[go: up one dir, main page]

CA2015549C - Synthesis of methylaluminoxanes - Google Patents

Synthesis of methylaluminoxanes

Info

Publication number
CA2015549C
CA2015549C CA002015549A CA2015549A CA2015549C CA 2015549 C CA2015549 C CA 2015549C CA 002015549 A CA002015549 A CA 002015549A CA 2015549 A CA2015549 A CA 2015549A CA 2015549 C CA2015549 C CA 2015549C
Authority
CA
Canada
Prior art keywords
methylaluminoxane
trimethylaluminum
alkyl groups
reaction
polyalkylaluminoxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002015549A
Other languages
French (fr)
Other versions
CA2015549A1 (en
Inventor
Clark Charles Crapo
Dennis Benedict Malpass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Alkyls Inc
Original Assignee
Texas Alkyls Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/279,377 external-priority patent/US4960878A/en
Application filed by Texas Alkyls Inc filed Critical Texas Alkyls Inc
Priority to CA002015549A priority Critical patent/CA2015549C/en
Publication of CA2015549A1 publication Critical patent/CA2015549A1/en
Application granted granted Critical
Publication of CA2015549C publication Critical patent/CA2015549C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Methylaluminoxane can be formed by the reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with trimethylaluminum with the trimethylaluminum being present in an amount which is not present in stoichiometric excess. Another embodiment of the present invention involves the synthesis of the methylaluminoxane by reaction of a trialkylaluminum compound or a tetraalkyldialuminoxane containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum. A third embodiment of the present invention involves the synthesis of the methylaluminoxane by reaction of the aforementioned polyalkylaluminoxane with trimethylaluminum and then with water.

Description

~ ATA 5463 -1- 2015549 -SYNTHESIS OF ~lnYhALUMINOXANES

BACKGROUND OF THE Ihv~NllON

Field of the Invention The present invention relates to the synthesis of methylaluminoxanes which are useful as cocatalysts in the homogeneous polymerization and copolymerization of olefins and/or dienes in conjunction with metallocene compounds, e.g., such Group IVB compounds as titanium, zirconium, and hafnium.

Description of the Prior Art Methylaluminoxane, prepared by carefully controlled partial hydrolysis of trimethylaluminum, is useful as a cocatalyst in conjunction with certain Group IVB compounds, such as dicyclopentadienylzirconium dichloride and racemic ethylenebis(indenyl) zirconium dichloride, in the homogeneous polymerization of olefins. Such catalyst systems, discovered by W. Kaminsky, are highly efficient and have been the subject of much interest in recent patent and journal literature, including the following: U.S. Patent Nos. 4,404,344, 4,452,199, 4,544,762, and 4,665,208; J.
Poly. Sci.: Poly. Chem. Ed., Vol. 23, page 2117(1978);
Angew. Chem. Intl. Ed. Engl., Vol. 15, page 630(1976) and Vol. 19, page 390(1980); Makromol. Chem., Rapid Commun., Vol. 4, page 417(1973) and Vol. 5, page 225(1984); and J. of the Amer. Chem. Soc., Vol. 106, page 6355(1984). The known schematic schemes for the synthesis of methylaluminoxane typically show one or more of the following disadvantages:
long reaction times (with hydrated salts); low yields of the " ,~

methylaluminoxane (50% or lower); the potential for explosions resulting from runaway reactions; low temperatures (-10~C and below) in order to obtain optimum yields; poor batch-to-batch reproducibility; the use of exotic and expensive raw materials (for example, dimethylgalliumhydroxide, as described in the Sinn et al.
publication mentioned below); or the use of unusual or complicated reactors (for example, an autoclave reactor that incorporates a milling action, as described in the Sinn et al. article cited below, an ultrasonic reactor, as described in U.S. Patent No. 4,730,071, or the use of a high speed, high shear-inducing impeller, as described in U.S. Patent No. 4,730,072).
At a symp~sium given in Hamburg, West Germany, in September, 1987, H. Sinn et al. described several new methods of preparing methylaluminoxane. Results of the symposium are given in the following citation: H. W. Sinn et al., Transition Metals and Organometallics as Catalysts for Olefin Polymerization, W. O. Kaminsky et al., eds., Springer-Verlag, New York, Proceedings of an International Symposium, Hamburg, FRG, September 21-24, 1987, pages 257-268. On page 259 of this publication several unexpected observations are detailed in regard to the use of ice in the synthesis of methylaluminoxanes. However, page 262 does contain a very cursory mention that tetraisobutyldi-aluminoxane reacts with "a repeatedly added excess" of trimethylaluminum by giving off triisobutylaluminum that is distilled out of the reactive vessel together with the excess of trimethylaluminum. The residue is said to be "an oligomeric aluminoxane". No data is provided in regard to this ill defined product nor is its performance as a cocatalyst in olefin polymerization described in the reference.

~_ ATA 5463 ~3~ 2015549 SUMMARY OF THE PRESENT lNv~Nl~lON
The instant invention relates to the synthesis of methylaluminoxanes. It is possible to form methyl-aluminoxanes by the reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with trimethylaluminum using an amount of trimethylaluminum which is not present in stoichiometric excess. Also, the synthesis of methylaluminoxanes can be achieved by the reaction of a trialkylaluminum compound or a tetraalkyldialuminoxane containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum. Further, methylaluminoxanes can be synthesized by the reaction of a polyalkylaluminoxane containing C2 or higher alkyl groups with trimethylaluminum and then with water. As will be appreciated by a person of ordinary skill in the art, the tetraalkyldialuminoxane and polyalkylaluminoxane can be isolated as reagents for the instant reaction or can be present in non-isolated form when aluminum alkyls are initially reacted with appropriate amounts of water to form them. It is within the spirit and scope of the instant invention to cover these various possibilities.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

In accordance with the first embodiment of the present invention, methylaluminoxane is synthesized by reacting a tetraalkyldialuminoxane containing C2 or higher alkyl groups (either in isolated form or as a non-isolated intermediate as earlier described) with trimethylaluminum.
The tetraalkyldialuminoxane has the formula:

