CA1221284A - Convection section ash monitoring - Google Patents
Convection section ash monitoringInfo
- Publication number
- CA1221284A CA1221284A CA000447761A CA447761A CA1221284A CA 1221284 A CA1221284 A CA 1221284A CA 000447761 A CA000447761 A CA 000447761A CA 447761 A CA447761 A CA 447761A CA 1221284 A CA1221284 A CA 1221284A
- Authority
- CA
- Canada
- Prior art keywords
- heat exchange
- heat
- gas stream
- temperature
- exchange surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012544 monitoring process Methods 0.000 title description 7
- 230000004907 flux Effects 0.000 claims abstract description 41
- 230000005855 radiation Effects 0.000 claims abstract description 23
- 239000004071 soot Substances 0.000 claims abstract description 23
- 238000004140 cleaning Methods 0.000 claims abstract description 19
- 230000004044 response Effects 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 230000003213 activating effect Effects 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 4
- 230000006872 improvement Effects 0.000 claims description 3
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000009529 body temperature measurement Methods 0.000 claims 7
- 230000008859 change Effects 0.000 claims 1
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 239000007787 solid Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 43
- 239000002956 ash Substances 0.000 description 26
- 230000035508 accumulation Effects 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 6
- 239000003245 coal Substances 0.000 description 6
- 238000007664 blowing Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 239000000567 combustion gas Substances 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000010883 coal ash Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
- F23J3/02—Cleaning furnace tubes; Cleaning flues or chimneys
- F23J3/023—Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Incineration Of Waste (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
Fouling of the convection section of a steam generator by ash or other solid deposit from the product gas stream is monitored using radiation pyrometers which determine the temperature drop across a bank of heat exchanger tubes and calculation therefrom of a fouling factor related to the degree of fouling. Soot blowers are actuated, in manual response or automatic response, to the fouling factor, to effect cleaning of the heat exchanger tubes. Heat flux meters also may be provided to determine variations in the degree of fouling transverse to the flow of the gas stream and the determinations may be used to actuate selective cleaning of parts of the tube bank.
Fouling of the convection section of a steam generator by ash or other solid deposit from the product gas stream is monitored using radiation pyrometers which determine the temperature drop across a bank of heat exchanger tubes and calculation therefrom of a fouling factor related to the degree of fouling. Soot blowers are actuated, in manual response or automatic response, to the fouling factor, to effect cleaning of the heat exchanger tubes. Heat flux meters also may be provided to determine variations in the degree of fouling transverse to the flow of the gas stream and the determinations may be used to actuate selective cleaning of parts of the tube bank.
Description
1 ~2~
CONVECTION SECTION ASH MONITORING
The present invention relates to the monitoring and control of ash build up in the convection section of a steam generator.
In the operation of a pulverized coal-fired boiler, a significant fraction of the ash contained in the coal is deposited on the water walls of the combustlon chamber and on the heat exchange tubes of the convection section of the boiler. The ash deposits have a low thermal conductivity, modify the radiative properties of the surfaces and insulate the tubes from the flame and from the combustion gases. These effects interfere with the efficient gas-to-tube heat transfer to both the furnace walls and the convection section tubes.
In U.S. Patent No. 4,408,568 which is assigned to the applicant herein, there is described a method of monitoring the build up of ash on the inside walls of a coal-fired boiler by simultaneously determining the actual heat flux present in the boiler and the heat flux reaching the walls of the boiler, and determining the difference in heat flux value as a measure of the build up of ash on the inside walls. The signal indicative of the degree of furnace fouling may be used by a furnace operator as a determination for initiation of soot blower operation and/or other furnace control action, or may be utilized for automatic initiation of soot blower operation or other boiler control.
In the convection section of the steam generator, heat is removed from the combustion gas stream by convection and conduction through the walls of tubes contacted by the gas stream and through which steam flows. Usually banks of heat transfer tubes are provided which are serially contacted by the flowing gas stream. The function of the convection section usually includes superheating pressurized steam prior to passage to a turbine driven by the steam to produce power, and re-heating of low-pressure steam returned from the '~:
- , ~ ' ~
:
,
CONVECTION SECTION ASH MONITORING
The present invention relates to the monitoring and control of ash build up in the convection section of a steam generator.
In the operation of a pulverized coal-fired boiler, a significant fraction of the ash contained in the coal is deposited on the water walls of the combustlon chamber and on the heat exchange tubes of the convection section of the boiler. The ash deposits have a low thermal conductivity, modify the radiative properties of the surfaces and insulate the tubes from the flame and from the combustion gases. These effects interfere with the efficient gas-to-tube heat transfer to both the furnace walls and the convection section tubes.
In U.S. Patent No. 4,408,568 which is assigned to the applicant herein, there is described a method of monitoring the build up of ash on the inside walls of a coal-fired boiler by simultaneously determining the actual heat flux present in the boiler and the heat flux reaching the walls of the boiler, and determining the difference in heat flux value as a measure of the build up of ash on the inside walls. The signal indicative of the degree of furnace fouling may be used by a furnace operator as a determination for initiation of soot blower operation and/or other furnace control action, or may be utilized for automatic initiation of soot blower operation or other boiler control.
In the convection section of the steam generator, heat is removed from the combustion gas stream by convection and conduction through the walls of tubes contacted by the gas stream and through which steam flows. Usually banks of heat transfer tubes are provided which are serially contacted by the flowing gas stream. The function of the convection section usually includes superheating pressurized steam prior to passage to a turbine driven by the steam to produce power, and re-heating of low-pressure steam returned from the '~:
- , ~ ' ~
:
,
2 ~z~
high-pressure side of the turhine, prior to recycle to the low-pressure side of the turbine.
As noted above, ash deposition also can occur on the tubes in the convection section of the boiler. At present, no direct means is being provided for assessing the amount of ash being deposited in the convection section and the degree to which the deposit has decreased the ability of the heat exchange surfaces to transfer the heat from the gas phase to the steam.
Ash deposition, moreover, may occur unevenly.
Across one particular horizontal plane of a tube bank, there may occur more fouling in one side or corner than in another, causing an uneven distribution of gas flow, usually called channelling. In the present manner of operating steam generators, there is provided no means to identify the degree of unevenness of the fouling.
An operator relies on a number of indirect signals and the occasional visual inspection to determine when to operate soot blowers to remove accumulations of deposited ash from the tubes in the convection section. The lack of more direct information has led to inefficiencies, upsets in control leading to - non-steady operation, and occasionally catastrophic fouling necessitating shutdown. In addition, there is considerable needless or excessive soot blowing of convection section tubes which are actually clean. Soot blowing erodes the heat-exchange tubes, so that much need~ess soot blowing is detrimental and costly.
There are diagnostic systems being marketed which are based on measuring the conditions at the exit of the boiler. These systems permit only an indirect measure of fouling and, since response times are long, the signals are generally inadequate to achieve satisfactory control.
There is a need, therefore, to provide a direct means of measuring ash build up in the convection section of steam generators, so that boiler operation can be improved.
.
.
,
high-pressure side of the turhine, prior to recycle to the low-pressure side of the turbine.
As noted above, ash deposition also can occur on the tubes in the convection section of the boiler. At present, no direct means is being provided for assessing the amount of ash being deposited in the convection section and the degree to which the deposit has decreased the ability of the heat exchange surfaces to transfer the heat from the gas phase to the steam.
Ash deposition, moreover, may occur unevenly.
Across one particular horizontal plane of a tube bank, there may occur more fouling in one side or corner than in another, causing an uneven distribution of gas flow, usually called channelling. In the present manner of operating steam generators, there is provided no means to identify the degree of unevenness of the fouling.
An operator relies on a number of indirect signals and the occasional visual inspection to determine when to operate soot blowers to remove accumulations of deposited ash from the tubes in the convection section. The lack of more direct information has led to inefficiencies, upsets in control leading to - non-steady operation, and occasionally catastrophic fouling necessitating shutdown. In addition, there is considerable needless or excessive soot blowing of convection section tubes which are actually clean. Soot blowing erodes the heat-exchange tubes, so that much need~ess soot blowing is detrimental and costly.
There are diagnostic systems being marketed which are based on measuring the conditions at the exit of the boiler. These systems permit only an indirect measure of fouling and, since response times are long, the signals are generally inadequate to achieve satisfactory control.
There is a need, therefore, to provide a direct means of measuring ash build up in the convection section of steam generators, so that boiler operation can be improved.
.
.
,
3 ~2~
In accordance with the present invention, the temperature of a flowing hot gas stream passing over heat exchange surfaces removing heat from the gas stream at two spaced-apart locations in the flowing gas stream is directly measured. The temperature difference between the two locations is determined from these direct measurements and the temperature difference may be used as a measure of the build up of ash on heat exchange surfaces between the two locations.
The measure of the build up of the ash or the degree of fouling may be used to determine a fouling factor which, in time, is used to effect cleaning of the heat exchange surfaces in response to predetermined values of the fouling factor, thereby to control the build up of ash on the heat exchange surfaces.
In accordance with one aspect of the present invention, therefore, there is provided a method of controlling a steam generator, which comprises combusting fuel in a furnace section of the steam generator to form a flowing hot gas stream which flows out of the furnace section into a convection section of the steam generator, which convection section contains heat exchange surfaces; flowing the hot gas stream through the convection section over and in contact with ~: 25 the heat exchange surfaces therein, thereby to heat steam flowing within the surfaces; directly measuring the temperature of the gas stream at two locations in the convection section spaced-apart in the direction of flow of the gas stream and between which is located a : 30 selected number of the heat exchange surfaces in the convection section, calculating the difference in temperature between the two locations as a measure of the build-up of ash on the selected number of heat exchange surfaces in the convection section; and activating cleaning of the selected number of heat-exchange surfaces in response to a predetermined level of build-up of ash.
The direct determination of temperature may be effected in any convenient manner, preferably with . .
'' ~
,:~
',, ,., ' , , '
In accordance with the present invention, the temperature of a flowing hot gas stream passing over heat exchange surfaces removing heat from the gas stream at two spaced-apart locations in the flowing gas stream is directly measured. The temperature difference between the two locations is determined from these direct measurements and the temperature difference may be used as a measure of the build up of ash on heat exchange surfaces between the two locations.
The measure of the build up of the ash or the degree of fouling may be used to determine a fouling factor which, in time, is used to effect cleaning of the heat exchange surfaces in response to predetermined values of the fouling factor, thereby to control the build up of ash on the heat exchange surfaces.
In accordance with one aspect of the present invention, therefore, there is provided a method of controlling a steam generator, which comprises combusting fuel in a furnace section of the steam generator to form a flowing hot gas stream which flows out of the furnace section into a convection section of the steam generator, which convection section contains heat exchange surfaces; flowing the hot gas stream through the convection section over and in contact with ~: 25 the heat exchange surfaces therein, thereby to heat steam flowing within the surfaces; directly measuring the temperature of the gas stream at two locations in the convection section spaced-apart in the direction of flow of the gas stream and between which is located a : 30 selected number of the heat exchange surfaces in the convection section, calculating the difference in temperature between the two locations as a measure of the build-up of ash on the selected number of heat exchange surfaces in the convection section; and activating cleaning of the selected number of heat-exchange surfaces in response to a predetermined level of build-up of ash.
The direct determination of temperature may be effected in any convenient manner, preferably with . .
'' ~
,:~
',, ,., ' , , '
4 ~
radiation pyrometers, although clean heat flux meters sighting through openings in the wall confining the hot gas stream may be used.
In one embodiment of the present invention, there is provided a method of determining the amount and distribution of ash build up in the convection section of a steam generator by using a combination of radlation pyrometers or suitable substi-tutes and heat flux meters of suitable substitutes. The radiation pyrometers or suitable substitutes measure the difference in gas temperatures across a bank of heat exchanger tubes in the convection section while the heat flux meters or suitable substitutes monitor the channelling of the gases caused by uneven ash buildup.
The radiation pyrometer is focussed on the gas space between tube banks. The reading of the pyrometer is corrected for changes in the emissivity of the gas stream caused by varying concentrations of water vapour, carbon dioxide and coal ash particulates in the gas stream. The corrections are conveniently calculated continuously and on-line, using a dedicated mini- or micro-computer, which monitors the pyrometer reading as well as the coal and air throughput rates and ash contents. By using two pyrometers, located across one tube bank, the decrease in the gas temperature in the bank is measured. The steam flow rate and its temperature drop across the same tube bank, which routinely are measured in the operation of modern steam generators, also are fed to the computer. Using the latter information together with the gas temperature -drop determined by the pyrometers, the computer continuously calculates a fouling factor (RF), as described in more detail below. The fouling factor is uniquely proportional to the degree of fouling of the tube bank, and its value may be displayed, either numerically or visually, such as, in the form of a colour-coded diagram, on a monitor screen. The value also may be recorded on any convenient medium.
' 3B
, . ' ' .
.
radiation pyrometers, although clean heat flux meters sighting through openings in the wall confining the hot gas stream may be used.
