CA1330425C - Baculovirus expression system capable of producing foreign gene proteins at high levels - Google Patents
Baculovirus expression system capable of producing foreign gene proteins at high levelsInfo
- Publication number
- CA1330425C CA1330425C CA000591908A CA591908A CA1330425C CA 1330425 C CA1330425 C CA 1330425C CA 000591908 A CA000591908 A CA 000591908A CA 591908 A CA591908 A CA 591908A CA 1330425 C CA1330425 C CA 1330425C
- Authority
- CA
- Canada
- Prior art keywords
- gene
- foreign gene
- foreign
- polyhedrin
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 212
- 241000701447 unidentified baculovirus Species 0.000 title claims abstract description 88
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 36
- 230000014509 gene expression Effects 0.000 title claims abstract description 30
- 101710182846 Polyhedrin Proteins 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 62
- 239000002773 nucleotide Substances 0.000 claims abstract description 57
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 55
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 44
- 241000238631 Hexapoda Species 0.000 claims abstract description 43
- 108700039691 Genetic Promoter Regions Proteins 0.000 claims abstract description 34
- 108091081024 Start codon Proteins 0.000 claims abstract description 31
- 241000700605 Viruses Species 0.000 claims abstract description 30
- 230000005030 transcription termination Effects 0.000 claims abstract description 17
- 238000002703 mutagenesis Methods 0.000 claims abstract description 14
- 231100000350 mutagenesis Toxicity 0.000 claims abstract description 14
- 239000013598 vector Substances 0.000 claims description 49
- 238000013519 translation Methods 0.000 claims description 35
- 108020004414 DNA Proteins 0.000 claims description 26
- 238000012546 transfer Methods 0.000 claims description 23
- 101710201961 Virion infectivity factor Proteins 0.000 claims description 16
- 108020004705 Codon Proteins 0.000 claims description 14
- 101710150344 Protein Rev Proteins 0.000 claims description 12
- 101710149951 Protein Tat Proteins 0.000 claims description 11
- 108010089520 pol Gene Products Proteins 0.000 claims description 10
- 208000015181 infectious disease Diseases 0.000 claims description 9
- 241001203868 Autographa californica Species 0.000 claims description 4
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 claims 16
- 239000012530 fluid Substances 0.000 claims 2
- 241001367049 Autographa Species 0.000 claims 1
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 claims 1
- 108091026890 Coding region Proteins 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 230000014621 translational initiation Effects 0.000 abstract description 5
- 108091092195 Intron Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 51
- 239000013612 plasmid Substances 0.000 description 30
- 239000000047 product Substances 0.000 description 18
- 230000001413 cellular effect Effects 0.000 description 8
- 230000029087 digestion Effects 0.000 description 8
- 108700026220 vif Genes Proteins 0.000 description 8
- 101150059019 vif gene Proteins 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 241000256251 Spodoptera frugiperda Species 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 7
- 239000012634 fragment Substances 0.000 description 7
- 108091008146 restriction endonucleases Proteins 0.000 description 7
- 108700004030 rev Genes Proteins 0.000 description 7
- 101150098213 rev gene Proteins 0.000 description 7
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 108700004029 pol Genes Proteins 0.000 description 4
- 101150088264 pol gene Proteins 0.000 description 4
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 4
- 241000255789 Bombyx mori Species 0.000 description 3
- 238000011537 Coomassie blue staining Methods 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 108020005038 Terminator Codon Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 241000212384 Bifora Species 0.000 description 2
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 2
- 108010061833 Integrases Proteins 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000004264 monolayer culture Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229940031626 subunit vaccine Drugs 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 230000008836 DNA modification Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000000087 hemolymph Anatomy 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
- G01N33/56988—HIV or HTLV
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/14011—Baculoviridae
- C12N2710/14111—Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
- C12N2710/14141—Use of virus, viral particle or viral elements as a vector
- C12N2710/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16211—Human Immunodeficiency Virus, HIV concerning HIV gagpol
- C12N2740/16222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16311—Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
- C12N2740/16322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Hematology (AREA)
- Tropical Medicine & Parasitology (AREA)
- AIDS & HIV (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Title: IMPROVED BACULOVIRUS EXPRESSION SYSTEM CAPABLE OF
PRODUCING FOREIGN GENE PROTEINS AT HIGH LEVELS
ABSTRACT OF THE DISCLOSURE
A baculovirus expression system capable of producing foreign gene proteins at high levels. The system involves the production of a recombinant baculovirus containing a modified foreign gene between the polyhedrin gene promoter region and the transcription termination signal of the polyhedrin structural gene. The modified foreign gene comprises a putative ribosome binding site immediately upstream of the foreign gene coding sequence, i.e. without any intervening non-coding sequences. The putative ribosome binding site is preferably properly positioned without the intervening sequences by a crossover linker mutagenesis procedure before the modified foreign gene is introduced into the virus. The putative ribosome binding site preferably comprises at least the final four nucleotides of the sequence ACCTATAAAT immediately upstream of the translation initiation codon (ATG) of the foreign gene. The system is capable of producing foreign gene proteins (when insect cells are infected with the recombinant virus) at high levels, even in the case of those genes which expressed only at low or intermediate levels in prior recombinant baculovirus systems.
PRODUCING FOREIGN GENE PROTEINS AT HIGH LEVELS
ABSTRACT OF THE DISCLOSURE
A baculovirus expression system capable of producing foreign gene proteins at high levels. The system involves the production of a recombinant baculovirus containing a modified foreign gene between the polyhedrin gene promoter region and the transcription termination signal of the polyhedrin structural gene. The modified foreign gene comprises a putative ribosome binding site immediately upstream of the foreign gene coding sequence, i.e. without any intervening non-coding sequences. The putative ribosome binding site is preferably properly positioned without the intervening sequences by a crossover linker mutagenesis procedure before the modified foreign gene is introduced into the virus. The putative ribosome binding site preferably comprises at least the final four nucleotides of the sequence ACCTATAAAT immediately upstream of the translation initiation codon (ATG) of the foreign gene. The system is capable of producing foreign gene proteins (when insect cells are infected with the recombinant virus) at high levels, even in the case of those genes which expressed only at low or intermediate levels in prior recombinant baculovirus systems.
Description
BACKGROUND OF THE INVENTION
I . F I EL D OF THE I NVENT I ON
.. ..
This invention relates to a method for increasing the yield of desired protein products obtainable by the expression of foreign genes in the baculovirus-cellular expression system using intermediate DNA modifications in the method, and to novel recombinant baculoviruses so-produced, particularly those which express HIV-l specific rev, vif, pol and tat proteins upon infection of insect cells. The invention also relates to the utilization of these proteins for the development of prognostic reagents, diagnostic reagents and combined subunit vaccine against AIDS.
II. DESCRIPTION OF T~E PRIOR ART
An important goal of recombinant DNA technology, as far -as it relates to protein engineering, is to provide a gene expression system which will produce large quantities of desired gene products and provide protein modifications similar to those of the naturally occurring proteins.
; Both prokaryotic and eukaryotic cells have been used -~
to express cloned foreign genes and Escherichia coli is the most commonly used prokaryotic host system for foreign gene expression. However,jproka~ryotic cells are suitable for foreign gene expression only if the gene product does not require post-translational modifications such as glycosyl- :~
ationr phosphorylation or signal peptide cleavage.
Since prokaryotic cells do not possess the appropriate ~ machinery needed for the proper modification of many ,i, ~ eukaryotic proteins, it has been necessary to develop gene ,~
, :. , 1330425 expression systems using eukaryotes to obtain appropriately modified gene products. There have been impressive successes in the expression of foreign genes using eukaryotic hosts such as yeast, mammalian, plant and insect cells. The impetus for the develop~ent oE new systems has come mainly from the need to produce larger quantities of properly modified cloned gene products.
Advances in the genetics of invertebrate viruses and cells have allowed the development of viral-cellular systems which give both a high level of synthesis and complex processing of -recombinant products. In particular, baculoviruses such as ; Autographa californica nucleopolyhedrosis virus (AcNPV) and y~ mori nucleopolyhedrosis virus (BmNPV) are extremely useful helper-independent eukaryotic expression vectors which are easily engineered. In the case of AcNPV, the system is based on a cell line established in the late 1970's from pural ovarian cells of the moth Spodoptera frugiperda. When infected with baculovirus carrying a foreign gene, these ~;
cells synthesize recombinant products complete with post -~d translational modifications. In the case of BmNPV, foreign gene products can be expressed in living insects, namely silkworms. Both these viral systems are based on the utilization of the strong promoter of the gene encoding polyhedrin, the sole component of the crystalline matrix that acts as a protective shield for viral particles outside their insect host. The techniques conventionally employed in these systems are described in detail in U.S. Patent 4,745,051 to ~- Gale E. Smith et al issued on May 17, 1988; Baculovirus ,;: .
~ 3~ A ~
- 3 - ~ 33 o4~5 Vectors for Expression of Foreign Genes, C. Yong Kang, Advances in Virus Research, Vol. 35, pp 177-192, Academic Press Ins., 1988; A ~anual of ~ethods for Baculovirus Vectors and Insect Cell Culture Procedures, Max D. Summers and Gale E. Smith, May 1987, Texas A & M University; and Baculoviruses as Gene Expression Vectors, Lois K. Miller, Ann. Rev.
Microbiol. 42, pp 177-199, 1988. This expression system has been used for the successful production of large quantities of many different gene products including human fibroblast interferon, human c-mye protein, human interleukin 2, etc.
Howeverr not all genes under the polyhedrin gene promoter Z~ express at high levels, e.g. those for HIV-l specific rev, vif, pol and tat, as mentioned above. Many researchers who are utilizing the baculovirus expression system have tried numerous techniques in order to improve the expression levels of such genes, but without much success (International Conference on Baculoviruses, Oxford, Great Britain, August 30 September 3, 1988). Accordingly, the products wilich can `
be success~ully produced by the system to date have been dependent upon the control mechanism that nature has selected for high level expression. ;~
~ OBJECTS OF THE INVENTION
'~ An objec~ of the present invention is to provide a method of genetic engineering which provides high level expression of genes formerly expressing at only low or intermediate levels in the baculovirus-cellular expression syste~
- ~ 1 33042-.
Another object of the invention is to provide refined site-directed mutagenesis methods with synthetic oligno-nucleotide linkers which can be used to engineer transfer vectors for the preparation of recombinant haculoviruses suitable for high level expression of foreign genes in the baculovirus-cellular expression system.
Yet another object of the invention is to provide recombinant baculoviruses capable of expressing desired foreign genes at a high level, particularly the human immunodeficiency virus genes pol, tat, vif and rev. ;~
SUMMARY OF THE INVENTION
According to one aspect of the invention there is d, provided a recombinant baculovirus comprising at least a major part of a polyhedrin gene promoter region; at least a trans-Z 15 cription termination sequence of a polyhedrin structural gene;
a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence: and, immediately upstream of ~; 20 said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part . of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'.
~; According to another aspect of the invention there is -provided a process for producing a recombinant baculovirus:; .
