with the colloid. Generally, impregnation will take place when the viscosity of the colloid is low, and the number of impregnations needed to saturate the material can be determined by measuring the weight gain. Coating will take place when the the colloid is thicker, i.e. paste-like. Impregnation with a C~21bfl468 _,_ low-viscosity colloid an be followed by coating with a pasty colloid.
The component is conventionally impregnated by dipping it into the colloid, which can take place in ambient conditions, but the impregnation may be assisted by the application of a pressure differential, by applying pressure or a vacuum.
Coating can be by dipping or other application techniques such as brushing.
The colloid may be derived from colloid precursors and reagents which are solutions of at least one salt such as chlorides, sulfates, nitrates, chlorates, perchlorates or metal organic compounds such as alkoxides, formates, acetates and mixtures thereof. The aforementioned solutions of metal organic compounds, principally metal alkoxides, may be of the general formula M(OR)Z where M is a metal or complex cation, R is an alkyl chain and z is a number usually from 1 to 12.
The colloid usually has a dry colloid content corresponding to up to 50 weight% of the colloid plus liquid carrier, preferably from 10 to 20 weight%.
The liquid carrier is usually water but could be non-aqueous.
The carbon or carbon-based microporous material making up the cathode or cathodic component usually has an open porosity usually from 5% to 40%, often from about 15% to about 30%. Such microporous materials are in particular liable to be attacked by the corrosive cell contents at the high operating temperatures.
Impregnation of the pores with a selected colloid greatly increases the materials' resistance to corrosion, as set out above.
It is advantageous for the carbon or other carbon-based microporous material making up to the cathode or the cathodic component to be impregnated with alumina or with colloidal monoaluminium phosphate which will be converted to alumina.
2'60468 _8_ Especially when the electrolyte in the aluminium production cell contains cerium, for instance cryolite containing cerium which maintains a protective cerium oxyfluoride coating on the anode, the carbon-based cathode component may be impregnated and/or coated with a cerium-based colloid, typically comprising at least one of colloidal ceria and colloidal cerium acetate. This cerium-based colloidal carrier may further comprise colloidal alumina or other colloids such as yttria, silica, thoria, zirconia, magnesia, lithia and/or monoaluminium phosphate. Colloid cerium impregnated in the microporous carbon or carbon-based material improves its performance when used as cathode or cell lining, while the cerium-based colloid is compatible with a cerium-containing fluoride-based electrolyte.
One advantageous impregnating agent greatly improving the material's resistance to penetration by sodium from the molten content of the cell, is colloidal lithia. The liquid carrier of the colloid, preferably colloidal alumina and/or colloidal lithia, is a solution containing at least one compound of lithium, sodium and potassium, preferably a lithium compound. Impregnation of carbon cathodes with colloidal lithia and/or with a colloid in a solution of a lithium, sodium or potassium salt, followed by heat treatment greatly improves the cathodes resistance to sodium impregnation, as taught in copending application SN 2,155,205.
A colloid impregnated cathode or cathodic component according to the invention can also be coated with a protective coating, typically containing an aluminium-wettable refractory hard metal compound such as the borides and carbides of metals of Group IVB (titanium, zirconium, hafnium) and Group VB (vanadium, niobium, tantalum) , usually applied after impregnation of the carbon or carbon-based material with the colloid.
_ -9-Such a protective coating may be formed by applying to the treated carbon cathode a micropyretic reaction layer from a slurry containing particulate reactants in a colloidal carrier, and initiating a micropyretic reaction as described in WO/93/20027. Such micropyretic slurry comprises particulate micropyretic reactants in combination with optional particulate of fibrous non-reactant fillers or moderators in a carrier of colloidal materials or other fluids such as water or other aqueous solutions, organic carriers such as acetone, urethanes, etc., or inorganic carriers such as colloidal metal oxides.
Such coatings may give an additional protection against sodium attack.
Protective coatings can also be formed from a colloidal slurry of particulate non-reactants, such as pre-formed TiB2, as described in WO/93/20026.
Such protective coatings applied directly to a carbon or carbon-based material in a colloidal carrier have good adherence to the substrate and good wettability by molten aluminium. However, as discussed in the Background Art section, the presence of aluminium-wettable refractory material such as titanium diboride enhances the penetration of sodium and inhibits the potential beneficial effect of the colloid as a barrier to sodium penetration. For this reason, components coated with aluminium-wettable refractory materials must be impregnated with the colloid in order to inhibit sodium penetration in accordance with the invention.