In one embodiment of the present invention, there is provided a method of determining the amount and distribution of ash build up in the convection section of a steam generator by using a combination of radlation pyrometers or suitable substi-tutes and heat flux meters of suitable substitutes. The radiation pyrometers or suitable substitutes measure the difference in gas temperatures across a bank of heat exchanger tubes in the convection section while the heat flux meters or suitable substitutes monitor the channelling of the gases caused by uneven ash buildup.
The radiation pyrometer is focussed on the gas space between tube banks. The reading of the pyrometer is corrected for changes in the emissivity of the gas stream caused by varying concentrations of water vapour, carbon dioxide and coal ash particulates in the gas stream. The corrections are conveniently calculated continuously and on-line, using a dedicated mini- or micro-computer, which monitors the pyrometer reading as well as the coal and air throughput rates and ash contents. By using two pyrometers, located across one tube bank, the decrease in the gas temperature in the bank is measured. The steam flow rate and its temperature drop across the same tube bank, which routinely are measured in the operation of modern steam generators, also are fed to the computer. Using the latter information together with the gas temperature -drop determined by the pyrometers, the computer continuously calculates a fouling factor (RF), as described in more detail below. The fouling factor is uniquely proportional to the degree of fouling of the tube bank, and its value may be displayed, either numerically or visually, such as, in the form of a colour-coded diagram, on a monitor screen. The value also may be recorded on any convenient medium.
' 3B
, . ' ' .
.
5 ~ 34 As noted prevlously, uneven fouling causes the flow of the combustion gases to channel in the tube banks. In the preferred embodiment of the invention, heat flux meters are located in critical positions on the water tube walls enclosing the convection section.
In some instances, fouling in this area may be a problem and a suitable alternative to the heat flux meters located on water tube walls is to provide clean flux meters sighted through openings. In other cases, it may be convenient to use thexmocouples protruding into the gas stream.
When the heat flux monitored by one of these meters reads significantly lower and/or higher than the average for a particular level in the bank, this indicates an unevenly-fouled tube bank and this information also may be displayed, either numerically or visually, on a monitor screen, and, if desired, recorded on any convenient medium.
The steam generator operator uses the fouling factor and gas channelling information to determine periodic and selective operation of soot blowers to remove accumulations of ash from selected convection section banks, for optimum operating results and minimum tube erosion. Alternatively, the signals may be used to effect automatic actuation of soot blowers when a particular RF value is recorded for a particular bank of heat-exchange tubes. The channelling signal may be used to override the command or to actuate selective soot ; blower operation and thereby prevent needless blowing and the resulting tube erosion and steam loss.
The present invention, in another aspect, ; provides an improvement in a steam generating apparatus comprising a combustion section wherein fuel is burned in an air stream to generate heat and to produce a hot combustion products gas stream, a convection section connected to the combustion section by conveying passage means to permit the flow of the hot combustion products gas stream from the combustion section to the convection ; section, and heat exchange tubes located in the B
.
In some instances, fouling in this area may be a problem and a suitable alternative to the heat flux meters located on water tube walls is to provide clean flux meters sighted through openings. In other cases, it may be convenient to use thexmocouples protruding into the gas stream.
When the heat flux monitored by one of these meters reads significantly lower and/or higher than the average for a particular level in the bank, this indicates an unevenly-fouled tube bank and this information also may be displayed, either numerically or visually, on a monitor screen, and, if desired, recorded on any convenient medium.
The steam generator operator uses the fouling factor and gas channelling information to determine periodic and selective operation of soot blowers to remove accumulations of ash from selected convection section banks, for optimum operating results and minimum tube erosion. Alternatively, the signals may be used to effect automatic actuation of soot blowers when a particular RF value is recorded for a particular bank of heat-exchange tubes. The channelling signal may be used to override the command or to actuate selective soot ; blower operation and thereby prevent needless blowing and the resulting tube erosion and steam loss.
The present invention, in another aspect, ; provides an improvement in a steam generating apparatus comprising a combustion section wherein fuel is burned in an air stream to generate heat and to produce a hot combustion products gas stream, a convection section connected to the combustion section by conveying passage means to permit the flow of the hot combustion products gas stream from the combustion section to the convection ; section, and heat exchange tubes located in the B
.
6 ~ 4 convection section transverse to the intended direction of gas flow thxough the convection section so as to contact the hot combustion products gas stream and having steam of temperature lower than that of the hot combustion products gas stream passing therethrough, the heat exchange tubes being arranged in a plurality of banks of the heat exchange tubes.
The improvement comprises:
a temperature detection means pro~ided upstream ` 10 of each bank of heat exchange tubes and downstream of the last bank to determine the fall in temperature across each bank, each of the temperature detection means being capable of directly measuring the temperature of the hot combustion products gas stream at the locations of the temperature detection means; means for on-line calculation of a fouling factor (RF):for : each the bank of heat exchange tubes from the difference in temperature thereacross determined by the temperature detection means; and means for activating soot blowers ~: : 20 to effect cleaning of a selected bank of heat exchange tubes in response to a predetermined value of the fouling factor for the selected bank.
The invention is described further, by way of illustration, with reference to the accompanying ; 25 drawings, wherein:
Figure l is a schematic representation of a typical coal-fired steam generator to which the present ~; invention is directed;
: Figure 2 is an elevational view of a bank of convection section heat exchanger tubes modified in accordance with a preferred embodiment of the invention;
: and Figure 3 is a plan view of the bank of convection section heat exchange tubes of Figure 2.
Referring to the drawings, Figure l illustrates schematically a coal-fired boiler lO. Pulverized coal and air are fed through burners 12 into the firing ~ chamber 14 of the boiler lO. ~s is well known, the : furnace walls 16 are comprised of a plurali.ty of
The improvement comprises:
a temperature detection means pro~ided upstream ` 10 of each bank of heat exchange tubes and downstream of the last bank to determine the fall in temperature across each bank, each of the temperature detection means being capable of directly measuring the temperature of the hot combustion products gas stream at the locations of the temperature detection means; means for on-line calculation of a fouling factor (RF):for : each the bank of heat exchange tubes from the difference in temperature thereacross determined by the temperature detection means; and means for activating soot blowers ~: : 20 to effect cleaning of a selected bank of heat exchange tubes in response to a predetermined value of the fouling factor for the selected bank.
The invention is described further, by way of illustration, with reference to the accompanying ; 25 drawings, wherein:
Figure l is a schematic representation of a typical coal-fired steam generator to which the present ~; invention is directed;
: Figure 2 is an elevational view of a bank of convection section heat exchanger tubes modified in accordance with a preferred embodiment of the invention;
: and Figure 3 is a plan view of the bank of convection section heat exchange tubes of Figure 2.
Referring to the drawings, Figure l illustrates schematically a coal-fired boiler lO. Pulverized coal and air are fed through burners 12 into the firing ~ chamber 14 of the boiler lO. ~s is well known, the : furnace walls 16 are comprised of a plurali.ty of
7 ~z~
parallel tubes wherein steam is generated for feed to a steam collection system (not shown).
Combustion gases pass upwardly into the convection section 18 of the boiler 10. The convection section 18 contains banks 20 and 22 of heat exchange tubes through which steam is passed to effect superheating and reheating in known manner. The combustion yases next pass over an economizer 24 and an air heater lnot shown) before being exhausted to atmosphere by line 26.
During operation of the boiler 10, ash and slag deposit on the furnace walls 16 and also on heat exchanger banks 20 and 22, sticking to the tubes and decreasing heat absorption across those surfaces and otherwise causing operating difficulties. Soot blowers (not shown in Figure 1) are located throughout the boiler 10 for actuation to remove accumulations of deposits from heat exchanger tube surfaces, by directing jets of steam against the accumulations.
As noted previously, in U.S. Patent Mo.
4,408,568, there is described a method of monitoring the build up of ash and other deposits on the furnace walls ~ 16 by utilizing a plurality of flux meters located in ; the walls 16 directly facing the flame.
The present invention is concerned with monitoring of the build up of deposits on the heat exchanger tubes forming the banks 20, 22 and 24 and specific reference now is made to Figures 2 and 3, which are schematic elevational and plan views of a bank 20 of heat exchange tubes.
The structure of the individual banks 28 of heat exchange tubes is entirely conventional and includes a series of tubes which carry steam therethrough and which remove heat from the flowing gas stream 30 through the tube walls to heat the flowing steam.
Horizontally-disposed, retractable soot blowers 32 are associated with the individual banks 28 to effect removal of accumulation of deposits from the tube surfaces.
: B
- ~ ~
,: ,..
. . .
parallel tubes wherein steam is generated for feed to a steam collection system (not shown).
Combustion gases pass upwardly into the convection section 18 of the boiler 10. The convection section 18 contains banks 20 and 22 of heat exchange tubes through which steam is passed to effect superheating and reheating in known manner. The combustion yases next pass over an economizer 24 and an air heater lnot shown) before being exhausted to atmosphere by line 26.
During operation of the boiler 10, ash and slag deposit on the furnace walls 16 and also on heat exchanger banks 20 and 22, sticking to the tubes and decreasing heat absorption across those surfaces and otherwise causing operating difficulties. Soot blowers (not shown in Figure 1) are located throughout the boiler 10 for actuation to remove accumulations of deposits from heat exchanger tube surfaces, by directing jets of steam against the accumulations.
As noted previously, in U.S. Patent Mo.
4,408,568, there is described a method of monitoring the build up of ash and other deposits on the furnace walls ~ 16 by utilizing a plurality of flux meters located in ; the walls 16 directly facing the flame.
The present invention is concerned with monitoring of the build up of deposits on the heat exchanger tubes forming the banks 20, 22 and 24 and specific reference now is made to Figures 2 and 3, which are schematic elevational and plan views of a bank 20 of heat exchange tubes.
The structure of the individual banks 28 of heat exchange tubes is entirely conventional and includes a series of tubes which carry steam therethrough and which remove heat from the flowing gas stream 30 through the tube walls to heat the flowing steam.
Horizontally-disposed, retractable soot blowers 32 are associated with the individual banks 28 to effect removal of accumulation of deposits from the tube surfaces.
: B
- ~ ~
,: ,..
. . .
8 i~
In accordance with this invention, radiation pyrometers 34 are provided at both the upper and lower end of the bank 20 of heat exchanger tubes and also between vertically-adjacent pairs. It is possible to provide a pair of pyrometers 34 for a complete bank of convection section tubes 20 or 22 (or indeed for the economizer 24) or to provide a pair of pyrometers 34 with one individual bank 28 of heat exchange tubes or selected individual banks, depending on the demand of a local situation. Each pyrometer 34 measures the temperature of the gas stream 30 at its location. The pyrome~ers 34 are focussed on the gas stream, usually at the longitudinal centre line of the bank 20 or 22.
The pyrometers 34 may be of the type which is sensitive to the wavelength range where carbon dioxide and water absorb and emit radiation~ To convert the pyrometer signal to a true temperature determination, a correction for the inherent emissivity of the gas space is needed. Emissivity is affected by the percent water, percent carbon dioxide, percent ash in the coal, total air flow, and gas temperature. The correction is accomplished by calculation from the gas phase ; composition. Alternatively, the pyrometers 34 may be of the type which is sensitive to the wavelength range where carbon dioxide and water do not emit and/or absorb radiation. In this case, the signal is usually due to the solid particles in the gas stream and the temperature determination usually is corrected using data for total air flow, percent ash in the coal and feed rate of coal. Usually, the correcting calculations are effected on line by a dedicated computer. Both types of pyrometer may be used, if desired, depending on individual cases, as may pyrometers which are not sensitive to any particular wavelength, but measure total radiation. In still other specific cases, a clean heat flux meter, such as one of the type described in U.S. Patent No. 4,408,568, the disclosure of which is incorporated herein by reference, may be used~ Suitable corrections to the signals are still applied.
: ~.
.
, - :
:
. . .
,
In accordance with this invention, radiation pyrometers 34 are provided at both the upper and lower end of the bank 20 of heat exchanger tubes and also between vertically-adjacent pairs. It is possible to provide a pair of pyrometers 34 for a complete bank of convection section tubes 20 or 22 (or indeed for the economizer 24) or to provide a pair of pyrometers 34 with one individual bank 28 of heat exchange tubes or selected individual banks, depending on the demand of a local situation. Each pyrometer 34 measures the temperature of the gas stream 30 at its location. The pyrome~ers 34 are focussed on the gas stream, usually at the longitudinal centre line of the bank 20 or 22.