~I !7 ~_ ATA 5463 -4- 201554~

R R
Al-O-Al R R

where R is the aforementioned type of alkyl group, preferably a C2-C20 alkyl group which can be either straight or branched chain or cycloalkyl including n-butyl, cyclohexyl, isobutyl, n-hexyl, and the like. The amount of trimethylaluminum used is an amount which is not in stoichiometric excess. This is unexpected in view of the above-mentioned Sinn et al. publication which only indicates, in a cursory reference, the reaction of a "repeatedly added excess of trimethylaluminum" with "tetraisobutyldialuminoxane". The molar amount of tetraalkyldialuminoxane to trimethylaluminum which can be used in accordance with the present invention ranges from about 1:0.1 to no more than 1:1. The reaction can be conducted at temperatures of from about -10~C to about 150~C. The reaction can be run in hydrocarbon solvent (e.g., toluene, heptane, cumene, etc.). Toluene is preferred. As would be understood by the person of ordinary skill in the art, solvents which are catalyst poisons (e.g., ethers, amines, etc.) would not be preferred materials for use.
A second embodiment of the present invention involves the synthesis of methylaluminoxanes by reacting a polyalkylaluminoxane (either in isolated or non-isolated form) with trimethylaluminum. The molar ratio of trimethylaluminum to polyalkylaluminoxane can range from about 0.1 to about 10. The polyalkylaluminoxane is of the formula:

Il t'~

~_ ATA 5463 -5- 2015549 -~Al-O~x where R is alkyl as defined above and x is an integer greater than 1, for example up to about 50. The polyalkylaluminoxane is derived from a trialkylaluminum compound or from the aforementioned tetraalkyldialuminoxane by reacting either of these materials with water under the following reaction conditions: temperatures of about -20~C
to about 50~C, preferably 0-15~C with vigorous agitation under an inert atmosphere (e.g., nitrogen, helium, or argon). The reaction is advantageously conducted in a solvent medium, e.g., a hydrocarbon solvent. In most embodiments, evolved gases will be suitably vented to deter pressure buildup within the reactor. The molar ratio of trimethylaluminum to polyalkylaluminoxane reacted in accordance with this embodiment of the present invention to form the desired methylaluminoxane ranges from about 0.1:1 to about 10:1 on a contained aluminum molar basis. Heat should be applied after trimethylaluminum addition (e.g., refluxing, such as at 110~C in toluene, is especially preferred in order to speed up the reaction).
A third embodiment of the present invention involves the reaction of the aforementioned polyalkylaluminoxane, which contains C2 or higher hydrocarbyl, e.g., alkyl, groups, with trimethylaluminum and then with liquid water.
This embodiment of the present invention is believed to involve a complex between the trimethylaluminum reagent and the polyalkylaluminoxane which is amenable to later reaction with water to form the desired methylaluminoxane reagent.
The same general process as described for the second embodiment can be employed. Unlike conventional methods, I; f}

2015~49 ",,,_ reaction with liquid water is controllable and provides reproducibly a methylaluminoxane that gives high activities in olefin polymerization.
Methylaluminoxane produced by conventional methods results in an As (specific activity units) for ethylene polymerization under st~n~Ard conditions of about lx106 (As = grams of polyethylene/gram Zr hr atm C2H4). Methyl-aluminoxanes produced by the first described embodiment of the instant invention showed an As as high as 5.7x105 whereas the use of tetraisobutyldialuminoxane or trimethylaluminum alone, for example, showed poor polymerization activity (an As of 103 or less). The second embodiment of the instant invention has yielded As values as high as 1.3x106. The third embodiment, involving precomplexation of trimethylaluminum with polyisobutyl-aluminoxane and subsequent reaction with water, for example, has given As values as high as 3.7x106.
It has been found that the water to aluminum ratios used to make the polyalkylaluminoxane reagent have an effect on the activity (As) of the final methylaluminoxane. As is apparent from the Examples given below, for example, the highest polymerization activities, when polyisobutylaluminoxane was prepared, were achieved at H20/Al ratios for preparing the polyisobutylaluminoxane of about 0.6 to about 1Ø. Polymerization activities were lower both below that range as well as above it.
The methylaluminoxane product formed by the instant process is believed to be a novel composition of matter.
Conventional methylaluminoxane, when hydrolyzed, gives methane as the sole gaseous hydrolysis product due to the presence of methylaluminum species therein. In contrast, methylaluminoxanes of the instant invention, which is, in reality, a "modified" methylaluminoxane ("MMA0"), also contains alkyl substituents derived from the tetraalkyl-" ,-1 ~ 2015~49 dialuminoxane and/or polyalkylaluminoxane reagents which are reacted with trimethylaluminum. Therefore, the additional presence of the aforesaid C2 or higher alkyl ligands in the aluminoxane material will insure the presence of additional C2 + alkane hydrolysis products (either gaseous or liquid depending upon the size of the alkyl substituent): for example, isobutane, n-butane, n-hexane, and the like. The mole % methane and mole % other alkane depend on the quantity of TMAL introduced. Methane content in the hydrolysis gas typically ranges from about 20% to about 80%, though higher or lower amounts are theoretically possible.
The balance is mostly alkane derived from the trialkyl-aluminum starting material, i.e., isobutane, n-butane, n-hexane, and the like.
Differences are also evident in comparing physical states of isolated methylaluminoxanes of the instant invention with that of conventional methylaluminoxane.
Conventional methylaluminoxanes have been characterized as white solids. Methylaluminoxanes produced in accordance with the instant invention when isolated from solvent exhibit a range of physical states. Products from the first process embodiment are typically clear, colorless liquids.
Products from the second embodiment range from clear, colorless liquids to white solids depending on several factors such as degree of oligomerization of the polyaluminoxane, the TMAL/IBAO ratio, and the like.
Products from the third embodiment are typically clear, colorless viscous liquids. However, products from the third embodiment are likely to exhibit a range of physical states depending on the reaction conditions used during preparation, i.e., the degree of oligomerization of the polyalkylaluminoxane, the TMAL/IBAO ratio, the H2O/TMAL
ratio, etc.