When the impregnated carbon or carbon-based cathode or catholic component is coated with a refractory coating forming a catholic surface in contact with the cathodically-produced aluminium, it can be used as a drained cathode. The refractory coating forms the catholic surface on which the aluminium is deposited cathodically usually with the component arranged upright or at a slope for the aluminium to drain from the catholic surface.
a ~~60468 It is advantageous for cathodes or cell bottoms of low density carbon to be impregnated with a colloid according to the invention. Low density carbon embraces various types of relatively inexpensive forms of carbon which are relatively porous and very conductive, but hitherto could not be used successfully in the environment of aluminium production cells on account of the fact that they were subject to excessive corrosion or oxidation. Now it is possible, by impregnating these low density carbons with a colloid according to the invention, to make use of them in these cells instead of the more expensive high density anthracite and graphite, taking advantage of their excellent conductivity and low cost.
The cathode or cathodic components may, for instance, be made of petroleum coke, metallurgical coke, anthracite, graphite, amorphous carbon, fullerene such as fullerene C6o or C,o or of a related family, low density carbon or mixtures thereof . Most usually, the component will be made of the usual grades of carbon used as cathodes in conventional Hall-Heroult cells.
The material making up the component may also be a carbon-based composite material comprising carbon and at least one further component selected from refractory oxycompounds, in particular alumina, and possibly also refractory hard metal borides, carbides and silicides, in particular titanium diboride, it being understood that any aluminium-wettable refractory material will be adjacent to the surface in which case the underlying carbon or carbon-based material will be impregnated with the colloid. Examples of such composite materials are described in copending application PCT/US93/05459(MOL0512).
The component of the invention may be a carbon cathode or a carbon cell bottom or lining advantageously Y
f r --C~~ 1 ~0~~8 impregnated with dried colloidal alumina and coated with a protective coating comprising a Refractory Hard Metal boride.
Alternatively the component may be a carbon cathode or a carbon cell bottom or lining impregnated and coated with dried colloidal alumina.
A further aspect of the invention is an electrolytic cell for the production of aluminium, in particular by the electrolysis of alumina in a sodium-containing molten halide electrolyte such as cryolite, comprising a cathodic component made of carbon or a carbon-based material, wherein the component is impregnated and/or coated with colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia or monoaluminium phosphate, as set out above.
The invention also concerns a method of producing aluminium by the electrolysis of alumina dissolved in molten cryolite in a cell having a colloid impregnated and/or coated carbon cathode as set out above; an electrolytic cell for producing aluminium by the electrolysis of alumina dissolved in molten cryolite provided with such a colloid impregnated and/or coated carbon; a method of conditioning carbon cathodes for use in such cells; as well as a method of reconditioning these electrolytic cells. The electrolyte may be cryolite or modified forms of cryolite in particular containing LiF, and may be at the usual operating temperature of about 950°C, or lower temperatures.
Detailed Description The invention will be further described in the following examples.
Example 1 Samples of cathode-grade carbon were impregnated with colloidal alumina by dipping them in NyacoIT"' colloidal alumina containing 20 wt% alumina for 5 minutes, removing CAZ1ba468 them and air drying in an oven for 1 hour at 200°C. This produced a weight uptake of approximately 1 .7%. The dipping process was repeated, but there was no further weight uptake, indicating that the sample was saturated with alumina.
These impregnated samples and corresponding non-impregnated samples were then subjected to a sodium penetration test. This test consisted of cathodically polarizing the samples in an approximately 33/67 wt% sodium fluoride/sodium chloride electrolyte at about 710°C and at a current density of 0.15 A/cm2 or 0.1 A/cm2 for variable test periods, usually between 5 and 10 hours. These test conditions simulate the effects of sodium penetration in commercial working conditions over much longer periods.
The impregnated samples showed a higher resistance to sodium penetration than the non-impregnated samples which showed signs of substantial degradation after only about 3 hours.
Several of the impregnated samples were sectioned and submitted to analyses to determine the extent of alumina penetration. Alumina was detected uniformly through the sample to a depth of 1 Omm, corresponding to the center of the sample.
The samples had a random distribution of narrow pores from the sample surface to a depth of 1 mm. Impregnation to the center of the sample took place through an interconnected inner pore system, in the carbon.
Example 2 Serval of the colloid-impregnated samples of Example 1 were further coated with a TiBz coating as follows.
A slurry was prepared from a dispersion of 10g TiB2, 99.5% pure, -325 mesh ( < 42 micrometer, in 25m1 of colloidal alumina containing about 20 weight% of solid alumina. Coatings with a thickness of 150 ~ 50 to 500 ~ 50 micrometer 2'60468 were applied to the faces of carbon blocks. Each layer of slurry was allowed to dry for several minutes before applying the next, followed by a final drying by baking in an oven at 100-150°C for 30 minutes to 1 hour.
The above procedure was repeated varying the amount of TiB2 in the slurry from 5 to 15g and varying the amount of colloidal alumina from 10m1 to 40m1.
Coatings were applied as before. Drying in air took 10 to 60 minutes depending on the dilution of the slurry and the thickness of the coatings. In all cases, an adherent layer of TiB2 was obtained.
The colloid-impregnated TiB2-coated samples showed an even higher resistance to sodium penetration than the colloid-impregnated uncoated samples, when submitted to the same sodium penetration test. These coated samples additionally exhibited improved wettability by molten aluminium. Compared to non-impregnated samples coated in the same way, the impregnated and coated samples showed a better resistance to sodium penetration.
Example 3 40m1 10% HCI in aqueous solution was added to 50g of a petroleum coke based particulate mixture and stirred for a sufficient time to wet the petroleum coke particles, followed by drying at 200°C for approximately 2 hours to dry the petroleum coke completely. The particulate mixture was made of 84 wt% petroleum coke ( 1-200 micrometerl, 15wt% A1203 (3 micrometer) and 1 wt% B203 ( 1 micrometer.
80 ml of colloidal alumina (AL-20 grade, 20% solid alumina) was added to the dried acidified petroleum coke based mixture and stirred well. The resulting slurry of petroleum coke, particulate alumina, colloid alumina and HCI mixture was then dried at 200°C in an air furnace for approximately 2 to 3 hours to produce a paste.
The resulting paste was pressed at 57 mPa into cylinder form. In the pressing process, some liquid was squeezed out. The cylinders were then held at 200°C in an air furnace until dried. The resulting material was a microporous carbon/alumina composite.
A specimen produced this way was impregnated with colloidal cerium acetate by dipping the dried cylinder in the colloid, then drying it again at 200°C.
Compared to non-impregnated cylinders, impregnated cylinders prepared this way were found to have enhanced resistance to sodium penetration when used as cathodes in a laboratory scale aluminium production cell.
Example 4 The above Examples can be repeated including in the liquid carrier of the colloid at least one compound of lithium, aluminium, cerium, calcium, sodium and/or potassium, preferably a soluble compound.
The lithium compound may be lithium acetate, lithium carbonate, lithium fluoride, lithium chloride, lithium oxalate, lithium nitride, lithium nitrate, lithium formate and lithium aryl, lithium tetraborate and mixtures thereof.
The aluminium compound is preferably a soluble compound, but some insoluble compounds can also be used. Soluble compounds include aluminium nitrate, carbonate, halides and borate. Insoluble aluminium carbide can also be used.
Preferably, there is at least one of these lithium compounds together with at least one of these aluminium compounds. These compounds react together and, when the component is made of carbon, with the carbon to form aluminium oxycarbide and/or aluminium carbide AI4C which act as an oxidation-resistant and electrically-conductive binder for the carbon and contribute to the great oxidation resistance of the material and make it wettable by molten cryolite. Altogether, the addition of these lithium and aluminium compounds greatly increases the stability of the material in the environment of an aluminium production cell.
For instance, a solution can be prepared by thoroughly mixing 5g of A1 N03.9H20(98%) and 5g of LiN03(99%) in 50m1 of water, and this carrier solution then mixed with colloidal alumina to provide a solid alumina colloid content of about to 20 weight% of the total. Cathode grades of carbon impregnated with this reagent-containing colloidal alumina followed by heat treatment at about 1000°C
10 show improved stability and greater resistance to penetration by sodium.
Claims (42)
1. A method of conditioning a pre-formed carbon or carbon-based component of an electrolytic cell for the production of aluminium, by the electrolysis of alumina in a sodium-containing molten halide electrolyte, to improve the resistance of the carbon to damage by the penetration therein of sodium, wherein the method comprises:
treating by impregnating, coating, or impregnating and coating the surface of the component subject to sodium penetration with a colloidal material consisting of at least one colloid selected from the group consisting of colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia, monoaluminium phosphate and mixtures thereof in a liquid carrier;
drying the colloid-impregnated, -coated or -impregnated and -coated component; and stabilizing said colloids in-situ by exposure to a monovalent ion.
treating by impregnating, coating, or impregnating and coating the surface of the component subject to sodium penetration with a colloidal material consisting of at least one colloid selected from the group consisting of colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia, monoaluminium phosphate and mixtures thereof in a liquid carrier;
drying the colloid-impregnated, -coated or -impregnated and -coated component; and stabilizing said colloids in-situ by exposure to a monovalent ion.
2. The method of claim 1, wherein said treatment of the component is followed by a heat treatment.
3. The method of claim 2, wherein said treatment of the component is also preceded by a heat treatment.
4. The method of claim 1, wherein the impregnation and drying steps are repeated until the component is saturated with the colloid.
5. The method of claim 1, wherein the component is impregnated by dipping it into the colloid.
6. The method of claim 1, wherein impregnation is assisted by the application of pressure or a vacuum.
7. The method of claim 1, wherein said colloid is colloidal alumina.
8. The method of claim 1, wherein said colloid is a cerium-containing colloid.
9. The method of claim 8, wherein the cerium containing colloid comprises at least one of colloidal ceria and colloidal cerium acetate and further comprises at least one of colloidal alumina, lithia, yttria, silica, thoria, zirconia, magnesia or monoaluminium phosphate.
10. The method of claim 1, wherein said liquid carrier further contains at least one compound selected from compounds of lithium, aluminium, cerium, calcium, sodium and potassium.
11. The method of claim 1, wherein said liquid carrier contains at least one compound of lithium and at least one compound of aluminium.
12. The method of claim 1, wherein the colloid is derived from colloid precursors and reagents which are solutions of at least one salt selected from the group consisting of chlorides, sulfates, nitrates, chlorates, perchlorates and metal organic compounds and mixtures thereof.
13. The method of claim 12, wherein the solutions of metal organic compounds are of the general formula M(OR)z where M is a metal or complex cation, R is an alkyl chain and z is a number from 1 to 12.
14 . The method of claim 1, wherein the colloid has a dry colloid content corresponding to up to 50 weight% of the colloid plus liquid carrier.
15. The method of claim 1, wherein the carbon or carbon-based material has an open porosity from 5% to 40%.
16. The method of claim 1, wherein after drying of the component and before in-situ stabilization of the said colloids, a protective coating of an aluminium-wettable refractory material is applied to the component.
17. The method of claim 16, wherein the protective coating comprises a Refractory Hard Metal boride.
18. The method of claim 1, wherein the colloid impregnated, coated, or impregnated and coated component is a cell bottom or lining.
19. A carbon or carbon-based cathodic component of an electrolytic cell for the production of aluminium by the electrolysis of alumina in a sodium-containing molten halide electrolyte wherein at least one surface of the component which, in use, is exposed to the conditions in the cell, is impregnated, or impregnated and coated with a material which consists of a dried colloid selected from the group consisting of dried colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia, monoaluminium phosphate and mixtures thereof.
20. The component of claim 19, wherein the component has a microporous surface saturated with the dried colloid.
21. The component of claim 19, wherein the dried colloid is colloidal alumina.
22. The component of claim 19, wherein the dried colloid is a dried cerium-containing colloid.
23. The component of claim 22, wherein the dried cerium-containing colloid comprises at least one of colloidal ceria or colloidal cerium acetate and further comprises at least one of colloidal alumina, lithia, yttria, silica, thoria, zirconia, magnesia or monoaluminium phosphate.
24. The component of claim 19, wherein said dried colloid is dried from a liquid carrier which further contains at least one compound selected from compounds of lithium, aluminium, cerium, calcium, sodium and potassium.
25. The component of claim 24, wherein said dried colloid is dried from a liquid carrier which further contains at least one compound of lithium and at least one compound of aluminium.
26. The component of claim 19, wherein the colloid is derived from colloid precursors and reagents which are solutions of at least one salt selected from the group consisting of chlorides, sulfates, nitrates, chlorates, perchlorates, metal organic compounds, and mixtures thereof.
27. The component of claim 26, wherein the solutions of metal organic compounds are of the general formula M(OR)z where M is a metal or complex cation, R is an alkyl chain and z is a number from 1 to 12.
28. The component of claim 19, wherein the carbon or carbon-based material has an open porosity from 5% to 40%.
29. The component of claim 19, which is a colloid impregnated, coated, or impregnated and coated cell bottom or lining.
30. The component of claim 19, which is made of carbon impregnated, or impregnated and coated with the colloid.
31. The component of claim 19, which is a carbon cathode impregnated with dried colloidal alumina.
32. The component of claim 19, which is a carbon cell bottom or lining impregnated with dried colloidal alumina.
33. The component of claim 19, which is a carbon cathode impregnated and coated with dried colloid alumina.
34. The component of claim 19, which is a carbon cell bottom or lining impregnated and coated with dried colloid alumina.
35. An electrolytic cell for the production of aluminium, comprising a carbon or carbon-based cathodic component impregnated, or impregnated and coated with a dried colloidal material which consists of a dried colloid selected from dried colloidal alumina, ceria, cerium acetate, silica, lithia, yttria, thoria, zirconia, magnesia and monoaluminium phosphate and mixtures thereof.
36. The cell of claim 35 wherein the production of alumina is by the electrolysis of alumina in a sodium containing molten halide electrolyte.
37. The cell of claim 36 wherein the electrolyte is cryolite.
38. The cell of claim 35, wherein the component is a carbon cathode impregnated with dried colloidal alumina.
39. The cell of claim 35, wherein the component is a carbon cell bottom or lining impregnated with dried colloidal alumina.
40. The cell of claim 35 wherein the component is a carbon cathode impregnated and coated with dried colloidal alumina.
41. The cell of claim 35, wherein the component is a carbon cell bottom or lining impregnated and coated with dried colloidal alumina.
42. The method of claim 1 wherein the monovalent ion is sodium.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
USPCT/US93/03683 | 1993-04-19 | ||
US9303683 | 1993-04-19 | ||
PCT/US1993/011380 WO1994024337A1 (en) | 1993-04-19 | 1993-11-23 | Treated carbon or carbon-based cathodic components of aluminium production cells |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2160468A1 CA2160468A1 (en) | 1994-10-27 |
CA2160468C true CA2160468C (en) | 2001-10-02 |
Family
ID=22236520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002160468A Expired - Fee Related CA2160468C (en) | 1993-04-19 | 1993-11-23 | Treated carbon or carbon-based cathodic components of aluminium production cells |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0786020A1 (en) |
AU (1) | AU674718B2 (en) |
CA (1) | CA2160468C (en) |
NO (1) | NO954159D0 (en) |
PL (1) | PL311207A1 (en) |
SK (1) | SK128095A3 (en) |
WO (1) | WO1994024337A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5413689A (en) * | 1992-06-12 | 1995-05-09 | Moltech Invent S.A. | Carbon containing body or mass useful as cell component |
US5679224A (en) * | 1993-11-23 | 1997-10-21 | Moltech Invent S.A. | Treated carbon or carbon-based cathodic components of aluminum production cells |
US5560809A (en) * | 1995-05-26 | 1996-10-01 | Saint-Gobain/Norton Industrial Ceramics Corporation | Improved lining for aluminum production furnace |
EP1676940A3 (en) * | 1996-10-18 | 2006-07-12 | MOLTECH Invent S.A. | The start-up of aluminium electrowinning cells |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3457158A (en) * | 1964-10-02 | 1969-07-22 | Reynolds Metals Co | Cell lining system |
US3558450A (en) * | 1968-06-24 | 1971-01-26 | Phillips Petroleum Co | Process for electrochemical conversion |
US4292345A (en) * | 1980-02-04 | 1981-09-29 | Kolesnik Mikhail I | Method of protecting carbon-containing component parts of metallurgical units from oxidation |
NZ197038A (en) * | 1980-05-23 | 1984-04-27 | Alusuisse | Cathode for the production of aluminium |
US4439382A (en) * | 1981-07-27 | 1984-03-27 | Great Lakes Carbon Corporation | Titanium diboride-graphite composites |
US4466996A (en) * | 1982-07-22 | 1984-08-21 | Martin Marietta Corporation | Aluminum cell cathode coating method |
US4599320A (en) * | 1982-12-30 | 1986-07-08 | Alcan International Limited | Refractory lining material for electrolytic reduction cell for aluminum production and method of making the same |
US4600481A (en) * | 1982-12-30 | 1986-07-15 | Eltech Systems Corporation | Aluminum production cell components |
FR2547598A1 (en) * | 1983-06-20 | 1984-12-21 | Solvay | METHOD FOR MANUFACTURING ELECTRODE FOR ELECTROCHEMICAL METHODS AND CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN |
EP0203884B1 (en) * | 1985-05-17 | 1989-12-06 | MOLTECH Invent S.A. | Dimensionally stable anode for molten salt electrowinning and method of electrolysis |
US4726995A (en) * | 1985-11-13 | 1988-02-23 | Union Carbide Corporation | Oxidation retarded graphite or carbon electrode and method for producing the electrode |
US4921731A (en) * | 1986-02-25 | 1990-05-01 | University Of Florida | Deposition of ceramic coatings using sol-gel processing with application of a thermal gradient |
WO1989002489A1 (en) * | 1987-09-16 | 1989-03-23 | Eltech Systems Corporation | Cathode current collector for aluminum production cells |
US5203971A (en) * | 1987-09-16 | 1993-04-20 | Moltech Invent S.A. | Composite cell bottom for aluminum electrowinning |
US4944991A (en) * | 1988-07-08 | 1990-07-31 | Electric Power Research Institute | Formation of alumina impregnated carbon fiber mats |
US4935265A (en) * | 1988-12-19 | 1990-06-19 | United Technologies Corporation | Method for coating fibers with an amorphous hydrated metal oxide |
US5071674A (en) * | 1989-11-30 | 1991-12-10 | The University Of Florida | Method for producing large silica sol-gels doped with inorganic and organic compounds |
JPH0637283B2 (en) * | 1989-12-20 | 1994-05-18 | セントラル硝子株式会社 | Method for forming oxide thin film |
US5310476A (en) * | 1992-04-01 | 1994-05-10 | Moltech Invent S.A. | Application of refractory protective coatings, particularly on the surface of electrolytic cell components |
DE69327095T2 (en) * | 1992-04-01 | 2000-04-27 | Moltech Invent S.A., Luxemburg/Luxembourg | PREVENTION OF OXYDATION OF CARBONATED MATERIAL AT HIGH TEMPERATURES |
-
1993
- 1993-11-23 AU AU56172/94A patent/AU674718B2/en not_active Ceased
- 1993-11-23 WO PCT/US1993/011380 patent/WO1994024337A1/en not_active Application Discontinuation
- 1993-11-23 EP EP94901664A patent/EP0786020A1/en not_active Ceased
- 1993-11-23 CA CA002160468A patent/CA2160468C/en not_active Expired - Fee Related
- 1993-11-23 PL PL93311207A patent/PL311207A1/en unknown
- 1993-11-23 SK SK1280-95A patent/SK128095A3/en unknown
-
1995
- 1995-10-18 NO NO954159A patent/NO954159D0/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CA2160468A1 (en) | 1994-10-27 |
AU5617294A (en) | 1994-11-08 |
SK128095A3 (en) | 1996-03-06 |
NO954159L (en) | 1995-10-18 |
WO1994024337A1 (en) | 1994-10-27 |
AU674718B2 (en) | 1997-01-09 |
NO954159D0 (en) | 1995-10-18 |
EP0786020A1 (en) | 1997-07-30 |
PL311207A1 (en) | 1996-02-05 |
EP0786020A4 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0892085B1 (en) | Drained cathode aluminium production cells | |
US6139704A (en) | Application of refractory borides to protect carbon-containing components of aluminum production cells | |
US5534130A (en) | Application of phosphates of aluminum to carbonaceous components of aluminum production cells | |
US6001236A (en) | Application of refractory borides to protect carbon-containing components of aluminium production cells | |
CA2156268C (en) | Conditioning of cell components for aluminium production | |
CA2160468C (en) | Treated carbon or carbon-based cathodic components of aluminium production cells | |
US6616829B2 (en) | Carbonaceous cathode with enhanced wettability for aluminum production | |
US5651874A (en) | Method for production of aluminum utilizing protected carbon-containing components | |
US5679224A (en) | Treated carbon or carbon-based cathodic components of aluminum production cells | |
US5534119A (en) | Method of reducing erosion of carbon-containing components of aluminum production cells | |
EP1366214B1 (en) | Aluminium-wettable porous ceramic material | |
AU701370B2 (en) | Maintaining protective surfaces on carbon cathodes in aluminium electrowinning cells | |
US20010046605A1 (en) | Refractory coating for components of an aluminium electrolysis cell | |
US5728466A (en) | Hard and abrasion resistant surfaces protecting cathode blocks of aluminium electrowinning cells | |
EP1693486B1 (en) | A method for providing a protective coating for carbonaceous components of an electrolysis cell | |
US20060289300A1 (en) | Aluminium-wettable carbon-based body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |