[go: up one dir, main page]

CA2095668C - Telemetry access arrangement - Google Patents

Telemetry access arrangement

Info

Publication number
CA2095668C
CA2095668C CA002095668A CA2095668A CA2095668C CA 2095668 C CA2095668 C CA 2095668C CA 002095668 A CA002095668 A CA 002095668A CA 2095668 A CA2095668 A CA 2095668A CA 2095668 C CA2095668 C CA 2095668C
Authority
CA
Canada
Prior art keywords
connection
customer
ringing
station equipment
accessing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002095668A
Other languages
French (fr)
Other versions
CA2095668A1 (en
Inventor
Stuart Mandel Garland
Jerome W. Schull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
BellSouth LLC
Original Assignee
American Telephone and Telegraph Co Inc
BellSouth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/576,542 external-priority patent/US5189694A/en
Application filed by American Telephone and Telegraph Co Inc, BellSouth LLC filed Critical American Telephone and Telegraph Co Inc
Publication of CA2095668A1 publication Critical patent/CA2095668A1/en
Application granted granted Critical
Publication of CA2095668C publication Critical patent/CA2095668C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Telephonic Communication Services (AREA)

Abstract

The present invention relates to a method and apparatus of accessing a customer premises device from a data accessing device via a telecommunications switching system. The telecommunications switching system is comprised of a voice band signal switching network for switchably interconnecting multiplicities of inlets and multiplicities of outlets. The inlets are for connection to interoffice telecommunications trunks. The outlets are for connection to analog customer lines. The method is comprised ofdetermining that a class of service for an inlet connected to the data accessing device is a class of service requiring establishment of a suppressed ringing connection; establishing a suppressed ringing connection from the inlet to an outlet of the voice band switching network for connecting the data accessing device to an analog customer line connected to station equipment of a customer and transmitting signals over the suppressed ringing connection for accessing the customer premises device over the analog line from the data accessing device. In the method, the establishing step comprises determining whether the station equipment is connected via a subscriber loop carrier, and, if so, sending a brief spurt of ringing signal over the connection for enabling the subscriber loop carrier to establish a connection to the station equipment without transmitting a substantial ringing signal to the station equipment.

Description

~9F~668 TELEl\IETRY ACCESS ARRANGEMENT

This is a division of co-pending Canadian Patent Application Serial No.
2,043,598 which was filed on May 30, 1991.
Technical Field This invention relates to a method and apparatus for accrssing customer 5 meters and for controlling customer devices over a telecommunications line.
Problem There has long been a need for reading utility meters periodically, a need which in the past has been met largely through manual arrangements. More recently, there has also been a growing desire by the electric power utilities to be able to control 10 consumer electric loads as a means of forest~lling brownout and blackout situations. This need has been met with only partial success in the prior art by telemetering arrangements associated with telephone customer line access and by the use of carrier systemsconnected to power distribution lines. In these arrangements, utility meters at a telephone customer's home or business are accessed via the telephone customer's line 15 when that line is not being used for telephone calls. The method of accessing the line is to have a direct metallic path between the customer's meter reading interface and a service unit at the central office for monitoring and controlling the off-hook/on-hook supervisory state of the customer. Access from the central office switch to the customer is provided through the use of a no-test trunk, i.e., a trunk which can access a customer's 20 line even when that line is already in the off-hook state. The trunk uses a no-test connection, i.e., a special metallic connection that bypasses the normal switched telephone connection and connects without making a busy test. This metallic connection passes direct current signal. The no-test trunk is used to get access to the meters without ringing the customer's line, the latter action being performed on all conventional telephone 25 connections. The meter is then triggered to respond by being sent signals over the no-test connection, each signal consisting of a burst of tone of one of thirteen frequencies in the telephone voice band. Using this arrangement, a connection is established to thecustomer's line, the service unit makes a test whether the customer is busy, and, if the customer is not busy, the service unit is connected to the customer's meter interface. The 30 meter interface is primed (alerted) by one of the thirteen frequencies to respond to data signals originating from the service unit or a controller at the utility, transmitted via the service unit. These data signals may be either in the form of dual tone multifrequency (DTMF) signals or frequency shift keyed binary data signals. Following the alerting of the meter interface unit, there is an exchange of ~ign~ling information between the controller 5 and the meter interface unit, the sign~ling exchange being used for triggering the reading of meters, for transmitting the present reading of the meters, for returning the present status of these meters, or for controlling a device such as an air conditioner at the called customer's residential or business location. The latter function allows a power company to control its peak load by temporarily shutting down, possibly on a rotating basis, a portion 10 of the air conditioners being served. The actual reading of the meters is performed by a reading mechanism that interfaces with the meter interface used Meter status information includes indications of customer tampering, low battery, or other indications of a need for servicing. After a complete cycle of meter readings and/or device control operations has been completed, the no-test connection is dropped and the customer is enabled to15 originate new calls.
While the customer's line is connected to the service unit, supervision of the customer's line is perrormed by the central office service unit (C.O. service unit) which is connected by a metallic access connection that provides current sensingsupervision from a central office service unit. In modern digital switching systems, such as 20 the 5ESS~ switch manufactured by AT&T, and described in The AT&T Technical Journal, July/August 1985, no metallic access connection is provided through the voice network, so that a no-test trunk is required for monitoring direct current supervisory signals. If the customer's telephone station goes off-hook, a direct current in excess of 20 milli~mperes is detected by the C.O. service unit and the central office service unit 25 disconnects the telemetry call. In some cases, the supervision is performed from the customer's meter interface unit which transmits a disconnect signal to the central office service unit to disconnect the telemetry call.
There are a number of disadvantages to this arrangement. The no-test trunk is a facility available in very small numbers in a central office, the number being 30 limited by the no-test access arrangements. No-test trunks are used primarily for checking on customers whose lines are reported as being busy for too long a time, making tests of the resistance between the two wires of a customer line, and manual testing of a line. In `~ 3 2095668 a typical switch, such as the SESS switch, only two no-test trunks are available in an entire switch, which may serve up to several hundred thousand customer lines. In a typical meter reading cycle the time required for meter readings and/or device control operations may vary from 10 to 20 seconds. Clearly, two no-test trunks are inadequate to serve the meter reading and device control needs of all the customers of the SESS switch. Further, the requirement for a direct metallic path in order to provide current sensing supervision makes it difficult to access lines which are not connected directly to a switch but are connected through a subscriber line carrier system, such as the SLC 96 (Subscriber Line Carrier) manufactured by AT&T, since such SLC systems do not provide a metallic path for a normal voice connection. Further, billing records for such no-test trunk calls are made separately from the billing records for voice or data calls, thus creating administrative problems. Further, in prior art arrangements, if a customer wishes to originate a call while the meter reading is taking place, there are some arrangements in which the customer is blocked until the reading is completed and other arrangements in which the customer is blocked for a period of 1 to 2 seconds until the no-test connection can be dropped.
Because of the small number of no-test trunks and limited no-test access, and the fact that the no-test trunks are needed for their primary intended purposes, the number of meters which may be monitored and devices which may be controlled is much smaller than the number of such meters and devices served by a typical large local central office. It is costly to add substantial numbers of extra notest trunks, in a digital switch such as the 5ESS switch which does not provide a metallic access voice switching network, because the metallic access unit provided for such no-test trunks is expensive. A problem of the prior art, therefore, is that there is no arrangement available which permits a large central office, especially a digital central office which does not provide a direct metallic path for telephone connections, to access a large number of meter reading and device control interfaces within a reasonable period over the customer lines connecting that central office to the telephone stations and the remote metering devices.
Solution The above problem is solved, in a departure from the prior art by providing, for example, arrangements wherein a standard interoffice trunk, controllable by special software of the connected switching system, is used for accessing, over an analog customer line, a customer's premiscs device such as a meter interface unit (MIU) from a data access device, such as a utility meter reader/device controller; this standard trunk is then connectable to the customer's line via a suppressed ringing connection through the communication signal switching network, used, for example, for voice signals, in order to 5 access the customer's analog line, connected to the MIU. Advantageously, such an arrangement makes it possible to use a plurality of circuits for accessing different meter interface units at the same time and without requiring additional expensive specialized no-test trunks.
Modern digital switching systems, such as the SESS switch, do not provide a 10 metallic connection that can pass direct current signals; metallic access facilities are expensive in digital switches because they bypass the digital network which is used for passing speech signals for telephone conversations. The switching network need not provide a metallic access from the C.O. service unit to the line because supervision is detected at the line circuit, an interface between the switching network and the customer 15 line, and is passed by the software controlled processors of the switch to the connected trunk, which passes supervision to the C.O. service unit. Trunks such as the well-known E & M trunks or trunks using common channel sign~ling have arrangements for communicating a change in supervisory state at one end to the other end of the trunk.
These arrangements are used to transmit customer supervisory state changes to the C.O.
20 service unit so that the unit may disconnect if a customer goes off-hook.
In the prior art, the only way of getting access to a customer's line using the standard switching network or switch fabric was to ring the customer's line, and to monitor supervision from a line circuit in the switch. In a departure from the prior art, a new type of call connection is made in which ringing is suppressed in order to avoid 25 alerting the customer; supervision is monitored by the switch and transmitted via the software controlled processors and trunk supervisory signal transport techniques to a monitoring central office unit. The meter interface unit is alerted without ringing the customer's line from a connection through the standard switch fabric of the central office by providing a new class of service for calls from the utility, the new class of service being 30 characterized by a connection made without such ringing. In this case, the class of service is a class of service of the caller and affects the nature of the call being set up. The meter interface unit is alerted that a connection to the meter interface is desired by a tone sent to the interface unit by the C.O. service unit, or, alternatively, by the utility controller through the service unit. The interface unit receives these tones while in the on-hook state and processes them without sending an off-hook signal back to the central 5 office.
Billing records are made in the normal way that billing records are made for calls through the switching network. Advantageously, this type of call connection can use the normal switch fahric for accessing a customer line, while also providing the absence of ringing necessary to access the meter interface unit without disturbing the 10 customer, and while continuing to use normal customer supervision from the switch.
Present-day subscriber line carriers (SLCs) will not set up a connection unless they detect ringing. An exception to this rule is for a connection from a notest trunk wherein a special tone is provided which is recognized by the subscriber line carrier and which will then provide a metallic bypass of the SLC. In accordance with one aspect 15 of the invention, when a meter interface unit access call is set up through a subscriber line carrier, a brief burst of ringing is applied on that connection. In response to that brief burst of ringing, the subscriber line carrier sets up a connection within its own switch fabric to the called customer whose meter interface unit is being accessed. The burst of ringing is sufficiently short that the subscriber line carrier which repeats any ringing signals 20 that it detects on its input, will not in fact repeat any ringing signal to that customer's line, thus, avoiding disturbing the customer when only the meter interface unit is being accessed.
A central oflice service unit interfaces between a utility controller, such as apersonal computer, at the utility and the meter interface unit connected through the voice 25 signal switching network. Responsive to signals from the utility controller, the central office service unit signals the switch with the identification of the called customer to set up a suppressed ringing connection to the desired meter inter&ce unit. The central office service unit or utility controller transmits alerting signals to the meter interface unit. The central office service unit detects off-hook signals from the switch in order to signal for a 30 premature disconnect, and responds to a meter interface unit disconnect signal to signal the switch for a disconnect of the meter reading and/or device control connection. The central office service uniL has a plurality of interoffice trunks for communicating with customers connected to other switching systems and for communicating simultaneously for reading several meters in parallel for customers in these switching systems; it also is connectable to a plurality of utilities for simultaneous use over different trunks.
S In accordance with one aspect of the invention, for an Integrated Services Digital Network (ISDN) station connected via a Primary Rate Interface or a Basic Rate Interface, and a digital line, the D-channel is used for communicating with the meters and controllable devices. This also permits the communication signal switching network to be used for providing access to the customer's lines and allows the high bandwidth (6t or 16 kb./sec.) D-channel to be utilized for communications with the meters and devices. Here, supervision is detected at the customer premises and is transmitted by data signals over the D-channel.
Accordingly, this invention provides a method and apparatus for accessing customer premises devices from a data access device by using a suppressed ringing connection through a voice signal switching network of a telecommunications switching system.
In accordance with one aspect of the invention there is provided a method of accessing a customer premises device from a data accessing device via a telecommunications swiLching system, said telecommunications switching system comprising a voice band signal switching network for switchably interconnecting multiplicities of inlets and multiplicities of outlets, said inlets for connection to interoffice telecommunications trunks, said outlets for connection to analog customer lines, the method comprising:
determining that a class of service for an inlet connected to said data accessing device is a class of service requiring establishment of a suppressed ringing connection; establishing a suppressed ringing connection from said inlet to an outlet of said voice band signal switching network for connecting said data accessing device to an analog customer line connected to station equipment of a customer; and transmitting signals over saidsuppressed ringing connection for accessing said customer premises device over said analog line from said data accessing device; wherein said establishing comprisesdetermining whether said station equipment is connected via a subscriber loop carrier, and, if so, sending a brief spurt of ringing signal over said connection for enabling said subscriber loop carrier to establish a connection to said station equipment without transmitting a substantial ringing signal to said station equipment.

20q5668 In accordance with another aspect of the invention there is provided a telephone switching system comprising: a switching network for interconnecting amultiplicity of telecommunications trunks and another multiplicity of analog customer lines; at least one of said trunks connectable to a utility data accessing device for S acce~cing a customer premises device; processor means operative under the control of a program for translating a class of service of said at least one of said trunks, and responsive to said translating, for establishing a connection through said network without transmitting ringing signals to an analog customer line; and wherein one of said customer lines is connected to customer premises equipment through a subscriber loop carrier and wherein said processor means is further operative under the control of a program for sending a brief spurt of ringing signal over said connection to said one customer line for enabling said subscriber loop carrier to establish a connection to said one customer equipment.
Brief Description of the Drawin The present invention, taken in conjunction with the invention contained in co-pending Canadian PaLent Application Serial No. 2,043,598 will be described in detail hereinbelow with the aid of the accompanying drawings, in which:
FIG. 1 is a block diagram illustrating connections for accessing customer meters and devices; and FIGs. 2-6 are flowcharts of actions performed in setting up such connections and in accessing meters and devices.
Detailed Description FIG. 1 is a block diagram of the operation of applicant's invention. A
terminal such as a personal computer 10 at the office of a utility is connected by a line or connected over an interofrice trunk to a telephone switch 21. When an access number is dialed and received from PC 10 in switch 21, a connection is set up to a central office service unit 20. The central service unit is located herein in a first central office that includes switching system (switch) 21. In alternative arrangements, the central office service unit disconnects PC 10 and dials back to access PC 10 in order to guard against tampering of the meter reading and device control process from unauthorized sources.
This central office (C.O.) service unit 20 is connected to a plurality of central office switches, such as switch 21 and 22 by utility telemetering trunks which are simple interoffice trunks. Each of the switches 21 and 22, which may be housed in different wire centers, has a switching network, 23 and 24, respectively, for transmitting communications signals, such as voice signals, and including the meter reading and device control signals of this invention. Each o~ the switches comprises control processor means 26, operative under the control of a program 28, stored in memory 27 for controlling the operations of 5 the switch. In response to signals received from PC 10, C.O. service unit 20 requests utility connections by sending signals similar to the kinds of signals sent for setting up an interoffice call to the appropriate one of switches 21 or 22.
In this specific embodiment, the method used for signaling the request to be connected via a customer line to a particular metering interface unit (MIU) such as MIU
30, MIU 32 or MIU 35 is to send out a string of multifrequency (MF) digits. Such a string of digits usually consists of a key pulse signal (KP), a four, five, seven or ten digit directory number and a start (ST) signal. In response to reception of these digits, a switch such as switch 21 translates the received directory number to identify a meter interface unit such as meter inter~ace unit 30 and sets up a connection via a utility telemetry trunk (UTT), between the central office service unit 20, through a switching network 23 or 24, via a customer line to a MIU 30, 32 or 35.
The utility telemetry trunk has a special class of service which identifies to the connected switch that the requested connection is to be made with ringing suppressed.
In response to a received directory number from a UTT, switch 21 sets up a connection 20 with ringing suppressed to MIU 30. Note that a suppressed ringing connection differs from a conventional voice connection, not only in that a ringing signal is not sent and that the line is not monitored ror a supervisory signal to stop or "trip" ringing, but that no check is made that a ringing signal is actually flowing to the analog line. The ringing signal and its accompanying checks are a basic and inherent part of any normal telephone 25 connection. For example, even when a facsimile call is completed, wherein no audible bell is heard, the circuits of the terminating facsimile machine respond to the ringing signal that is sent from the switch.
When the suppressed ringing connection to the MIU has been established, MIU 30 is connected to C.O. service unit 20 and receives from that service unit or from 30 PC 10 through the service unit an alert tone to trigger the MIU into the telemetry mode.
In accordance with the principles of this invention, wherein a customer's station equipment includes both a voice or other communication station and an MIU, the normal ringing signal alerts the communication station, and, where this is a voice station, thereby ~ g alerts the customer, while the tone signal sent over the suppressed ringing eonnection alerts the MIU. Telemetry and control signals are then exchanged between C.O. service unit 20 or utility controller 10 and MIU 30 and the data received from MIU 30 istransmitted from C.O. service unit 20 to PC 10 for processing by the utility. Similarly, 5 utility eontrol signals are sent from PC 10 to C.O. service unit 20 for transmission to MIU
30 to eontrol deviees at the customer's home. If a eustomer pieks up the handset of a telephone station while ~he communieation between the serviee unit and the meters and/or deviees at the customer's location is in progress, these communications are quickly terminated and regular service restored to the customer. An incoming eall, however, will 10 reeeive a busy signal if a utility access eall is in progress.
The UTT is a conventional interoffiee trunk sueh as an E & M trunk or a eommon channel signaling trunk. Such trunks have arrangements whereby a change of supervision a tone end is signaled to the other end by a tone (E & M) or by an out of band tone or data signal. Such a trunk passes a supervisory signal, detected at a line 15 circuit and passed by the switch processor to one end of the trunk, to the C.O. serviee unit to effeet a disconnect of that unit when a eustomer goes off-hook in the middle of a utility aeeess eall.
The C.O. service unit is expanded from prior art C.O. service units to be eonnected by trunks to a plurality of switches, such as switeh 21,... ,22, and is eonnectable 20 by a plurality of trunks (a trunk group) to each sueh switch. In some cases, several trunk groups may be connected to one switch, for example, to handle traffie to different groups of SLCs. The C.O. service unit is also connected to a plurality of utilities, only one of which is shown, which simultaneously establish ealls to different customers.
While in this embodiment, the utility aeeess unit PC 10 is eonneeted to the 25 MIU through a service unit, an alternate eonfiguration would permit a utility access unit to be eonneeted via a trunk directly to the switching network for connection to the MIU.
The specific embodiment of FIG. 1 uses an analog line, transmitting voice band signals, ringing or tone alerting signals, and using direet eurrent deteetion of supervision. The term "ringing" as used herein is used for eonvenience and because of its 30 common use, but is meant to describe any proeess of customer alerting, including, for example customer tone alerting. For Integrated Services Digital Network (ISDN) lines, supervision and customer alerting signals are transmitted as data signals over the D-channel of the customer line.

FIG. 1 shows details of a meter interface unit. A protection circuit 40 is used to protect the rest of the meter interface unit 30 against damage caused by electrical signals carrying excessively high energy. Effectively, this is over-voltage protection. Such protection circuits are well known in the prior art. Alert circuit 42 is used to detect the S initial alerting tones used for sign~ling a request for a connection to the meter interface communication circuit 46. The alert circuit continuously monitors the line when the line is on-hook in order to detect such signals. When such signals are detected, it activates the meter interface communication circuit which communicates with PC 10 to exchange the reading information from meters and the control information on meters 50 and thecontrol information for controlling devices 48. When a control and/or reading cycle has been completed as determined by the C.O. service unit 20, the C.O. service unit goes on-hook which triggers switch 21 to send a 300 millisecond minimum open loop signal to the MIU to signal a disconnect.
In some cases, certain SLCs such as AT&T's SLC 96 will not transmit a forward disconnect (open). In many cases it will. It depends on the channel units installed. If the disconnect is not forwarded, then the MIU detects the end of data transmission and notifies the C.O. service unit during the data transmission, and the C.O.
service unit detects the end of data transmission and disconnects to connecting trunk.
Depending on the channel unit inventory situation, the telephone service supplier may wish to allow off-hook transmission. In this case, the MIU detects the end user off-hook signal in order to signal ror a disconnect of the suppressed ringing connection. In any case, it is to provide the forward disconnect through the appropriate channel units.
As long as the meter interface unit 30 presents an impedance in excess of app~ "~t~ly 10k ohms to the line, the central office will treat the line as being on-hook.
If the customer should pick up his telephone instrument while the communication between the PC and the meter interrace unit is going on, switch 21 will detect the off-hook and cause the communication between the PC and the meter interface unit to be aborted by sending a disconnect signal to the MIU and an on-hook signal to the C.O. service unit to terminate the connection.
Arrangemcnts for communicating with on-hook devices such as the meter interface unit 30 are well known in the prior art and are defined, for example, in Bellcore Technical Reference TR-TSY-00003()~ Issue 1, June, 1988.

209566~

FIGs. 2-6 ~lre flow charts showing the call processing actions that take place while processing a utility telemetry call. FIG. 2 shows the frst steps in response to a seizure from a utility telcmetry trunk. As shown in FIG. 1, utility telemetry trunks, which are ordinary interoffice trunks, are connectable to different switches. The trunk is originally in the idle state. It goes off-hook (action block 203) and a wink start signal is received from the trunk (action block 205). This is followed by the digit reception state (action block 207). FIG. 3 is a flow chart in response to digit reception. If the trunk goes on-hook during or following digit reception (action block 311), the call is considered abandoned (action block 313) and the trunk is taken down (action block 315) and restored to the idle state (action block 317). If there is a timeout or no digits are received as determined by the tests in the interdigit timing (test 321), then the call is considered abandoned (action block 341), the trunk is taken down (action block 343) and is restored to the idle state (action block 317). If the digits are properly received, the digits are analyzed (action block 323). If the ST signal is the standard ST signal (ST0) as determined in test 325, the routing sequence 329 is entered. Otherwise, the type of alternate ST signal (ST1, ST2, or ST3) is used to determine the length of a requested burst of ringing and this burst of ringing is requested for application after a connection has been set up to the requested meter interface unit. In this specific example, the length of the bursts are 20, 40 and 60 ms.; further experimentation may indicate that other lengths, such as 50, 100 and 150 ms. may be preferable to take into account, for example, variations in the ability to control the length of a burst. The best arrangement is to permit the length of the hurst to be a parameter controllable by the translation recent change facility of modern switches. If more than 3 different lengths (plus 0 length) are required, different groups ot utility trunks are used for different groups of ringing burst lengths; for example, group A could be used for 0, 20, 40 or 60 ms. bursts, while group B
could be used for 0, 80, 100 and 120 ms. bursts. The burst of ringing is used in the SLC
to assign a time slot for the connection to the customer's MIU, but is sufficiently short that it is completed before the connection is actually made; thus, no ringing signal is sent to the MIU. Thereafter, ~he routing sequence 329 is performed. FIG. 4 is a flow diagram of the steps of the routing sequence. First, a determination is made by test 401 whether the call is an inlerswitch call. If so, this indicates an error 403 since the utility telemetry trunk used on the call is supposed to be connected to the switch serving the requested meter inter~lce unit. If this is not an interswitch call, then test 405 determines - 209566~

whether the called cus~omer associated with the requested meter interface unit is busy or out of service. If so, then the busy or out of service status is returned to the trunk control program and further actions are performed as described in FIG. 5. If the called customer line is not busy or out of service, then the connection is cut through if necessary with the abbreviated ring as derived in block 327 (action block 409). When the call is cut through to the end user, a trunk off-hook signal is returned to the C.O. service unit 20.
The trunk then goes into the telemetry data wait state (413). FIG. S describes the actions performed if the called customer associated with the requested meter interface unit is busy or out of service (state 407). An on-hook signal is sent over the utility telemetering trunk to the C.O. service unit 20 (action block 501) and the trunk is taken down (action block 503). The trunk is then in the idle state (317).
In the telemetry data wait state, it is the responsibility of the C.O. service unit, responsive to signals from the utility controller or internally triggered, to alert the MIU. Using today's equipment, the MIU is alerted by one of 13 single frequencies. Once the MIU has been alerted, other signals such as frequency shift keyed data signals can be used for communicating with lhe MIU. The end user cannot alert the MIU because the user's station equipment does not have a one-of-13 single frequency generator and, further, the call would be taken down if the end user went off-hook.
FIG. 6 is a Llow diagram of the actions performed in response to various timeout conditions and in response to disconnect signals. The switch is in a wait state (413) during the telemetry connection. If a maximum interval such as 10 or 20 seconds is exceeded (action block 611), the customer's line is disconnected and a signal is sent to the MIU to disconnect (action block 613), an on-hook signal is sent over the utilitytelemetering trunk to the C.O. service unit (action block 615) and that trunk is taken down (action block 617) and restored to the idle state (317). The same disconnect functions are performed upon completion of a telemetry access call. A billing record is then made in the same way as a billing record is made for a conventional (voice) call. If an on-hook signal is detected on the utility telemetering trunk, indicating a disconnect from the utility side (acLion block 621), then the line connected to the metering interface unit is disconnected (action block 623), the utility telemetering trunk is sent an on-hook signal (action block 625), the trunk is taken down (action block 627), and restored to idle (317). If an overload or other condition is detected in the switch, indicating that telemetering activities should be temporarily suspended (action block 631), then the _ 13 customer's line is disconnected (action block 633), an on-hook signal is sent over the utility telemetering trunk (action block 635), that trunk is taken down (action block 637) and restored to the idle sLate (317). If the end user goes off-hook during the telemetering interval because the end user wishes to place a call (action block 641), then the line is to 5 be disconnected from the telemetering connection, a disconnect is sent from the switch to the MIU (action block 643), the utility telemetering trunk is sent an on-hook (action block 645) and the trunk is taken down (action block 647). The end user is then prepared to be processed in the normal way by receiving dial tone and placing this call by dialing the app~opliate digits (state 649).
It is to be understood that the above description is only of one preferred embodiment of the invention. Numerous other arrangements may be devised by one skilled in the art without departing from the scope of the invention. The invention is thus limited only as defined in the accompanying claims.

Claims (6)

Claims
1. A method of accessing a customer premises device from a data accessing device via a telecommunications switching system, said telecommunications switching system comprising a voice band signal switching network for switchably interconnecting multiplicities of inlets and multiplicities of outlets, said inlets for connection to interoffice telecommunications trunks, said outlets for connection to analog customer lines, the method comprising:
determining that a class of service for an inlet connected to said data accessing device is a class of service requiring establishment of a suppressed ringing connection;
establishing a suppressed ringing connection from said inlet to an outlet of said voice band signal switching network for connecting said data accessing device to an analog customer line connected to station equipment of a customer; and transmitting signals over said suppressed ringing connection for accessing said customer premises device over said analog line from said data accessing device;
wherein said establishing comprises determining whether said station equipment is connected via a subscriber loop carrier, and, if so, sending a brief spurt of ringing signal over said connection for enabling said subscriber loop carrier to establish a connection to said station equipment without transmitting a substantial ringing signal to said station equipment.
2. The method of claim 1, wherein said determining comprises determining a length of said brief spurt for said station equipment
3. The method of claim 2, wherein said determining a length comprises determining a type of subscriber loop carrier used for accessing staid station equipment.
4. A telephone switching system comprising:
a switching network for interconnecting a multiplicity of telecommunications trunks and another multiplicity of analog customer lines;
at least one of said trunks connectable to a utility data accessing device for accessing a customer premises device;

processor means operative under the control of a program for translating a classof service of said at least one of said trunks, and responsive to said translating, for establishing a connection through said network without transmitting ringing signals to an analog customer line; and wherein one of said customer lines is connected to customer premises equipment through a subscriber loop carrier and wherein said processor means is further operative under the control of a program for sending a brief spurt of ringing signal over said connection to said one customer line for enabling said subscriber loop carrier to establish a connection to said one customer equipment.
5. A method of accessing a customer premises device from a data accessing device via a telecommunications switching system comprising a voice band signal switching network for interconnecting multiplicities of telecommunications trunks and analog customer lines, the method comprising:
establishing a connection between said data accessing device and a central office service unit;
establishing a connection over an interoffice trunk from said central office service unit to said switching network;
establishing a suppressed ringing connection from said trunk through said switching network to an analog customer line connected to a meter interface unit of station equipment of a customer, said meter interface unit connected to a controllable device;
accessing said controllable device via tone signals transmitted over said connection to said meter interface unit, said accessing comprising controlling said controllable device over said connection;
making a billing record for said suppressed ringing connection in essentially the same manner as making a billing record for a voice call;
detecting an off-hook signal on said suppressed ringing connection;
responsive to said detecting an off-hook signal, disconnecting said suppressed ringing connection; and -wherein said establishing a suppress ringing connection comprises determining whether said station equipment is connected ?a a subscriber loop carrier, and, if so, sending a brief spurt of ringing signal over said connection for enabling said subscriber loop carrier to establish a connection to said station equipment, wherein said determining comprises determining a length of said brief spurt for a subscriber loop carrier connection to said station equipment.
6. A method of accessing a customer premises device, connected to a customer's station equipment, by a telecommunications switching system comprising:
determining whether a requested call connection to said station equipment is a suppressed ringing call connection;
responsive to determining that said requested call connection is a suppressed ringing call connection, determining whether said station equipment is connectable to said switching system via a subscriber loop carrier unit;
if said station equipment is connectable via a subscriber loop carrier unit, setting up a connection from said switching system to said subscriber loop carrier unit;sending a brief spurt of ringing signal over said connection from said switchingsystem; and responsive to receiving said brief spurt of ringing signal, extending said connection from said switching system via said subscriber loop carrier unit to said station equipment without transmitting a ringing signal to said station equipment.
CA002095668A 1990-08-31 1991-05-30 Telemetry access arrangement Expired - Lifetime CA2095668C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/576,542 US5189694A (en) 1990-08-31 1990-08-31 Telemetry access arrangement
US576,542 1990-08-31
CA002043598A CA2043598C (en) 1990-08-31 1991-05-30 Telemetry access arrangement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002043598A Division CA2043598C (en) 1990-08-31 1991-05-30 Telemetry access arrangement

Publications (2)

Publication Number Publication Date
CA2095668A1 CA2095668A1 (en) 1992-03-01
CA2095668C true CA2095668C (en) 1997-04-29

Family

ID=25674636

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002095668A Expired - Lifetime CA2095668C (en) 1990-08-31 1991-05-30 Telemetry access arrangement

Country Status (1)

Country Link
CA (1) CA2095668C (en)

Also Published As

Publication number Publication date
CA2095668A1 (en) 1992-03-01

Similar Documents

Publication Publication Date Title
EP0565211B1 (en) Telemetry access arrangement
US5394461A (en) Telemetry feature protocol expansion
US5243644A (en) Telemetry access arrangement
CA2177759C (en) Transmission of a data message during silent intervals of ringing for selection of terminal equipment
EP0566242B1 (en) Remotely initiated telemetry calling system
EP0767998B1 (en) Telemetry access arrangement
US5574783A (en) System and method for providing competitive access telephone service for telephones connected to a remote terminal of the monopoly service provider
EP0698325B1 (en) Telemetry arrangement
AU668553B2 (en) Remotely initiated telemetry calling system
CA2095668C (en) Telemetry access arrangement
JP2002534851A (en) System and method for power limited call processing in a communication facility
KR0135491B1 (en) Telemetering access arrangement
US6762998B1 (en) Access network system
JPH0327659A (en) Communication system for plural non-telephone terminal by public telephone network
Pearce Interfacing
JPH05122348A (en) Subscriber circuit control method in time division exchange
JPH0541879A (en) Analog terminal line concentrator
GB2352115A (en) Digital key telephone system
JPH04313064A (en) Automatic meter checking system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKEC Expiry (correction)

Effective date: 20121202