" ,-~

~ ~ ~ 5 5 4 9 Another distinguishing feature of the methylaluminoxanes of this disclosure is their high solubility in aliphatic hydrocarbons, such as heptane, hexane and cyclohexane. Conventional methylaluminoxanes exhibit limited solubility in such hydrocarbons.
Another aspect of the instant invention involves metallocene/aluminoxane catalysts for olefin polymerization and copolymerization and their use in such (co)polymerization processes. The instant catalyst systems differ from conventional metallocene/aluminoxane catalysts in the aluminoxane component, i.e., the use of a modified methylaluminoxane as described hereinbefore which contains C2 or higher alkyl ligands in addition to methyl ligands.
The metallocene component of the instant catalyst is known and are, for example, organometallic coordination compounds of a Group IVB or Group VB metal of the Periodic Table of the Elements (56th Edition of Handbook of Chemistry and Physics, CRC Press ~1975~). Included are the cyclopentadienyl derivatives (e.g., the mono-, di- and tricyclopentadienyl derivatives) of such metals as zirconium, hafnium, titanium, and vanadium. For example, cyclopentadienyl zirconium compounds of the formulae Cp2ZrCl2, Cp2Zr(CH3)Cl and CpZr(CH3)3, where Cp stands for cyclopentadienyl can be used as the metallocene component.
other metallocene compounds which have been reported include: isopropyl (cyclopentadienyl-l-fluorenyl)hafnium;
ethylenebis(4,5,6,7-tetrahydro-l-indenyl)dichlorozirconium;
and ethylenebis(indenyl)dichlorozirconium. Further details in regard to this known class of metallocene compounds can be found in the following patent documents~
U.S. Patent Nos .
4,404,344 and 4,542,199; International Patent Publication Nos. WO 87/03604, Wo 88/02009, and WO 88/04672 to WO
88/04674.
" , 201~549 ATA 5463 -9_ The instant process and the resulting methyl-aluminoxane products possess a number of advantages over prior art procedures. If triisobutylaluminum (TIBAL) is selected as to form the tetraalkyldialuminoxane or polyalkylaluminoxane precursor, substantial economies may be realized since TIBAL is relatively inexpensive. Also, the critical initial reaction with TIBAL is much easier to control with the analogous reaction with trimethylaluminum thereby giving a less hazardous process. Reaction times to produce the desired methylaluminoxanes are substantially less than some prior art procedures (e.g., on the magnitude of several hours as compared to several days when hydrated salts are used as the water source). The instant process uses no "carriers" of water (e.g., hydrated salts such as aluminum sulfate or copper sulfate), thereby eliminating the need to dispose of solid by-products. The use of the relatively more expensive trimethylaluminum is made more efficient since, in most cases, there is little or no loss of insoluble methylaluminoxane species, i.e., yields are essentially quantitative. In the first two embodiments, recovery efficiencies of aluminum values charged as soluble aluminum in methylaluminoxanes typically exceed 98%. In the third embodiment, recovery efficiencies range from about 75%
to essentially quantitative and are dependent on reaction parameters such as agitation rate, reaction temperature, addition rate of water, scale of experiment, etc. The reaction can be conducted at slightly above, at, or slightly below ambient temperatures eliminating or minimizing the need for extremely low temperature capability, for example, in commercial reactors. The methylaluminoxane products give olefin polymerization activities comparable, and in some cases better, than methylaluminoxane prepared by other methods. Unlike many conventional processes, the instant processes are highly reproducible and afford excellent I, .~

batch-to-batch uniformity in yields and methylaluminoxane properties. Also, the resultant methylaluminoxanes from batch-to-batch perform consistently in olefin polymerization. Further, it is not necessary to isolate the methylaluminoxanes and redissolve in toluene to achieve high polymerization activities, as is the case with many conventionally prepared methylaluminoxanes.
Each of the aforementioned reactions results in the formation of a methylaluminoxane product which is believed to be different from methylaluminoxane products formed by prior art processes. Methylaluminoxanes of the present invention are useful as cocatalysts in olefin and diene polymerization and copolymerization as illustrated in the Examples which follow.

~I ~?

2015~9 DIBAL-0, (tetraisobutyldialuminoxane) a commercial product of Texas Alkyls, was produced by reaction of water with triisobutylaluminum (TIBAL) in heptane using a water/TIBAL ratio of about 0.5. Solvent was stripped at 58~-65~C under vacuum, and DIBAL-0 was isolated as a clear, colorless, slightly viscous liquid. Analytical data on the isolated DIBAL-0 are presented in Table I, below.

DIBAL-0 (88.1 grams) from Example 1 was subjected to vacuum distillation conditions (< 4torr) and was heated to 107~C such that a small quantity of TIBAL (7.1 grams) was removed. The polycondensed DIBAL-0 (PC DIBAL-0) was a viscous liquid that was diluted with toluene to facilitate handling. Analytical data on the polycondensed DIBAL-O in toluene are also presented in Table I.

I ~ rl .,.,_ TIBAL as a 25% solution in toluene was charged to a 300-mL flask under a nitrogen atmosphere. The flask was equipped with a magnetic stirring bar and a thermocouple to monitor the reaction temperature. Isobutylaluminoxane (IBA0) solutions were prepared by controlled addition of water to the TIBAL-containing solution in the temperature range 0~-12~C with vigorous agitation. Water was added dropwise over a two to five hour period by syringe using a small bore needle (20 or 22 gauge). After addition of the water was completed, the clear, colorless solution of IBAO
was heated to 70~-80~C to insure substantially complete reaction and remove dissolved isobutane. Analytical data on the IBA0 solutions are also summarized in Table I. In some cases, solvent was removed by distillation, and the IBA0 was isolated as a viscous liquid (at H2O~Al ratios of up to about 0.7) or a white powder (at H2O/Al ratios of 0.88 and higher). Analytical data on the isolated IBAO are also given in Table I.