The pyrometers 34 may be of the type which is sensitive to the wavelength range where carbon dioxide and water absorb and emit radiation~ To convert the pyrometer signal to a true temperature determination, a correction for the inherent emissivity of the gas space is needed. Emissivity is affected by the percent water, percent carbon dioxide, percent ash in the coal, total air flow, and gas temperature. The correction is accomplished by calculation from the gas phase ; composition. Alternatively, the pyrometers 34 may be of the type which is sensitive to the wavelength range where carbon dioxide and water do not emit and/or absorb radiation. In this case, the signal is usually due to the solid particles in the gas stream and the temperature determination usually is corrected using data for total air flow, percent ash in the coal and feed rate of coal. Usually, the correcting calculations are effected on line by a dedicated computer. Both types of pyrometer may be used, if desired, depending on individual cases, as may pyrometers which are not sensitive to any particular wavelength, but measure total radiation. In still other specific cases, a clean heat flux meter, such as one of the type described in U.S. Patent No. 4,408,568, the disclosure of which is incorporated herein by reference, may be used~ Suitable corrections to the signals are still applied.
: ~.
.
, - :
:
. . .
,
9 ~z~
The pyrometers 34 measure the vertical temperature drop across the bank 28 of heat exchange tubes along the approximate centre line of the bank. As fouling of the individual tubes in the bank 28 occurs, less heat is transferred across the tube surfaces to heat the steam, resulting in a lesser temperature drop between each pair of pyrometers 34. The determined temperature difference preferably is fed to an on-line computer to which also is fed determinations of steam temperature and flow, and data for correction of the pyrometer readings, as noted above.
The relationship which exists in the heat exchanger bank is provided by equation (l):
Q = UA Tlm -(l) where Q is the heat absorbed by the steam and is determined from measurements of temperature and flow rate on the steam side of the tubes, Tlm is the log mean temperature drop across the bank as determined by the radiation pyrometers and thermocouples in the steam lines, A is the area of the surface of the tubes and U
is the effective heat transfer coefficient of the tubes, part oflwhich is contributed by fouling.
The fouling factor (RF) may then be determined from the equation t2):
1 = 1 + 1 + L + RF -(2) where U is the effective heat transfer coefficient determined from equation (l), RF is the fouling factor, (hc)f is the convective heat transfer coefficient on the gas stream side of the tubes, (hC)S is the convective heat transfer coefficient on the steam side of the tubes, and L and k respectively are the thickness and thermal conductivity of the convection section tubes.
The calculations required to be effected using equations (1) and (2) are most effectively done by a computer programmed to receive measured temperatures and flow rates and to calculate U and thence RF. The fouling factor (R~) may be provided to the operator as a numerical value or may be displayed on a monitor screen ` as a part of a graphic representation of the fouliny of B
.
,
The pyrometers 34 measure the vertical temperature drop across the bank 28 of heat exchange tubes along the approximate centre line of the bank. As fouling of the individual tubes in the bank 28 occurs, less heat is transferred across the tube surfaces to heat the steam, resulting in a lesser temperature drop between each pair of pyrometers 34. The determined temperature difference preferably is fed to an on-line computer to which also is fed determinations of steam temperature and flow, and data for correction of the pyrometer readings, as noted above.
The relationship which exists in the heat exchanger bank is provided by equation (l):
Q = UA Tlm -(l) where Q is the heat absorbed by the steam and is determined from measurements of temperature and flow rate on the steam side of the tubes, Tlm is the log mean temperature drop across the bank as determined by the radiation pyrometers and thermocouples in the steam lines, A is the area of the surface of the tubes and U
is the effective heat transfer coefficient of the tubes, part oflwhich is contributed by fouling.
The fouling factor (RF) may then be determined from the equation t2):
1 = 1 + 1 + L + RF -(2) where U is the effective heat transfer coefficient determined from equation (l), RF is the fouling factor, (hc)f is the convective heat transfer coefficient on the gas stream side of the tubes, (hC)S is the convective heat transfer coefficient on the steam side of the tubes, and L and k respectively are the thickness and thermal conductivity of the convection section tubes.
The calculations required to be effected using equations (1) and (2) are most effectively done by a computer programmed to receive measured temperatures and flow rates and to calculate U and thence RF. The fouling factor (R~) may be provided to the operator as a numerical value or may be displayed on a monitor screen ` as a part of a graphic representation of the fouliny of B
.
,
10 ~2~
the convection section, which may be colour-keyed to indicate differing degrees of fouling, to assist the operator in controlling the combustion process.
When the fouling reaches a predetermined level for any particular bank 28, the soot blowers 32 for that bank are actuated, either as a result of operator intervention or by automatic computer-operated actuation, to remove accumulations of deposits from the surfaces of the heat exchange tubes in that bank.
In a preferred embodiment of the invention, provision is made to override actuation of certain soot blowers 32 in response to a determination of channelling. As previously noted, channelling of gases may occur in the bank 28 of heat exchange tubes as a result of different degrees of fouling in the horizontal plane. Heat flux meters 36 are located on the water tube walls 38 of the convection section 18 in the horizontal plane. Horizontally planarly-aligned sets of four or more of such heat flux meters 36 may be provided at longitudinally-spaced locations in the banks 20 and 22.
The heat flux meters 36 each measure the heat flux reaching that meter. The heat flux meters 36 may be of any convenient construction, for example, that described in United States Patent No. 4,607,961 entitled "Heat Flux Meter", assigned to the applicant herein.
The flux meters may be affixed to the wall tubes and be the fouling or dirty type. Alternatively, should fouling of the walls occur, the clean heat flux meters of the type described above sighted through openings in the walls, may be used. In still other specific cases, it may be advantageous to use thermocouples whose protection walls protrude into the gas stream.
The heat flux reaching each meter 36 is determined by the flow of gas 30 through the particular heat exchanger tube bank 28. In the absence of channelling, the heat flux reaching each meter 36 is substantially the same. However, if fouling occurs preferentially in a certain area of the horizontal ~ .
the convection section, which may be colour-keyed to indicate differing degrees of fouling, to assist the operator in controlling the combustion process.
When the fouling reaches a predetermined level for any particular bank 28, the soot blowers 32 for that bank are actuated, either as a result of operator intervention or by automatic computer-operated actuation, to remove accumulations of deposits from the surfaces of the heat exchange tubes in that bank.
In a preferred embodiment of the invention, provision is made to override actuation of certain soot blowers 32 in response to a determination of channelling. As previously noted, channelling of gases may occur in the bank 28 of heat exchange tubes as a result of different degrees of fouling in the horizontal plane. Heat flux meters 36 are located on the water tube walls 38 of the convection section 18 in the horizontal plane. Horizontally planarly-aligned sets of four or more of such heat flux meters 36 may be provided at longitudinally-spaced locations in the banks 20 and 22.
The heat flux meters 36 each measure the heat flux reaching that meter. The heat flux meters 36 may be of any convenient construction, for example, that described in United States Patent No. 4,607,961 entitled "Heat Flux Meter", assigned to the applicant herein.
The flux meters may be affixed to the wall tubes and be the fouling or dirty type. Alternatively, should fouling of the walls occur, the clean heat flux meters of the type described above sighted through openings in the walls, may be used. In still other specific cases, it may be advantageous to use thermocouples whose protection walls protrude into the gas stream.
The heat flux reaching each meter 36 is determined by the flow of gas 30 through the particular heat exchanger tube bank 28. In the absence of channelling, the heat flux reaching each meter 36 is substantially the same. However, if fouling occurs preferentially in a certain area of the horizontal ~ .
11 ~IL;~2~2~8~
extremity of the heat exchanger tube bank 28, then the gas flow is channelled into the remainder of the tube bank 28 and is greater than in the preferentially-fouled area. Under these circumstances, the heat flux reaching the flux meters 36 differs. The radiation pyrometer 34 does not necessarily detect these variations, since the temperature determination made thereby is with respect to gas flow through the generally central region of the tube bank 28. The flux meters 36, therefore, are used to monitor the degree of channelling and the heat flux determinations effected thereby preferably are used to actuate t either manually or in automatic computer-controlled manner, selected ones of the soot blowers 32 to effect selective cleaning of the heat exchange tubes in the zone preferentially fouled. Such selected soot blower operation, therefore, prevents actuation of all the soot blowers 32 in response to a fouling condition detected by the radiation pyrometers 34. Only those areas requiring cleaning are actually exposed to soot blowing. In this way, tube erosion, a considerable cost and operating problem, is minimized and steam savings maximized.
Fouling of the convection section 18 oE the boiler 10 by solid deposits from the gas stream 30, therefore, is monitored by radiation pyrometers 34 and by heat flux meters 36. The measurements effected by these instruments are processed to generate operator information with respect to the condition of the convection section or may be employed in computer-controlled automatic actuation of the tube cleaning operations, using soot blowers, in response to a predetermined set of conditions indicated by the measurements.
~Direct measurement of the temperature of the gas -~35 stream is effected using the radiation pyrometers and this measurement is used for accurate instantaneous determination of the build up of ash and other solid deposits in the convection section. By compensating for the emissive properties of the gas stream and also by taking into account the effects of channelling, a boiler operator, for the first time, is provided with information which enables precise boiler operation to be effected. Alternatively, automatic precise cleaning of the convection section may be effected using computer control based on the collected data. In this way, the problems of the prior art with respect to the fouling of the convection section and steam tube erosion in steam generators are overcome.
In summary of this disclosure, the present invention provides a convection section ash monitoring and control system which enables the fouling of heat exchanger tubes to be precisely monitored and controlled. Modifications are possible within the scope-of this invention.
extremity of the heat exchanger tube bank 28, then the gas flow is channelled into the remainder of the tube bank 28 and is greater than in the preferentially-fouled area. Under these circumstances, the heat flux reaching the flux meters 36 differs. The radiation pyrometer 34 does not necessarily detect these variations, since the temperature determination made thereby is with respect to gas flow through the generally central region of the tube bank 28. The flux meters 36, therefore, are used to monitor the degree of channelling and the heat flux determinations effected thereby preferably are used to actuate t either manually or in automatic computer-controlled manner, selected ones of the soot blowers 32 to effect selective cleaning of the heat exchange tubes in the zone preferentially fouled. Such selected soot blower operation, therefore, prevents actuation of all the soot blowers 32 in response to a fouling condition detected by the radiation pyrometers 34. Only those areas requiring cleaning are actually exposed to soot blowing. In this way, tube erosion, a considerable cost and operating problem, is minimized and steam savings maximized.
Fouling of the convection section 18 oE the boiler 10 by solid deposits from the gas stream 30, therefore, is monitored by radiation pyrometers 34 and by heat flux meters 36. The measurements effected by these instruments are processed to generate operator information with respect to the condition of the convection section or may be employed in computer-controlled automatic actuation of the tube cleaning operations, using soot blowers, in response to a predetermined set of conditions indicated by the measurements.
~Direct measurement of the temperature of the gas -~35 stream is effected using the radiation pyrometers and this measurement is used for accurate instantaneous determination of the build up of ash and other solid deposits in the convection section. By compensating for the emissive properties of the gas stream and also by taking into account the effects of channelling, a boiler operator, for the first time, is provided with information which enables precise boiler operation to be effected. Alternatively, automatic precise cleaning of the convection section may be effected using computer control based on the collected data. In this way, the problems of the prior art with respect to the fouling of the convection section and steam tube erosion in steam generators are overcome.
In summary of this disclosure, the present invention provides a convection section ash monitoring and control system which enables the fouling of heat exchanger tubes to be precisely monitored and controlled. Modifications are possible within the scope-of this invention.
Claims (27)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of controlling a steam generator, which comprises:
combusting fuel in a furnace section of said steam generator to form a flowing hot gas stream which flows out of said furnace section into a convection section of said steam generator, which convection section contains heat exchange surfaces, flowing said hot gas stream through said convection section over and in contact with said heat exchange surfaces therein, thereby to heat steam flowing within the surfaces, directly measuring the temperature of the gas stream at two locations in said convection section spaced-apart in the direction of flow of the gas stream and between which is located a selected number of said heat exchange surfaces in said convection section, calculating the difference in temperature between said two locations as a measure of the build-up of ash on said selected number of heat exchange surfaces in said convection section, and activating cleaning of said selected number of heat-exchange surfaces in response to a predetermined level of build-up of ash.
combusting fuel in a furnace section of said steam generator to form a flowing hot gas stream which flows out of said furnace section into a convection section of said steam generator, which convection section contains heat exchange surfaces, flowing said hot gas stream through said convection section over and in contact with said heat exchange surfaces therein, thereby to heat steam flowing within the surfaces, directly measuring the temperature of the gas stream at two locations in said convection section spaced-apart in the direction of flow of the gas stream and between which is located a selected number of said heat exchange surfaces in said convection section, calculating the difference in temperature between said two locations as a measure of the build-up of ash on said selected number of heat exchange surfaces in said convection section, and activating cleaning of said selected number of heat-exchange surfaces in response to a predetermined level of build-up of ash.
2. The method of claim 1 wherein said direct temperature measurements are effected using radiation pyrometers.
3. The method of claim 2 wherein the radiation pyrometers are each sensitive in the wavelength range in which carbon dioxide and water absorb and emit radiation and the direct determinations effected by the radiation pyrometers are corrected for the emissive and absorptive properties of the gas stream.
4. The method of claim 2 wherein the radiation pyrometers are each sensitive in the wavelength range in which carbon dioxide and water do not absorb and/or emit radiation and the direct determinations effected by the radiation pyrometers are corrected for the emissive and absorptive properties of the gas stream.
5. The method of claim 1 wherein said direct temperature measurements are effected using clean heat flux meters.
6. The method of claim 1 wherein said direct temperature measurements are effected using thermocouples.
7. The method of claim 1 wherein said build-up of ash is calculated as a fouling factor (RF) from said calculated temperature difference.
8. The method of claim 7 wherein said fouling factor is displayed on a monitor screen for use by a steam generator operator in controlling the steam generating process and/or to effect cleaning of fouled heat exchange surfaces.
9. The method of claim 8 wherein said display is a representation of the convection section illustrating regions of fouling.
10. The method of claim 7 wherein said fouling factor is used to activate said cleaning of fouled heat exchange surfaces automatically.
11. The method of claim 10 wherein said automatic actuation is overridden by signals indicative of a fouling condition which does not necessitate cleaning of the whole of said selected number of heat exchange surfaces.
12. The method of claim 1 wherein said heat exchange surfaces in said convection section comprises a series of banks of heat exchange tubes, said direct temperature measurement is effected using radiation pyrometers positioned on each longitudinal side of each tube bank as determined by the direction of flow to determine the temperature difference between each side of each bank as a measure of the build-up of ash on each pair of heat exchange banks.
13. The method of claim 12 further including measuring the heat flux received from the flowing hot gas stream at selected locations transverse to the flow path to monitor differences in the degree of fouling of the heat exchange surfaces, and selectively activating cleaning of selected portions of the heat exchange tubes in a bank in response to the measured heat flux values.
14. The method of claim 13 wherein at least four heat flux meters are provided in a plane extending transverse to the gas flow path at the periphery of a pipe confining the gas flow path.
15. The method of claim 12 further including measuring the heat flux received from the flowing hot gas stream at selected locations transverse to the flow path to monitor differences in the degree of fouling of the heat exchange surfaces, and using the measured heat flux values to override signals indicative of a fouling condition in a particular bank of heat exchange tubes determined by said difference in temperature measurements determined by said radiation pyrometers.
16. A method of controlling the build-up of ash on heat exchange surfaces of a convection section of a steam generator wherein a flowing hot gas stream contacts the heat exchange surfaces to heat steam flowing within said surfaces, which comprises:
continuously directly measuring the temperature of the gas stream at two spaced-apart locations in the flowing gas stream between which is located a selected number of said heat exchange surfaces, adjusting said measured temperature to compensate for the emissivity of the flowing gas stream, continuously measuring the steam flow rate through said selected number of heat exchange surfaces and the temperature change in said steam across said heat exchange surfaces, determining a fouling factor (RF) from said measurements as a measure of the build-up of ash on said selected number of heat exchange surfaces, said fouling factor (RF) being determined automatically from said measured values by substitution in the equation:
wherein (hc)f is the convective heat transfer coefficient on the gas stream side of said heat exchange surfaces, (hc)s is the convective heat transfer coefficient on the steam side of said heat exchange surfaces, L and k respectively are the thickness and thermal conductivity of said heat exchange surfaces, and U is a heat transfer coefficient which is determined from the equation:
wherein Q is the heat absorbed by the steam and determined from the measurements of temperature and flow rate on the steam side of the heat exchange surfaces, .DELTA.Tlm is the log mean temperature drop across said selected number of heat-exchange surfaces as determined from said gas stream temperature measurements and steam temperature measurements, and A is the area of the heat-exchange surfaces; and automatically actuating cleaning of fouled heat exchange surfaces when said fouling factor attains a predetermined value.
continuously directly measuring the temperature of the gas stream at two spaced-apart locations in the flowing gas stream between which is located a selected number of said heat exchange surfaces, adjusting said measured temperature to compensate for the emissivity of the flowing gas stream, continuously measuring the steam flow rate through said selected number of heat exchange surfaces and the temperature change in said steam across said heat exchange surfaces, determining a fouling factor (RF) from said measurements as a measure of the build-up of ash on said selected number of heat exchange surfaces, said fouling factor (RF) being determined automatically from said measured values by substitution in the equation:
wherein (hc)f is the convective heat transfer coefficient on the gas stream side of said heat exchange surfaces, (hc)s is the convective heat transfer coefficient on the steam side of said heat exchange surfaces, L and k respectively are the thickness and thermal conductivity of said heat exchange surfaces, and U is a heat transfer coefficient which is determined from the equation:
wherein Q is the heat absorbed by the steam and determined from the measurements of temperature and flow rate on the steam side of the heat exchange surfaces, .DELTA.Tlm is the log mean temperature drop across said selected number of heat-exchange surfaces as determined from said gas stream temperature measurements and steam temperature measurements, and A is the area of the heat-exchange surfaces; and automatically actuating cleaning of fouled heat exchange surfaces when said fouling factor attains a predetermined value.
17. The method of claim 16 including determining the heat flux reaching a plurality of peripheral locations of said heat-exchange surfaces, comparing the individual determinations to the average of the determinations, and overriding the automatic cleaning actuation in response to a predetermined difference in the compared determinations and actuating selective cleaning of portions only of the heat-exchange surfaces in response to detected channelling of said gas stream.
18. The method of claim 17 wherein said heat flux determinations are effected using a heat flux meter.
19. In a steam generating apparatus comprising a combustion section wherein fuel is burned in an air stream to generate heat and to produce a hot combustion products gas stream, a convection section connected to said combustion section by conveying passage means to permit the flow of said hot combustion products gas stream from said combustion section to said convection section, and heat exchange tubes located in said convection section transverse to the intended direction of gas flow through said convection section so as to contact the hot combustion products gas stream and having steam of temperature lower than that of the hot combustion products gas stream passing therethrough, said heat exchange tubes being arranged in a plurality of banks of said heat exchange tubes, the improvement which comprises:
a temperature detection means provided upstream of each bank of heat exchange tubes and downstream of the last bank to determine the fall in temperature across each bank, each of said temperature detection means being capable of directly measuring the temperature of said hot combustion products gas stream at the locations of said temperature detection means;
means for on-line calculation of a fouling factor (RF) for each said bank of heat exchange tubes from the difference in temperature thereacross determined by said temperature detection means; and means for activating soot blowers to effect cleaning of a selected bank of heat exchange tubes in response to a predetermined value of said fouling factor for said selected bank.
a temperature detection means provided upstream of each bank of heat exchange tubes and downstream of the last bank to determine the fall in temperature across each bank, each of said temperature detection means being capable of directly measuring the temperature of said hot combustion products gas stream at the locations of said temperature detection means;
means for on-line calculation of a fouling factor (RF) for each said bank of heat exchange tubes from the difference in temperature thereacross determined by said temperature detection means; and means for activating soot blowers to effect cleaning of a selected bank of heat exchange tubes in response to a predetermined value of said fouling factor for said selected bank.
20. The apparatus of claim 19 wherein each said temperature detection means is a radiation pyrometer.
21. The apparatus of claim 19 wherein each said temperature detection means is a clean heat flux meter.
22. The apparatus of claim 19 wherein each said temperature detection means is a thermocouple.
23. The apparatus of claim 19 wherein said temperature detection means are focused on the gas space, and further including additional temperature detection means positioned to determine the heat flux emanating from the gas stream in a plane transverse thereto thereby to determine variations in ash build-up in the transverse dimension of each bank of tubes.
24. The apparatus of claim 23 wherein each said additional temperature detection means is a heat flux meter.
25. The apparatus of claim 23 wherein each said additional temperature detection means is a thermocouple.
26. The apparatus of claim 23 including means to actuate selective ones of soot blowers to effect cleaning of selective portions of the bank in respect to predetermined heat flux values.
27. The apparatus of claim 23 including means for overriding actuation of all said soot blowers in response to a predetermined fouling factor value.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000447761A CA1221284A (en) | 1984-02-17 | 1984-02-17 | Convection section ash monitoring |
AU38596/85A AU3859685A (en) | 1984-02-17 | 1985-02-11 | Convection section ash monitoring |
GB08503444A GB2154720A (en) | 1984-02-17 | 1985-02-11 | Monitoring ash build-up in steam generators |
DE19853505343 DE3505343A1 (en) | 1984-02-17 | 1985-02-15 | METHOD AND DEVICE FOR MONITORING THE ASH COLLECTION IN THE CONVECTION PART OF STEAM GENERATORS |
JP2850185A JPS60188724A (en) | 1984-02-17 | 1985-02-18 | Method and device for controlling deposition of ash adheringon convection section |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA000447761A CA1221284A (en) | 1984-02-17 | 1984-02-17 | Convection section ash monitoring |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1221284A true CA1221284A (en) | 1987-05-05 |
Family
ID=4127232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA000447761A Expired CA1221284A (en) | 1984-02-17 | 1984-02-17 | Convection section ash monitoring |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS60188724A (en) |
AU (1) | AU3859685A (en) |
CA (1) | CA1221284A (en) |
DE (1) | DE3505343A1 (en) |
GB (1) | GB2154720A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9220856D0 (en) * | 1992-10-03 | 1992-11-18 | Boiler Management Systems Limi | Improvements in or relating to boiler wall cleaning |
DE19640336C2 (en) * | 1996-09-20 | 2002-08-01 | Clyde Bergemann Gmbh | Method for generating a signal for the control of a cleaning device for cleaning heating surfaces |
JP5408646B2 (en) * | 2008-12-12 | 2014-02-05 | 川崎重工業株式会社 | Hammering operation schedule control system for waste heat boiler |
CN104728823B (en) * | 2015-03-17 | 2016-08-03 | 西安热工研究院有限公司 | A kind of Novel supercritical carbon dioxide coal-burning boiler |
JP6735890B1 (en) * | 2019-09-06 | 2020-08-05 | 三菱重工環境・化学エンジニアリング株式会社 | Boiler tube bank ash removal system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB750092A (en) * | 1952-04-21 | 1956-06-06 | Bailey Meters Controls Ltd | An improved method of and apparatus for regulating the temperature of a fluid |
GB721718A (en) * | 1952-09-10 | 1955-01-12 | Kenneth Parry | Improvements in or relating to automatic control and/or indicating arrangements for water boilers or steam generators |
JPS5818005A (en) * | 1981-07-25 | 1983-02-02 | バブコツク日立株式会社 | Control system of soot blower |
-
1984
- 1984-02-17 CA CA000447761A patent/CA1221284A/en not_active Expired
-
1985
- 1985-02-11 GB GB08503444A patent/GB2154720A/en not_active Withdrawn
- 1985-02-11 AU AU38596/85A patent/AU3859685A/en not_active Abandoned
- 1985-02-15 DE DE19853505343 patent/DE3505343A1/en not_active Ceased
- 1985-02-18 JP JP2850185A patent/JPS60188724A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
AU3859685A (en) | 1985-08-22 |
GB2154720A (en) | 1985-09-11 |
DE3505343A1 (en) | 1985-09-05 |
GB8503444D0 (en) | 1985-03-13 |
JPH041255B2 (en) | 1992-01-10 |
JPS60188724A (en) | 1985-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4488516A (en) | Soot blower system | |
US4552098A (en) | Convection section ash monitoring | |
US4615302A (en) | Convection section ash monitoring | |
EP0545021B1 (en) | Temperature control system for a heat detector on a heat exchanger | |
CA2387369C (en) | System and method for measuring weight of deposit on boiler superheaters | |
US5112215A (en) | Apparatus for combustion, pollution and chemical process control | |
CA1223940A (en) | Control of boiler operations | |
US3276437A (en) | Soot blower operation for vapor generator furnaces | |
CN101806626A (en) | Online monitoring method for flue gas temperature of hearth outlet of power station boiler | |
US4556019A (en) | Convection section ash monitoring | |
US4603660A (en) | Convection section ash monitoring | |
CA1221284A (en) | Convection section ash monitoring | |
US4514096A (en) | Furnace wall ash deposit fluent phase change monitoring system | |
US6288528B1 (en) | Method and system for evaluating a condition of a combustion vessel | |
US20040226758A1 (en) | System and method for measuring weight of deposit on boiler superheaters | |
WO2001094876A1 (en) | Monitoring of fouling or of loss of material of heat transfer tubes in a combustion vessel by resistance measurements | |
CA1174326A (en) | Furnace wall ash monitoring system | |
SU1765614A1 (en) | Steam boiler baffle cleaners monitoring | |
SU1673798A1 (en) | Method for control of boiler unit burning process | |
Bujalski et al. | The algorithm of steam soot blowers operation based on the monitoring of fouling factors of heating surfaces of a coal-fired boiler under operating conditions | |
FI75885B (en) | REGLERING AV PANNFUNKTIONER. | |
JPS6018883B2 (en) | Soot blower control device | |
JPS613916A (en) | Soot blower controlling device | |
JPS6246769B2 (en) | ||
SU1370364A1 (en) | Method of monitoring slagging of boiler heating surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |