CA2017818C - Metal halide lamp - Google Patents
Metal halide lampInfo
- Publication number
- CA2017818C CA2017818C CA002017818A CA2017818A CA2017818C CA 2017818 C CA2017818 C CA 2017818C CA 002017818 A CA002017818 A CA 002017818A CA 2017818 A CA2017818 A CA 2017818A CA 2017818 C CA2017818 C CA 2017818C
- Authority
- CA
- Canada
- Prior art keywords
- halides
- metal
- luminous tube
- metal halide
- halide lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001507 metal halide Inorganic materials 0.000 title claims abstract description 41
- 150000005309 metal halides Chemical class 0.000 title claims abstract description 41
- -1 neodymium halides Chemical class 0.000 claims abstract description 16
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 7
- 101100133144 Caenorhabditis elegans ndx-3 gene Proteins 0.000 claims abstract description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 5
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 5
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 5
- 229910001511 metal iodide Inorganic materials 0.000 claims description 7
- 229910001509 metal bromide Inorganic materials 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 239000000654 additive Substances 0.000 description 22
- GQKYKPLGNBXERW-UHFFFAOYSA-N 6-fluoro-1h-indazol-5-amine Chemical compound C1=C(F)C(N)=CC2=C1NN=C2 GQKYKPLGNBXERW-UHFFFAOYSA-N 0.000 description 14
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 12
- DKSXWSAKLYQPQE-UHFFFAOYSA-K neodymium(3+);triiodide Chemical compound I[Nd](I)I DKSXWSAKLYQPQE-UHFFFAOYSA-K 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 9
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- LBWLQVSRPJHLEY-UHFFFAOYSA-K neodymium(3+);tribromide Chemical compound Br[Nd](Br)Br LBWLQVSRPJHLEY-UHFFFAOYSA-K 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 150000001649 bromium compounds Chemical class 0.000 description 3
- 150000004694 iodide salts Chemical class 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000001217 buttock Anatomy 0.000 description 1
- GBLDKMKYYYAAKD-UHFFFAOYSA-K dysprosium(3+);tribromide Chemical compound [Br-].[Br-].[Br-].[Dy+3] GBLDKMKYYYAAKD-UHFFFAOYSA-K 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/125—Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/82—Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
- H01J61/827—Metal halide arc lamps
Landscapes
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
A metal halide lamp of the present invention comprises a luminous tube alone without any outer bulb, the luminous tube containing metal halides such as neodymium halides (NdX3), dysprosium halides (DyX3) and cesium halides (CsX) in a total amount by mole of 1 x 10-6 to 8 x 10-6 mol/cc and the following molar ratios:
(see fig.I) (see fig.II) as well as rare gas serving as starting auxiliary gas and mercury serving as buffer gas. This structure permits a predetermined vapor pressure of the metal halides sealed in the luminous tube to be obtained without increasing the wall load, as well as the formation of a metal halide lamp having a long life and good color characteristics.
(see fig.I) (see fig.II) as well as rare gas serving as starting auxiliary gas and mercury serving as buffer gas. This structure permits a predetermined vapor pressure of the metal halides sealed in the luminous tube to be obtained without increasing the wall load, as well as the formation of a metal halide lamp having a long life and good color characteristics.
Description
20~7~8 METAL HALIDE LAMP
BACKGROUND OF THE INVENTION
The present invention relates to a metal halide lamp, and particularly to a small metal halide lamp which is lighted only by a luminous tube without any outer bulb and which has excellent spectral distribution properties.
Small metal halide lamps, each of which is provided with a luminous tube without an outer bulb, are generally used as light sources for overhead projectors (OHP) and moving picture projectors and are gradually popularized.
In each of such small metal halide lamps, the low vapor pressure of the metal halides sealed in the luminous tube is increased by increasing the wall load on the luminous tube so that desired emission can be obtained.
In each of the metal halide lamps having no outer bulb, the wall load on the luminous tube is increased by reducing the size of the luminous tube so that the low vapor pressure of the metal halide is increased. The quartz tube used as the luminous tube is thus devitrified owing to heat or deformed to expand. The metal halide lamps without any outer bulb have a problem with respect to their life which is shorter than that of lamps with outer bulbs.
Of this kind of lamps, dysprosium-thallium (Dy-Tl) lamps have excellent color characteristics such as color temperature and color rendering but show chromaticity coordinates on a X-Y chromaticity diagram (referred to as "chromaticity coordinates" hereinafter) which significantly deviate from the blackbody locus. The Dy-Tl lamps are therefore unsuitable as light sources for overhead projection-type televisions (referred to as "OHP-type TV
light source" hereinafter).
SUMM~RY OF THE INVENTION
It is an object of the present in~ention to provide a metal halide lamp without any outer bulb which has none of the problems of conventional metal halide lamps.
It is another object of the present invention to provide a metal halide lamp without any outer bulb which hàs a long life and excellent color characteristics and which can be used as an OHP-type TV light source.
In order to achieve the objects, the present invention provides a metal halide lamp comprising only a luminous tube without any outer bulb, the luminous tube having main electrodes at least at both ends thereof and containing metal halides consisting of a neodymium halide (NdX3), a dysprosium halide (DyX3) and a cesium halide ~CsX) in a total amount by mole of 1 x 10-6 to 8 x 10-6 mol/cc and the following molar ratios:
Z')~8~8 NdX3 0.2 _ _ 1 DyX3 NdX3 + DyX3 0.08 _ _ 2.5 CsX
as well as rare gas serving as auxiliary starting gas and mercury serving as buffer gas.
The above structure permits the metal halides sealed to have a predetermined vapor pressure without increasing the wall load on the luminous tube. It is therefore possible to prevent a deformation of the luminous tube and easily obtain a metal halide lamp having a long life and good color characteristics.