I I ,1 201~549 ~_ ATA 5463 -13-TABLE I
PREPARATION OR IBAO COMPOUNDSa IBAO Solutions Hydrolysis Gas Wt% (Mole %) Example Product H2O/Al Al Isobutane Other~
1 DIBAL-O -0.5 2 PC DIBAL-Oe -0.5 9.7 3 IBAO 0.98 3.9 4 IBAO 1.21 IBAO 1.14 6 IBAO 0.88 3.8 96 4 Isolated IBAO
Hydrolysis Gas Wt% (Mole %) Molecular Evolv~d Example Product Al Isobutane Other~ WeightC_ Gasa_ 1 DIBAL-O 18.4 954 410 1.8 2 PC DIBAL-Oe 3 IBAO 26.6 97 3 975 1.2 6 IBAO 25.8 9010 951 1.1 a Addition required two to five hours depending on scale of experiment. Temperature at the start of the reaction was in the range of 0-12~C. As the reaction proceeded, temperature was allowed to increase to about 25~C. After the reaction was completed, the temperature was then increased to 70~C to remove the isobutane by-product.
b Others include predominantly hydrogen and isobutylene and smaller amounts of propane and ethane.
c Cryoscopically in benzene.
d Expressed as moles gas per mole of aluminum.
e Polycondensed DIBAL-O.

~ r~

20155~9 Using the same equipment as in Examples 3-6, trimethylaluminum (TMAL) was added to the products of Table I, above, to produce TMAL/IBAO or TMAL/DIBAL-O complexes.
The conditions used in production of the complexes are presented in Table II, below. The TMAL/IBAO ratios in Table II are calculated by dividing molar equivalents of Al in TMAL by the molar equivalents of Al in IBAO or DIBAL-O.

TABLE II
PREPARATION OF TMAL/IBAO COMPLEXES

Example H2O/Al TMAL/IBAOa Conditions 7 0.5 1 A,E
8 0.5 1 A,F
9 0.5 1 A,C
0.5 0.5 A,C
11 0.98 1 B,C
12 1.21 1 B,C,G
13 1.21 1 B,C,H
14 1.14 1 B,C
0.98 1 B,D
16 0.98 0.5 B,D
17 0.5 0.25 A,C
18 0.88 0.5 B,D
19 0.88 0.5 B,D,I
0.88 0.5 B,D,J
21 0.88 0.5 B,D,K
22 0.88 1.0 B,D
23 0.88 0.25 B,C

~ r, TABLE II (CON'T) PREPARATION OF TMAL/IBAO COMPLEXES

TMAL/IBAO Solutions Wt% HydrolYsis Gas (Mole %) b Example Al Methane Isobutane Other 11 7.8 68 24 8 12 4.9 79 20 13 6.8 14 7.3 73 26 7.4 76 22 2 16 5.8 60 37 3 18 5.8 61 38 19 8.2 58 36 6 14.6 54 38 7 22 7.5 71 25 4 23 4.8 35 63 2 Isolated TMAL/IBAO
Wt% Hydrolysis Gas (Mole %) Molecular Evolvdd Example Al Methane Isobutane Other~ WeiqhtC Gas _ 7 24.6e60 38 3 8 23.5e62 36 2 9 23.7e60 38 2 l~l 21.6e47 50 2 33.3f64 29 7 788 1.2 16 19.7f28 66 6 21 34.2f58 29 13 4810 1.3 ..
Il rl 2015~49 TABLE II (CON'T) PREPARATION OF IBAO/TMAL COMPLEXES

CONDITIONS:
A - Neat TMAL and neat commercial DIBAL-O.
B - Toluene solutions.
C - IBAO/TMAL heated to 60-85~C for one hour.

D - IBAO/TMAL/toluene refluxed at 110~C for one to three hours.
E - Concentrated by distillation of aluminum alkyl.
F - No heat.
G - Two-phase system obtained; analysis is of supernatant only.
H - Two-phase system obtained; analysis is for total sample, i.e., supernatant plus gelatinous lower phase.
I - Solvent removed via distillation resulting in a 25%
reduction in volume of sample.
J - Solvent removed via distillation resulting in a 50%
reduction in volume of sample.
K - Solvent removed to isolate solid TMAL/IBAO (0.88) = 0.5 a Ratio of moles Al in TMAL to moles Al in IBAO.

b Others include predominantly hydrogen and small amounts of propane, isobutylene and ethane.
c Cryoscopically in benzene.
d Expressed as moles gas per mole of aluminum.
e Isolated product was a clear colorless liquid.
f Isolated product was a white solid.

~i n _ ATA 5463 -17- 2015549 Products of examples in Table II, above, were used in a standard ethylene polymerization test in a l-L Autoclave Engineers Zipperclave reactor. Data are compiled in Table III below. The procedure was as follows. High purity, dry toluene (500 mL) was degassed with nitrogen and was charged to the vessel. Using a syringe assembly, the various cocatalyst samples produced in Examples 7-23 were charged such that a total of 4xlO 3 mole of aluminum was introduced.
A dilute toluene solution of zirconocene dichloride (6xlO 8 to 4xlO 7 mole) was then charged to the vessel. The contents were then heated to 90~C + 2~C unless otherwise noted. Ethylene (150 psig) was introduced to the autoclave while stirring the reactor contents at 1000 rpm. After 15 minutes, polymerization was terminated by blocking the flow of ethylene with subsequent venting and cooling of the vessel. Polyethylene was isolated as a white powder or a white fibrous material. The melt index (MI) and high load melt index (HLMI) were measured using ASTM D-1238, Conditions E and F. The melt index ratio is obtained by dividing HLMI by MI and is considered a measure of the molecular weight distribution (MWD). A low MIR indicates a narrow MWD.

~ ~ '?

TABLE III
ETHYLENE POLYMERIZATIONS WITH
MODIFIED M~l~nY~ALUMINOXANE (MMAO) AND ZIRCONOCENE DICHLORIDEa MMAO Specific Aluminoxane SourceActiv3ity Example CocatalYst (Example~(x10 ) 24 DIBAL-O 1 4.1 PC DIBAL-O/Toluene 2 6.1 26 TMAL/DIBAL-O = 1 7 110 27 TMAL/DIBAL-O = 1 7 250 28 TMAL/DIBAL-O = 1 7 570 29 TMAL/DIBAL-O = 1 8 18 TMAL/DIBAL-O = 1 9 270 31 TMAL/DIBAL-O = 0.5 10 200 32 TMAL/Toluene Trace 33 IBAO (0.98) 3 4.2 34 TMAL/IBAO (0.98) = 1 11 96 TMAL/IBAO (1.21) = 1 12 2.5 36 TMAL/IBAO (1.21) = 1 13 1.4 37 TMAL/IBAO (1.14) = 1 14 2.6 38 TMAL/IBAO (0.98) = 1 15 110 39 TMAL/IBAO (0.98) = 0.5 16 140 TMAL/DIBAL-O = 0.25 17 23 41 TMAL/IBAO (0.88) = 0.5 18 670 42 TMAL/IBAO (0.88) = 0.5 19 920 43 TMAL/IBAO (0.88) = 0.5 20 930 44 IBAO (0.88) 6 7.7 MAO/TolueneC 1000 46 TMAL/IBAO (0.88) = 1.0 22 670 47 TMAL/IBAO (0.88) = 0.25 23 93 ", I

zn ~554~ ~

TABLE III (CON'T) ETHYLENE POLYMERIZATIONS WITH
MODIFIED METHYLALUMINOXANE (MMAO) AND ZIRCONOCENE DICHLORIDEa Melt Aluminoxane Melt Index ExamPle CocatalYst Index Ratio Comments 24 DIBAL-O Control PC DIBAL-O/Toluene Control 26 TMAL/DIBAL-O = 1 2.3 16 27 TMAL/DIBAL-O = 1 1.3 16 86-96~C
28 TMAL/DIBAL-O = 1 0.4 16 29 TMAL/DIBAL-O = 1 TMAL/DIBAL-O = 1 31 TMAL/DIBAL-O = O.5 32 TMAL/Toluene Control 33 IBAO (0.98) Control 34 TMAL/IBAO (0.98) = 1 TMAL/IBAO (1.21) = 1 36 TMAL/IBAO (1.21) = 1 37 TMAL/IBAO (1.14) = 1 38 TMAL/IBAO (0.98) = 1 0.5 25 39 TMAL/IBAO (0.98) = 0.5 0.5 20 TMAL/DIBAL-O = 0.25 41 TMAL/IBAO (0.88) = O.5 0.4 15 42 TMAL/IBAO (0.88) = 0.5 0.4 15 43 TMAL/IBAO (0.88) = 0.5 0.5 16 44 IBAO (0.88) Control MAO/TolueneC O.2 15 Control 46 TMAL/IBAO (0.88) = 1.0 0.3 17 47 TMAL/IBAO (0.88) = O.25 a Ethylene polymerizations were conducted using zirconocene dichloride at 150 psig of ethylene at 90~C + 2 for 15 minutes unless otherwise noted.
b gPE/(gZr atmC2H4 hr)-c MAO Droduced via reaction of TMAL with Al(OH)3.xH2O as described in EP No. 315,234 published May 10, 1989.
C

ATA 5463 -20- 20155~9 "._ IBAO with a H2O/Al ratio of 0.88 + 0.01 was prepared in toluene solution as described in Examples 3-6. TMAL was then added, and the mixture was heated to 70-85~C for one hour. The product was then cooled, and water was added slowly by syringe using a small bore needle over a period of 20 minutes while stirring vigorously and controlling the temperature in the range of 0~-10~C. The reaction proceeded controllably with little or no solids or gel formation.
Recovery efficiencies of aluminum values charged as soluble aluminum in the methylaluminoxane solutions in Examples 48, 50 and 51 were 93.3%, 99.5%, and 98.8%, respectively. The resultant MMAO products were tested in ethylene polymerization, described as before, and the resulting data are presented in Table IV, below.

' 2015~49 ,,~ ATA 5463 -21-TABLE IV
ETHYLENE POLYMERIZATIONS

Reactants Example TMAL/IBAO _2O/TMAL
48 TMAL/IBAO (0.89' = 0.5 0.52 49 TMAL/IBAO (0.89 = 0.5 0.89 50 TMAL/IBAO (0.88, = 0.5 0.31 51 TMAL/IBAO (0.88) = 1.0 0.32 MMAO from TMAL/IBAO/H2O
Wt% Hydrolysis Gas (Mole %) b ExampleAl Methane Isobutane Others 48 2.3 46 51 3 49 2.3 46 53 5.4 46 52 2 51 7.7 64 32 4 Specific Melt Activi~yC Melt Index Example(x10 L Index Ratio Comments 49 9.6 330 0.5 15 As of TMAL/IBAO (0.88)=
0.5 before H2O addition was 240x103 51 1200 0.4 17 As of TMAL/IBAO (0.88)=
1.0 before H2O addition was 670x103 a Ethylene polymerizations were conducted using zirconocene dichloride at 150 psig of ethylene at 90~C + 2 for 15 minutes unless otherwise noted.
b Others include predominantly hydrogen and smaller amounts of propane, isobutylene and ethane.
gPE/(gZr atmC2H4 hr)-2û15549 TIBAL as a 25% solution in toluene (246.4 grams of solution containing 3.40% Al) was charged to a flask equipped as described in Example 3-6. An IBA0 was then prepared by addition of 3.92 grams of water (H20/Al = 0.70) vla syringe over a 30-minute period while controlling temperature between 0~C and 5~C. The clear, colorless IBAO
solution was then heated to 75~C to insure complete reaction and to drive off dissolved isobutane. A sample of the IBA0 solution was then removed for analysis and showed 3.7% Al and the hydrolysis gas composition was >98 mole % isobutane.
This IBAO solution was used in Examples 53 and 54 to produce TMAL/IBAO.
A portion of the above IBAO solution was used to isolate solvent-free IBA0. Toluene solvent was removed by vacuum-stripping and mild heating (<60~C). IBAO (H20/Al =
0.70) was isolated as a clear, colorless but viscous liquid with the following analytical values: 20.8% Al and 97%
isobutane in hydrolysis gas, and the evolved gas analysis showed 1.4 mole of gas per g-atom of aluminum. The molecular weight of the IBAO (cryoscopically in benzene) was 447.

To 90.0 grams of the IBA0 solution (3.7% Al) prepared in Example 52 was added 8.80 grams of TMAL giving a TMAL/IBA0 ratio of 1Ø The resulting solution was heated to reflux for 60 minutes. Analysis of the TMAL/IBA0 solution showed 6.8% Al and the hydrolysis gas composition showed 33 mole % isobutane and 63 mole % methane.

" rl .

The same procedure as described in Example 53 was followed except 107 grams o~ IBA0 solution from Example 52 and 5.22 grams of TMAL were charged to achieve TMAL/IBA0 =
0.5. The resultant TMAL/IBAO solution showed 5.7% Al and 48% methane, and 44% isobutane in the hydrolysis gas.

To 86.5 grams of toluene solution of TMAL/IBAO from Example 53 was added 0.61 grams of H2O (H2O/TMAL = 0.31) with vigorous agitation over a 40-minute period keeping temperature between 0~C and 12~C. The product was subsequently refluxed for 60 minutes. The resultant product showed a very small (<1 mL) lower gelatinous phase and a larger clear, colorless liquid. The product was shaken vigorously to suspend the small lower phase and an analysis of the total sample showed 6.9% Al and the hydrolysis gas composition showed 30% isobutane and 65% methane.

Another IBA0 solution was prepared as in Example 52 with 242 grams of TIBAL/toluene solution and 3.84 grams of H20 (H20/Al = 0.70). A sample was analyzed and showed 3.7%
Al. The hydrolysis gas composition was 94% isobutane. This experiment shows excellent reproducibility of results compared to Example 52.

A TMAL/IBAO = 1 was prepared as in Example 53 by reaction of 180.8 grams of IBAO solution from Example 56 and 17.6 grams TMAL. Analysis showed 6.9% Al and the hydrolysis gas showed 29 mole % isobutane and 66% methane. This experiment shows excellent reproducibility of TMAL/IBAO
preparation compared to Example 53.
A similar but independent preparation of a TMAL/IBA0 (0.70) = 1.0 was conducted using IBAO from Example 52. The solvent was removed vla mild heating and application of vacuum affording a clear, colorless liquid. The distillate contained 2.0% aluminum indicating some removal of volatile aluminum alkyl (mostly TMAL) with the toluene. Analysis of the isolated liquid product (still pot residue) showed 25.7%
Al and the hydrolysis gas showed 53% methane and 43~
isobutane. (This liquid product, when used in ethylene polymerization, showed an As of 1.2 x 106 which is in good agreement with the product of Example 53 and the product of the first paragraph of this Example 57). The molecular weight of the isolated product was determined to be 385 (cryoscopically in benzene). An evolved gas analysis showed 2.0 moles of gas per g-atom of aluminum.

The procedure of Example 55 was followed except to 89.2 grams of TMAL/IBAO (0.70) = 1 from Example 57 only 0.33 gram of H2O was added (H2O/TMAL = 0.16). A small lower phase (<1 mL) was observed and analysis of the total sample showed 6.9% Al and 63% methane, and 31% isobutane in the hydrolysis gas.

" tl ATA 5463 -25- 2015~4~
",, The procedure of Example 55 was followed except to 67.9 grams of TMAL/IBA0 from Example 57 was added 0.78 grams of H2O (H2O/TMAL = 0.50). A small lower phase (<1 mL) was again observed. Analysis of the total sample showed 7.0% Al and 64% methane, and 33% isobutane in the hydrolysis gas.

Another preparation of TMAL/IBAO was made following the general procedure described in Examples 52 and 56 except on a larger scale. Thus, to 1501.7 grams of a 25% solution of TIBAL in toluene in a 3-L flask was added 23.8 grams of H20 (H20/Al = 0.7). Product solution was then heated to 70-80~C for about 30 minutes to drive off isobutane. TMAL
(146.3 grams) was then added (TMAL/IBA0 - 1.0) and the product refluxed for one hour. To the solution was added 18.3 grams of H20 by the procedure described in Example 55.
After addition of water, the solution was maintained at room temperature with stirring for 16 hours, then heated to reflux for 1-1/2 hours. A lower gelatinous phase formed during water addition to the TMAL/IBA0 solution possibly owing to Iess effective agitation in the larger flask.
However, after standing overnight, 1183 grams of clear, colorless product was isolated by decantation which analysis showed to contain 6.9% Al and 65% methane, and 28% isobutane in the hydrolysis gas. The efficiency based on aluminum recovered was 78%.

. .

Products from Examples 53-60 were evaluated in ethylene polymerization as before except only 1 x 10 8 to 6 x 10 8 moles of zirconocene dichloride were used. Results are compiled in Table 5.
Note that independently prepared MMAO from Examples 53 and 57 showed good agreement in ethylene polymerization (As = 1.1 x 106 and 1.3 x 106, respectively). Note further that those TMAL/IBAO solutions to which water was added (Examples 55, 58 and 59) were more efficient cocatalysts in ethylene polymerization than the TMAL/IBAO starting materials. Note also that the scale-up product from Example 60 showed activity comparable to product from Examples 55, 58 and 59.

TABLE V

ETHYLENE POLYMERIZATION WITH MMAO

Specific Melt MMAO MolesActivity Melt Index ExampleSource Zr (10~) Index Ratio 61 Example 53 6x10 8 1100 0.4 14 62 Example 54 6x10 8 730 0.7 14 63 Example 55 lx10 8 2200 0.4 14 64 Example 57 6x10 8 1300 0.5 14 65 Example 58 2x10 8 3100 0.3 15 66 Example 59 lx10 8 3700 0.4 11 67 Example 60 2x10 8 3400 0.5 14 Tri-n-hexylaluminum (TNHAL) (52.7 grams) was mixed with 98 grams of toluene. An g-hexylaluminoxane (NHA0) was then prepared by addition of 2.36 grams of water (H20/Al =
0.70). The temperature was controlled between 0~ and 10~C.
The clear, colorless solution was then heated to 80~C to insure complete reaction. A sample of the solution was analyzed and showed 3.5% Al and the hydrolysis product was 97% hexane.

To 104.4 grams of the NHAO solution prepared in Example 70 was added 9.2 grams of TMAL giving a TMAL/NHAO
ratio of 1Ø The resulting solution was heated to 96~C for 1-1/2 hours. Analysis of the TMAL/NHA0 solution showed 6.0%
Al.

To 34.5 grams of tri-g-butylaluminum (TNBAL) (13.4%
Al) was added 98.4 grams of toluene. The solution was cooled and maintained at 0-10~C while 2.19 grams of water were added over a 60-minute period. The solution was then heated to 85~C to remove butane. The solution was treated with 12.6 grams of TMAL and heated to 110~C for 90 minutes.
Analysis of the TMAL/NBA0 solution showed 6.9% Al and the hydrolysis gas composition showed 33% g-butane and 66 methane.

Il t' ~ ATA 5463 -28- 2015549 To 97.4 grams of TMAL/NBAO solution (6.9% Al) prepared in Example 72 was added 0.67 grams of water (H2O/Al = 0.3) while maintaining the temperature at 0-5~C. The resultant solution was heated to 90~C. Analysis of the product showed 6.9% Al and the hydrolysis gas composition showed 34% n-butane and 65% methane.

Polymerization of ethylene was performed as before with product from Examples 69-71. Results are presented in the table below.

TABLE VI

ETHYLENE POLYMERIZATION WITH MMAO

Specific Melt MMAO Moles Activ~ty Melt Index ExampleSource Zr (10 ) Index Ratio 72Example 69 4x10 77 67 73Example 70 lx10 270 1.0 14 74Example 71 lx10 7 250 0.5 28 From the preparation in Example 60, a 169.0 gram portion was stripped of toluene using controlled vacuum at 60-70~C. A clear, colorless viscous liquid was obtained.
Analysis showed the isolated product to contain 29.5% Al and 56% methane and 37% isobutane in the hydrolysis gas. The molecular weight was determined to be 670 (cryoscopically in benzene). An evolved gas analysis showed 1.7 moles of gas per g-atom of aluminum.
To 1.37 gram of isolated product, 6.45 grams of toluene was added and the resultant solution was used in polymerization. Specific activity of the reconstituted product was 2.2 x 106. This activity is in reasonable agreement with that observed (3.4 x 106) with the solution prepared in Example 60.

To demonstrate that the instant methylaluminoxane product can be prepared in heptane, 198.3 grams of TIBAL was charged into a two liter flask under nitrogen atmosphere.
The flask was equipped with a mechAnical stirrer and a thermocouple to monitor the temperature. Next, 591.4 grams of heptane was added. The system was maintained between 10~
and 20~C. While 12.6 grams of water (H2O/Al weight ratio:0.7) was added slowly. At ambient temperature, 74.2 grams of TMAL was added, and the solution was then heated to the reflux temperature of heptane for thirty minutes. The final solution was clear and colorless. The specific activity tested at 2.7 x 106 grams PE/gm-Zr-atm-hr.

A sample of 70~.0 grams of the solution from Example 76 was retained in the flask equipped as described. While the temperature was maintained between 0~C and -10~C, 7.2 grams of water (H20/TMAL weight ratio:0.45) was added. The solution was slightly turbid. After settling and decanting, 600 grams of a clear solution comprising 7.3 wt% Al was obtained. A specific activity test showed a value of 5.5 x 105 grams PE/gm Zr atm hr.

The foregoing Examples are set forth for illustrative reasons only and should not be construed in a limiting context. The scope of protection that is sought is set forth in the claims which follow.

" ~

Claims (40)

1. A process for the synthesis of methylaluminoxane which comprises reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with an amount oftrimethylaluminum that is not in stoichiometric excess.
2. A process as claimed in Claim 1 wherein the alkyl groups are isobutyl groups.
3. A process as claimed in any of Claims 1 to 2 where the molar amount of tetraalkyldialuminoxane to trimethylaluminum ranges from about 0.1:1 to no more than 1:1 and the reaction is conducted at temperatures ranging from about -10°C to about 150°C.
4. A process for the synthesis of methylaluminoxane which comprises the reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum.
5. A process for the synthesis of methylaluminoxane which comprises the reaction of a trialkylaluminum compound containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum.
6. A process as claimed in either Claim 4 or 5 wherein the alkyl groups are isobutyl groups.
7. A process as claimed in any of Claims 4 to 6 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
8. A process for the synthesis of methylaluminoxane which comprises reaction of a polyalkylaluminoxane containing C2 or higher alkyl groups with trimethylaluminum and then with water.
9. A process as claimed in Claim 8 wherein the alkyl groups are isobutyl groups.
10. A process as claimed in any of Claims 8 to 9 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
11. Methylaluminoxane which, when hydrolyzed, evolves hydrolysis products comprising methane and C2 or higher alkanes.
12. Methylaluminoxane as claimed in Claim 11 wherein the C2 or higher alkane hydrolysis product is selected from the group consisting of isobutane, n-butane, and n-hexane.
13. Methylaluminoxane as claimed in Claim 11 wherein the methane content from the hydrolysis ranges from about 20% to about 80%, by weight.
14. Methylaluminoxane as claimed in Claim 11 wherein the methane content from the hydrolysis ranges from about 20% to about 80%, by weight, and the C2 or higher alkane hydrolysis product constitutes the remainder and is selected from the group consisting of isobutane, n-butane, and n-hexane.
15. Methylaluminoxane formed by reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with an amount of trimethylaluminum that is not in stoichiometric excess.
16. Methylaluminoxane as claimed in Claim 15 wherein the molar amount of tetraalkyldialuminoxane to trimethylaluminum ranges from about 0.1:1 to no more than 1:1 and the reaction is conducted at temperatures ranging from about -10°C to about 150°C.
17. Methylaluminoxane as claimed in Claim 15 wherein the alkyl groups are isobutyl groups.
18. Methylaluminoxane formed by the reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum.
19. Methylaluminoxane formed by the reaction of a tetraalkylaluminum compound containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum.
20. Methylaluminoxane as claimed in Claim 18 wherein the alkyl groups are isobutyl groups.
21. Methylaluminoxane as claimed in Claim 19 wherein the alkyl groups are isobutyl groups.
22. Methylaluminoxane formed by the reaction of a polyalkylaluminoxane containing C2 or higher alkyl groups with trimethylaluminum and then with water.
23. Methylaluminoxane as claimed in Claim 22 wherein the alkyl groups are isobutyl groups
24. Methylaluminoxane as claimed in Claim 22 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
25. Methylaluminoxane as claimed in Claim 23 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
26. A catalyst system for the polymerization of olefins which comprises a metallocene component and the methylaluminoxane of Claim 11.
27. A catalyst system as claimed in Claim 26 wherein the metallocene component comprises an organometallic coordination compound of a Group IVB of Group VB metal.
28. A catalyst system as claimed in Claim 27 wherein the organometallic coordination compound comprises a zirconium compound.
29. A catalyst system as claimed in Claim 26 wherein the C2 or higher alkane hydrolysis product is selected from the group consisting of isobutane, n-butane, and n-hexane.
30. A catalyst system as claimed in Claim 26 wherein the methane content from the hydrolysis ranges from about 20% to about 80%, by weight.
31. A catalyst system as claimed in Claim 27 wherein the methane content from the hydrolysis ranges from about 20% to about 80%, by weight, and the C2 or higher alkane hydrolysis product constitutes the remainder and is selected from the group consisting of isobutane, n-butane, and n-hexane.
32. A catalyst system as claimed in Claim 26 wherein methylaluminoxane is formed by reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with an amount of trimethylaluminum that is not in stoichiometric excess.
33. A catalyst system as claimed in Claim 32 wherein the molar amount of tetraalkyldialuminoxane to trimethylaluminum ranges from about 0.1:1 to no more than 1:1 and the reaction is conducted at temperatures ranging from about -10°C to about 150°C.
34. A catalyst system as claimed in Claim 32 wherein the alkyl groups are isobutyl groups.
35. A catalyst system as claimed in claim 26 wherein the methylaluminoxane is formed by the reaction of a tetraalkyldialuminoxane containing C2 or higher alkyl groups with water to form a polyalkylaluminoxane which is then reacted with trimethylaluminum.
36. A catalyst system as claimed in Claim 35 wherein the alkyl groups are isobutyl groups.
37. A catalyst system as claimed in claim 35 wherein the methylaluminoxane is formed by the reaction of a polyalkylaluminoxane containing C2 or higher alkyl groups with trimethylaluminum and then with water.
38. A catalyst system as claimed in Claim 37 wherein the alkyl groups are isobutyl groups.
39. A catalyst system as claimed in Claim 38 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
40. A catalyst system as claimed in Claim 39 wherein the molar ratio of trimethylaluminum to polyalkylaluminoxane ranges from about 0.1 to about 10 at temperatures of from about -20°C to about 50°C.
CA002015549A 1988-12-02 1990-04-26 Synthesis of methylaluminoxanes Expired - Lifetime CA2015549C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002015549A CA2015549C (en) 1988-12-02 1990-04-26 Synthesis of methylaluminoxanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/279,377 US4960878A (en) 1988-12-02 1988-12-02 Synthesis of methylaluminoxanes
CA002015549A CA2015549C (en) 1988-12-02 1990-04-26 Synthesis of methylaluminoxanes

Publications (2)

Publication Number Publication Date
CA2015549A1 CA2015549A1 (en) 1991-10-26
CA2015549C true CA2015549C (en) 1998-10-27

Family

ID=25674100

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002015549A Expired - Lifetime CA2015549C (en) 1988-12-02 1990-04-26 Synthesis of methylaluminoxanes

Country Status (1)

Country Link
CA (1) CA2015549C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368395A (en) * 2022-08-13 2022-11-22 北京化工大学 Preparation method and application of alkyl aluminoxane

Also Published As

Publication number Publication date
CA2015549A1 (en) 1991-10-26

Similar Documents

Publication Publication Date Title
US5041584A (en) Modified methylaluminoxane
US4960878A (en) Synthesis of methylaluminoxanes
US5086024A (en) Catalyst system for polymerization of olefins
US5777143A (en) Hydrocarbon soluble alkylaluminoxane compositions formed by use of non-hydrolytic means
US4968827A (en) Alkylaluminoxane process
US5391529A (en) Siloxy-aluminoxane compositions, and catalysts which include such compositions with a metallocene
US5670682A (en) Liquid clathrate aluminoxane compositions
EP0636151B1 (en) Tris(pentafluorophenyl)borane complexes and catalysts derived therefrom
US5922631A (en) Liquid clathrate aluminoxane compositions as co-catalysts with transition metal catalyst compounds
US6194340B1 (en) Method of stabilizing hydrocarbylaluminoxanes
US5157008A (en) Hydrocarbon solutions of alkylaluminoxane compounds
WO1997014699A1 (en) Modified polyalkylaluminoxane composition formed using reagent containing carbon-oxygen double bond
CA2122378A1 (en) Organo-aluminoxy product and use
EP0539876A2 (en) Catalyzed chain growth process
EP0645393B1 (en) Aluminoxanes having increased catalytic activity
US4952714A (en) Non-aqueous process for the preparation of alumoxanes
CA2015549C (en) Synthesis of methylaluminoxanes
EP0348126B1 (en) Non-aqueous process for the preparation of alumoxanes
JPS59159805A (en) High efficiency catalyst for olefin polymerization

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry