CA2100042C - End bumper for vehicles and method of making same - Google Patents
End bumper for vehicles and method of making same Download PDFInfo
- Publication number
- CA2100042C CA2100042C CA 2100042 CA2100042A CA2100042C CA 2100042 C CA2100042 C CA 2100042C CA 2100042 CA2100042 CA 2100042 CA 2100042 A CA2100042 A CA 2100042A CA 2100042 C CA2100042 C CA 2100042C
- Authority
- CA
- Canada
- Prior art keywords
- bumper
- sheet
- forming
- web
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
An end bumper for vehicles constructed from a single sheet of high-tensile strength steal roll-formed to provide two side-by-side tubular sections. Each section has a front wall, an outer side wall, a rear wall, and an inner side wall, the inner side walls being spaced one from the other and connected together by a web roll-formed integrally with the inner side walls. The front walls each have extended ends overlapping and abutting the web. The extreme ends of the front walls also form an abutting puncture which is welded together and also welded to the web. The bumper has a sweep formed by a sweep-forming mechanism having curvilinear external and internal mandrels conforming to the inner configuration and outer configuration of the bumper so as to provide a passageway therebetween for receiving the bumper. The bumper is passed through the passageway while the roll-forming of the bumper takes place upstream of the mandrels. The inner mandrel is supported by an elongated member extending from the internal mandrel to a support member located where the bending of the terminal lateral ends of the sheet have not yet been completed. A cutting mechanism cuts the bumper at predetermined lengths after the sweeping of the bumper has been completed to continuously form in succession a series of bumpers during the roll-forming of the sheet.
Description
L
AREA OF INVENTION
This invention relates to automotive bumper bars for the ends of a vehicle and more specifically a roll-formed bumper made of high strength sheet steel having a high impact resistance, low weight, and relatively low cost of manufacture.
BACKGROUND OF THE INVENTION
In my Patents 5,092,512 issued March 3, 1992, and 5,104,026 issued April 14, 1992, I disclose an automotive bumper and a method and apparatus of making such bumper of high strength steel and roll-formed into a tubular cross-section. As set forth, the inventions of the above patents solve the problems by roll-forming a closed tubular cross-section from high strength sheet steel of at least 60 KSI and 0.100 inches maximum thickness. The formina of a closed section greatly increases the strength of the bar and allowed weight reduction by use of a reduced material thickness. The closed design also improved deflection curves by avoiding the sudden collapse experienced by traditional ~~C~~ section bumpers as the flanges gave way.
Another important aspect,of those, inventions, is the formation of a sweep during the roll-forming process.
Such sweep allows for manufacture of a bumper which will satisfy modern aerodynamic designs and also increase the strength of the bumper and improve its spring-back characteristics.
Although the bumper of the above said patents is a great improvement over the prior art, T have conceived of an improvement thereof which has even greater strength, In addition to the strength, it has the advantage of less cost 1 and less weight than other prior art bumpers of similar shape such as disclosed in Fig. 14 which will be described hereinafter.
Another prior art reinforcement bar utilized in a front bumper is disclosed in Fig. 14 which discloses a W-shaped or so-called double hat shaped bumper having openings 4 and 5 covered by steel plate member 6 welded to the outer legs 7 and 8 of sections 1 and 2 and to the web 3.
The W-shaped bumper of Fig. 14 is formed by roll-forming a single sheet of metal such as steel which is cut into predetermined lengths after which the metal plate 6 of the same predetermined length is attached to the C-shaped sections as disclosed in Fig. 14.
This prior art procedure is very costly because of the handling of the parts and the separate welding which requires several operations.
The reinforcement bar of Fig. 14 also has a decided disadvantage in that a striking force applied at the edges as illustrated by arrows A and B or between the edges and web 3 causes the welded ends to be forced apart destroying the integrity of the bar.
SUMMARY OF THE INVENTION
My present invention provides an automotive bumper bar which is formed of two tubular sections connected together and roll-formed from one piece of sheet steel.
This tubular bumper is formed by roll-forming into two side-by-side tubular sections, each having a front wall, an outer side wall, a rear wall, and an inner side wall. The inner side walls are spaced one from the other and connected together by a web roll-formed integrally with the inner side walls. The front walls each have extensions thereof ~~~~~~2 1 extending over, overlapping, and abutting the web where they are welded together and to the web.
My invention provides for the single sheet of high tensile strength steel to be formed in a continuous roll-forming operation, the tubular interconnected sections thus being formed in one operation as opposed to welding a separate steel piece over the open C-shaped sections as disclosed in Fig. 14.
In accordance with a narrower but important aspect l0 of this invention, I construct my bumper from a Martensite steel which is thinner, stronger, and thus can be of substantially less weight. When Martensite is used, the weld is formed by a forged current penetration weld which' provides a stronger weld.
It will become obvious from the above description that this invention provides a bumper not only of greater strength but one which is less costly and has less weight, all of which are extremely important because of the strength and the weight requirements in the automotive industry.
Fig. 1 is a front view of the roll-formed bumper of this invention;
Fig. 2 is a cross-sectional view taken along the plane II-II of Fig. 1;
Fig. 3 is a plan view of the roll-formed bumper of the invention illustrating the sweep of the.bumper;
Fig. 4 is a sketch illustrating the relationship of the bumper with respect to the body of the vehicle;
Fig. 5 is a schematic view of the roll-forming apparatus of this invention for practicing the process of this invention:
AREA OF INVENTION
This invention relates to automotive bumper bars for the ends of a vehicle and more specifically a roll-formed bumper made of high strength sheet steel having a high impact resistance, low weight, and relatively low cost of manufacture.
BACKGROUND OF THE INVENTION
In my Patents 5,092,512 issued March 3, 1992, and 5,104,026 issued April 14, 1992, I disclose an automotive bumper and a method and apparatus of making such bumper of high strength steel and roll-formed into a tubular cross-section. As set forth, the inventions of the above patents solve the problems by roll-forming a closed tubular cross-section from high strength sheet steel of at least 60 KSI and 0.100 inches maximum thickness. The formina of a closed section greatly increases the strength of the bar and allowed weight reduction by use of a reduced material thickness. The closed design also improved deflection curves by avoiding the sudden collapse experienced by traditional ~~C~~ section bumpers as the flanges gave way.
Another important aspect,of those, inventions, is the formation of a sweep during the roll-forming process.
Such sweep allows for manufacture of a bumper which will satisfy modern aerodynamic designs and also increase the strength of the bumper and improve its spring-back characteristics.
Although the bumper of the above said patents is a great improvement over the prior art, T have conceived of an improvement thereof which has even greater strength, In addition to the strength, it has the advantage of less cost 1 and less weight than other prior art bumpers of similar shape such as disclosed in Fig. 14 which will be described hereinafter.
Another prior art reinforcement bar utilized in a front bumper is disclosed in Fig. 14 which discloses a W-shaped or so-called double hat shaped bumper having openings 4 and 5 covered by steel plate member 6 welded to the outer legs 7 and 8 of sections 1 and 2 and to the web 3.
The W-shaped bumper of Fig. 14 is formed by roll-forming a single sheet of metal such as steel which is cut into predetermined lengths after which the metal plate 6 of the same predetermined length is attached to the C-shaped sections as disclosed in Fig. 14.
This prior art procedure is very costly because of the handling of the parts and the separate welding which requires several operations.
The reinforcement bar of Fig. 14 also has a decided disadvantage in that a striking force applied at the edges as illustrated by arrows A and B or between the edges and web 3 causes the welded ends to be forced apart destroying the integrity of the bar.
SUMMARY OF THE INVENTION
My present invention provides an automotive bumper bar which is formed of two tubular sections connected together and roll-formed from one piece of sheet steel.
This tubular bumper is formed by roll-forming into two side-by-side tubular sections, each having a front wall, an outer side wall, a rear wall, and an inner side wall. The inner side walls are spaced one from the other and connected together by a web roll-formed integrally with the inner side walls. The front walls each have extensions thereof ~~~~~~2 1 extending over, overlapping, and abutting the web where they are welded together and to the web.
My invention provides for the single sheet of high tensile strength steel to be formed in a continuous roll-forming operation, the tubular interconnected sections thus being formed in one operation as opposed to welding a separate steel piece over the open C-shaped sections as disclosed in Fig. 14.
In accordance with a narrower but important aspect l0 of this invention, I construct my bumper from a Martensite steel which is thinner, stronger, and thus can be of substantially less weight. When Martensite is used, the weld is formed by a forged current penetration weld which' provides a stronger weld.
It will become obvious from the above description that this invention provides a bumper not only of greater strength but one which is less costly and has less weight, all of which are extremely important because of the strength and the weight requirements in the automotive industry.
Fig. 1 is a front view of the roll-formed bumper of this invention;
Fig. 2 is a cross-sectional view taken along the plane II-II of Fig. 1;
Fig. 3 is a plan view of the roll-formed bumper of the invention illustrating the sweep of the.bumper;
Fig. 4 is a sketch illustrating the relationship of the bumper with respect to the body of the vehicle;
Fig. 5 is a schematic view of the roll-forming apparatus of this invention for practicing the process of this invention:
,\
1 Fig. 6 is a frontal view of the sweeping station disclosing the mandrels which form the curvature in the bumper;
Fig. 7 is a cutaway, schematic view of the side of the sweeping means showing the sweeping mandrels and the anchoring rods;
Fig. 8 is schematic of a section of a roll-forming apparatus;
Fig. 9 is a cross-sectional view taken along the ZO plane TX-IX of Fig. 4;
Fig. l0 is a schematic of the flow pattern of the steel sheet as the rollers progressively form the web portion of the bumper;
Fig. 11 discloses a continuing flow pattern of the steel sheet as the rollers form the sheet from the form disclosed in Fig. 10 to the completely formed sheet into the two tubular sections;
Fig. l2 is a perspectiv~, cross-sectional view taken along the planes XII-XII of Fig. 5;
Fig. 13 is a perspective, cross-sectional view taken along the planes XII-XII of Fig. 5; and Fig. 14 is.a cross-section of a prior art reinforcement for a bumper previously referred to above.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings, Figs.. 1., 2, and 3 best disclose the bumper bar 10 of this invention having a front side 11 and a rear side 12. The bumper 10 is comprised of two tubular sections 13 and 14 connected together by the web 15. Each section has an outer side 16 and 17, respectively, and the inner sides 18 and 19, respectively. The back wall 1 portion 12a connects the two side walls 16 and 18 of the section 13 and the bac7~ wall portion 12b connects the two side walls 17 and 19 of the tubular section 14. The wall portion lla of the front wall ll is connected to the side walls 16 and 18 and includes an extended end llc that overlaps and abuts against the web 15. The wall portion llb of the front wall 11 is connected between the side walls 17 and 19 and has an extended end lld that also overlaps the web 15. The two extended ends llc and 11d of the front wall l0 abut each other and are welded to each other and to the web by a forged current penetration weld 30.
As disclosed in Fig. 3, the bumper 10 has a X18 sweep. Sweep, as used in the automotive industry, is the term utilized to describe the curvature of the bumper.
15 Measurements of sweep may be derived from charts such as disclosed in my issued patents 5,092,512 and 5,104,026.
Also disclosed are different types of steel sheets suitable for the bumper and the present bumper. In accordance with this invention, as in the disclosures of the above patents, it is important that the KSI range must be at least 60 KSI and can be as high as 200 KSI. In the preferred form of this invention, I prefer to use a Martensite that has a tensile strength of 190 KSI.
Martensite is a low-carbon, alloy-free, cold rolled steel which is available in minimal tensile strengths ranging from 130 to 225 KSI. Due to the high Martensite.start temperature, these low-carbon, alloy-free steels are auto-temperate, or self-temperate during the quench, and do not normally require tempering after quenching to avoid brittleness in high-carbon steels. Preferred results are 1 obtained by thicknesses falling within the range of 0.035 to .072 inches.
Fig. 4 discloses for illustrative purposes only, a sketch showing a relationship of my bumper to a vehicle identified by the reference number 30. It will be noted .
that the bumper 10 is mounted on one end of the car, that is, the front or rear end with the front wall facing away from the vehicle. It is possible to reverse this position for some uses of the bumper.
Figs. 5, 6, 7, 8, and 9 disclose the apparatus for forming the bumper bar 10 of this invention and thus illustrates the process in producing the bumper or bumper bar. Referring to Fig. 5, reference numeral 20 designates the overhaul apparatus which starting from the left side of the figure, discloses a steel roll holder 8 rotatably supporting the steel roll 9 which contains a flat steel strip "S°' as disclosed above and which extends into the series of roller assemblies 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 arid 40 Which have shapes that as the strip is passed therethrough, the steel is gradually and progressively formed into the form as disclosed in Fig. 2.; An illustration of the progressipn of the forming of the steel strip is illustrated in Figs. 10 and 11 wherein the steel strip forms 21a, 22a, 23a, 24a, 25a, 26a, etc. are respectively produced by the rollers 21, 22, 23, 24, 25, 26, etc. After passing through rollers 2 140, the farmed strip S is. passed through the holding rollers 60a and 60b between which is mounted the welding apparatus 70. The hold down fixtures 60a and 60b are provided, particularly when the steel strip is a 190 KSI
Martensite which tends to spring back to its original form.
1 Fig. 6 is a frontal view of the sweeping station disclosing the mandrels which form the curvature in the bumper;
Fig. 7 is a cutaway, schematic view of the side of the sweeping means showing the sweeping mandrels and the anchoring rods;
Fig. 8 is schematic of a section of a roll-forming apparatus;
Fig. 9 is a cross-sectional view taken along the ZO plane TX-IX of Fig. 4;
Fig. l0 is a schematic of the flow pattern of the steel sheet as the rollers progressively form the web portion of the bumper;
Fig. 11 discloses a continuing flow pattern of the steel sheet as the rollers form the sheet from the form disclosed in Fig. 10 to the completely formed sheet into the two tubular sections;
Fig. l2 is a perspectiv~, cross-sectional view taken along the planes XII-XII of Fig. 5;
Fig. 13 is a perspective, cross-sectional view taken along the planes XII-XII of Fig. 5; and Fig. 14 is.a cross-section of a prior art reinforcement for a bumper previously referred to above.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to the drawings, Figs.. 1., 2, and 3 best disclose the bumper bar 10 of this invention having a front side 11 and a rear side 12. The bumper 10 is comprised of two tubular sections 13 and 14 connected together by the web 15. Each section has an outer side 16 and 17, respectively, and the inner sides 18 and 19, respectively. The back wall 1 portion 12a connects the two side walls 16 and 18 of the section 13 and the bac7~ wall portion 12b connects the two side walls 17 and 19 of the tubular section 14. The wall portion lla of the front wall ll is connected to the side walls 16 and 18 and includes an extended end llc that overlaps and abuts against the web 15. The wall portion llb of the front wall 11 is connected between the side walls 17 and 19 and has an extended end lld that also overlaps the web 15. The two extended ends llc and 11d of the front wall l0 abut each other and are welded to each other and to the web by a forged current penetration weld 30.
As disclosed in Fig. 3, the bumper 10 has a X18 sweep. Sweep, as used in the automotive industry, is the term utilized to describe the curvature of the bumper.
15 Measurements of sweep may be derived from charts such as disclosed in my issued patents 5,092,512 and 5,104,026.
Also disclosed are different types of steel sheets suitable for the bumper and the present bumper. In accordance with this invention, as in the disclosures of the above patents, it is important that the KSI range must be at least 60 KSI and can be as high as 200 KSI. In the preferred form of this invention, I prefer to use a Martensite that has a tensile strength of 190 KSI.
Martensite is a low-carbon, alloy-free, cold rolled steel which is available in minimal tensile strengths ranging from 130 to 225 KSI. Due to the high Martensite.start temperature, these low-carbon, alloy-free steels are auto-temperate, or self-temperate during the quench, and do not normally require tempering after quenching to avoid brittleness in high-carbon steels. Preferred results are 1 obtained by thicknesses falling within the range of 0.035 to .072 inches.
Fig. 4 discloses for illustrative purposes only, a sketch showing a relationship of my bumper to a vehicle identified by the reference number 30. It will be noted .
that the bumper 10 is mounted on one end of the car, that is, the front or rear end with the front wall facing away from the vehicle. It is possible to reverse this position for some uses of the bumper.
Figs. 5, 6, 7, 8, and 9 disclose the apparatus for forming the bumper bar 10 of this invention and thus illustrates the process in producing the bumper or bumper bar. Referring to Fig. 5, reference numeral 20 designates the overhaul apparatus which starting from the left side of the figure, discloses a steel roll holder 8 rotatably supporting the steel roll 9 which contains a flat steel strip "S°' as disclosed above and which extends into the series of roller assemblies 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 arid 40 Which have shapes that as the strip is passed therethrough, the steel is gradually and progressively formed into the form as disclosed in Fig. 2.; An illustration of the progressipn of the forming of the steel strip is illustrated in Figs. 10 and 11 wherein the steel strip forms 21a, 22a, 23a, 24a, 25a, 26a, etc. are respectively produced by the rollers 21, 22, 23, 24, 25, 26, etc. After passing through rollers 2 140, the farmed strip S is. passed through the holding rollers 60a and 60b between which is mounted the welding apparatus 70. The hold down fixtures 60a and 60b are provided, particularly when the steel strip is a 190 KSI
Martensite which tends to spring back to its original form.
~.~.~iiJU~~~
1 The fixtures 60a and 60b hold the last formed edges 40a as viewed in Fig. 11 down against the web 15 and in abutting relationship with the web and with each other while the welding apparatus 70 welds the extended portions llc and lld to each other and to the web 15. The welding apparatus 70 is of the type which produces a forged current penetration weld, particularly when the strip is a Martensite steel. It has been found that when the strip S is a Martensite steel, the forged current penetration weld is more reliable than other welds.
Although I have disclosed 20 roller assemblies to produce the shaped bar of my invention, the number can be substantially increased and under some circumstances, the number can be decreased. As disclosed in my above l5 referenced patents, a unique sweep means is pro~rided downstream of the welder 70 and hold down fixture 60b. This sweep producing or sweeping means disclosed in Figs. 5, 6, 7, 8, 9, 12, and 13 comprises a sweeping box 41 which includes a series of pairs of internal and external mandrels (44a and 45a, 44b and 45b, etc.) between which the tube formed by the rollers 23-37 and welded by welder 40 pass.
These mandrels have rounded ends as disclosed to assist in guiding the dual tube 10 between them. Each external mandrel is held by a mandrel frame such as 46a (Figs. 6 and 7) which is anchored at a horizontal center point by stabilizer 47a. The sweep of the bumper may be increased by vertical adjustment of the sweep adjustors 48a, 48b, 48c, etc. For example, as sweep adjustor 48a is adjusted upward, stabilizer 47a is also raised, thus forcing frame 46a and external mandrel 45a upwardly. Obviously, internal mandrel 44a is forced to follow this movement since a _7_ ~i~~f~~~
1 cross-sectional shape of the internal mandrels 44a, ~4b, etc. are substantially identical to the cross-section of the bumper 10. Therefore, as a roller formed tube or bumper passes therethrough, it assumes a curvature or sweep determined by the position of mandrels.
The internal mandrels are supported by support assembly 50 (Fig. 12) which includes two rods 51 and 52 extending from and secured to the support 53. The location of the support 53 is selected to a position where the l0 support 53 and extend downwardly into the tube as illustrated by Fig. 12. In this position, the steel strip has been rolled to form 31a (Fig. 11). The center section formed by the web 15 and inner sides l~ and 19 has been formed along with the back portions 12a and 12b. This leaves an opening through the top of the bumper being formed for receiving the fork-shaped support 53 to which rods 51 and 52 are secured.
As previously disclosed, downstream of the support 53, the steel strip continues to pass through the rollers until such time that it reaches the form as disclosed in Fig. 9 which discloses the dual tube bumper formed to the desired shape with the edges of the extended portions 11c and lld abutting and such extensions overlapping and abutting the connecting web 15 which connects the two 25~ tubular sections 13 and 14. Fig. 9 discloses the holding fixture 60a. Identical holding fixtures 60a.. and 60b, are located on each side of the welder 70 for the purpose of holding the formed strip or bumper when being welded in the position as shown in Fig. 9. As previously described, this is necessary in order to account for the tendency of the two _g_ 1 portions lla and llb of the front 11 of the bumper from springing apart while the welding operation is taking place.
After being welded, the tube then continues through pushing rollers 80a and Bob which are eonfigurated the same as the configuration of the bumper 10 so as to push against the internal mandrels 80c which are similar in shape to the inside cross-section of the tubular sections of the bumper such as disclosed in Fig. 9. This allows rollers 80a and Bob to generate sufficient force to force bumper bar 1 into the sweeping box 41 without crushing or deforming the cross-section of the bumper 10.
The cross-sectional shape of the bumper 10 provides a means for moving the bumper over the mandrels 44a, 44b, etc. and between such mandrels and the outer mandrels 45a, 45b, etc. Thus, as the bumper is pushed through the sweeping box 41, it is given a sweep depending upon the adjustment of the positions of the mandrels 44a, 44b, 45a, and 45b etc.
OPERATION
Having described the apparatus for forming the bumper, it should be realized that the steel strip S is played off from roll 7 and passed through the roll assemblies to form the dual tube bumper 1 as disclosed in Fig. 9 with the edges of the front wall extensions llc and lld abutting each other and such extensions overlaying and abutting the web 15., In this position, the~welder 70 forms the welded seam 30 to form a unitary, integral tube 10 as disclosed in Fig. 6, the tube thus formed being straight.
It is within the contemplation of the broader 3o aspects of this invention that the bumper thus formed can be utilized as a straight bumper having substantially improved _g-1 characteristics. It has a substantially higher level of strength arid damage resistance so as to meet consumer expectation and government regulation concerning low speed vehicular impact, It also has low weight to minimize vehicular dead weight and low manufacturing costs. The high strength-to-weight ratio and ease of manufacture contribute to the superiority of the present bumper. Such superiority is made possible by forming a bumper of a high strength sheet steel, with lower than normal thickness, roll-formed 10. as disclosed above from a single strip of steel.
In accordance with the preferred more narrow aspects of this invention, the bumper formed by the roller assemblies and welder is curved or swept to produce a bumper having a sweep of from #0-60. Such curvature or sweep is produced by passing the bumper from the induction welder over the curved mandrel pairs 44a, 44b, etc. and 45a, 45b, etc., it being understood that one or more mandrels can be used. After the sweep is formed, the bumper bar 10 is cut off by the cut-off apparatus 90 (Fig. 5).
Although I have disclosed a preferred embodiment of this invention, it should be understood that many variations can be made without departing from the spirit and scope of this invention.
1 The fixtures 60a and 60b hold the last formed edges 40a as viewed in Fig. 11 down against the web 15 and in abutting relationship with the web and with each other while the welding apparatus 70 welds the extended portions llc and lld to each other and to the web 15. The welding apparatus 70 is of the type which produces a forged current penetration weld, particularly when the strip is a Martensite steel. It has been found that when the strip S is a Martensite steel, the forged current penetration weld is more reliable than other welds.
Although I have disclosed 20 roller assemblies to produce the shaped bar of my invention, the number can be substantially increased and under some circumstances, the number can be decreased. As disclosed in my above l5 referenced patents, a unique sweep means is pro~rided downstream of the welder 70 and hold down fixture 60b. This sweep producing or sweeping means disclosed in Figs. 5, 6, 7, 8, 9, 12, and 13 comprises a sweeping box 41 which includes a series of pairs of internal and external mandrels (44a and 45a, 44b and 45b, etc.) between which the tube formed by the rollers 23-37 and welded by welder 40 pass.
These mandrels have rounded ends as disclosed to assist in guiding the dual tube 10 between them. Each external mandrel is held by a mandrel frame such as 46a (Figs. 6 and 7) which is anchored at a horizontal center point by stabilizer 47a. The sweep of the bumper may be increased by vertical adjustment of the sweep adjustors 48a, 48b, 48c, etc. For example, as sweep adjustor 48a is adjusted upward, stabilizer 47a is also raised, thus forcing frame 46a and external mandrel 45a upwardly. Obviously, internal mandrel 44a is forced to follow this movement since a _7_ ~i~~f~~~
1 cross-sectional shape of the internal mandrels 44a, ~4b, etc. are substantially identical to the cross-section of the bumper 10. Therefore, as a roller formed tube or bumper passes therethrough, it assumes a curvature or sweep determined by the position of mandrels.
The internal mandrels are supported by support assembly 50 (Fig. 12) which includes two rods 51 and 52 extending from and secured to the support 53. The location of the support 53 is selected to a position where the l0 support 53 and extend downwardly into the tube as illustrated by Fig. 12. In this position, the steel strip has been rolled to form 31a (Fig. 11). The center section formed by the web 15 and inner sides l~ and 19 has been formed along with the back portions 12a and 12b. This leaves an opening through the top of the bumper being formed for receiving the fork-shaped support 53 to which rods 51 and 52 are secured.
As previously disclosed, downstream of the support 53, the steel strip continues to pass through the rollers until such time that it reaches the form as disclosed in Fig. 9 which discloses the dual tube bumper formed to the desired shape with the edges of the extended portions 11c and lld abutting and such extensions overlapping and abutting the connecting web 15 which connects the two 25~ tubular sections 13 and 14. Fig. 9 discloses the holding fixture 60a. Identical holding fixtures 60a.. and 60b, are located on each side of the welder 70 for the purpose of holding the formed strip or bumper when being welded in the position as shown in Fig. 9. As previously described, this is necessary in order to account for the tendency of the two _g_ 1 portions lla and llb of the front 11 of the bumper from springing apart while the welding operation is taking place.
After being welded, the tube then continues through pushing rollers 80a and Bob which are eonfigurated the same as the configuration of the bumper 10 so as to push against the internal mandrels 80c which are similar in shape to the inside cross-section of the tubular sections of the bumper such as disclosed in Fig. 9. This allows rollers 80a and Bob to generate sufficient force to force bumper bar 1 into the sweeping box 41 without crushing or deforming the cross-section of the bumper 10.
The cross-sectional shape of the bumper 10 provides a means for moving the bumper over the mandrels 44a, 44b, etc. and between such mandrels and the outer mandrels 45a, 45b, etc. Thus, as the bumper is pushed through the sweeping box 41, it is given a sweep depending upon the adjustment of the positions of the mandrels 44a, 44b, 45a, and 45b etc.
OPERATION
Having described the apparatus for forming the bumper, it should be realized that the steel strip S is played off from roll 7 and passed through the roll assemblies to form the dual tube bumper 1 as disclosed in Fig. 9 with the edges of the front wall extensions llc and lld abutting each other and such extensions overlaying and abutting the web 15., In this position, the~welder 70 forms the welded seam 30 to form a unitary, integral tube 10 as disclosed in Fig. 6, the tube thus formed being straight.
It is within the contemplation of the broader 3o aspects of this invention that the bumper thus formed can be utilized as a straight bumper having substantially improved _g-1 characteristics. It has a substantially higher level of strength arid damage resistance so as to meet consumer expectation and government regulation concerning low speed vehicular impact, It also has low weight to minimize vehicular dead weight and low manufacturing costs. The high strength-to-weight ratio and ease of manufacture contribute to the superiority of the present bumper. Such superiority is made possible by forming a bumper of a high strength sheet steel, with lower than normal thickness, roll-formed 10. as disclosed above from a single strip of steel.
In accordance with the preferred more narrow aspects of this invention, the bumper formed by the roller assemblies and welder is curved or swept to produce a bumper having a sweep of from #0-60. Such curvature or sweep is produced by passing the bumper from the induction welder over the curved mandrel pairs 44a, 44b, etc. and 45a, 45b, etc., it being understood that one or more mandrels can be used. After the sweep is formed, the bumper bar 10 is cut off by the cut-off apparatus 90 (Fig. 5).
Although I have disclosed a preferred embodiment of this invention, it should be understood that many variations can be made without departing from the spirit and scope of this invention.
Claims (42)
- The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
An end bumper for vehicles comprising a roll-formed, single sheet of high tensile strength steel comprising:
two side-by-side tubular sections each having a front wall, an outer side wall, a rear wall and an inner side wall:
said inner side walls being spaced one from the other and connected together by a web roll-formed integrally with said inner side walls;
one of said front walls and rear walls each having extended ends overlapping and abutting said web, said extended ends welded to said web. - The end bumper of claim 1 in which said extended ends abut each other.
- The end bumper of claim 2 in which said extended ends form an abutting juncture and are welded to said web at the abutting juncture.
- The end bumper of claim 1 in which said extended ends are welded to said web by a forged current penetration weld.
- The end bumper of claim 3 in which said extended ends are welded to said web by a forged current penetration weld.
- The end bumper of claim 1 in which the steel is Martensite.
- The end bumper of claim 6 in which the thickness of said Martensite steel is between .035 and .072.
- The end bumper of claim 1 in which the inner side walls are tapered toward each other from said rear walls to said front walls.
- The end bumper of claim 1 in which the outer side walls are tapered outwardly from said first wells to said second walls.
- The end bumper of claim 7 in which the outer side walls are tapered outwardly from said first walls to said second walls.
- A method for forming a bumper bar for a vehicle comprising the steps of continuously providing a sheet of steel of a predetermined width and continuously roll-forming said sheet of high tensile strength steel by first forming a web in the longitudinal center section of said sheet, said web forming two inner sides connected together by a web, said web being located on a predetermined plane;
bending said sheet at the ends of said web away from said plane to form relatively flat side walls extending from both ends of said web;
bending said sheet at the outer ends of said side walls to form first walls extending away from and substantially parallel to said predetermined plane:
bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and second walls, said second walls being located on said plane and having extensions overlapping and abutting said web;
holding said outer wall and said extension ends of said second Wall in a position where said extensions overlap and abut said web; and welding said extensions to said web during said holding step to form a one-piece bumper having side-by-side tubular sections connected together by said web. - The method of claim 11 in which during the bending of the terminal lateral ends of said sheet, the ends of said extensions are made to abut each other.
- The method of claim 12 in which said abutting ends of said extensions are welded together.
- The method of claim 11 in which the welding step is performed by forged current penetration welding.
- The end bumper of claim 1 in which the bumper has at least a #10 sweep.
- The end bumper of claim 3 in which the bumper has a sweep.
- A method for forming a bumper bar for a vehicle comprising the steps of continuously providing a sheet of steel of a predetermined width and continuously roll-forming said sheet of high tensile strength steel by first forming a web in the longitudinal center section of said sheet, said forming of said web providing two inner sides connected together by said web, said web being located on a predetermined plane:
bending said sheet at the ends of said web away from said plane to form relatively flat side walls extending from both ends of said web;
bending said sheet at the outer ends of said side walls to form first walls extending away from and substantially parallel to said predetermined plane;
bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and second walls, said second walls being located on said plane and having extensions overlapping and abutting said web;
holding said outer walls and said extension ends of said second walls in a position where said extensions overlap and abut said web;
welding said extensions to said web during said holding step to form a one-piece bumper having side-by-side tubular sections connected together by said web:
providing a sweep forming means having curvilinear external mandrel means conforming to the outer configuration of said bumper and curvilinear internal mandrel means conforming to the inner configuration of each of said tubular sections, said external and internal mandrel means being spaced from each other to provide a passageway therebetween for receiving said bumper therebetween;
passing said bumper through said passageway while said roll-forming step upstream of said external and internal mandrel means takes place and said upstream sheet connected to the integral tube is being roll-formed, and during said passing step continuously supporting the external and internal mandrel means in stationary positions, the internal mandrel means being supported by support means having elongated members extending from said internal mandrel means to a support member, said support member being located upstream of said sweep forming means where the bending of the terminal lateral ends of said sheet has not been completed thereby providing an opening through which said support member extends for attachment to said elongated member;
said step of passing said bumper through said passageway producing a predetermined sweep in said bumper as determined by the shape of said passageway; and cutting said swept integral bumper at predetermined lengths after the sweeping of the bumper has been completed to continuously form in succession a series of bumpers during the roll-forming of said sheet upstream of said sweep forming means. - 18. The method of claim 17 in which the internal mandrel means is provided upstream of said internal and external mandrels, and prior to forming said sweep and after the two portions of said strip are formed into said integral dual tubes passing said integral dual tube over said internal mandrel means, and causing roller means to engage and act on said integral bumper located between said roller means and said internal mandrel whereby said formed portions are caused to be advanced to and through said sweep forming means.
- 19. The method of claim 18 in which said internal mandrel means is also supported by said support means.
- 20. Apparatus for forming a bumper bar for a vehicle comprising a source of steel sheet for continuously providing a sheet of steel of a predetermined width;
a roll former having driven rollers for continuously roll-forming said sheet of high tensile strength steel;
said rollers including a first set of rollers for first forming a web in the longitudinal center section of said sheet and forming two inner side walls extending from said web, said web being located on a predetermined plane;
said rollers including a second set of rollers located downstream of said first set of rollers for bending said sheet at the outer ends of said inner side walls to form first walls extending away from said inner side walls and substantially parallel to said predetermined plane;
said rollers including a third set of rollers located downstream of said second set of rollers for bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and for bending said ends to form second walls located on said plane and having extensions overlapping and abutting said web;
a holder for holding said outer wall and said extension ends of said second wall in a position where said extensions overlap and abut said web; and a welder for welding said extensions to said web while said holder holds said extension ends in overlapping/
abutting position over and on said web thereby forming a one-piece bumper having side-by-side tubular sections connected together by said web. - 21. The apparatus of claim 20 in which the third set of rollers during the bending of the terminal lateral ends of said sheet causes the ends of said extensions to abut each other.
- 22. The apparatus of claim 21 in which the welder welds said abutting ends together and to said web.
- 23. The apparatus of claim 22 in which the welder is a forged current penetration welder.
- 24. The apparatus of claim 20 in which the welder is a forged current penetration welder.
- 25. Apparatus for forming a bumper bar for a vehicle comprising a source of steel sheet for continuously providing a sheet of steel of a predetermined width;
a roll former having driven rollers for continuously roll-forming said sheet of high tensile strength steel;
said rollers including a first set of rollers for first forming a web in the longitudinal center section of said sheet and forming two inner side walls extending from said web, said web being located on a predetermined plane;
said rollers including a second set of rollers for bending said sheet at the outer ends of said inner side walls to form first walls extending away from and substantially parallel to said predetermined plane;
said rollers including a third set of rollers for bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and for bending said ends to form second walls located on said plane and having extensions overlapping and abutting said web;
a holder mechanism for holding said outer walls and said extension ends of said second walls in a position where said extensions overlap and abut said web;
a welder for welding said extensions to said web during said holding step to form a one-piece bumper having side-by-side tubular sections connected together by said web;
a sweep forming mechanism having curvilinear external mandrels conforming to the outer configuration of said bumper and curvilinear internal mandrels conforming to the inner configuration of each of said tubular sections, said external and internal mandrels being spaced from each other to provide a passageway therebetween for receiving said bumper therebetween;
drive rollers for forcing said bumper through said passageway while the roll-forming of said sheet of steel upstream of said external and internal mandrels takes place;
a support means for continuously supporting the external and internal mandrels in stationary positions during the roll-forming of said sheet steel, the support for the internal mandrel including elongated members extending from said internal mandrel means to a support member, said support member being located upstream of said sweep forming means where the bending of the terminal lateral ends of said sheet has not been completed thereby providing an opening through which said support member extends for attachment to said elongated member;
said step of passing said bumper through said passageway producing a predetermined sweep in said bumper as determined by the longitudinal shape of said passageway; and a cutter for cutting said swept integral bumper at predetermined lengths after the sweeping of the bumper has been completed whereby said apparatus continuously forms in succession a series of bumpers during the roll-forming of said sheet upstream of said sweep forming mechanism. - 26. The apparatus of claim 25 in which a second internal mandrel means is provided upstream of said internal and external mandrels, said second internal mandrel means conforming to the cross-sectional inner shape of said integral dual tubes whereby said integral dual tube can pass over said second mandrel means and is supported thereby, said second internal mandrel means being located at said drive rollers; said drive rollers engaging said integral bumper whereby said integral bumper is located between said drive rollers and said internal mandrel thereby causing said integral bumper to be advanced to and through said sweep forming mechanism.
- 27. The apparatus of claim 26 in which said second internal mandrel means is also supported by said support member.
- 28. Apparatus for forming a bumper bar for a vehicle comprising a source of steel sheet for continuously providing a sheet of steel of a predetermined width;
a roll former having driven rollers for continuously roll-forming said sheet of high tensile strength steel;
said rollers including a first set of rollers for first forming a web in the longitudinal center section of said sheet and forming two inner side walls extending from said web, said web being located on a predetermined plane;
said rollers including a second set of rollers for bending said sheet at the outer ends of said inner side walls to form first walls extending away from and substantially parallel to said predetermined plane;
said rollers including a third set of rollers for bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and for bending said ends to form second walls located on said plane and having extensions overlapping and abutting said web;
a holder mechanism for holding said outer walls and said extension ends of said second walls in a position where said extensions overlap and abut said web;
a welder for welding said extensions to said web during said holding step to form a one-piece bumper having side-by-side tubular sections connected together by said web;
a sweep forming mechanism having curvilinear external guide mechanism and curvilinear internal mandrels conforming to the inner configuration of each of said tubular sections, said external guide mechanism and internal mandrels being spaced from each other to provide a passageway therebetween for receiving said bumper therebetween;
a drive mechanism for forcing said bumper through said passageway while the roll-forming by said sheet of steel upstream of said external guide mechanism and internal mandrels takes place;
a support for continuously supporting the internal mandrels in stationary positions during the roll-forming of said sheet steel, said support for the internal mandrel including elongated members extending from said internal mandrel to a support member, said support member being located upstream of said sweep forming means where the bending of the terminal lateral ends of said sheet has not been completed thereby providing an opening through which said support member extends for attachment to said elongated member;
said step of forcing said bumper through said passageway producing a predetermined sweep in said bumper as determined by the longitudinal shape of said passageway; and a cutter for cutting said swept integral bumper at predetermined lengths after the sweeping of the bumper has been completed whereby said apparatus continuously forms in succession a series of bumpers during the roll-forming of said sheet upstream of said swept forming mechanism. - 29. The apparatus of claim 28 in which said drive mechanism is at least one drive roller.
- 30. The apparatus of claim 29 in which the shape of said bumper is irregular;
said drive roller engaging the outer surfaces of said bumper causing said bumper to be advanced to and through said sweep forming mechanism. - 31. The apparatus of claim 30 in which second mandrels are provided upstream of said internal mandrels, said second mandrels means conforming to the cross-sectional inner shape of said integral dual tubes whereby said integral dual tube can pass over said second mandrels and are supported thereby, said second mandrels being located at said drive roller; said drive roller engaging said integral bumper whereby said integral bumper is located between said drive roller and said second mandrels thereby causing said integral bumper to be advanced to and through said sweep forming mechanism.
- 32. Apparatus for forming a bumper bar for a vehicle comprising a source of steel sheet for continuously providing a sheet of steel of a predetermined width;
a roll former having driven rollers for continuously roll-forming said sheet of high tensile strength steel;
said rollers including a first set of rollers for first forming a web in the longitudinal center section of said sheet and forming two inner side walls extending from said web, said web being located on a predetermined plane;
said rollers including a second set of rollers for bending said sheet at the outer ends of said inner side walls to form first walls extending away from and substantially parallel to said predetermined plane;
said rollers including a third set of rollers for bending the terminal lateral ends of said sheet in a direction toward said plane to form outer side walls and for bending said ends to form second walls located on said plane and having extensions overlapping and abutting said web;
a holder mechanism for holding said outer walls and said extension ends of said second walls in a position where said extensions overlap and abut said web;
a welder for welding said extensions to said web during said holding step to form a one-piece bumper having side-by-side tubular sections connected together by said web;
a sweep forming mechanism having a curvilinear internal mandrels conforming to the inner configuration of each of said tubular sections, said internal mandrels being received within the inner walls of said bumper;
a drive mechanism for forcing said bumper over said internal mandrels while the roll-forming by said sheet of steel upstream of said internal mandrels takes place;
a support for continuously supporting said internal mandrels during the roll-forming of said sheet steel and the passing of said tubular sections over said internal mandrels, the support for the internal mandrels including elongated members extending from said internal mandrels to a support member, said support member being located upstream of said sweep forming means where the bending of the terminal lateral ends of said sheet has not been completed thereby providing an opening through which said support member extends for attachment to said elongated member;
said step of forcing said bumper over said internal mandrels producing a predetermined sweep in said bumper as determined by the longitudinal shape of said internal mandrel; and a cutter for cutting said swept integral bumper at predetermined lengths after the sweeping of the bumper has been completed whereby said apparatus continuously forms in succession a series of bumpers during the roll-forming of said sheet upstream of said sweep forming mechanism. - 33. The apparatus of claim 32 in which said drive mechanism is at least one drive roller.
- 34. The apparatus of claim 33 in which the shape of said bumper is irregular;
said drive roller engaging the outer surfaces of said bumper causing said bumper to be advanced to and through said sweep forming mechanism. - 35. The apparatus of claim 34, in which second mandrels are provided upstream of said internal mandrels, said second mandrels means conforming to the cross-sectional inner shape of said integral dual tubes whereby said integral dual tube can pass over said second mandrels and are supported thereby, said second mandrels being located at said drive roller; said drive roller engaging said integral bumper whereby said integral bumper is located between said drive roller and said second mandrels thereby causing said integral bumper to be advanced to and through said sweep forming mechanism.
- 36. A method of forming bumper bars for vehicles comprising steps of:
providing an elongated sheet of high strength steel having a tensile strength of at least about 60 KSI;
continuously roll-forming the sheet of high strength steel with a roll-forming apparatus into an elongated linear shape with portions of the sheet engaging one another to form at least one closed tubular section, the elongated linear shape having a cross-section shaped for beam strength, for impact resistance, and for vehicle aesthetics;
providing a welder located generally in-line with an end of the roll-forming apparatus;
by using the welder, welding the portions of the sheet together to permanently form the at least one closed tubular section as the elongated linear shape exits the roll-forming apparatus;
providing a sweeping mechanism including internal and external mandrels constructed to deform the elongated linear shape, and supporting the internal mandrel from a location upstream of the sweeping mechanism;
providing a driving mechanism proximate the sweeping mechanism having sufficient power to force the elongated linear shape including the at least one closed tubular section through the sweeping mechanism, the driving mechanism being located relatively close to the sweeping mechanism to minimize a distance therebetween;
by using the sweeping mechanism and the driving mechanism, continuously sweeping the elongated linear shape into an elongated curvilinear shape simultaneously with the step of continuously roll-forming the sheet;
maintaining the cross-section during the step of sweeping by supporting the cross-section of the elongated linear shape at and also upstream of the sweeping mechanism, the supporting at the sweeping mechanism being provided by a downstream portion of the internal mandrel and by the external mandrel, and the supporting upstream of the sweeping mechanism being provided by an upstream portion of the internal mandrel and by an exterior holder located between the welder and the external mandrel, the upstream portion of the internal mandrel being located upstream from the downstream portion of the internal mandrel and extending sufficiently close to the driving mechanism to prevent undesired crushing and deformation of the cross-section including the at least one closed tubular section; and cutting segments from the elongated curvilinear shape to make bumper bars for vehicles, wherein the at least one closed tubular section includes two closed tubular sections formed by abutting edges of the elongated sheet onto an intermediate section of the sheet forming a web, and the step of roll-forming includes forming said two closed tubular sections, and further the step of welding including welding the edges to each other as well as to the web. - 37. The method defined in claim 36 wherein the two closed tubular sections are spaced apart, and wherein the roll-forming includes rollers for forming the two closed tubular sections.
- 38. The method defined in claim 36 wherein the at least one closed tubular section includes a first tubular section with relatively flat opposing side walls defining substantially parallel planes, and wherein the step of maintaining the cross-section during the step of sweeping includes supporting the opposing side walls on inside and outside surfaces to keep the opposing side walls substantially flat and in the parallel planes as the elongated linear shape is forced into and through the sweeping mechanisms, respectively, whereby the bumper bars made from the cut segments have excellent impact strength when impacted in a direction parallel to the planes, wherein the at least one closed tubular section includes a second tubular section with relatively flat opposing side walls that are also substantially parallel the planes, and wherein the step of maintaining includes supporting the opposing side walls of the second tubular section to keep the opposing side walls flat and parallel the planes, and wherein the step of welding includes welding edges of the sheet to each other, as well as to an intermediate web section.
- 39. A method of forming bumper bars for vehicles comprising steps of:
providing an elongated sheet of high strength steel;
continuously roll-forming the sheet of high strength steel with a roll-forming apparatus into an elongated shape with edge portions of the sheet abutting an intermediate section on the sheet to form at least two closed tubular sections, the elongated shape having a cross-section shaped for beam strength, for impact resistance, and for vehicle aesthetics;
providing a welder located generally in-line with an end of the roll-forming apparatus;
welding the edge portions of the sheet together to each other, as well as to the intermediate section, to permanently form the elongated shape as the elongated shape exits the roll-forming apparatus;
providing a sweeping mechanism constructed to deform the elongated shape and a driving mechanism proximate the sweeping mechanism having sufficient power to force the elongated shape past the sweeping mechanism;
continuously sweeping the elongated shape into an elongated curvilinear shape simultaneously with the step of continuously roll-forming the sheet; and cutting segments from the elongated shape to make bumper bars for vehicles. - 40. The method defined in claim 39 including supporting the cross-section of the elongated shape by an internal mandrel located upstream of the sweeping mechanism, but located close to the sweeping mechanism to prevent undesired crushing and deformation of the cross-section of the tubular sections during the step of continuously sweeping.
- 41. An apparatus for forming a bumper bar for a vehicle comprising:
first rollers for continuously roll-forming a sheet of high tensile strength steel into an elongated structural member with portions of the sheet engaging one another to form at least one tubular section, the structural member having a cross-sectional shape;
a welder positioned in line with the first rollers for welding the portions of the sheet together to permanently form the at least one tubular section;
a sweep mechanism characteristically positioned downstream and relatively close to the welder so that a sweep can be imparted into the high tensile strength steel relatively soon after roll-forming and welding the sheet, the sweep mechanism including first internal mandrels engaging inner surfaces of the at least one tubular section and further including external mandrels engaging outer surfaces of the structural member, the internal and external mandrels closely engaging the structural member and being configured to impart a curvilinear sweep to the elongated member while at the same time maintaining the cross-sectional shape of the structural member;
a holder positioned upstream of the sweep mechanism, the holder including second internal mandrels and second rollers for engaging the inner and outer surfaces, respectively, of the at least one tubular section, the second internal mandrels and the second rollers being configured to maintain the cross-sectional shape from crushing and unacceptably deforming as the high tensile strength steel is forced through the sweep mechanism;
a drive mechanism having sufficient power to force the high tensile strength, roll-formed elongated structural member through the sweep mechanism;
a support member located upstream of the sweep mechanism where the at least one tubular section has not been completely closed, thereby providing an opening through which the support member extends;
an elongated member extending from the support member through the at least one tubular section for anchoring the first and second internal mandrels; and a device for cutting off sections of the predetermined length from the elongated curvilinear shape, wherein the at least one tubular section includes first and second tubular sections formed by edges of the sheet abutting an intermediate section forming a web, and wherein the first rollers are constructed to form the first and second tubular sections by deforming the end sections into contact with the intermediate section, and further wherein the welder is constructed to weld the edges of the sheet to each other, as well as to the intermediate section. - 42. The apparatus defined in claim 41 wherein the first and second tubular sections are spaced apart and connected by a web, and wherein the first rollers are constructed to form the first and second tubular sections.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1223093A | 1993-02-02 | 1993-02-02 | |
US08/012,230 | 1993-02-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2100042A1 CA2100042A1 (en) | 1994-08-03 |
CA2100042C true CA2100042C (en) | 2004-11-23 |
Family
ID=21753973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA 2100042 Expired - Fee Related CA2100042C (en) | 1993-02-02 | 1993-07-07 | End bumper for vehicles and method of making same |
Country Status (2)
Country | Link |
---|---|
CA (1) | CA2100042C (en) |
MX (1) | MX9304690A (en) |
-
1993
- 1993-07-07 CA CA 2100042 patent/CA2100042C/en not_active Expired - Fee Related
- 1993-08-03 MX MX9304690A patent/MX9304690A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2100042A1 (en) | 1994-08-03 |
MX9304690A (en) | 1994-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5566874A (en) | Apparatus for forming an end bumper for vehicles | |
CA2038760C (en) | Roll-formed automotive bumper and method of making same | |
US5104026A (en) | Apparatus for roll-forming an automotive bumper | |
US5934544A (en) | Apparatus and method for making an automotive bumper beam | |
US5829666A (en) | Manufacturing method of tubular bumper reinforcement member | |
US6722037B2 (en) | Variable thickness tubular doorbeam | |
US6948749B2 (en) | Cross member for vehicle bumper bar and method for making same | |
US6643931B2 (en) | Method of manufacturing a one-piece tubular doorbeam | |
US20070074556A1 (en) | Continuous process of roll-forming stamped sheet | |
JP4989009B2 (en) | Vehicle structural bar member and method for manufacturing the same | |
US20070095001A1 (en) | Continuous process of roll-forming pre-stamped varying shapes | |
US6296287B1 (en) | Curved elongate member of closed sectional shape and method and apparatus for fabricating the same | |
CN112158157B (en) | Double-center-leg tubular beam and forming method thereof | |
KR102497745B1 (en) | Method for the production of a closed hollow profile for a vehicle axle | |
US7197824B1 (en) | Cross member for vehicle bumper bar and method for making same | |
CA2100042C (en) | End bumper for vehicles and method of making same | |
CN212682130U (en) | A double-center outrigger tube beam and an automobile anti-collision beam forming device | |
CN112077181B (en) | A double central leg tube beam forming production line | |
KR100258461B1 (en) | Reinforcement beam and manufacturing method | |
JPH0840158A (en) | Manufacture of bumper beam | |
Sturrus | Method of roll-forming an end automotive bumper | |
Keutmann et al. | Process and Installation for Re-Ovalising Straight-Bead Welded Tubes | |
JPS63137536A (en) | Manufacture of metal member | |
MXPA01000557A (en) | Vehicle door reinforcing beam and method of making it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |