[go: up one dir, main page]

CA1237040A - Disposer cleaner - Google Patents

Disposer cleaner

Info

Publication number
CA1237040A
CA1237040A CA000479620A CA479620A CA1237040A CA 1237040 A CA1237040 A CA 1237040A CA 000479620 A CA000479620 A CA 000479620A CA 479620 A CA479620 A CA 479620A CA 1237040 A CA1237040 A CA 1237040A
Authority
CA
Canada
Prior art keywords
weight
chamber
composition
cleaning
disposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000479620A
Other languages
French (fr)
Inventor
Cary K. Kuenn
Jean M. Young
John A. Wundrock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Badger Pharmacal Inc
Original Assignee
Badger Pharmacal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Badger Pharmacal Inc filed Critical Badger Pharmacal Inc
Application granted granted Critical
Publication of CA1237040A publication Critical patent/CA1237040A/en
Expired legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

DISPOSER CLEANER
Abstract of the Disclosure A composition for cleaning an in-sink garbage disposer unit containing a surfactant, an alkali carbonate and an acid. Each constituent is present in the composition in the range of 5 to 75% by weight. It is preferred that the composition contain 37.5% adipic acid, 37.5% sodium bicarbonate and 25% of a mixture of sodium lauryl sulfate and alpha-olefin sulfonate.
Other ingredients may be added to the surfactant-alkali-acid composition to provide desired properties. For example, halogen containing compounds may be employed in the composition to provide germicidal properties, and abrasives may be incorporated for added physical cleaning of the disposer unit.

Description

~s3~7~

DISPOSER_CLEP~IER
Background of the Invention The present invention relates to cleaning compositions, and more particularly to a composition for cleaning garbage disposer units.
In-sinX garbage disposer units are employed in homes, restaurants and the like to dispose of unwanted food scraps. As a result, garbage disposer units create sanitary problems such as grease build-up, potential or irritable smells and possible harmful bacterial build-up.
By design, any materials fed into a disposer unit are pushed by centrifugal force into a series of cutting blades and forced through a screen into a drain line. Thus, in order to make an effective cleaning/degreasing product for disposer units, it is necessary to provide a product which maintains contact time with the walls of the chamber for grease cutting purposes, and one which is not easily sucked or drawn into the drain during operation of the disposer unit.
Numerous types of cleaning compositions are known in the art. Exemplary of such cleaning composi-tions are those found in the following patents:
Bacon 4,391,724 Dimond et al 4,388~204 Gotta et al 4,3~4,900 Rapisarda et al 4,379,069 Falivene 4,289,640 Cornelisseus 4,234,442 Corneliusseus 4,210,550 Ogoshi et al 4,129,526 Trink et al 4,051,055 Chang 4,048,121 Heckert et al 4,005,030 Savino 3,928,065 The patents to Cornelisseus, Ogoshi et al, Rapisarda et al and Bacon all relate to laundry and/or dishwashing detergent compositions. The patents to Savino, Trink l . .

_ _ ~3'7C)~

et al, Falivene, Heckert et al, Chang and Gotta et al relate to compositions intended for cleaning hard sur-faces such as metal and porcelain while the Dimond et al patent relates to a clogged drain opening composi-tion. None of these patents, however, are directedspecifically to a composition for cleaning and saniti-zing garbage disposer units.
Summary of the Invention -A composition for cleaning garbage disposer units contains an alkali carbonate, an acid, and one or more surfactants. The composition contains S to 75% by weight of each constituent. It is preferred that the composition contain 37.5% by weight adipic acid, 37.5%
sodium bicarbonate and 25% of a mixture of sodium lauryl sulfate and alpha-olefin sulfonate.
When adipic acid and sodium bicarbonate come into contact with hot water in the disposer unit carbon dioxide gas is released. The carbon dioxide acts with the surfactants and the grinding action of the disposer to build a heavy foam and expand to fill the interior chamber of the unit. The foam created by the acid/base reaction temporarily plugs the drain of the disposer which thus allows additional foam to build up in the disposer chamber and rise to emerge through the baffle into the sink. This acid/base reaction provides a mechanism for maintaining Eoam in the chamber to provide sufflcient contact time with the walls of the chamber to effectively clean and degrease the disposer.
Various other constituents in addition to adipic acid, sodium bicarbonate, and surfactants may be blended into the composition to provide numerous de-sirable properties. For example, alkaline builders such as sodium metasilicate may ye employed to impart increased detergent properties to the composition.
Other ingredients such as halogen containing compounds I`

~3'7C)~iD

may be employed to provide better germicidal proper-ties Abrasives may be incorporated for added physical cleaning, and colors and/or fragrances may also be added.
The present invention thus provides a compo-sition for cleaning, degreasing and sanitizing a garbage disposer unit.
nescription of the Preferred Embodiment A composition for cleaning, degreasing and sanitizing a garbage disposer unit. The composition contains an acid, an alkali carbonate and one or more surfactants. The acid and alkali carbonate react in an acid/base reaction with water in the disposer unit to release carbon dioxide gas This carbon dioxide gas acts with the surfactants and the grinding action of the disposer to build a heavy foam and expand to fill the interior chamber of the unit and emerge through the baffle into the sink.
The acidic constituent is present in the range of 5 to 75~ by weight and preferably between 2S
and 40% by weight. Suitable acids for use in the composition of the present invention include oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, sebacic, maleic, fumaric, citric, sodium citrate, sodium sulfite, potassium citrate, sodium acid pyrophosphate, sodium dihydrogen orthophosphate, and sodium bisul~ate. The preferred acid is adipic acid which is present in an amount of about 37.5~ by weight based on the total cleaning composition. Thus, the acidic constituent of the present composition contains one or more acids having the formula:
HOOC-(CH2)n-COOH, where n is 2, 3, or 4.
Adipic acid has the general formula: C6H10O4 and is prepared by oxidizing cyclohexanol with concentrated nitric acid. Adipic acid is preferred since it is only I, ~Z3'J7~ O

weakly soluble in water at room temperatures, but its solubility greatly increases as the water temperature increases beyond 90~. For example, 100 milliliters of a saturated aqueous solution contains 1.44 y. of adipic acid. However, 100 milliliters of boiling water dis-solves 160 9. of adipic acid. The solubility of adipic acid at higher water temperatures greatly enhances its effectiveness in the acid/base reaction necessary for maintaining the foam wall to provide a cleansing action in accordance with the present invention.
The alkali carbonate constituent is present in the range of from about 5 to about 75~ by weight, and preferably between 25 and 40% by weight in the present composition. Suitable alkali carbonates include sodium bicarbonate, sodium carbonate, calcined sodium carbonate, sodium sesquicarbonate, potassium bicarbonate, and potassium carbonate. One or more of the above alkali carbonates may be used in the present composition with sodium bicarbonate preferred in an amount of about 37.5% by weight. Sodium bicarbonate is relatively insensitive to moisture and therefore pro-vides adequate shelf life.
Allcaline builders may also be used as a component of the alkali carbonate constituent for the composition of the present invention. Suitable alka-line builders include sodium silicate, sodium disili-cate, sodium tripolyphosphate, tetrasodium pyrophosphate, disodium hydrogen orthophosphate, trisodium orthophosphate, sodium metaborate, sodium tetraborate sodium metasilicate, tetrapotassium pyrophosphate, tripotassium orthophosphate, sodium metasilicate and potassium metasilicate. The above alkaline builders impart effective detergent properties to the composition of the present invention. Sodium metasilicate and trisodium phosphate are the preferred ~3~7~

alkaline builders. These builders add penetrating power to the cleaner and aid in the emulsification of fats, oils, and greases often Found in the waste dis-poser chamber. These builders suspend the fats, oils and greases as fine particles which are then easily washed away. Sodium metasilicate also aids in corro-sion inhibition of the sensitive metals and inner parts of the disposer unit.
Surfactants that may be employed are anionics, amphoterics and nonionics either alone or in various combinations. The surfactant constituent is present in the range of from about 5 to about 75~ by weight in the composition of the present invention, and is preferably present in the range of 20 to 50% by weight. Suitable alkyl ether sulfates that may be employed are sodium coconut alkyl sulfate, potassium coconut alkyl sulfate, potassium lauryl sulfate, sodium lauryl sulfate, sodium yellow fatty alcohol ether sulfates, tallow fatty alcohol ~25 ethylene oxide), tallow fatty ether sulfate, sodium dodecyl benzene sulfonate, sodium stearyl sulfate, sodium palmityl sulfate, sodium decyl sulfate, sodium myristyl sulfate, sodium dodecyl sulfate, potassium dodecyl benzene sulfonates, potassium stearyl sulfate, potassium palmityl sulfate, potassium decyl sulfate, potassium myristyl sulfate, and potassium dodecyl sulfate. Other examples of surfactants that may be used are taurates, sarcosinates, isethionates, alkyl beta-alanines, cycloimides, sulfated ethoxylated fatty alcohols, alpha-olefin sulfonates (AOS), linear alkylbenzene sulfonates (LAS). The preferred surfactant is sodium lauryl sulfate which is available under the trade designation Stepanol WA-100 and Stepanol ME-Dry avail-able from the Stepan Chemical Company, Mayprofix 563 available from the Onyx Chemical Company, Texapon ZHC

powder available from Henkel Corp. and Concosulfate WR
available from the Continental Chemical Company.
Sodium lauryl sulfate is available in a dry form and has very yood detergency, wetting, vast foaming and emulsifying properties. It is particularly effective as a detergent on grease, and has a maximum effect when used in conjunction with inorganic builders such as tetra-sodium pyrophosphate, trisodium phosphate or sodium metasilicate. Because sodium lauryl sulfate is a dry powder, it has a very large surface area and it easily reacted in the acid-base reaction with hot water to form a dense foam. The sodium lauryl sulfate coates the C02 bubbles created by the acid base reaction and is thus easily carried up the walls of the disposer unit by the action of the acid/base reaction and stays suspended because of its high foam activity. Sodium lauryl sulfate is relatively non-toxic and readily biodegradable. Another preferred surfactant is alpha olefinsulfonate (AOS) such as that known under the trade mark ~loterge AS-9OB
available from the Stepan Chemical Company. Alpha-olefinsulfonate is a biodegradable surfactant and is designed to give maximum effectiveness and compatibi-lity with oiler surfactants in light or heavy duty detergent compositions. Alpha-olefinsulfonate exhibits excellent wetting, foaming, and detersive properties in both alkaline and acid media. It also performs well in the presence of metallic salts commonly found in hard water. The alpha-olefinsulfonate is added to the composition of the present invention to provide increased detergency as a foam booster. The above surfactants may be used alone or in combination.
Phosphate surfactants could also be used in the composition of the present invention, but are not desirable because of their adverse ecological con-sequences.

~,3t~

The aeid/base reaction provides the meehanism for maintaining a foam wall in the chamber of the dis-poser unit. When adipie acid and sodium bicarbonate, the preferred aeid and alkali ingredients, eome into contact with water in the disposer unit the following chemical reaction takes place:

HOOC (CH2)4 COOH + NaHCO3 + H2O
Adipic aeid + Sodium -I Water Bicarbonate C2 + H2O NaOOC (CH2) COONa Carbon + Water + Sodium salt of Adipic Acid Dioxide Gas It is the release of the carbon dioxide gas that aets with the surfaetants present in the eomposition and the grinding aetion of the disposer unit to build a heavy foam and expand to fill the chamber and emerge through the baffle into the sink.
Other ingredients may be added to the eompo-sition of the present invention to provide other desir-able features. For example, halogen eontaining com-pounds, preferably ehlorine-eontaining eompounds, may be employed in the surfaetant-alkali-aeid blend to provide better germicidal properties than the blend alone. Suitable halogenated eompounds may be found in the following general chemical groups: alkali metal and alkaline earth metal hypoehlorites, hypochlorite addition produets, ehloramines, chlorimines, chloramides, ehlorimides, heteroeyelie N-Bromo and N-Chloro eyanurates, halogenated hydantoins, halogenatedmelamines, and inorganie hypohalite releasing agents.
Speeifie examples of some halogenated bactericides that could be used are: monobasic ealcium hypoehlorite, dibasie magnesium hypochlorite, chlorinated -trisodium ~2;3~71~

phosphate dodecahydrate, potassium dichloroisocyanurate, trichlorocyanuric acid, sodium dichloroisocyanurate, sodium dichloroisocyanurate dihydrate, 1, 3-dichloro 5, 5-dimethyl hydantoin, N-chlorosulfamide, chloramine T, dichloramine T,chloramine B, dichloramine B, tribromoisocyanuric acid, dibromocyanuric acid, N-monobromo-N-mono~chlorocyanuriC
acid, N-monobromo-N, N-dichlorocyanuric acid, N-brominated succinamide, malonimide, phthalimide and naphthalimide, N-chlorinated succinimide, malonimide, phthalimide, and naphlhalimide, 1,3-dibromo 5, 5-dimethyl hydantoin, 1,3-dibromo and 1, 3-dichloro-5-isobutyl hydantoin, 1,3-dibromo and 1, 3 dichloro-5-methyl-5-ethylhydantoin, tribromomelamine, trichloromelamine, lithium hypochlorite, calcium hypochlorites, and calcium hypobromites. The halogen containing compounds reduce odor causing bacteria and are preferably present in the composition within a range of from about 0.1% to about 1.0~ by weight and preferably about 0.4% by weight. Chloramine T
available under the trade mark Cillorazene from Wisconsin Pharmacal Company, and sodium dichloroisocyanurate dihydrate available under the trade mark CDB Clearon from FMC Corporatlon are the preferred halogen containing germicides.
Other ingredients that may be added to the surfactant-alkali~acid blend includes colors and/or fragrances. Colors that might be used are those food dyes and colorings usually employed in the food and drug industry. Examples of these are F D & C Blue #1, F D & C Yellow #5 and F D & C Red #~0. The preferred color is F D & C Blue #l which is a water soluble blue dye that provides an attractive clear blue color to the foam produced by the present invention. The coloring is generally present in an amount of about 0.05~ by weight I.

_9_ ~'7~

Fragrances that may be used are any suitable acid/base stabilized fragrance associated with the desirable end results. Examples of such fragrances could be lemon, citrus or pine. Wet lemon fragrance is preferred and is present in the amount of about 1.0% by weight since it is a stable, easily blended fresh scent that leaves the unit and sink with a pleasant smell after treatment with the composition of the present invention.
Abrasive particles in the range of 1-250 micrometers may also be incorporated into the formula for added physical cleaning Suitable abrasives are:
quartz, pumice, pumicite, silica sand, calcium carbonate, calcium phosphate, zirconium silicate, and diatomaceous earth. Diatomaceous earth is preferred.
The range of abrasive materials possible are used in percentages from 1.0 to 15.0%. Example VII uses 11.15%
of Diatomaceous Earth.
The composition of the present invention is preferably a powder packaged in a moisture resistant foil laminate pouch or packet which would consist of a paper laminated to plastic or synthetic materials.
Preferably, the dry powder composition would be packaged int:o a water soluable, biodegradable disposable ilm which in turn would be wrapped with a foil pouch to prevent moisture damage. The foil pouch would be opened by a consumer and the entire water soluable pouch containing the composition of the present invention would then be dropped into the unit where it would be disintegrated within the garbage disposer.
In use, a consumer would first run hot water from a faucet at approximately 90-140F, preferrably about 110F, into a sink and through the food~receiving chamber of a garbage disposer unit for about one I

_g_ 7 OL~O
minute. Water exiting from a residential kitchen faucet typically flows at a rate of about 0.5 to about 4.0 gal min. depending upon altitude and municipal or well water pressure. The hot water from the faucet would then be reduced to just a trickle, i.e. between about 0.05 to about 0.25 gal./min., and allowed to run into the sink, but not directly into the disposer. The packet containing the composition of the present inven-tion would then be pushed through the rubber baffle in the sink or poured through the drain into the disposer chamber. The disposer would then be turned on and allowed to run until the cleaning cycle is completed, i.e. approximately 3 to 5 minutes. The end of the cleaning cycle is signaled by a swoosh or swish of water and all evidence of foaming will be absent. The water and disposer are then turned off.
The invention is further described in the following examples.

Fxample 1 20% by wt grams 41.60 % 25.0 adipic acid 41.60 25.00 sodium bicarbonate 8.32 5.00 ~acconal 90-F (Stepan Co.) (Sodium Dodecyl benzene sulfonate)
2~8.32 5.00 Bioterge AS-90 B (Stepan Co.) (a trade mark for Sodium Dodecyl benzene sulfonate) 0.08 0.0~ Pine Fragrance, I.T. Corp. L464800 0.08 0.0~ MG~ Reodorant (~.cLaughlin, Gormley, King) 30100.00 60.1 gm net weight ~7~
Example II
% by wt grams 28.8 14.40 adipic acid 28.8 14.4C Sodium bicarbonate 5 28.8 14.40 Sod.ium lauryl sulfate (supplied under the trade mark Stepanol l~lE-Dry) 9.71 4.855 Sodium C 14-16 alpha olefin sulfonate (Bioterge AS-90B)
3.81 1.905 Sodium metasilicate .05 0.025 Dry lemon fragrance .03 0.015 F D C Blue $1 100.00 50.0 gm net weight _____________________________ Example III
96 by wt grams 15 33.30 25.0 Adipic Adic 33.30 25.0 Sodium Bicarbonate 13.3 10.0 Calcium carbonate 13.3 10.0 sodium lauryl sulfate 6.8 5.0 sodium metasilicate 20 lOOoO 75.0 gm net weight ______________________________ Example IV
% by wtgrams 29.65 11.86 Adipic Acid 29.65 11.86 Sodium bicarbonate 2, 29.65 11 86 Stepanol ME Dry 10.00 4.00 ~ioterge AS-90-1.00 0.40 Fragrance I.T. Cor?. ~469970 0.05 0.02 F D & C Blur rl 100.00 40.0 gm net weigh' ___________________________________ ~L~3~ 0 E~amp1e V
by wt grams 32.00 24.0 Sodium Bicarbonate 32.00 24.0 adipic acid 56~o7 5.00 sodium lauryl sulfate 13.33 10.00 Bioterge AS-9OB
13.27 9.95 abrasive, Diatomaceous earth 1.33 1.00 CDB Clearon (sodium dichloroiso-cyanurate dihydrate) 100.07 0.05 F D C Blue l 1.33 1.00 Fragrance 100.00 75.00 gm net wt Example VI
by wt grams 1536.50 14.6 sodium bicarbonate 36.50 14.6 adipic acid 15.00 6.0 sodium lauryl sulfate 10.00 4.0 Bioterge AS-90B
0.95 0.38 Fragrance 201.00 0.40 C D B Clearon 05 0.02 F D & C Blue #l 100.00 40.00 gm net wt Example VII
by wt grams 2526.35 11.86 adipic acid 26.35 11.86 sodium bicarbonate 26.35 11.86 stepanol YE Dry 8.88 4.00 Bioterge AS-90-B
0.88 0.40 Fragrance I.T. Corp H 469970 300.04 0.02 F D & C Blue # 1 11 15 5.02 Diatomaceous earth 100.00 45.00 gm net wt.
The following test was conducted to determine the eEficiency of the surfactant-acid-alkali blend in cleaning and degreasing a disposer unit. Animal lard was spread on a set area inside the garbage disposer.
The lard was colored with food coloring to better ob-~,~
-12~

?~3~f~.~

serve cleaning action. The area spread with lard was approximately 3 in. by 0.75 in. and was approximately 0.1 to 2.0 millimeters thick. ALl formulas of Examp]es I - VI worked well to remove the lard with Examples IV
and VI working best.
The present invention thus provides a composition for cleaning, degreasing and sanitizing garbage disposer units. The composition includes one or more surfactants, an alkali carbonate and an acid.
Germicidal ingredients, abrasives, fragrances and/or colors may also be added to the blend as desired.

Claims (10)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
I claim:
1. A composition for cleaning a garbage disposer unit, comprising:
about 37.5% by weight sodium bicarbonate;
about 37.5% by weight adipic acid; and about 25% by weight of a mixture of about 5-95% by weight sodium lauryl sulfate and about 95-5% by weight alpha-olefinsulfonate.
2. The composition of claim 1, further including 0.1 to 1.0% by weight of a chlorine containing compound as a bactericidal agent.
3. The composition of claim 2, wherein said bactericidal agent is selected from the group consisting of p-toluenesulfonchloramide and sodium dicloroisocyanurate dihydrate.
4. The composition of claim 1, wherein said mixture comprises about 60% by weight sodium lauryl sulfate and about 40% by weight alpha-olefinsulfonate.
5. A method of cleaning a food-receiving chamber of a garbage disposer unit, comprising the steps of:
passing water at a rate of about 0.5 to about 4.0 gal./min. and at a temperature of between about 90°F. to about 140°F. through said chamber for about one minute;
reducing the flow of water through said chamber to between about 0.05 to about 0.25 gal./min.;
introducing a container containing a cleaning composition comprising 5-75% by weight of an alkali carbonate, 5-75% by weight of an acid and 5-75% by weight of one or more surfactants into said chamber;
actuating said disposer unit for about 3 to about 5 minutes to shred said container and release said composition within said chamber so that said composition reacts with said water to effervesce and coat the surfaces of said chamber; and deactuating said disposer unit after foaming of said composition is completed.
6. A method of cleaning a food-receiving chamber of a garbage disposer unit, comprising the steps of:
introducing water into said chamber including the steps of passing water at a rate of about 0.5 to about 4.0 gal./min. and at a temperature of between about 90°F. to about 140°F. through said chamber for about one minute, and thereafter reducing the flow of water through said chamber to between about 0.05 to about 0.25 gal./min.;
introducing a cleaning composition comprising 5-75% by weight of an alkali carbonate, 5-75% by weight of an acid, and 5-75% by weight of one or more surfactants into said chamber;
actuating said disposer unit for about 3 to 5 minutes so that said composition reacts with said water to effervesce and produce sufficient foam to fill the chamber and coat the wall surfaces of said chamber, said foam temporarily plugging the outlet of the disposer chamber in order to maintain said foam in said chamber to provide sufficient foam contact time with the wall surfaces of the chamber to effectively clean and degrease the chamber; and deactuating said disposer unit after foaming of said composition is completed.
7. The method of claim 6, wherein said cleaning composition is contained in a packet which is introduced along with said composition into said chamber and disintegrates upon actuation of said disposer unit into fragments which aid in scrubbing the wall surfaces of the chamber.
8. A product for cleaning a food-receiving chamber of a garbage disposer unit, comprising:

a cleaning composition including 5-75% by weight of an alkali carbonate, 5-75% by weight of an acid, and 5-75% by weight of one or more surfactants, said cleaning composition comprises about 37.5% by weight sodium bicarbonate, about 37.5% by weight adipic acid, and about 25% by weight of a mixture of about 5-95% by weight sodium lauryl sulfate and about 95-5% by weight alpha-olefinsulfonate; and a packet containing said cleaning composition composed of a biodegradable, disposable material that disintegrates upon actuation of said disposer unit into fragments which aid in scrubbing the wall surfaces of the disposer cleaner.
9. The product of claim 8, wherein said packet is composed of paper.
10. The product of claim 8, wherein said packet is composed of a water soluable film which solubilizes only after a predetermined period of time.
CA000479620A 1984-04-20 1985-04-19 Disposer cleaner Expired CA1237040A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60354484A 1984-04-20 1984-04-20
US603,544 1984-04-20

Publications (1)

Publication Number Publication Date
CA1237040A true CA1237040A (en) 1988-05-24

Family

ID=24415886

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000479620A Expired CA1237040A (en) 1984-04-20 1985-04-19 Disposer cleaner

Country Status (1)

Country Link
CA (1) CA1237040A (en)

Similar Documents

Publication Publication Date Title
US4619710A (en) Disposer cleaner
AU2014277247B2 (en) Device for dispensing an active-substance preparation into a toilet bowl
US5630883A (en) Method of cleaning drains utilizing halogen-containing oxidizing compound
US20020061831A1 (en) Effervescent toilet bowl sanitizer tablet
EP0013043A1 (en) Method of treating a flush toilet with separate hypochlorite/dye dispensers and article for placement in the flush tank
US5931172A (en) Method of cleaning drains utilizing foaming composition
BRPI1012851A2 (en) spherical toilet cleaner blocks, method for their production, and cleaning carrier comprising spherical toilet cleaner blocks
US4420412A (en) Activation of hypochlorite bleaching of dyes
US6732747B2 (en) Composition and method for cleaning and disinfecting a garbage disposal
ES2365739T3 (en) COMBINATION OF AROMATIC SUBSTANCES CONTAINING 3,7-DIMETILOCT-6-ENO-NITRILE (CITRONELIL NITRILE) AS A SUBSTITUTE FOR GERANONITRILE.
JP6664884B2 (en) Bleaching detergent composition and method for suppressing temperature rise
GB2157705A (en) Cleaning composition for waste-disposer
CA2303266C (en) Method of disinfecting and inhibiting mold and mildew growth on non-porous hard surfaces
JPH0429720B2 (en)
CA1237040A (en) Disposer cleaner
JPS59164399A (en) Foamable hard surface detergent composition
JP6960902B2 (en) Cleaning method using drain pipe cleaning container, drain pipe cleaning kit, and drain pipe cleaning container
US6035869A (en) Dish-washing method
JPH0429719B2 (en)
CN104479932A (en) Multifunctional toilet cleaning effervescent tablets
CN101586059A (en) Preparation method of plastic product cleaning agent
JPH07173496A (en) Detergent composition for bath heater and drainpipe
RU2080364C1 (en) Detergent for cleaning solid surface
JPH02140300A (en) Cleaning tablet
JPH0987679A (en) Detergent composition for drain pipe

Legal Events

Date Code Title Description
MKEX Expiry