-; containing a foreign gene; said process comprising: providing ~:
C '~
~ .
... : . .. .... .... . .. ...... ,. . .,.,.,., . . . . . . , .. .... . , j.. .. .. ... .. .. . . . .. .. . . .
1 3304 ~'~
. 5 said foreign gene having a translation start codon followed by coding sequences and a translation stop codon; adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'; introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at , least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region; cotransfecting :~ susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA; and isolating ~: recombinant viruses containing said foreign gene and added nucleotide sequence.
, ~: 20 The term !l immediately upstream" as used above and throughout this disclosure means that there are no intervening ~:~ nucleotides between the start' codon (ATG) of the~foreign gene . and the added putative ribosome binding site.
The term "a major part" of the polyhedrin gene promoter `~ 25 region means a sufficient part of the region to avoid loss of the effect of the promoter region during the transcription of : ......
i~ the foreiqn gene.
~ C
,' - 6 - 1 3304~5 The purpose of the invention is to increase the yield of proteins that would otherwise be expressed in low or inter-~ediate yield in the baculovirus-cellular system. There is of course no great advantage in using ~he present invention to produce proteins that are already expressed in high yield.
Although the terms "low", "intermediate" and "high" have not been Eormally defined in the art, in general it can perhaps be stated that when the desired protein forms less than about 1% of the total cellular protein the yield is considered to be low (and the protein is generally not visualized on polyacrylamide gel stained with Coomassie blue); a yield betwcen about 1 and 10% of t'ne total cellular protein is considered to be intermediate; and a yield above 10~, and preferably 15-50% or more, is considered to be high.
BRIEF DESCRIPTION OF THE DRAWINGS
~,J"
Fig. 1 is a schematic diagram showing a procedure according to a preEerred embodiment of the invention in which a modified rev gene of HIV-l is inserted into a pAcYMl vector to form a transfer vector pAcYMl-rev suitable for forming a recombinant baculovirus AcNPV-HIVYKrev capable of producing rev at 'nigh levels;
Fig. 2 shows the time course results of a polyacrylamide gel electrophoresis of the proteins from cells infected with a recombinant AcNPV-HIVYKrev virus produced by the procedure of Fig. 1 and an AcNPV-HIVPKvif virus produced by the procedure of Fig. 3, showing the expression of rev and vif proteins;
ig. 3 is a schematic diagram showing a preferred ..,~
:'~
,~:
. .
,.:s :.
~ - 7 - 1 3 3 0 4 2 5 procedure for the modiication of the vif gene of HIV-l and its introduction into a pAcYMl vector to form a transfer vec-tor pAcYMl-vif suitable for forming a recombinant baculovirus ACNPV-HIVPKvif capable of producing vif at high levels;
Fig. 4 is a schematic diagram showing a preferred procedure for modification of the pol gene of HIV-l and introduction of the modified gene into pACYM1 transfer vector to form a transfer vector pAcYMl-pol suitable for forming a recombinant baculovirus AcNPV-HIVYKpol suitable for producing pol at high levels; and Fig. 5 shows the time course results of a polyacrylamide gel electrophoresis of total cellular proteins from cells infected with recombinant AcNPV-HIVYKpol virus. -DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED
~:~
EMBODIMENTS
, ~ -In the conventional baculovirus expression system, a foreign gene is inserted into the baculovirus genome as a partial or complete replacement for the polyhedrin structural gene while retaining the polyhedrin gene promoter and a stretch of the polyhedrin transcription termination signal.
The promoter for the polyhedrin structural gene is allowed to remain so that i~ exerts a strong influence on the transcription but, as noted above, some gene products are nevertheless not produced at a high level.
~ The pre.qent invention is based on the introduction of i~ a putative insect cell ribosome binding site immediately ~ ;
.~
, ~
1 330~25 upstream of the foreign gene without interveninq sequences under the polyhedrin gene promoter in the baculovirus transfer vector. In addition, the invention also involves the elimination of any non-coding flanking sequences at preferably both the 3' and 5' ends of the foreign gene using a uniquely modified crossover linker mutagenesis method.
This modification of the baculoviral vector overcomes any tendency of the viral-cellular system to resist expression of the foreiqn gene. -~
The putative insect cell ribosome binding site referred to in the present invention is the sequence of up to 10 bases i~nediately upstream of the translation initiation site (ATG) of the natural polyhedrin structural gene, i.e. the ~ underlined nucleotides in the sequence:
:~ -50 TRANSCRIPTION INITIATION
I
~ (5') TAAATAAGTATTTTACTGTTTTCGT
;! polyhedrin promoter polyhedrin AACAGTTTTGTAATAAAAAAACCTATAAAT ATG (3') .................... - I
Putative Ribosome Binding Site Start Codon . ~
The sequence is referred to herein as the "putative"
ribosome binding site because there has been as yet no experimental verification that this sequence, when `~ transcribed, takes part in ribosome binding.
While this sequence is present immediately upstream of the polyhedrin structural gene in wild type baculoviruses, the sequence is partially eliminated and/or displaced -`~? upstream of the start codons o foreign genes inserted into known baculovirus transfer vectors. It has now been found that the introduction of the putative eibosome binding site j immediately upstream of the foreign gene start codon without intervening flanking seauences and/or restriction enzyme sites overcomes any resistance of the cell to express the foreign gene at only low or intermediate levels. The entire putative ribosome binding site sequence need not be intro- ~-duced and instead merely a part of the seauence that is effective to improve expression yields can be introduced.
The final part of the sequence appears to be the most important and must normally be present. It is believed that as few as the final four nucleotides, 5'-AAAT-3', can improve expression yields, but at least the final eight nucleotides, 5'-CTATAAAT-3', are normally provided. More preferably, the added sequence contains the nine nucleotides (5'-CCTATAAAT-3').
As described in more detail below, the above sequences are most conveniently introduced, and non-coding se~uences lanklng the foreign gene are most conveniently eliminated, ~-by means of a crossover linker mutaqenesis strategy employing single stranded, or more preferably double stranded, oligonucleotide linkers. Furthermore, the same strategy is normally used to remove any non-coding flanking sequences at the 3'-end of the foreign gene and to add a restriction site at this end.
" - lo - 1 3 3 0 4 2 5 In general terms, the crossover linker mutagenesis procedure can be described as follows. The foreign gene is synthesized or isolated from a suitable DNA or RNA source (e.g. a commercially available plasmid having suitable restriction sites bracketing the foreign gene1 and is inserted into a small plasmid using standard techniques.
If isolated from a natural source, the gene is normally accompanied by non-coding flanking sequences and, to the extent possible, these are partially removed by standard digestion and ligation techniques.
A suitable oligonucleotide linker for upstream modification of the gene is produced using standard DNA `~-synthesizing techniques. This linker may be single stranded, but is more preferably double stranded, especially if it is desired to introduce a restriction enzyme site in the linker. If a single stranded linker contains a restriction site, the efficiency of crossover mutation drops because of self annealing of the self complementary palindrome ~ -sequences. The linker, or the primary strand if a double stranded linker is employed, normally contains a sticky end restriction site and a different restriction site, e.g. Bam ~I or Bgl IT, immediately upstream of ~and possibly partially overlapping) the effective putative ribosome binding site sequence, followed by at least 9 and preferably 12-15 bases of homology searching sequences which represent the first NH2-terminal 4-5 amino acids coding sequence of the foreign ;;:~
` 1 3304~5 , gene. It is important to avoid, if possible, any homopoly-meric sequences in the homology searching sequences since some DNA molecules contain a stretch of homopolymer. ~nen the linker is double stranded, the second strand comprises the complementary sequence except for the missing bases necessary to form the sticky end restriction site and for three to five missing bases at the opposite end to form a single stranded overhang tthe latter being necessary to avoid blunt end ligation of the linkers during the crossover mutagenesis).
The plasmid containing the foreign gene is linearized using a restriction endonuclease digestion which acts on a restriction site upstream of the foreign gene and the ends of the linearized plasmid are preferably dephosphorylated to prevent re-circularization. Alternatively, two restriction endonuclease digestions can be used to avoid recirculariz-~ ation. The oligonucleotide linker is ligated by virtue of ::: :
its sticky end restriction site to the linearized plasmid and the resulting modified structure is introduced into a ':.:
i~ suitable competent cell system, preferably E. coli, by the standard DNA transfection method. The transfected cells are capable of deleting unwanted bases flanking the foreign!gene ~ and circularizing the plasmid.
`~ A restriction site is also normally introduced at the 3' end of the foreign gene and any unwanted non-coding sequences at the 3' end are preferably deleted by a similar crossover i~ .
,`. ~ :' .~ .
:~:
sj ~ ".. ,.-... ... .:
d linker mutagenesis techniaue using a single or double stranded linker. In this case, the linker comprises a minimum of 9 to 12 bases of homology searching sequences corresponding to the final coding sequence of the foreign gene at the 3' end, followed by the restriction site and a sticky end of a different restriction site. The plasmid containing the modified foreign gene resulting from the previous crossover linker mutagenesis is then linearized at a site downstream of the 3' end of the foreign gene, the oligonucleotide linker is ligated and the resulting DNA
structure is transfected into a competent microorganism, again preferably E. Coli, which deletes the unwanted flanking sequences, adds a desired restriction enzyme site and recircularizes the plasmid. -The modified foreign gene can then be cut out and inserted into a baculovirus transfer vector from which part or all of the polyhedrin structural gene has been excised and which contains a suitable cloning site downstream of the transcription initiation site of the polyhedrin promoter region of the vector. Since various baculovirus transfer vectors containing suitable cloning sites are readily available, it is advantageous to start with such a known vector rather than construct a new one specifically for this invention, although this could be done if desired. The baculovirus transfer vector employed should preferably have an intact polyhedrin promoter region ~e.g. pAcYMl or pVL941) hut those with partial deletions may also be employed, ,: ~
-provided they are still capable of high level transcription.
For example, vectors pAc373, pAcRP6 and pAc610, which start at the -8 position of the upstream sequences, can be employed (see the article by C. Yong Rang mentioned above). The two most efficient transfer vectors appear to be pAcYMl and pBM030 (available from Drs. Bishop in England and Maeda in Japan, respectively) which contain all of the upstream sequences of the polyhedrin gene adjacent to a Bam HI
restriction site (pAcYMl) or a Bgl II restriction site (pBM030). The baculovirus transfer vector should also contain the transcription termination codon and preferably the polyadenylation sequences of the polyhedrin gene.
The vectors are linearized by appropriate restriction endonuclease digestion followed by phosphatase treatment.
The foreign qene having the modified flanking regions is inserted into the restriction site of the baculovirus transfer vector and the orientation of the foreign DNA insert is then determined by standard restriction endonuclease mapping and/or DNA sequencing. The resulting baculovirus transfer vector containing the modified foreign DNA is amplified and , purified by standard techniques.
After the foreign gene with the desired upstream putative ribosome binding sequences has been inserted into the transfer vector, the construct DNA is cotransfected into suitable insect cells with purified authentic wild type baculovirus DNA of the same strain, e.g. by the procedure as outlined in U.S. Patent 4,745,051 mentioned above.
~ 1 33042~
~ . .
.., The insect cells are generally employed as a monolayer and, following infection, are incubated in a suitable culture medium for a number of days and the supernatant is harvested. Polyhedrin-negative viruses resulting from homologous recombination appear as clear plaques in plaque assay and can be selected by plaque picking. An alternative approach to this biological assay system is to screen polyhedrin-negative plaques by nucleic acid hybridization techniques using the cloned foreign DNA as a hybridization probe.
The recombinant virus can then be propogated after successive plaque isolation to exclude wild type viruses ~y isolating a single plaque and amplifying the virus in monolayer culture in a suitable culture medium. After a few days of infection, the supernatant can be harvested and used to infect large numbers of cells in suspension or monolayer cultures. -The resulting recombinant virus, which forms a vector for ,:: ~
the expression of the foreign gene, can be used to infect appropriate insect cells or insects, whereupon the gene is expressed and the desired protein forms in high yield. If the gene product is a secretory protein such as IFN, IL-2 or HBsAg, the infected cells release these proteins after , ~
synthesis and these can be recovered from the extra cellular fluid of cultured cells or from the hemolymph of the infected insects. In contrast, if the protein in nature is phos-phorylated and anchored in the cell, the expressed gene products remain in the infected cells and can be recovered '''~ :
from the cells after 2-4 days of infection. For example, the pol, tat and rev proteins of HIV-l remain in the nucleus whereas human hepatitis B virus surface antigen (Kang et. al., J. Gen. Virol. 68: 2607-2613, 1987) and gp 120 of HIV-l (Bishop, Oxford, UK - Personal Communication) are secreted into the extra cellular culture fluid.
The expressed gene products may be analyzed by direct protein analysis using polyacrylamide gel electrophoresis and Coomassie blue staining.
As noted above, the method of the invention can be used with a variety of baculovirus-cellular systems, the preferred ones being ~utographa californica nuclear polyhedrosis (particularly the Hl strain used in the later Examples~ which infects Spodoptera frugiperda cells, and Bombyx mori which ~;- infect silkworm cells. (However, virtually any species or strain of baculovirus may be employed). Other viruses and strains include those listed in U.S. Patent 4,745,051 (col.
` 9, lines 21-39).
; The preferred restriction site introduced with the puta-tive ribosomal binding site is Bam HI, but other restriction ~;
sites which provide compatible cohesive ends (i.e. isoenzyme ~--; sites) can be employed, e.g. Bcl I, Bgl II, MbO I and XhO II
which all produce the 5'-GATC-3' sequence upon digestion, as , ~ d~es Bam HI itself. The possibility of using alternative , ~ restriction sites is convenient when the foreign gene DNA
itself contains internal Bam HI or Bgl II restriction sites.
Instead of using the crossover linker mutagenesis i ~ strategy for modifying the foreign gene prior to its i ~
, ~ 16 - 1 330425 introduction into the baculovirus transfer vector, it would be possible to achieve the same results by ligation of the linkers to the linearized ~ene-containing plasmid after deletion of the non-coding flanking sequences by exonuclease digestion e.g. with Bal 31. However, such a techni~ue is very imprecise and difficult and, while included within the scope of the ~resent invention, is not the preferred technique.
The present invention makes it possible to produce proteins at high levels of expression and many of these proteins can then be used for medical purposes such as for prognostic reagents, diagnostic reagents and combined subunit vaccines. The rev, vif, pol and tat proteins of HIV-l produced in this way are particularly useful for the management of acquired immunodeficiency syndrome (AIDS~, e.g.
by the techniques indicated in the publication entitled Clinica, Testing for HIV and AIDS, The Next Five Years, ~` George Street Publications Ltd., Richmond, Surrey, UK, Presently preferred embodiments of the present invention " :~
2~ are described in the following Examples.
: - -These Examples relate to the preparation of the rev, vif and pol proteins of HIV-l. However, the tat protein of 8IV-l has also been produced by similar techniques. The ~ recombinant baculovirus capable of producing the tat protein ,~
(AcNPV-tatYK) has been deposited at the American Type Culture ~; Collection under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2200.
'~
: ~
' ~
1 3~0425 EXAMPBE l PRODUCTION OF THE rev PROTEIN OF HIV~
A recombinant baculovirus containing the rev structural gene and the additional sequences required by the present invention was produced by a procedure as shown in Fig. 1.
The coding sequences of the rev protein were originally isolated from the Sst l fragment of pCV-l plasmid. The Sst l fragment was inserted into pIBI31 plasmid. The Rsal fragment containing the rev coding sequences was isolated and inserted into the Hinc II site of pUCl9. The resulting pUCl9-rev l plasmid was then digested with Xba I and dephosphorylated and a double-stranded crossover linker was ligated to the Xba I
- ~ site of the linearized pUCl9-rev l plasmid.
-`~ A double stranded crossover linker was synthesized using ~-~
standard DNA synthesizing techniques. The first linker ; ~ : :
~ strand comprised an XbaI sequence suitable as a sticky end `~ (CTAGA), a Bgl II restriction site (AGATCT) (this restriction site is used because rev gene contains an internal Bam HI
~;~ site), a TATAAAT sequence, and the initial 12 nucleotides of f '~'~'', ', the coding sequence of rev (ATGGCAGGAAGA). The second linker strand comprised the complementary sequences of the first linker strand but omitting the sequences at one end required to form the Xba I sticky end and omitting the final 3 -nucleotides at the opposite end to form a single stranded tail. The linker strands were then annealed to form the ; following double stranded linker:
Translation initiation ,~ XbaI
5'-pCTAGAGATCTATAAATATGGCAGGAAGA-3' 3'-TCTAGATATTTATACCGTCCT-5' Bgl II rev The double-stranded crossover linker was ligated to the Xba I site of the linearized pUCl9-rev 1 plasmid and the resulting elongated linearized recombinant plasmid was transfected into competent E. coli cells to carry out a crossover linker mutagenesis. Ampicillin resistant cells were selected and cloned, and the resulting pUCl9-rev 2 plasmids containing transformants were isolated.
The plasmid pUCl9-rev 2 contained the desired sequence upstream of the rev gene but also contained unwanted ;
non-coding sequences downstream of the rev gene and these were removed by the following technique :
A second double stranded oligonucleotide linker was synthesized by a standard DNA synthesis technique. The first strand of this linker comprised the final lS nucleo-tide sequence of the rev gene including the translation termination codon, a Bgl II site and a nucleotide for a Hind III site. The second strand comprised the Hind III
sticky end and the complementary sequences of the first strand, except for the final three nucleotides. When ,~
annealed, the double stranded linker thus was as follows:
.' ~ ::
;G translation termination Bgl II
5'-GGAGCTAAAGAATAGAGATCTA-3' . 3'-CGATTTCTTATCTCTAGATTCGAp-5' rev Hind III
;ii,: :
The pUCl9-rev 2 DNA was cut with Pst I and Hind III
`~ ~ without dephosphorylation, the second double stranded synthetic linker was ligated to the Hind III site and the ;~;~ resulting elongated linearized plasmid was transfected into competent E. coli cells. The ampicillin resistant ~ , ;:
- 19 - 1 3 3 1)4 ~ 5 cells were selected and cloned. The bacterium recircul-arized the plasmid and deleted the unwanted downstream sequences to form plas~id pUCl9-rev 3. This contained XbaI followed by Bgl II, CTATAAAT (partially overlapping the Bgl II site and forming the putative ribosome binding site of S. frugiperda cells) and the entire coding sequence of rev followed by Bgl II and Hind III.
~, : .
The rev gene-containing sequence was isolated using Bgl II digestion and was ligated into a baculoviral transfer vector pAcYMl that had been linearized with I Bam HI and dephosphorylated, to give a desired vector ,!~
~ pAcYMl-rev.
;
The vector was then used to cotransfect Spodoptera frugiperda cells together with wild type AcNPV DNA and polyhedrin-negative recombinant viruses AcNPV-HIVYKrev were selected and amplified.
AcNPV-HIVYKrev was used to infect S. frugiperda cells which were harvested 24, 48, 72 and 96 hours after infection and the recombinant virus infected cellular proteins were subjected to protein analysis by poly-acrylamide gel electrophoresis with Coomassie blue staining as shown in Fig. ~. In the Figure, lane 1 shows uninfected S. frugiperda cells, lane 2 shows wild type AcNPV infected cells, lane 3 shows AcNPV-HIVYKrev virus infected cells and lane 4 shows AcNPV-HIVPKvif virus . ~
;~ infected cells (pertinent to Example 2). Tne symbol p denotes the polyhedrin protein, v denotes vif protein and ;~.''.
i~! ~
-~
` 1 3 ~ 5 r denotes rev protein. The M lane shows molecular weight markers. A band representing the rev protein is clearly visible indicating a large yield (ca 20~) of this protein.
The recombinant virus AcNPV-HIVYKrev has been deposited at the American Type Culture Collection under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2231.
EXAMPLE 2 PRODUCTION OF vif PROTEIN OF HIV-l As shown in Figure 3, using techniques similar to those of Example 1, the vif gene containing the entire coding sequences was isolated from the plasmid pHXB-2D by EcoRI digestion (the coding sequence of vif is located within the EcoRl fragment-mapping unit of 4227-5322 bps-and approximately 1100 bps were isolated). The EcoRl ~i~
fragment was filled in with Klenow and inserted into the '~inc II site of pUC19 (pUC19-vif 1).
Using standard DNA synthesizing techniques, the following double stranded linker was synthesized;
Translation Initiation Bam HI
5'-GATCCTATAAATATGGAAAACAGATGG-3' 3'-GATAI'TTATAÇCTTTTGTCT-5' vif ., , This linker contained a Bam HI sticky end at the 5' end followed with aCCTATAAAT sequence (the putative ribo-~ ~ some binding site p) with 12 nucleotide coding sequences ;~ of the vif gene. This double stranded linker was used to ~ modify the upstream sequences of the vif gene by cutting ,' ,: ~
; - 21 - l 3 3 0 4 2 5 the plasmid pUCl9-vif 1 with sAM HI and Xbal, ligating the linker and transforming competent E. coli cells as in Example l. This resulted in the formation of a recombinant plasmid pUCl9-vif 2.
To modify the downstream se~uences, the following oligonucleotide linker was synthesized;
Translation Term nation S'-ATGAATGGACACTAGGATCCA-3' 3'-TTACCTGTGATCCTAGGTTCGA-5' vLf Bam HIHind III
¦ This linker contained a 5'-12 nucleotide overlapping ¦~ sequences of the vif gene which included the translation-¦ termination signal TAG followed by Bam HI and Hind III
~; sticky end. The 22 nucleotide long complementary sequence with a Hind III sticky end was used to protect the Bam HI
site.
~;~ The recombinant plasmid pUCl9-vif 2 was cut with Pst l and Hind III, the double stranded linker was ligated at the Hind III site and the plasmid was used to transform competent E. coli cells. This resulted in the deletion of the 3' non-coding sequences of the vif gene and the , !
addition of a Bam HI restriction site. The resulting pUCl9-vif 3 plasmid contained Bam HI sites at either the putative ribosome binding site (p), the entire coding ~ - sequence of vif including the translation termination ; coding sequence TAG at the end. This Bam HI fragment was isolated and inserted into the Bam HI site of pAcYMl in ,,~
`
~ .
. ~ r~
--` 1 330425 .' the correct orientation ~pAcYMI-vif). The pAcYMl-vif DNA
was used to transfect Spodoptera frugiperda cells with wild type AcNPV DNA to isolate the recombinant baculovirus AcNPV-HIVPKvif. The recombinant baculovirus, AcNPV-HIVPKvif, was used to infect Spodoptera frugi~erda cells to express the vif gene. The AcNPV-HIVPKvif virus infected cells produced a 26K Dalton protein (v) which represents at least 30% of the total cellular protein at 96 hours after infection, as shown in Figure 2.
The AcNPV-HIVPKvif virus has been deposited at The American Type Culture Collestion under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2235.
EXAMPLE 3 PRODUCTION OF T~E pol PROTEIN OF HIV-l As shown in Fig. 4, using techniques similar to those of Examples 1 and 2, the pol gene-containing part of the protease gene at the 5' end followed by the entire coding sequence of the reverse transcriptase gene and the coding ,~
sequences of the integrase at the 3' end were isolated from a plasmid pHXB-2D by digesting the plasmid with Bgl II and Sal I. The Bgl II-Sal I fragment was then inserted into plasmid pUClB and upstream and downstream sequences were modified to remove some of the non-coding flanking sequenc@s. The pUC18 containing the entire coding sequences of the polymerase gene was digested with Sac I
~: ~
and dephosphorylated.
: ~:
i~ ~
~ ~ .
1 33042~
Using standard DNA synthesizing techniques, the following double stranded linker was synthesized:
TRANSLATION
INITIATION
Bam HI
S'-CGGATCCTATAAATATGAGTTTCCCAGGA-3' 3'-TCGAGCCTAGGATATTTATACTCAAAGGGT-5' Sac I prt This linker contains a Sac I sticky end followed by Bam HI plus nine nucleotides of the putative ribosome binding site (partially overlapping with the Bam Hl site) in front of the initial 15 nucleotides of the protease (Prt) coding sequence. The 30 nucleotide complementary sequence starts with the 3' Sac I sticky end which extends to the fourth nucleotide from the 3' end of the first strand leaving a three nucleotide single strand tail at the 3' end.
This double stranded linker was ligated to the ~, ~ linearized plasmid and was used to modify the upstream : (5') sequences of the pol gene, using the same crossover linker mutagenesis method as described for the rev gene in Example 1 and the vif gene in Example 2, to delete some of the 5' non-coding flanking sequences plus some coding sequences of the protease gene.
To modify the downstream sequences, the following ~:
~; oligonucleotide linker was synthesized: ;
Translation Termination Sph 1 5'-CAGGATGAGGATTAGGATCCGCATG-3' 3'-CTACTCCTAATCCTAGGC-5' Int. Bam HI
~' :: ,,.', ,.,.
This linker contained fifteen nucleotide overlapping sequences of the integrase gene (Int.) which include the termination codon of translation followed by Bam HI and an Sph I sticky end at the 3' end. The 18 nucleotide complementary sequence was used to protect the Bam HI site.
~ y employing the crossover linker mutagenesis as described in Examples 1 and 2, the linker was used to delete the 3' non-coding sequences and to add a Bam HI
restriction site.
The resulting pUC 18-pol plasmid, containing no non-coding flanking sequences at either end, was digested with 8am HI and the Bam HI fragment was isolated and : ~
inserted into the Bam HI site of pAcYMl in the correct -~
orientation to form pAcYMl-pol.
The pAcYMl-pol DNA was used to co-transfect Spodotera frugiperda (SF9) cells with wild type AcNPV DNA to isolate a recombinant baculovirus AcNPV-HIVYKpol virus.
The recombinant AcNPV-HIVYKpol virus was used to infect SF9 cells to express the pol gene. The ~ AcNPV-HIVYKpol virus infected SF9 cells were harvested at - 48, 72, 96 and 120 hours after infection and the total ~ cellular proteins werelsub~ected to polyacrylamide gel b~ ~`, electrophoresis with Coomassie blue staining. The results are~ shown in Fig. 4 in which lane 2 shows the 48 hour product, lane 3 shows the 72 hour product, lane 4 shows ;~ the 96 hour product and lane 5 shows the 120 hour product. Lane 6 shows the wild type AcNPV infected SF9 r, ~
cells with polyhedrin protein (p), lane 7 represents the uninfected SF9 cells and lane 1 shows the molecular weight marker .9 .
An approximately 95k Dalton pol protein (as shown with an arrow) was synthesized and accumulated in virus infected .:
cells, representing approximately 30% of the total cellular protein.
The AcNPV-HIVYKpol virus has been deposited at the :
American Type Culture Collection under the terms of the : ~
Budapest Treaty and is identified by the deposit No. ATCC .-VR 2233.
,` ~
,'`~
,' '.'''~
, ~ ~
I . F I EL D OF THE I NVENT I ON
.. ..
This invention relates to a method for increasing the yield of desired protein products obtainable by the expression of foreign genes in the baculovirus-cellular expression system using intermediate DNA modifications in the method, and to novel recombinant baculoviruses so-produced, particularly those which express HIV-l specific rev, vif, pol and tat proteins upon infection of insect cells. The invention also relates to the utilization of these proteins for the development of prognostic reagents, diagnostic reagents and combined subunit vaccine against AIDS.
II. DESCRIPTION OF T~E PRIOR ART
An important goal of recombinant DNA technology, as far -as it relates to protein engineering, is to provide a gene expression system which will produce large quantities of desired gene products and provide protein modifications similar to those of the naturally occurring proteins.
; Both prokaryotic and eukaryotic cells have been used -~
to express cloned foreign genes and Escherichia coli is the most commonly used prokaryotic host system for foreign gene expression. However,jproka~ryotic cells are suitable for foreign gene expression only if the gene product does not require post-translational modifications such as glycosyl- :~
ationr phosphorylation or signal peptide cleavage.
Since prokaryotic cells do not possess the appropriate ~ machinery needed for the proper modification of many ,i, ~ eukaryotic proteins, it has been necessary to develop gene ,~
, :. , 1330425 expression systems using eukaryotes to obtain appropriately modified gene products. There have been impressive successes in the expression of foreign genes using eukaryotic hosts such as yeast, mammalian, plant and insect cells. The impetus for the develop~ent oE new systems has come mainly from the need to produce larger quantities of properly modified cloned gene products.
Advances in the genetics of invertebrate viruses and cells have allowed the development of viral-cellular systems which give both a high level of synthesis and complex processing of -recombinant products. In particular, baculoviruses such as ; Autographa californica nucleopolyhedrosis virus (AcNPV) and y~ mori nucleopolyhedrosis virus (BmNPV) are extremely useful helper-independent eukaryotic expression vectors which are easily engineered. In the case of AcNPV, the system is based on a cell line established in the late 1970's from pural ovarian cells of the moth Spodoptera frugiperda. When infected with baculovirus carrying a foreign gene, these ~;
cells synthesize recombinant products complete with post -~d translational modifications. In the case of BmNPV, foreign gene products can be expressed in living insects, namely silkworms. Both these viral systems are based on the utilization of the strong promoter of the gene encoding polyhedrin, the sole component of the crystalline matrix that acts as a protective shield for viral particles outside their insect host. The techniques conventionally employed in these systems are described in detail in U.S. Patent 4,745,051 to ~- Gale E. Smith et al issued on May 17, 1988; Baculovirus ,;: .
~ 3~ A ~
- 3 - ~ 33 o4~5 Vectors for Expression of Foreign Genes, C. Yong Kang, Advances in Virus Research, Vol. 35, pp 177-192, Academic Press Ins., 1988; A ~anual of ~ethods for Baculovirus Vectors and Insect Cell Culture Procedures, Max D. Summers and Gale E. Smith, May 1987, Texas A & M University; and Baculoviruses as Gene Expression Vectors, Lois K. Miller, Ann. Rev.
Microbiol. 42, pp 177-199, 1988. This expression system has been used for the successful production of large quantities of many different gene products including human fibroblast interferon, human c-mye protein, human interleukin 2, etc.
Howeverr not all genes under the polyhedrin gene promoter Z~ express at high levels, e.g. those for HIV-l specific rev, vif, pol and tat, as mentioned above. Many researchers who are utilizing the baculovirus expression system have tried numerous techniques in order to improve the expression levels of such genes, but without much success (International Conference on Baculoviruses, Oxford, Great Britain, August 30 September 3, 1988). Accordingly, the products wilich can `
be success~ully produced by the system to date have been dependent upon the control mechanism that nature has selected for high level expression. ;~
~ OBJECTS OF THE INVENTION
'~ An objec~ of the present invention is to provide a method of genetic engineering which provides high level expression of genes formerly expressing at only low or intermediate levels in the baculovirus-cellular expression syste~
- ~ 1 33042-.
Another object of the invention is to provide refined site-directed mutagenesis methods with synthetic oligno-nucleotide linkers which can be used to engineer transfer vectors for the preparation of recombinant haculoviruses suitable for high level expression of foreign genes in the baculovirus-cellular expression system.
Yet another object of the invention is to provide recombinant baculoviruses capable of expressing desired foreign genes at a high level, particularly the human immunodeficiency virus genes pol, tat, vif and rev. ;~
SUMMARY OF THE INVENTION
According to one aspect of the invention there is d, provided a recombinant baculovirus comprising at least a major part of a polyhedrin gene promoter region; at least a trans-Z 15 cription termination sequence of a polyhedrin structural gene;
a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence: and, immediately upstream of ~; 20 said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part . of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'.
~; According to another aspect of the invention there is -provided a process for producing a recombinant baculovirus:; .
-; containing a foreign gene; said process comprising: providing ~:
C '~
~ .
... : . .. .... .... . .. ...... ,. . .,.,.,., . . . . . . , .. .... . , j.. .. .. ... .. .. . . . .. .. . . .
1 3304 ~'~
. 5 said foreign gene having a translation start codon followed by coding sequences and a translation stop codon; adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'; introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at , least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region; cotransfecting :~ susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA; and isolating ~: recombinant viruses containing said foreign gene and added nucleotide sequence.
, ~: 20 The term !l immediately upstream" as used above and throughout this disclosure means that there are no intervening ~:~ nucleotides between the start' codon (ATG) of the~foreign gene . and the added putative ribosome binding site.
The term "a major part" of the polyhedrin gene promoter `~ 25 region means a sufficient part of the region to avoid loss of the effect of the promoter region during the transcription of : ......
i~ the foreiqn gene.
~ C
,' - 6 - 1 3304~5 The purpose of the invention is to increase the yield of proteins that would otherwise be expressed in low or inter-~ediate yield in the baculovirus-cellular system. There is of course no great advantage in using ~he present invention to produce proteins that are already expressed in high yield.
Although the terms "low", "intermediate" and "high" have not been Eormally defined in the art, in general it can perhaps be stated that when the desired protein forms less than about 1% of the total cellular protein the yield is considered to be low (and the protein is generally not visualized on polyacrylamide gel stained with Coomassie blue); a yield betwcen about 1 and 10% of t'ne total cellular protein is considered to be intermediate; and a yield above 10~, and preferably 15-50% or more, is considered to be high.
BRIEF DESCRIPTION OF THE DRAWINGS
~,J"
Fig. 1 is a schematic diagram showing a procedure according to a preEerred embodiment of the invention in which a modified rev gene of HIV-l is inserted into a pAcYMl vector to form a transfer vector pAcYMl-rev suitable for forming a recombinant baculovirus AcNPV-HIVYKrev capable of producing rev at 'nigh levels;
Fig. 2 shows the time course results of a polyacrylamide gel electrophoresis of the proteins from cells infected with a recombinant AcNPV-HIVYKrev virus produced by the procedure of Fig. 1 and an AcNPV-HIVPKvif virus produced by the procedure of Fig. 3, showing the expression of rev and vif proteins;
ig. 3 is a schematic diagram showing a preferred ..,~
:'~
,~:
. .
,.:s :.
~ - 7 - 1 3 3 0 4 2 5 procedure for the modiication of the vif gene of HIV-l and its introduction into a pAcYMl vector to form a transfer vec-tor pAcYMl-vif suitable for forming a recombinant baculovirus ACNPV-HIVPKvif capable of producing vif at high levels;
Fig. 4 is a schematic diagram showing a preferred procedure for modification of the pol gene of HIV-l and introduction of the modified gene into pACYM1 transfer vector to form a transfer vector pAcYMl-pol suitable for forming a recombinant baculovirus AcNPV-HIVYKpol suitable for producing pol at high levels; and Fig. 5 shows the time course results of a polyacrylamide gel electrophoresis of total cellular proteins from cells infected with recombinant AcNPV-HIVYKpol virus. -DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED
~:~
EMBODIMENTS
, ~ -In the conventional baculovirus expression system, a foreign gene is inserted into the baculovirus genome as a partial or complete replacement for the polyhedrin structural gene while retaining the polyhedrin gene promoter and a stretch of the polyhedrin transcription termination signal.
The promoter for the polyhedrin structural gene is allowed to remain so that i~ exerts a strong influence on the transcription but, as noted above, some gene products are nevertheless not produced at a high level.
~ The pre.qent invention is based on the introduction of i~ a putative insect cell ribosome binding site immediately ~ ;
.~
, ~
1 330~25 upstream of the foreign gene without interveninq sequences under the polyhedrin gene promoter in the baculovirus transfer vector. In addition, the invention also involves the elimination of any non-coding flanking sequences at preferably both the 3' and 5' ends of the foreign gene using a uniquely modified crossover linker mutagenesis method.
This modification of the baculoviral vector overcomes any tendency of the viral-cellular system to resist expression of the foreiqn gene. -~
The putative insect cell ribosome binding site referred to in the present invention is the sequence of up to 10 bases i~nediately upstream of the translation initiation site (ATG) of the natural polyhedrin structural gene, i.e. the ~ underlined nucleotides in the sequence:
:~ -50 TRANSCRIPTION INITIATION
I
~ (5') TAAATAAGTATTTTACTGTTTTCGT
;! polyhedrin promoter polyhedrin AACAGTTTTGTAATAAAAAAACCTATAAAT ATG (3') .................... - I
Putative Ribosome Binding Site Start Codon . ~
The sequence is referred to herein as the "putative"
ribosome binding site because there has been as yet no experimental verification that this sequence, when `~ transcribed, takes part in ribosome binding.
While this sequence is present immediately upstream of the polyhedrin structural gene in wild type baculoviruses, the sequence is partially eliminated and/or displaced -`~? upstream of the start codons o foreign genes inserted into known baculovirus transfer vectors. It has now been found that the introduction of the putative eibosome binding site j immediately upstream of the foreign gene start codon without intervening flanking seauences and/or restriction enzyme sites overcomes any resistance of the cell to express the foreign gene at only low or intermediate levels. The entire putative ribosome binding site sequence need not be intro- ~-duced and instead merely a part of the seauence that is effective to improve expression yields can be introduced.
The final part of the sequence appears to be the most important and must normally be present. It is believed that as few as the final four nucleotides, 5'-AAAT-3', can improve expression yields, but at least the final eight nucleotides, 5'-CTATAAAT-3', are normally provided. More preferably, the added sequence contains the nine nucleotides (5'-CCTATAAAT-3').
As described in more detail below, the above sequences are most conveniently introduced, and non-coding se~uences lanklng the foreign gene are most conveniently eliminated, ~-by means of a crossover linker mutaqenesis strategy employing single stranded, or more preferably double stranded, oligonucleotide linkers. Furthermore, the same strategy is normally used to remove any non-coding flanking sequences at the 3'-end of the foreign gene and to add a restriction site at this end.
" - lo - 1 3 3 0 4 2 5 In general terms, the crossover linker mutagenesis procedure can be described as follows. The foreign gene is synthesized or isolated from a suitable DNA or RNA source (e.g. a commercially available plasmid having suitable restriction sites bracketing the foreign gene1 and is inserted into a small plasmid using standard techniques.
If isolated from a natural source, the gene is normally accompanied by non-coding flanking sequences and, to the extent possible, these are partially removed by standard digestion and ligation techniques.
A suitable oligonucleotide linker for upstream modification of the gene is produced using standard DNA `~-synthesizing techniques. This linker may be single stranded, but is more preferably double stranded, especially if it is desired to introduce a restriction enzyme site in the linker. If a single stranded linker contains a restriction site, the efficiency of crossover mutation drops because of self annealing of the self complementary palindrome ~ -sequences. The linker, or the primary strand if a double stranded linker is employed, normally contains a sticky end restriction site and a different restriction site, e.g. Bam ~I or Bgl IT, immediately upstream of ~and possibly partially overlapping) the effective putative ribosome binding site sequence, followed by at least 9 and preferably 12-15 bases of homology searching sequences which represent the first NH2-terminal 4-5 amino acids coding sequence of the foreign ;;:~
` 1 3304~5 , gene. It is important to avoid, if possible, any homopoly-meric sequences in the homology searching sequences since some DNA molecules contain a stretch of homopolymer. ~nen the linker is double stranded, the second strand comprises the complementary sequence except for the missing bases necessary to form the sticky end restriction site and for three to five missing bases at the opposite end to form a single stranded overhang tthe latter being necessary to avoid blunt end ligation of the linkers during the crossover mutagenesis).
The plasmid containing the foreign gene is linearized using a restriction endonuclease digestion which acts on a restriction site upstream of the foreign gene and the ends of the linearized plasmid are preferably dephosphorylated to prevent re-circularization. Alternatively, two restriction endonuclease digestions can be used to avoid recirculariz-~ ation. The oligonucleotide linker is ligated by virtue of ::: :
its sticky end restriction site to the linearized plasmid and the resulting modified structure is introduced into a ':.:
i~ suitable competent cell system, preferably E. coli, by the standard DNA transfection method. The transfected cells are capable of deleting unwanted bases flanking the foreign!gene ~ and circularizing the plasmid.
`~ A restriction site is also normally introduced at the 3' end of the foreign gene and any unwanted non-coding sequences at the 3' end are preferably deleted by a similar crossover i~ .
,`. ~ :' .~ .
:~:
sj ~ ".. ,.-... ... .:
d linker mutagenesis techniaue using a single or double stranded linker. In this case, the linker comprises a minimum of 9 to 12 bases of homology searching sequences corresponding to the final coding sequence of the foreign gene at the 3' end, followed by the restriction site and a sticky end of a different restriction site. The plasmid containing the modified foreign gene resulting from the previous crossover linker mutagenesis is then linearized at a site downstream of the 3' end of the foreign gene, the oligonucleotide linker is ligated and the resulting DNA
structure is transfected into a competent microorganism, again preferably E. Coli, which deletes the unwanted flanking sequences, adds a desired restriction enzyme site and recircularizes the plasmid. -The modified foreign gene can then be cut out and inserted into a baculovirus transfer vector from which part or all of the polyhedrin structural gene has been excised and which contains a suitable cloning site downstream of the transcription initiation site of the polyhedrin promoter region of the vector. Since various baculovirus transfer vectors containing suitable cloning sites are readily available, it is advantageous to start with such a known vector rather than construct a new one specifically for this invention, although this could be done if desired. The baculovirus transfer vector employed should preferably have an intact polyhedrin promoter region ~e.g. pAcYMl or pVL941) hut those with partial deletions may also be employed, ,: ~
-provided they are still capable of high level transcription.
For example, vectors pAc373, pAcRP6 and pAc610, which start at the -8 position of the upstream sequences, can be employed (see the article by C. Yong Rang mentioned above). The two most efficient transfer vectors appear to be pAcYMl and pBM030 (available from Drs. Bishop in England and Maeda in Japan, respectively) which contain all of the upstream sequences of the polyhedrin gene adjacent to a Bam HI
restriction site (pAcYMl) or a Bgl II restriction site (pBM030). The baculovirus transfer vector should also contain the transcription termination codon and preferably the polyadenylation sequences of the polyhedrin gene.
The vectors are linearized by appropriate restriction endonuclease digestion followed by phosphatase treatment.
The foreign qene having the modified flanking regions is inserted into the restriction site of the baculovirus transfer vector and the orientation of the foreign DNA insert is then determined by standard restriction endonuclease mapping and/or DNA sequencing. The resulting baculovirus transfer vector containing the modified foreign DNA is amplified and , purified by standard techniques.
After the foreign gene with the desired upstream putative ribosome binding sequences has been inserted into the transfer vector, the construct DNA is cotransfected into suitable insect cells with purified authentic wild type baculovirus DNA of the same strain, e.g. by the procedure as outlined in U.S. Patent 4,745,051 mentioned above.
~ 1 33042~
~ . .
.., The insect cells are generally employed as a monolayer and, following infection, are incubated in a suitable culture medium for a number of days and the supernatant is harvested. Polyhedrin-negative viruses resulting from homologous recombination appear as clear plaques in plaque assay and can be selected by plaque picking. An alternative approach to this biological assay system is to screen polyhedrin-negative plaques by nucleic acid hybridization techniques using the cloned foreign DNA as a hybridization probe.
The recombinant virus can then be propogated after successive plaque isolation to exclude wild type viruses ~y isolating a single plaque and amplifying the virus in monolayer culture in a suitable culture medium. After a few days of infection, the supernatant can be harvested and used to infect large numbers of cells in suspension or monolayer cultures. -The resulting recombinant virus, which forms a vector for ,:: ~
the expression of the foreign gene, can be used to infect appropriate insect cells or insects, whereupon the gene is expressed and the desired protein forms in high yield. If the gene product is a secretory protein such as IFN, IL-2 or HBsAg, the infected cells release these proteins after , ~
synthesis and these can be recovered from the extra cellular fluid of cultured cells or from the hemolymph of the infected insects. In contrast, if the protein in nature is phos-phorylated and anchored in the cell, the expressed gene products remain in the infected cells and can be recovered '''~ :
from the cells after 2-4 days of infection. For example, the pol, tat and rev proteins of HIV-l remain in the nucleus whereas human hepatitis B virus surface antigen (Kang et. al., J. Gen. Virol. 68: 2607-2613, 1987) and gp 120 of HIV-l (Bishop, Oxford, UK - Personal Communication) are secreted into the extra cellular culture fluid.
The expressed gene products may be analyzed by direct protein analysis using polyacrylamide gel electrophoresis and Coomassie blue staining.
As noted above, the method of the invention can be used with a variety of baculovirus-cellular systems, the preferred ones being ~utographa californica nuclear polyhedrosis (particularly the Hl strain used in the later Examples~ which infects Spodoptera frugiperda cells, and Bombyx mori which ~;- infect silkworm cells. (However, virtually any species or strain of baculovirus may be employed). Other viruses and strains include those listed in U.S. Patent 4,745,051 (col.
` 9, lines 21-39).
; The preferred restriction site introduced with the puta-tive ribosomal binding site is Bam HI, but other restriction ~;
sites which provide compatible cohesive ends (i.e. isoenzyme ~--; sites) can be employed, e.g. Bcl I, Bgl II, MbO I and XhO II
which all produce the 5'-GATC-3' sequence upon digestion, as , ~ d~es Bam HI itself. The possibility of using alternative , ~ restriction sites is convenient when the foreign gene DNA
itself contains internal Bam HI or Bgl II restriction sites.
Instead of using the crossover linker mutagenesis i ~ strategy for modifying the foreign gene prior to its i ~
, ~ 16 - 1 330425 introduction into the baculovirus transfer vector, it would be possible to achieve the same results by ligation of the linkers to the linearized ~ene-containing plasmid after deletion of the non-coding flanking sequences by exonuclease digestion e.g. with Bal 31. However, such a techni~ue is very imprecise and difficult and, while included within the scope of the ~resent invention, is not the preferred technique.
The present invention makes it possible to produce proteins at high levels of expression and many of these proteins can then be used for medical purposes such as for prognostic reagents, diagnostic reagents and combined subunit vaccines. The rev, vif, pol and tat proteins of HIV-l produced in this way are particularly useful for the management of acquired immunodeficiency syndrome (AIDS~, e.g.
by the techniques indicated in the publication entitled Clinica, Testing for HIV and AIDS, The Next Five Years, ~` George Street Publications Ltd., Richmond, Surrey, UK, Presently preferred embodiments of the present invention " :~
2~ are described in the following Examples.
: - -These Examples relate to the preparation of the rev, vif and pol proteins of HIV-l. However, the tat protein of 8IV-l has also been produced by similar techniques. The ~ recombinant baculovirus capable of producing the tat protein ,~
(AcNPV-tatYK) has been deposited at the American Type Culture ~; Collection under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2200.
'~
: ~
' ~
1 3~0425 EXAMPBE l PRODUCTION OF THE rev PROTEIN OF HIV~
A recombinant baculovirus containing the rev structural gene and the additional sequences required by the present invention was produced by a procedure as shown in Fig. 1.
The coding sequences of the rev protein were originally isolated from the Sst l fragment of pCV-l plasmid. The Sst l fragment was inserted into pIBI31 plasmid. The Rsal fragment containing the rev coding sequences was isolated and inserted into the Hinc II site of pUCl9. The resulting pUCl9-rev l plasmid was then digested with Xba I and dephosphorylated and a double-stranded crossover linker was ligated to the Xba I
- ~ site of the linearized pUCl9-rev l plasmid.
-`~ A double stranded crossover linker was synthesized using ~-~
standard DNA synthesizing techniques. The first linker ; ~ : :
~ strand comprised an XbaI sequence suitable as a sticky end `~ (CTAGA), a Bgl II restriction site (AGATCT) (this restriction site is used because rev gene contains an internal Bam HI
~;~ site), a TATAAAT sequence, and the initial 12 nucleotides of f '~'~'', ', the coding sequence of rev (ATGGCAGGAAGA). The second linker strand comprised the complementary sequences of the first linker strand but omitting the sequences at one end required to form the Xba I sticky end and omitting the final 3 -nucleotides at the opposite end to form a single stranded tail. The linker strands were then annealed to form the ; following double stranded linker:
Translation initiation ,~ XbaI
5'-pCTAGAGATCTATAAATATGGCAGGAAGA-3' 3'-TCTAGATATTTATACCGTCCT-5' Bgl II rev The double-stranded crossover linker was ligated to the Xba I site of the linearized pUCl9-rev 1 plasmid and the resulting elongated linearized recombinant plasmid was transfected into competent E. coli cells to carry out a crossover linker mutagenesis. Ampicillin resistant cells were selected and cloned, and the resulting pUCl9-rev 2 plasmids containing transformants were isolated.
The plasmid pUCl9-rev 2 contained the desired sequence upstream of the rev gene but also contained unwanted ;
non-coding sequences downstream of the rev gene and these were removed by the following technique :
A second double stranded oligonucleotide linker was synthesized by a standard DNA synthesis technique. The first strand of this linker comprised the final lS nucleo-tide sequence of the rev gene including the translation termination codon, a Bgl II site and a nucleotide for a Hind III site. The second strand comprised the Hind III
sticky end and the complementary sequences of the first strand, except for the final three nucleotides. When ,~
annealed, the double stranded linker thus was as follows:
.' ~ ::
;G translation termination Bgl II
5'-GGAGCTAAAGAATAGAGATCTA-3' . 3'-CGATTTCTTATCTCTAGATTCGAp-5' rev Hind III
;ii,: :
The pUCl9-rev 2 DNA was cut with Pst I and Hind III
`~ ~ without dephosphorylation, the second double stranded synthetic linker was ligated to the Hind III site and the ;~;~ resulting elongated linearized plasmid was transfected into competent E. coli cells. The ampicillin resistant ~ , ;:
- 19 - 1 3 3 1)4 ~ 5 cells were selected and cloned. The bacterium recircul-arized the plasmid and deleted the unwanted downstream sequences to form plas~id pUCl9-rev 3. This contained XbaI followed by Bgl II, CTATAAAT (partially overlapping the Bgl II site and forming the putative ribosome binding site of S. frugiperda cells) and the entire coding sequence of rev followed by Bgl II and Hind III.
~, : .
The rev gene-containing sequence was isolated using Bgl II digestion and was ligated into a baculoviral transfer vector pAcYMl that had been linearized with I Bam HI and dephosphorylated, to give a desired vector ,!~
~ pAcYMl-rev.
;
The vector was then used to cotransfect Spodoptera frugiperda cells together with wild type AcNPV DNA and polyhedrin-negative recombinant viruses AcNPV-HIVYKrev were selected and amplified.
AcNPV-HIVYKrev was used to infect S. frugiperda cells which were harvested 24, 48, 72 and 96 hours after infection and the recombinant virus infected cellular proteins were subjected to protein analysis by poly-acrylamide gel electrophoresis with Coomassie blue staining as shown in Fig. ~. In the Figure, lane 1 shows uninfected S. frugiperda cells, lane 2 shows wild type AcNPV infected cells, lane 3 shows AcNPV-HIVYKrev virus infected cells and lane 4 shows AcNPV-HIVPKvif virus . ~
;~ infected cells (pertinent to Example 2). Tne symbol p denotes the polyhedrin protein, v denotes vif protein and ;~.''.
i~! ~
-~
` 1 3 ~ 5 r denotes rev protein. The M lane shows molecular weight markers. A band representing the rev protein is clearly visible indicating a large yield (ca 20~) of this protein.
The recombinant virus AcNPV-HIVYKrev has been deposited at the American Type Culture Collection under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2231.
EXAMPLE 2 PRODUCTION OF vif PROTEIN OF HIV-l As shown in Figure 3, using techniques similar to those of Example 1, the vif gene containing the entire coding sequences was isolated from the plasmid pHXB-2D by EcoRI digestion (the coding sequence of vif is located within the EcoRl fragment-mapping unit of 4227-5322 bps-and approximately 1100 bps were isolated). The EcoRl ~i~
fragment was filled in with Klenow and inserted into the '~inc II site of pUC19 (pUC19-vif 1).
Using standard DNA synthesizing techniques, the following double stranded linker was synthesized;
Translation Initiation Bam HI
5'-GATCCTATAAATATGGAAAACAGATGG-3' 3'-GATAI'TTATAÇCTTTTGTCT-5' vif ., , This linker contained a Bam HI sticky end at the 5' end followed with aCCTATAAAT sequence (the putative ribo-~ ~ some binding site p) with 12 nucleotide coding sequences ;~ of the vif gene. This double stranded linker was used to ~ modify the upstream sequences of the vif gene by cutting ,' ,: ~
; - 21 - l 3 3 0 4 2 5 the plasmid pUCl9-vif 1 with sAM HI and Xbal, ligating the linker and transforming competent E. coli cells as in Example l. This resulted in the formation of a recombinant plasmid pUCl9-vif 2.
To modify the downstream se~uences, the following oligonucleotide linker was synthesized;
Translation Term nation S'-ATGAATGGACACTAGGATCCA-3' 3'-TTACCTGTGATCCTAGGTTCGA-5' vLf Bam HIHind III
¦ This linker contained a 5'-12 nucleotide overlapping ¦~ sequences of the vif gene which included the translation-¦ termination signal TAG followed by Bam HI and Hind III
~; sticky end. The 22 nucleotide long complementary sequence with a Hind III sticky end was used to protect the Bam HI
site.
~;~ The recombinant plasmid pUCl9-vif 2 was cut with Pst l and Hind III, the double stranded linker was ligated at the Hind III site and the plasmid was used to transform competent E. coli cells. This resulted in the deletion of the 3' non-coding sequences of the vif gene and the , !
addition of a Bam HI restriction site. The resulting pUCl9-vif 3 plasmid contained Bam HI sites at either the putative ribosome binding site (p), the entire coding ~ - sequence of vif including the translation termination ; coding sequence TAG at the end. This Bam HI fragment was isolated and inserted into the Bam HI site of pAcYMl in ,,~
`
~ .
. ~ r~
--` 1 330425 .' the correct orientation ~pAcYMI-vif). The pAcYMl-vif DNA
was used to transfect Spodoptera frugiperda cells with wild type AcNPV DNA to isolate the recombinant baculovirus AcNPV-HIVPKvif. The recombinant baculovirus, AcNPV-HIVPKvif, was used to infect Spodoptera frugi~erda cells to express the vif gene. The AcNPV-HIVPKvif virus infected cells produced a 26K Dalton protein (v) which represents at least 30% of the total cellular protein at 96 hours after infection, as shown in Figure 2.
The AcNPV-HIVPKvif virus has been deposited at The American Type Culture Collestion under the terms of the Budapest Treaty and the deposit is identified by the number ATCC VR 2235.
EXAMPLE 3 PRODUCTION OF T~E pol PROTEIN OF HIV-l As shown in Fig. 4, using techniques similar to those of Examples 1 and 2, the pol gene-containing part of the protease gene at the 5' end followed by the entire coding sequence of the reverse transcriptase gene and the coding ,~
sequences of the integrase at the 3' end were isolated from a plasmid pHXB-2D by digesting the plasmid with Bgl II and Sal I. The Bgl II-Sal I fragment was then inserted into plasmid pUClB and upstream and downstream sequences were modified to remove some of the non-coding flanking sequenc@s. The pUC18 containing the entire coding sequences of the polymerase gene was digested with Sac I
~: ~
and dephosphorylated.
: ~:
i~ ~
~ ~ .
1 33042~
Using standard DNA synthesizing techniques, the following double stranded linker was synthesized:
TRANSLATION
INITIATION
Bam HI
S'-CGGATCCTATAAATATGAGTTTCCCAGGA-3' 3'-TCGAGCCTAGGATATTTATACTCAAAGGGT-5' Sac I prt This linker contains a Sac I sticky end followed by Bam HI plus nine nucleotides of the putative ribosome binding site (partially overlapping with the Bam Hl site) in front of the initial 15 nucleotides of the protease (Prt) coding sequence. The 30 nucleotide complementary sequence starts with the 3' Sac I sticky end which extends to the fourth nucleotide from the 3' end of the first strand leaving a three nucleotide single strand tail at the 3' end.
This double stranded linker was ligated to the ~, ~ linearized plasmid and was used to modify the upstream : (5') sequences of the pol gene, using the same crossover linker mutagenesis method as described for the rev gene in Example 1 and the vif gene in Example 2, to delete some of the 5' non-coding flanking sequences plus some coding sequences of the protease gene.
To modify the downstream sequences, the following ~:
~; oligonucleotide linker was synthesized: ;
Translation Termination Sph 1 5'-CAGGATGAGGATTAGGATCCGCATG-3' 3'-CTACTCCTAATCCTAGGC-5' Int. Bam HI
~' :: ,,.', ,.,.
This linker contained fifteen nucleotide overlapping sequences of the integrase gene (Int.) which include the termination codon of translation followed by Bam HI and an Sph I sticky end at the 3' end. The 18 nucleotide complementary sequence was used to protect the Bam HI site.
~ y employing the crossover linker mutagenesis as described in Examples 1 and 2, the linker was used to delete the 3' non-coding sequences and to add a Bam HI
restriction site.
The resulting pUC 18-pol plasmid, containing no non-coding flanking sequences at either end, was digested with 8am HI and the Bam HI fragment was isolated and : ~
inserted into the Bam HI site of pAcYMl in the correct -~
orientation to form pAcYMl-pol.
The pAcYMl-pol DNA was used to co-transfect Spodotera frugiperda (SF9) cells with wild type AcNPV DNA to isolate a recombinant baculovirus AcNPV-HIVYKpol virus.
The recombinant AcNPV-HIVYKpol virus was used to infect SF9 cells to express the pol gene. The ~ AcNPV-HIVYKpol virus infected SF9 cells were harvested at - 48, 72, 96 and 120 hours after infection and the total ~ cellular proteins werelsub~ected to polyacrylamide gel b~ ~`, electrophoresis with Coomassie blue staining. The results are~ shown in Fig. 4 in which lane 2 shows the 48 hour product, lane 3 shows the 72 hour product, lane 4 shows ;~ the 96 hour product and lane 5 shows the 120 hour product. Lane 6 shows the wild type AcNPV infected SF9 r, ~
cells with polyhedrin protein (p), lane 7 represents the uninfected SF9 cells and lane 1 shows the molecular weight marker .9 .
An approximately 95k Dalton pol protein (as shown with an arrow) was synthesized and accumulated in virus infected .:
cells, representing approximately 30% of the total cellular protein.
The AcNPV-HIVYKpol virus has been deposited at the :
American Type Culture Collection under the terms of the : ~
Budapest Treaty and is identified by the deposit No. ATCC .-VR 2233.
,` ~
,'`~
,' '.'''~
, ~ ~
Claims (48)
1. A recombinant baculovirus comprising at least a major part of a polyhedrin gene promoter region; at least a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence; and, immediately upstream of said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'.
2. A recombinant baculovirus according to Claim 1 wherein said part of said putative ribosome binding site comprises the sequence 5'-CCTATAAAT-3'.
3. A recombinant baculovirus according to Claim 1 wherein said part of said putative ribosome binding site comprises the sequence 5'-CTATAAAT-3'.
4. A recombinant baculovirus according to Claim 1 containing a restriction site upstream of said part of said putative ribosome binding site and a restriction site downstream of said foreign gene.
5. A recombinant baculovirus according to Claim 1 wherein said foreign structural gene is a gene encoding the rev protein of HIV-1.
6. A recombinant baculovirus according to Claim 5 which is AcNPV-HIVYKrev identified by the deposit number ATCC
VR 2231.
VR 2231.
7. A recombinant baculovirus according to Claim 1 wherein said foreign structural gene is a gene encoding the vif protein of HIV-1.
8. A recombinant baculovirus according to Claim 7 which is AcNPV-HIVPKvif identified by the deposit number ATCC
VR 2235.
VR 2235.
9. A recombinant baculovirus according to Claim 1 wherein said foreign structural gene is a gene encoding the pol protein of HIV-1.
10. A recombinant baculovirus according to Claim 9 which is AcNPV-HIVYKpol identified by the deposit number ATCC VR 2233.
11. A recombinant baculovirus according to Claim 1 wherein said foreign structural gene is a gene encoding the tat protein of HIV-1.
12. A recombinant baculovirus which is AcNPV-tatYK identified by the deposit number ATCC VR 2206.
13. A process for producing a recombinant baculovirus containing a foreign gene; said process comprising:
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3';
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region;
cotransfecting susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA; and isolating recombinant viruses containing said foreign gene and added nucleotide sequence.
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3';
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region;
cotransfecting susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA; and isolating recombinant viruses containing said foreign gene and added nucleotide sequence.
14. A process according to Claim 13 wherein said foreign gene is isolated from a natural source and has non-coding flanking sequences on the upstream and downstream sides of said foreign gene, and wherein at least said upstream non-coding flanking sequences are deleted.
15. A process according to Claim 14 wherein said downstream non-coding flanking sequences are also deleted.
16. A process according to Claim 14 wherein said upstream flanking sequence is deleted and said nucleotide sequence is added immediately upstream of said translation start codon by producing a crossover linker containing said nucleotide sequence to be added and an homology searching sequence for said foreign gene, ligating said linker to a linearized vector containing said foreign gene and said non-coding upstream flanking sequence, and performing a crossover linker mutagenesis by transfecting competent cells.
17. A process according to Claim 15 wherein said downstream non-coding flanking sequences are deleted by producing a crossover linker containing an homology searching sequence for said foreign gene, ligating said linker to a linearized vector containing said foreign gene and non-coding downstream flanking sequences, and performing a crossover linker mutagenesis by transfecting competent cells.
18. A process for producing a baculovirus transfer vector suitable for producing a recombinant baculovirus containing a foreign gene, said process comprising:
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3';
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region; and amplifying the resulting modified baculovirus transfer vector.
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence comprising at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3';
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing at least a major part of a polyhedrin gene promoter region and at least the transcription termination sequence of a polyhedrin structural gene in a position and orientation to come under transcription control of said promoter region; and amplifying the resulting modified baculovirus transfer vector.
19. A baculovirus transfer vector suitable for producing a recombinant baculovirus containing a foreign gene, said vector comprising:
at least a major part of a polyhedrin gene promoter region; at least a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence;
and, immediately upstream of said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'.
at least a major part of a polyhedrin gene promoter region; at least a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence;
and, immediately upstream of said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'.
20. A process for expressing foreign gene proteins at a high level in a baculovirus expression system, which process comprises:
infecting susceptible organisms selected from the group consisting of insect cells and insects with a recombinant baculovirus containing: at least a major part of a polyhedrin gene promoter region; at least a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence; and, immediately upstream of said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming any resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'; and extracting said foreign gene protein from said cells or associated fluid after a suitable period of time following said infection.
infecting susceptible organisms selected from the group consisting of insect cells and insects with a recombinant baculovirus containing: at least a major part of a polyhedrin gene promoter region; at least a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence; and, immediately upstream of said start codon, at least a part of a putative insect cell ribosome binding site for the polyhedrin gene effective for at least partially overcoming any resistance of susceptible insect cells to express said foreign gene at a high level, said part of said putative ribosome binding site comprising at least the final four nucleotides of the sequence 5'-ACCTATAAAT-3'; and extracting said foreign gene protein from said cells or associated fluid after a suitable period of time following said infection.
21. A process according to claim 20 wherein said foreign gene is a gene encoding the rev protein of HIV-1.
22. A process according to claim 20 wherein said foreign gene is a gene encoding the vif protein of HIV-1.
23. A process according to claim 20 wherein said foreign gene is a gene encoding the pol protein of HIV-1.
24. A process according to claim 20 wherein said foreign gene is a gene encoding the tat protein of HIV-1.
25. A recombinant baculovirus comprising a polyhedrin gene promoter region; a transcription termination sequence of a polyhedrin structural gene; and a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence, characterized in that: (1) said polyhedrin gene promoter region is intact, including a final -CCTATAAAT sequence; (2) immediately upstream of said translation start codon and downstream of said polyhedrin gene promoter region, there is provided a putative insect cell ribosome binding site for the polyhedrin gene effective for overcoming resistance of susceptible insect cells to express said foreign gene at a high level; (3) upstream from said putative insect cell ribosome binding site, but downstream from said polyhedrin gene promoter region, there is provided a restriction site;
and (4) downstream of said foreign gene, there is provided a restriction site.
and (4) downstream of said foreign gene, there is provided a restriction site.
26. A process for expressing foreign gene proteins at a high level in a baculovirus expression system, which process comprises:
infecting selected organisms selected from the group consisting of insect cells and insects with Autographa californica baculovirus containing: an intact polyhedrin gene promoter region including a final -CCTATAAAT sequence; a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence: immediately upstream of said start codon, a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT- effective for enabling said foreign gene to be expressed at a high level in insect cells; a restriction site upstream of said putative insect cell ribosome binding site but downstream of said polyhedrin gene promoter region; and a further restriction site downstream of said foreign gene; and extracting said foreign gene protein from said cells or associated fluid after a suitable period of time following said infection.
infecting selected organisms selected from the group consisting of insect cells and insects with Autographa californica baculovirus containing: an intact polyhedrin gene promoter region including a final -CCTATAAAT sequence; a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence: immediately upstream of said start codon, a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT- effective for enabling said foreign gene to be expressed at a high level in insect cells; a restriction site upstream of said putative insect cell ribosome binding site but downstream of said polyhedrin gene promoter region; and a further restriction site downstream of said foreign gene; and extracting said foreign gene protein from said cells or associated fluid after a suitable period of time following said infection.
27. A process according to claim 26 wherein said foreign gene is a gene encoding the ref protein of HIV-1.
28. A process according to claim 26 wherein said foreign gene is a gene encoding the vif protein of HIV-1.
29. A process according to claim 26 wherein said foreign gene is a gene encoding the pol protein of HIV-1.
30. A process according to claim 26 wherein said foreign gene is a gene encoding the tat protein of HIV-1.
31. A process for producing a baculovirus transfer vector suitable for producing a recombinant Autographa californica baculovirus containing a foreign gene, said process comprising:
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence consisting of a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells;
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing an intact polyhedrin gene promoter region including a final -CCTATAAAT
region and at least the transcription termination sequence of a polyhedrin structural gene in a position between said polyhedrin gene promoter region and said transcription termination sequence via restriction sites at opposite ends of said foreign gene and added nucleotide sequence; and amplifying the resulting modified baculovirus transfer vector.
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon;
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence consisting of a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells;
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing an intact polyhedrin gene promoter region including a final -CCTATAAAT
region and at least the transcription termination sequence of a polyhedrin structural gene in a position between said polyhedrin gene promoter region and said transcription termination sequence via restriction sites at opposite ends of said foreign gene and added nucleotide sequence; and amplifying the resulting modified baculovirus transfer vector.
32. A baculovirus transfer vector suitable for producing a recombinant Autographa californica baculovirus containing a foreign gene, said vector comprising:
an intact polyhedrin gene promoter region including a final -CCTATAAAT sequence: a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence; immediately upstream of said start codon, a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells; a restriction site upstream of said putative insect cell ribosome binding site but downstream of said polyhedrin gene promoter region; and a further restriction site downstream of said foreign gene.
an intact polyhedrin gene promoter region including a final -CCTATAAAT sequence: a transcription termination sequence of a polyhedrin structural gene; a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, said foreign gene being located between said promoter region and said termination sequence; immediately upstream of said start codon, a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells; a restriction site upstream of said putative insect cell ribosome binding site but downstream of said polyhedrin gene promoter region; and a further restriction site downstream of said foreign gene.
33. A process for producing a recombinant Autographa
34 californica baculovirus, containing a foreign gene; said process comprising:
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon:
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence consisting of a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells;
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing an intact polyhedrin gene promoter region including a final -CCTATAAAT
region and at least the transcription termination sequence of a polyhedrin structural gene in a position between said polyhedrin gene promoter region and said transcription termination sequence via restriction sites at opposite ends of said foreign gene and added nucleotide sequence cotransvecting susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA: and isolating recombinant viruses containing said foreign gene and added nucleotide sequence.
34. A process according to claim 33 wherein said foreign gene is isolated from a natural source and has non-coding flanking sequences on the upstream and downstream sides of said foreign gene, and wherein at least said upstream non-coding flanking sequences are deleted.
providing said foreign gene having a translation start codon followed by coding sequences and a translation stop codon:
adding a nucleotide sequence immediately upstream of said start codon, said added nucleotide sequence consisting of a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-effective for enabling said foreign gene to be expressed at a high level in insect cells;
introducing said foreign gene and added nucleotide sequence into a baculovirus vector containing an intact polyhedrin gene promoter region including a final -CCTATAAAT
region and at least the transcription termination sequence of a polyhedrin structural gene in a position between said polyhedrin gene promoter region and said transcription termination sequence via restriction sites at opposite ends of said foreign gene and added nucleotide sequence cotransvecting susceptible insect cells with the resulting baculovirus vector DNA and wild type baculovirus genomic DNA: and isolating recombinant viruses containing said foreign gene and added nucleotide sequence.
34. A process according to claim 33 wherein said foreign gene is isolated from a natural source and has non-coding flanking sequences on the upstream and downstream sides of said foreign gene, and wherein at least said upstream non-coding flanking sequences are deleted.
35. A process according to claim 34 wherein said downstream non-coding flanking sequences are also deleted.
36. A process according to claim 35 wherein said downstream non-coding flanking sequences are deleted by producing a double stranded crossover linker containing an homology searching sequence for said foreign gene, ligating said linker to a linearized vector containing said foreign gene and non-coding downstream flanking sequences, and performing a crossover linker mutagenesis by transfecting competent cells.
37. A process according to claim 34 wherein said upstream flanking sequence is deleted and said nucleotide sequence is added immediately upstream of said translation start codon by producing a double stranded crossover linker containing said nucleotide sequence to be added and an homology searching sequence for said foreign gene, ligating said linker to a linearized vector containing said foreign gene and said non-coding upstream flanking sequence, and performing a crossover linker mutagenesis by transfecting competent cells.
38. A recombinant Autographa californica nuclear polyhedrosis virus comprising an expression cassette consisting of the following elements, operably linked, 5' to 3'; the polyhedrin gene promoter region including a final -CCTATAAAT-, a restriction site, a part of the polyhedrin putative ribosome binding site comprising at least the final four nucleotides of the series -ACCTATAAAT-, a foreign structural gene having a translation start codon followed by coding sequences and a translation stop codon, a restriction site, and a transcription termination sequence of a polyhedrin structural gene.
39. A recombinant baculovirus according to claim 38 wherein said part of said putative ribosome binding site comprises the sequence 5'-CCTATAAAT-3'.
40. A recombinant baculovirus according to claim 38 wherein said part of said putative ribosome binding site comprises the sequence 5'-CTATAAAT-3'.
41. A recombinant baculovirus according to claim 38 wherein said foreign structural gene is a gene encoding the rev protein of HIV-1.
42. A recombinant baculovirus according to claim 41 which is AcNPV-HIVYKrev identified by the deposit number ATCC VR 2231.
43. A recombinant baculovirus according to claim 38 wherein said foreign structural gene is a gene encoding the vif protein of HIV-1.
44. A recombinant baculovirus according to claim 43 which is AcNPV-HIVYPKvif identified by the deposit number ATCC VR 2235.
45. A recombinant baculovirus according to claim 38 wherein said foreign structural gene is a gene encoding the pol protein of HIV-1.
46. A recombinant baculovirus according to claim 45 which is AcNPV-HIVYKpol identified by the deposit number ATCC VR 2233.
47. A recombinant baculovirus according to claim 35 wherein said foreign structural gene is a gene encoding the tat protein of HIV-1.
48. A recombinant baculovirus which is AcNPV-tatYK identified by the deposit number ATCC VR 2206.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000591908A CA1330425C (en) | 1989-02-23 | 1989-02-23 | Baculovirus expression system capable of producing foreign gene proteins at high levels |
PCT/CA1990/000062 WO1990010230A1 (en) | 1989-02-23 | 1990-02-23 | Polypeptide having immunological activity for use as diagnostic reagent and/or vaccine |
PCT/CA1990/000061 WO1990010078A1 (en) | 1989-02-23 | 1990-02-23 | Improved baculovirus expression system capable of producing foreign gene proteins at high levels |
AU51871/90A AU5187190A (en) | 1989-02-23 | 1990-02-23 | Improved baculovirus expression system capable of producing foreign gene proteins at high levels |
AU51841/90A AU5184190A (en) | 1989-02-23 | 1990-02-23 | Polypeptide having immunological activity for use as diagnostic reagent and/or vaccine |
US07/743,357 US5858646A (en) | 1989-02-23 | 1990-02-23 | Modified HIV-pol polypeptide having immunological activity for use as diagnostic reagent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000591908A CA1330425C (en) | 1989-02-23 | 1989-02-23 | Baculovirus expression system capable of producing foreign gene proteins at high levels |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1330425C true CA1330425C (en) | 1994-06-28 |
Family
ID=4139682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000591908A Expired - Fee Related CA1330425C (en) | 1989-02-23 | 1989-02-23 | Baculovirus expression system capable of producing foreign gene proteins at high levels |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1330425C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022084438A1 (en) * | 2020-10-22 | 2022-04-28 | Intervet International B.V. | Baculovirus expression vector |
-
1989
- 1989-02-23 CA CA000591908A patent/CA1330425C/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022084438A1 (en) * | 2020-10-22 | 2022-04-28 | Intervet International B.V. | Baculovirus expression vector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5194376A (en) | Baculovirus expression system capable of producing foreign gene proteins at high levels | |
JP3183877B2 (en) | Modified baculovirus, its preparation method and its application as expression vector | |
WO1990010078A1 (en) | Improved baculovirus expression system capable of producing foreign gene proteins at high levels | |
US5244805A (en) | Baculovirus expression vectors | |
AU631223B2 (en) | Improved baculovirus expression vectors | |
JP3076833B2 (en) | Modified baculovirus, method for producing the same, and expression vector obtained from the baculovirus | |
EP0549721B1 (en) | Multiple promoter baculovirus expression system and defective particle production | |
US4745051A (en) | Method for producing a recombinant baculovirus expression vector | |
Fraser et al. | Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA | |
DK172401B1 (en) | Methods for producing recombinant baculovirus vectors, vectors prepared by the methods, and method for producing heterologous protein using a baculovirus vector | |
Emery et al. | The development of multiple expression vectors for high level synthesis of eukaryotic proteins: expression of LCMV-N and AcNPV polyhedrin protein by a recombinant baculovirus | |
US6090584A (en) | Baculovirus artificial chromosomes and methods of use | |
US5322774A (en) | Procaryotic leader sequence in recombinant baculovirus expression system | |
US5229293A (en) | Recombinant baculovirus | |
Li et al. | Identification of additional genes that influence baculovirus late gene expression | |
Katsuma et al. | Characterization of the 25K FP gene of the baculovirus Bombyx mori nucleopolyhedrovirus: implications for post-mortem host degradation | |
EP0397485A1 (en) | Novel baculovirus expression vectors and use thereof in the expression of foreign proteins in insects or insect cells | |
US5071748A (en) | Mixed baculovirus compositions and uses thereof | |
AU601232B2 (en) | Method for producing a heterologous protein in insect cells | |
CA1330425C (en) | Baculovirus expression system capable of producing foreign gene proteins at high levels | |
Je et al. | The use of defective Bombyx mori nucleopolyhedrovirus genomes maintained in Escherichia coli for the rapid generation of occlusion-positive and occlusion-negative expression vectors | |
GB2228486A (en) | Improved baculovirus expression system capable of producing foreign gene proteins at high levels | |
Wu et al. | Construction of a host range-expanded hybrid baculovirus of BmNPV and AcNPV, and knockout of cysteinase gene for more efficient expression | |
US5338679A (en) | Vertebrate poxvoris expression vector under the control of entomopoxvirus spheroidin gene promoter | |
CA2138988A1 (en) | Recombinant baculoviruses containing insect cellular promoter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKLA | Lapsed |