BRIEF DESCRIPTION OF THE DRA~INGS
Fig. 1 is a drawing of an embodiment of a metal halide lamp in àccordance with the present invention;
Fig. 2 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates of a lamp comprising a 'uminous tube in which Dy-Tl additives are sealed;
Fig. 3 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in input lamp power of a lamp in which Dy-Nd iodide additives are sealed in accordance with the present invention;
Fig. 4 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in the 7~
amounts of the same Dy-Nd iodide additives sealed in a lamp;
and Fig. 5 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in input lamp power of a lamp in which Dy-Nd bromide additives are sealed in accordance with the present invention.
DESCRIPTION OF PREFERRED EMsoDIMENTs Embodiments of the present invention are described below with reference to the drawings.
Fig. 1 is a drawing of a first embodiment of a metal halide lamp in accordance with the present invention. In the drawing, reference numeral 1 denotes a quartz discharge tube which has a substantially elliptical sectional form, a maximum internal diameter of 9 mm, a m~xlmllm external diameter of 11 mm and a content volume of about 0.6 cc.
Electrodes 2 are respectively connected to the molybdenum foils 4 provided in sealing parts 3 at both ends of the discharge tube 1. Each of the electrodes 2 comprises a tungsten rod, which has a diameter of 0.5 mm and a length of 6.5 mm and which contains 1.7% of thorium oxide (ThO2), and a coil of a tungsten wire having a diameter of 0.35 mm which is wound around the tungsten rod so as to have a length of 2.5 mm and a distance of 0.3 mm or more from -the top of the tungsten rod. The gap between the two electrodes 2 is set to 7.5 mm. Reference numeral 5 denotes external molybdenum 713~3 lead wires which are respectively connected to the molybdenum foils 4, and reference numeral 6 denotes the chipped-off portion of an evacuating pipe.
In this embodiment, in order to prevent the deformation of the luminous tube configured as described above and improve the color characteristics thereof, metal iodides are used as the metal halides sealed in the luminous tube. The kinds and amounts of the metal iodides are as follows:
In setting the kinds and amounts of metal iodides to be sealed, the inventors made the following experiments: 0.4 mg of a mixture of dysprosium iodide (DyI3) and cesium iodide (CsI) in a ratio by weight of 2 : 1, i.e., a molar ratio of 0.8 : 1, 0.2 mg of thallium iodide (TlI), mercury (Hg) serving as buffer gas and argon (Ar) serving as auxiliary starting gas were sealed in a luminous tube having the above structure to form a lamp with a lamp voltage of 90 V and a lamp power of lS0 W on an experimental basis. When the color characteristics of the lamp formed were examined, the color temperature was 6500 K, the color rendering index Ra was 85, and the chromaticity coordinates (x, y) were (0~31, 0.38). The chromaticity coordinates deviated from the blackbody locus a in the X-Y chromaticity diagram, as shown by region ~ in Fig. 2. It is thus found that the lamp serves as a greenish light source having a good color.
~0~7~
Since it was thought that the deviation of the the chromaticity coordinates of the lamp formed is caused by the large content volume of the luminous tube, changes in chromaticity coordinates with changes in l~mp power input to the luminous tube were measured. As a result, it was found that, although the chromaticity coordinates are moved to region ~ and region ~ when the lamp power is decreased to 120W and increased to 180W, respectively, in either case, the chromaticity coordi.nates are not moved near to the blackbody locus a. Experiments were also carried out for measuring changes in the total amount of the additives sealed at a constant ratio between DyI3-CsI and TlI and a constant lamp power. As a result, it was found that the chromaticity coordinates are moved to region ~ and region when the amount is reduced to 1/3 and increased to 4 times, respectively, but they are not moved near to the blackbody locus ~.
A lamp was then formed with a ratio between the metal iodide additives which was changed so that the total amount of DyI3 and CsI in a molar ratio o~ 0.8 : 1 was 1.6 mg, and ~he amount of TlI was 0.2 mg. The chromaticity coordinates (x, y) measured were (0.31, 0.34). The lamp obtained thus had substantially desired color characteristics, as shown by region ~ in Fig. 2. However, when light was actually projected on a screen by using the lamp as an OHP-type TV
~3~
light source, irregularity of yellow color occurred in the image projected to the screen owing to the selective light absorption by the additives. It was thus found that the lamp is unsuitable for practical use.
The kinds of the substances sealed were thus changed.
Namely, 0.4 mg of DyI3 and CsI in a molar ratio of 0.8 : 1, 0.2 mg of neodymium iodide (NdI3) and CsI in the same molar ratio of 0.8 : 1, mercury and argon gas were sealed in a luminous tube having the same size as that described above to form a lamp (rating, 150W). When the color characteristics of the lamp formed were measured, in most cases, the color temperature was 7000 K, the index Ra was 91 and the chromaticity coordinates (x, y) were (0.305, 0.317).
The lamp obtained can be therefore used as a light source having chromaticity coordinates which substantially approximate to the blackbody locus a , as shown by region ~ in Fig. 3. When light was actually projected on a screen by using as an OHP-type TV
light source the lamp formed, substantially no color absorption caused by the additives sealed was observed. It ~as thus found that the lamp obtained can be used as a light source generating uniformity in color.
On the basis of the results, DyI3, NdI3 and CsI were used as metal iodide additives ko be sealed in the metal halide lamp of the present invention.
21)~78~8 When the starting test of the lamp was carried out, it was confirmed that the lamp can be started at a starting voltage which is lower than that of the Dy-Tl lamp in which 1.6 mg of DyI3-CsI and 0.2 mg of TlI are sealed. This was caused by a small amount of impurities gas mixed in the lamp during actual sealing of the additives which adversely affect the starting properties owing to a low ratio of the total amount of the additives sealed to the content volume of the luminous tube.
Further, changes in chromaticity coordinates with changes in lamp power of a Dy-Nd luminous tube in which the same additives as those described above were sealed were measured by changing the lamp power to 120W and l~OW. As a result, it was found that the chromaticity coordinates are moved along the blackbody locus, as compared with the above-described Dy-Tl lamp, and do not much deviate from the blackbody locus ~, as shown by regions ~ and ~ in Fig. 3.
This fact reveals that the use of the Dy-Nd additives sealed permits the formation of a light source having chromaticity coordinates approximating to the blackbody locus regardless of the size of the luminous tube, i.e., even if the content volume of the luminous tube is increased so that the wall load is decreased.
In addition, lamps were respectively formed by using luminous tubes which had the same size and in which the ~r~81~
above-described amounts of the DyI3-CsI (0.9 mg in a molar ratio of 0.8 : 1) and NdI3-CsI (0.2 mg in a molar ratio of 0.~ : 1) were doubled and halved. When the lamps formed were subjected to measurements of chromaticity coordinates (x, y), it was confirmed that the lamps formed show changes in chromaticity coordinates substantially on the blackbody locus a, as shown by regions ~ and ~ in Fig. 4.
As described above, it was found that, since high vapor pressure is obtained in the Dy-Nd lamp, the lamp obtained exhibits chromaticity coordinates approximating to the blackbody locus and a little irregularity of color even if the amounts of the additives is slightly changed in the luminous tube having a relatively laxge size, or even if the lamp power is changed due to the lamp voltage and a ballast.
It was thus found that the lamp obtained is suitable as an OHP-type TV light source.
When a lamp comprising a luminous tube, which had an external diameter of 12 mm, an internal diameter of ~.8 mm, an arc length of 5 mm and a content volume of 0.5 cc, was also formed and subjected to measurements of color characteristics, the similar results to those described above were obtained.
In regard to the ratios of the amounts of Dy-Nd additives sealed in the above lamp, if the amoun~ of NdI3 sealed e~ceeds the amount of DyI3 sealed and if the molar .7~L8 ratio therebetween exceeds 1, si.nce the blue component in the luminous region is increased, the Ra value is decreased, and the color temperature is significantly increased, the lamp formed is unsuitable as an OHP-type TV light source.
While if the amount of DyI3 sealed is greater than the amount of NdI3, and if the molar ratio of NdI3 to DyI3 is less than 0.2, since the vapor pressure of DyI3 is also decreased owing to a decrease in the vapor pressure of NdI3, the blue component in the luminous region is increased, the Ra value is decreased, and the color temperature is increased, the lamp formed is unsuitable as an OHP-type TV
light source.
In regard to the ratios of the amounts of the Dy-Nd additives sealed, if the total amount of NdI3 and DyI3 is increased to a value greater than that of CsI so that the molar ratio of NdI3-DyI3 to CsI exceeds 2.5, since the color temperature is decreased, and the arc sways and gives a disagreeable impression on the irradiation surface, the lamp formed is undesirable. While if the amount of NdI3 and DyI3 is reduced so that the molar ratio thereof to the amount of CsI sealed is less than 0.08, since the vapor pressure is decreased, the radiation in the blue range is increased, the Ra value is decreased and the color temperature is increased, the lamp formed is unsuitable as a light source.
-~ O-The appropriate ranges of the molar ratios of NdI~, DyI3 and CsI are therefore the following:
NdI3 0.2 _ _ 1 DyI3 NdI3 + DyI3 0.08 _ _ 2.5 CsI
It is also preferable that the total amount of the additives sealed is 1 x 10-6 to 8 x 10-6 mol/cc. The reason ~or this is that, if the total amount is less than 1 x 10-6 mol/cc, the Dy atomic emission is increased, and, consequently, the blue region is increased, and the red region is decreased, and that, if the total amount exceeds 8 x 10-6 mol/cc, the vapor pressure is excessively increased, and the arc is thus swayed in some cases.
A description will now be given of an embodiment which employs metal bromides as metal halides to be sealed in a luminous tube.
In this embodiment, the luminous tube used had the same structure as that in the first embodiment shown in Fig. 1 and contained metal bromides whose kinds and amounts were established as described below for the purpose to preventing a deformation in the luminous tube and improving the color properties thereof in the same way as in the first embodiment.
7~
0.3 mg of a total amount of dysprosium bromide ~DyBr3) and cesium bromide (cssr) in a molar ratio of 1 : 1, 0.15 mg of a total amount of neodymium bromide (NdBr3) and cesium bromide (CsBr) in a molar ratio of 1 : 1, mercury and argon were sealed in the luminous tube to form a lamp with rating of 150 W. When the color characteristics of the lamp were measured, in most cases, the lamp e~hibited a color temperature of 6800 K, a Ra value of 92 and chromaticity coordinates (x, y) of (0.31, 0.32). It was found from the results that the lamp has chromaticity coordinates which appro~imates to the blackbody locus a, as shown by region ~ in Fig. 5 . When light was actually projected on a screen by using a parabolic mirror, there was substantially no color absorption by the additives sealed. It was found from this that the lamp obtained is a light source generating uniformity in color.
In addition, when changes in chromaticity coordinates with changes in lamp power were measured by changing the lamp power to 120 W (-20%) and 180 W (+20%), it was found that the chromaticity coordinates are moved to regions and ~ in Fig. 5 with changes by -20% and +20%, respectively, with producing substantially no deviatlon from the blackbody locus a. Further, the amounts of NdBr3-CsBr (0~3 mg in a molar ratio of 1 : 1) and NdBr3-CsBr (O.lS mg in a molar ratio of 1 : 1) were doubled and halved to form lamps. When the color characteristics of the lamps formed ~"~L78~3 were measured, the chromaticity coordinates of the lamps were changed to regions which were substantially the same as the regions ~ and ~ shown in Fig. 5 produced when the lamp power was changed. It was thus confirmed that the larnps formed show changes in chromaticity coordinates approximating to the blackbody locus a.
When investigation was made on appropriate ratios between NdBr3 and Dysr3 and between (NdBr3 + DyBr3) and Cssr, it was found that ratios within the same ranges as those in the first embodiment are suitable. Namely, the ratios in terms of molar ratio are the following:
NdBr3 0.2 _ - _ 1 DyBr3 NdBr3 + DyBr3 0.08 _ < 2.5 CsBr It was also confirmed that the appropriate range of the total amount of the additives is 1 x 10-6 to 8 x 10-6 mol/cc in the same way as in the first embodiment.
In this embodiment which uses bromides as halides, the vapor pressure can be more increased than in the first embodiment in which only iodides are sealed. This embodiment therefore permits an increase in the size of the discharge tube which forms the luminous tube when the size ~!39~7~L8 of a light source is not limited and an attempt to be made to increase the life of a lamp.
Although each of the embodiments uses as halide additives to be sealed iodides (NdI3, DyI3r CsI) or bromides (NdBr3, DyBr3, CsBr), it was confirmed that the use of mixtures of iodides and bromides produces the same operational effect as that of the embodiments.
As described above on the basis of the embodiments, the present invention permits a light source, which is suitable as an OHP-type TV light source and which has chromaticity coordinates approximating to the blackbody locus, to be obtained by appropriately selecting additives for the luminous tube from neodymium halides, dysprosium halides, cesium halides and setting appropriate ratios and sealing amounts thereof even if the luminous tube has a relatively large size and the input power or the amounts of the additives sealed vary to some extent. The present invention also permits a decrease in wall load and thus the formation of a metal halide lamp having a long life and good spectral characteristics.
BACKGROUND OF THE INVENTION
The present invention relates to a metal halide lamp, and particularly to a small metal halide lamp which is lighted only by a luminous tube without any outer bulb and which has excellent spectral distribution properties.
Small metal halide lamps, each of which is provided with a luminous tube without an outer bulb, are generally used as light sources for overhead projectors (OHP) and moving picture projectors and are gradually popularized.
In each of such small metal halide lamps, the low vapor pressure of the metal halides sealed in the luminous tube is increased by increasing the wall load on the luminous tube so that desired emission can be obtained.
In each of the metal halide lamps having no outer bulb, the wall load on the luminous tube is increased by reducing the size of the luminous tube so that the low vapor pressure of the metal halide is increased. The quartz tube used as the luminous tube is thus devitrified owing to heat or deformed to expand. The metal halide lamps without any outer bulb have a problem with respect to their life which is shorter than that of lamps with outer bulbs.
Of this kind of lamps, dysprosium-thallium (Dy-Tl) lamps have excellent color characteristics such as color temperature and color rendering but show chromaticity coordinates on a X-Y chromaticity diagram (referred to as "chromaticity coordinates" hereinafter) which significantly deviate from the blackbody locus. The Dy-Tl lamps are therefore unsuitable as light sources for overhead projection-type televisions (referred to as "OHP-type TV
light source" hereinafter).
SUMM~RY OF THE INVENTION
It is an object of the present in~ention to provide a metal halide lamp without any outer bulb which has none of the problems of conventional metal halide lamps.
It is another object of the present invention to provide a metal halide lamp without any outer bulb which hàs a long life and excellent color characteristics and which can be used as an OHP-type TV light source.
In order to achieve the objects, the present invention provides a metal halide lamp comprising only a luminous tube without any outer bulb, the luminous tube having main electrodes at least at both ends thereof and containing metal halides consisting of a neodymium halide (NdX3), a dysprosium halide (DyX3) and a cesium halide ~CsX) in a total amount by mole of 1 x 10-6 to 8 x 10-6 mol/cc and the following molar ratios:
Z')~8~8 NdX3 0.2 _ _ 1 DyX3 NdX3 + DyX3 0.08 _ _ 2.5 CsX
as well as rare gas serving as auxiliary starting gas and mercury serving as buffer gas.
The above structure permits the metal halides sealed to have a predetermined vapor pressure without increasing the wall load on the luminous tube. It is therefore possible to prevent a deformation of the luminous tube and easily obtain a metal halide lamp having a long life and good color characteristics.
BRIEF DESCRIPTION OF THE DRA~INGS
Fig. 1 is a drawing of an embodiment of a metal halide lamp in àccordance with the present invention;
Fig. 2 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates of a lamp comprising a 'uminous tube in which Dy-Tl additives are sealed;
Fig. 3 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in input lamp power of a lamp in which Dy-Nd iodide additives are sealed in accordance with the present invention;
Fig. 4 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in the 7~
amounts of the same Dy-Nd iodide additives sealed in a lamp;
and Fig. 5 is a X-Y chromaticity diagram which shows changes in chromaticity coordinates with changes in input lamp power of a lamp in which Dy-Nd bromide additives are sealed in accordance with the present invention.
DESCRIPTION OF PREFERRED EMsoDIMENTs Embodiments of the present invention are described below with reference to the drawings.
Fig. 1 is a drawing of a first embodiment of a metal halide lamp in accordance with the present invention. In the drawing, reference numeral 1 denotes a quartz discharge tube which has a substantially elliptical sectional form, a maximum internal diameter of 9 mm, a m~xlmllm external diameter of 11 mm and a content volume of about 0.6 cc.
Electrodes 2 are respectively connected to the molybdenum foils 4 provided in sealing parts 3 at both ends of the discharge tube 1. Each of the electrodes 2 comprises a tungsten rod, which has a diameter of 0.5 mm and a length of 6.5 mm and which contains 1.7% of thorium oxide (ThO2), and a coil of a tungsten wire having a diameter of 0.35 mm which is wound around the tungsten rod so as to have a length of 2.5 mm and a distance of 0.3 mm or more from -the top of the tungsten rod. The gap between the two electrodes 2 is set to 7.5 mm. Reference numeral 5 denotes external molybdenum 713~3 lead wires which are respectively connected to the molybdenum foils 4, and reference numeral 6 denotes the chipped-off portion of an evacuating pipe.
In this embodiment, in order to prevent the deformation of the luminous tube configured as described above and improve the color characteristics thereof, metal iodides are used as the metal halides sealed in the luminous tube. The kinds and amounts of the metal iodides are as follows:
In setting the kinds and amounts of metal iodides to be sealed, the inventors made the following experiments: 0.4 mg of a mixture of dysprosium iodide (DyI3) and cesium iodide (CsI) in a ratio by weight of 2 : 1, i.e., a molar ratio of 0.8 : 1, 0.2 mg of thallium iodide (TlI), mercury (Hg) serving as buffer gas and argon (Ar) serving as auxiliary starting gas were sealed in a luminous tube having the above structure to form a lamp with a lamp voltage of 90 V and a lamp power of lS0 W on an experimental basis. When the color characteristics of the lamp formed were examined, the color temperature was 6500 K, the color rendering index Ra was 85, and the chromaticity coordinates (x, y) were (0~31, 0.38). The chromaticity coordinates deviated from the blackbody locus a in the X-Y chromaticity diagram, as shown by region ~ in Fig. 2. It is thus found that the lamp serves as a greenish light source having a good color.
~0~7~
Since it was thought that the deviation of the the chromaticity coordinates of the lamp formed is caused by the large content volume of the luminous tube, changes in chromaticity coordinates with changes in l~mp power input to the luminous tube were measured. As a result, it was found that, although the chromaticity coordinates are moved to region ~ and region ~ when the lamp power is decreased to 120W and increased to 180W, respectively, in either case, the chromaticity coordi.nates are not moved near to the blackbody locus a. Experiments were also carried out for measuring changes in the total amount of the additives sealed at a constant ratio between DyI3-CsI and TlI and a constant lamp power. As a result, it was found that the chromaticity coordinates are moved to region ~ and region when the amount is reduced to 1/3 and increased to 4 times, respectively, but they are not moved near to the blackbody locus ~.
A lamp was then formed with a ratio between the metal iodide additives which was changed so that the total amount of DyI3 and CsI in a molar ratio o~ 0.8 : 1 was 1.6 mg, and ~he amount of TlI was 0.2 mg. The chromaticity coordinates (x, y) measured were (0.31, 0.34). The lamp obtained thus had substantially desired color characteristics, as shown by region ~ in Fig. 2. However, when light was actually projected on a screen by using the lamp as an OHP-type TV
~3~
light source, irregularity of yellow color occurred in the image projected to the screen owing to the selective light absorption by the additives. It was thus found that the lamp is unsuitable for practical use.
The kinds of the substances sealed were thus changed.
Namely, 0.4 mg of DyI3 and CsI in a molar ratio of 0.8 : 1, 0.2 mg of neodymium iodide (NdI3) and CsI in the same molar ratio of 0.8 : 1, mercury and argon gas were sealed in a luminous tube having the same size as that described above to form a lamp (rating, 150W). When the color characteristics of the lamp formed were measured, in most cases, the color temperature was 7000 K, the index Ra was 91 and the chromaticity coordinates (x, y) were (0.305, 0.317).
The lamp obtained can be therefore used as a light source having chromaticity coordinates which substantially approximate to the blackbody locus a , as shown by region ~ in Fig. 3. When light was actually projected on a screen by using as an OHP-type TV
light source the lamp formed, substantially no color absorption caused by the additives sealed was observed. It ~as thus found that the lamp obtained can be used as a light source generating uniformity in color.
On the basis of the results, DyI3, NdI3 and CsI were used as metal iodide additives ko be sealed in the metal halide lamp of the present invention.
21)~78~8 When the starting test of the lamp was carried out, it was confirmed that the lamp can be started at a starting voltage which is lower than that of the Dy-Tl lamp in which 1.6 mg of DyI3-CsI and 0.2 mg of TlI are sealed. This was caused by a small amount of impurities gas mixed in the lamp during actual sealing of the additives which adversely affect the starting properties owing to a low ratio of the total amount of the additives sealed to the content volume of the luminous tube.
Further, changes in chromaticity coordinates with changes in lamp power of a Dy-Nd luminous tube in which the same additives as those described above were sealed were measured by changing the lamp power to 120W and l~OW. As a result, it was found that the chromaticity coordinates are moved along the blackbody locus, as compared with the above-described Dy-Tl lamp, and do not much deviate from the blackbody locus ~, as shown by regions ~ and ~ in Fig. 3.
This fact reveals that the use of the Dy-Nd additives sealed permits the formation of a light source having chromaticity coordinates approximating to the blackbody locus regardless of the size of the luminous tube, i.e., even if the content volume of the luminous tube is increased so that the wall load is decreased.
In addition, lamps were respectively formed by using luminous tubes which had the same size and in which the ~r~81~
above-described amounts of the DyI3-CsI (0.9 mg in a molar ratio of 0.8 : 1) and NdI3-CsI (0.2 mg in a molar ratio of 0.~ : 1) were doubled and halved. When the lamps formed were subjected to measurements of chromaticity coordinates (x, y), it was confirmed that the lamps formed show changes in chromaticity coordinates substantially on the blackbody locus a, as shown by regions ~ and ~ in Fig. 4.
As described above, it was found that, since high vapor pressure is obtained in the Dy-Nd lamp, the lamp obtained exhibits chromaticity coordinates approximating to the blackbody locus and a little irregularity of color even if the amounts of the additives is slightly changed in the luminous tube having a relatively laxge size, or even if the lamp power is changed due to the lamp voltage and a ballast.
It was thus found that the lamp obtained is suitable as an OHP-type TV light source.
When a lamp comprising a luminous tube, which had an external diameter of 12 mm, an internal diameter of ~.8 mm, an arc length of 5 mm and a content volume of 0.5 cc, was also formed and subjected to measurements of color characteristics, the similar results to those described above were obtained.
In regard to the ratios of the amounts of Dy-Nd additives sealed in the above lamp, if the amoun~ of NdI3 sealed e~ceeds the amount of DyI3 sealed and if the molar .7~L8 ratio therebetween exceeds 1, si.nce the blue component in the luminous region is increased, the Ra value is decreased, and the color temperature is significantly increased, the lamp formed is unsuitable as an OHP-type TV light source.
While if the amount of DyI3 sealed is greater than the amount of NdI3, and if the molar ratio of NdI3 to DyI3 is less than 0.2, since the vapor pressure of DyI3 is also decreased owing to a decrease in the vapor pressure of NdI3, the blue component in the luminous region is increased, the Ra value is decreased, and the color temperature is increased, the lamp formed is unsuitable as an OHP-type TV
light source.
In regard to the ratios of the amounts of the Dy-Nd additives sealed, if the total amount of NdI3 and DyI3 is increased to a value greater than that of CsI so that the molar ratio of NdI3-DyI3 to CsI exceeds 2.5, since the color temperature is decreased, and the arc sways and gives a disagreeable impression on the irradiation surface, the lamp formed is undesirable. While if the amount of NdI3 and DyI3 is reduced so that the molar ratio thereof to the amount of CsI sealed is less than 0.08, since the vapor pressure is decreased, the radiation in the blue range is increased, the Ra value is decreased and the color temperature is increased, the lamp formed is unsuitable as a light source.
-~ O-The appropriate ranges of the molar ratios of NdI~, DyI3 and CsI are therefore the following:
NdI3 0.2 _ _ 1 DyI3 NdI3 + DyI3 0.08 _ _ 2.5 CsI
It is also preferable that the total amount of the additives sealed is 1 x 10-6 to 8 x 10-6 mol/cc. The reason ~or this is that, if the total amount is less than 1 x 10-6 mol/cc, the Dy atomic emission is increased, and, consequently, the blue region is increased, and the red region is decreased, and that, if the total amount exceeds 8 x 10-6 mol/cc, the vapor pressure is excessively increased, and the arc is thus swayed in some cases.
A description will now be given of an embodiment which employs metal bromides as metal halides to be sealed in a luminous tube.
In this embodiment, the luminous tube used had the same structure as that in the first embodiment shown in Fig. 1 and contained metal bromides whose kinds and amounts were established as described below for the purpose to preventing a deformation in the luminous tube and improving the color properties thereof in the same way as in the first embodiment.
7~
0.3 mg of a total amount of dysprosium bromide ~DyBr3) and cesium bromide (cssr) in a molar ratio of 1 : 1, 0.15 mg of a total amount of neodymium bromide (NdBr3) and cesium bromide (CsBr) in a molar ratio of 1 : 1, mercury and argon were sealed in the luminous tube to form a lamp with rating of 150 W. When the color characteristics of the lamp were measured, in most cases, the lamp e~hibited a color temperature of 6800 K, a Ra value of 92 and chromaticity coordinates (x, y) of (0.31, 0.32). It was found from the results that the lamp has chromaticity coordinates which appro~imates to the blackbody locus a, as shown by region ~ in Fig. 5 . When light was actually projected on a screen by using a parabolic mirror, there was substantially no color absorption by the additives sealed. It was found from this that the lamp obtained is a light source generating uniformity in color.
In addition, when changes in chromaticity coordinates with changes in lamp power were measured by changing the lamp power to 120 W (-20%) and 180 W (+20%), it was found that the chromaticity coordinates are moved to regions and ~ in Fig. 5 with changes by -20% and +20%, respectively, with producing substantially no deviatlon from the blackbody locus a. Further, the amounts of NdBr3-CsBr (0~3 mg in a molar ratio of 1 : 1) and NdBr3-CsBr (O.lS mg in a molar ratio of 1 : 1) were doubled and halved to form lamps. When the color characteristics of the lamps formed ~"~L78~3 were measured, the chromaticity coordinates of the lamps were changed to regions which were substantially the same as the regions ~ and ~ shown in Fig. 5 produced when the lamp power was changed. It was thus confirmed that the larnps formed show changes in chromaticity coordinates approximating to the blackbody locus a.
When investigation was made on appropriate ratios between NdBr3 and Dysr3 and between (NdBr3 + DyBr3) and Cssr, it was found that ratios within the same ranges as those in the first embodiment are suitable. Namely, the ratios in terms of molar ratio are the following:
NdBr3 0.2 _ - _ 1 DyBr3 NdBr3 + DyBr3 0.08 _ < 2.5 CsBr It was also confirmed that the appropriate range of the total amount of the additives is 1 x 10-6 to 8 x 10-6 mol/cc in the same way as in the first embodiment.
In this embodiment which uses bromides as halides, the vapor pressure can be more increased than in the first embodiment in which only iodides are sealed. This embodiment therefore permits an increase in the size of the discharge tube which forms the luminous tube when the size ~!39~7~L8 of a light source is not limited and an attempt to be made to increase the life of a lamp.
Although each of the embodiments uses as halide additives to be sealed iodides (NdI3, DyI3r CsI) or bromides (NdBr3, DyBr3, CsBr), it was confirmed that the use of mixtures of iodides and bromides produces the same operational effect as that of the embodiments.
As described above on the basis of the embodiments, the present invention permits a light source, which is suitable as an OHP-type TV light source and which has chromaticity coordinates approximating to the blackbody locus, to be obtained by appropriately selecting additives for the luminous tube from neodymium halides, dysprosium halides, cesium halides and setting appropriate ratios and sealing amounts thereof even if the luminous tube has a relatively large size and the input power or the amounts of the additives sealed vary to some extent. The present invention also permits a decrease in wall load and thus the formation of a metal halide lamp having a long life and good spectral characteristics.
Claims (5)
1. A metal halide lamp comprising a luminous tube absent an outer bulb, said luminous tube having main electrodes at least at both ends thereof, and containing metal halides that consist of neodymium halides (NdX3), dysprosium halides (DyX3) and cesium halides (CsX) in a total amount by mole of 1 x 10-6 to 8 x 10-6 mol/cc and in the following molar ratios:
and rare gas for serving as auxiliary starting gas and mercury serving as buffer gas.
and rare gas for serving as auxiliary starting gas and mercury serving as buffer gas.
2. A metal halide lamp comprising: a luminous tube absent an outer bulb; main electrodes projecting from at least opposing ends of said luminous tube with a predetermined gap between said main electrodes; the luminous tube containing metal halides consisting of, neodymium halides (NdX3), dysprosium halides (DyX3) and cesium halides (CsX) in a total amount by mole of 1 x 10-6 to 8 x 10-6 mol/cc and in the following molar ratios:
and rare gas for serving as auxiliary starting gas and mercury serving as buffer gas; said luminous tube having a sectional form which is substantially elliptical with an internal diameter of at most 9.8 mm, an external diameter of at most 12 mm, and a content volume of at most 0.6 cc;
wherein the gap between said main electrodes is between 5 mm and 7.5 mm; and wherein a lamp power of said metal halide lamp is between 120 W and 180 W.
and rare gas for serving as auxiliary starting gas and mercury serving as buffer gas; said luminous tube having a sectional form which is substantially elliptical with an internal diameter of at most 9.8 mm, an external diameter of at most 12 mm, and a content volume of at most 0.6 cc;
wherein the gap between said main electrodes is between 5 mm and 7.5 mm; and wherein a lamp power of said metal halide lamp is between 120 W and 180 W.
3. A metal halide lamp as defined in claim 1 or 2, wherein said metal halides to be sealed in said metal halide lamp are metal iodides.
4. A metal halide lamp as defined in claim 1 or 2, wherein said metal halides to be sealed in said metal halide lamp are metal bromides.
5. A metal halide lamp as defined in claim 1 or 2, wherein said metal halides to be sealed in said metal halide lamp are mixtures of metal iodides and metal bromides.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP135950/1989 | 1989-05-31 | ||
JP13595089 | 1989-05-31 | ||
JP307490/1989 | 1989-11-29 | ||
JP30749089 | 1989-11-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2017818A1 CA2017818A1 (en) | 1990-11-30 |
CA2017818C true CA2017818C (en) | 1998-02-24 |
Family
ID=26469672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002017818A Expired - Fee Related CA2017818C (en) | 1989-05-31 | 1990-05-30 | Metal halide lamp |
Country Status (5)
Country | Link |
---|---|
US (1) | US5220244A (en) |
EP (1) | EP0400980B1 (en) |
JP (1) | JP2650463B2 (en) |
CA (1) | CA2017818C (en) |
DE (1) | DE69015700T2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4013039A1 (en) * | 1990-04-24 | 1991-10-31 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | HIGH PRESSURE DISCHARGE LAMP |
CA2090360A1 (en) * | 1992-03-03 | 1993-09-04 | Michael J. Shea | Metal iodide lamp |
DE4310539A1 (en) * | 1993-03-31 | 1994-10-06 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Metal halide high-pressure discharge lamp for installation in optical systems |
EP0634780B1 (en) * | 1993-07-13 | 1997-01-08 | Matsushita Electric Industrial Co., Ltd. | Metal halide discharge lamp, illumination optical apparatus, and image display system |
EP0682356B1 (en) * | 1994-05-12 | 2000-01-26 | Iwasaki Electric Co., Ltd. | Metal halide lamp |
US5594302A (en) * | 1995-08-22 | 1997-01-14 | Lamptech Ltd. | Metal halide lamp including iron and molybdenum |
US5831388A (en) * | 1995-08-23 | 1998-11-03 | Patent-Truehand-Gesellschaftfuer Elektrische Gluelampen Mbh | Rare earth metal halide lamp including niobium |
KR970023601A (en) * | 1995-10-20 | 1997-05-30 | 모리시다 요이치 | Metal halide lamp |
JP3201278B2 (en) * | 1996-08-28 | 2001-08-20 | ウシオ電機株式会社 | Metal halide lamp |
JPH1083798A (en) | 1996-09-06 | 1998-03-31 | Matsushita Electric Ind Co Ltd | Metal halide lamp |
US20060255741A1 (en) * | 1997-06-06 | 2006-11-16 | Harison Toshiba Lighting Corporation | Lightening device for metal halide discharge lamp |
CN1235260C (en) * | 2001-03-30 | 2006-01-04 | 松下电器产业株式会社 | Metal halide lamp for car headlight |
WO2004008469A2 (en) * | 2002-07-17 | 2004-01-22 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US6812644B2 (en) * | 2003-02-04 | 2004-11-02 | Osram Sylvania Inc. | Reduced mercury ceramic metal halide lamp |
DE102004024063A1 (en) * | 2004-05-13 | 2005-12-01 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | High pressure discharge lamp |
US7486026B2 (en) * | 2006-11-09 | 2009-02-03 | General Electric Company | Discharge lamp with high color temperature |
EP2140479A2 (en) * | 2007-04-20 | 2010-01-06 | Koninklijke Philips Electronics N.V. | Metal halide lamp comprising a shaped ceramic discharge vessel |
US7893619B2 (en) * | 2008-07-25 | 2011-02-22 | General Electric Company | High intensity discharge lamp |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3319119A (en) * | 1965-10-22 | 1967-05-09 | Hewlett Packard Co | Metal vapor spectral lamp with mercury and a metal halide at subatmospheric pressure |
US3334261A (en) * | 1965-10-24 | 1967-08-01 | Sylvania Electric Prod | High pressure discharge device having a fill including iodine mercury and at least one rare earth metal |
BE754499A (en) * | 1969-08-08 | 1971-01-18 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | HIGH PRESSURE DISCHARGE LAMP, MERCURY VAPOR WITH METAL HALOGENIDE ADDITIVE |
US3786297A (en) * | 1972-04-13 | 1974-01-15 | Westinghouse Electric Corp | Discharge lamp which incorporates cerium and cesium halides and a high mercury loading |
US3798487A (en) * | 1972-07-21 | 1974-03-19 | Westinghouse Electric Corp | Discharge lamp which incorporates divalent cerium halide and cesium halide and a high mercury loading |
JPS5228233B2 (en) * | 1972-08-30 | 1977-07-25 | ||
DE2655167C2 (en) * | 1976-12-06 | 1986-12-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München | High pressure discharge lamp with metal halides |
US4161672A (en) * | 1977-07-05 | 1979-07-17 | General Electric Company | High pressure metal vapor discharge lamps of improved efficacy |
JPS5422973A (en) * | 1977-07-22 | 1979-02-21 | Iwasaki Electric Co Ltd | Metal vapor discharge lamp |
JPS5426081A (en) * | 1977-07-30 | 1979-02-27 | Iwasaki Electric Co Ltd | Self-ballast discharge lamp |
US4206387A (en) * | 1978-09-11 | 1980-06-03 | Gte Laboratories Incorporated | Electrodeless light source having rare earth molecular continua |
JPS5963653A (en) * | 1982-10-04 | 1984-04-11 | Toshiba Corp | Short-arc metal halide lamp |
US4801846A (en) * | 1986-12-19 | 1989-01-31 | Gte Laboratories Incorporated | Rare earth halide light source with enhanced red emission |
GB8707670D0 (en) * | 1987-03-31 | 1987-05-07 | Emi Plc Thorn | Ceramic metal halide lamps |
US4935668A (en) * | 1988-02-18 | 1990-06-19 | General Electric Company | Metal halide lamp having vacuum shroud for improved performance |
US4978884A (en) * | 1988-05-19 | 1990-12-18 | U.S. Phillips Corporation | Metal halide discharge lamp having low color temperature and improved color rendition |
US5101134A (en) * | 1990-09-26 | 1992-03-31 | Gte Products Corporation | Low wattage metal halide capsule shape |
-
1990
- 1990-04-24 JP JP2106348A patent/JP2650463B2/en not_active Expired - Fee Related
- 1990-05-30 CA CA002017818A patent/CA2017818C/en not_active Expired - Fee Related
- 1990-05-30 DE DE69015700T patent/DE69015700T2/en not_active Expired - Fee Related
- 1990-05-30 EP EP90305863A patent/EP0400980B1/en not_active Expired - Lifetime
-
1991
- 1991-11-27 US US07/798,059 patent/US5220244A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2017818A1 (en) | 1990-11-30 |
EP0400980B1 (en) | 1995-01-04 |
JPH03219546A (en) | 1991-09-26 |
US5220244A (en) | 1993-06-15 |
DE69015700D1 (en) | 1995-02-16 |
EP0400980A2 (en) | 1990-12-05 |
JP2650463B2 (en) | 1997-09-03 |
EP0400980A3 (en) | 1991-07-31 |
DE69015700T2 (en) | 1995-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2017818C (en) | Metal halide lamp | |
US4171498A (en) | High pressure electric discharge lamp containing metal halides | |
JPH05205697A (en) | High-voltage discharge lamp | |
US5691601A (en) | Metal-halide discharge lamp for photooptical purposes | |
JPH02291661A (en) | Strong blue light emitting metal halide lamp for copying | |
JPS609042A (en) | Single-ended metal halogen lamp using ionized potential selection of added gas and method of producing same | |
JPH11111239A (en) | Electrodeless lamp to be used for light optical use | |
CA2424224A1 (en) | Metal halide fill, and associated lamp | |
US5512800A (en) | Long life metal halide lamp and an illumination optical apparatus and image display system using same | |
US5773932A (en) | Metal halide lamp with reduced color shadowing | |
US20020014842A1 (en) | High-pressure discharge lamp | |
EP0908926B1 (en) | Metal halide lamp | |
JP3307272B2 (en) | Discharge lamp and video projector using this discharge lamp | |
JP3132042B2 (en) | Metal halide lamp | |
JP3239721B2 (en) | Metal halide lamp | |
JP3239621B2 (en) | Metal halide lamp and illumination optical device | |
JPH05334992A (en) | Metallic vapor electric discharge lamp | |
JPS5963653A (en) | Short-arc metal halide lamp | |
JP3378361B2 (en) | Metal halide lamp, illumination optical device and image display device | |
JPH09171797A (en) | Metal halide lamp, and lighting optical device and image display device using the metal halide lamp | |
JP3241611B2 (en) | Metal halide lamp | |
JPH06342641A (en) | Short arc metal halide lamp | |
JPH0836992A (en) | Metal halide lamp | |
JPH08273599A (en) | Metal halide lamps, lighting devices and lighting devices | |
JPS6343864B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |