CA1064717A - Portable cooling apparatus - Google Patents
Portable cooling apparatusInfo
- Publication number
- CA1064717A CA1064717A CA287,682A CA287682A CA1064717A CA 1064717 A CA1064717 A CA 1064717A CA 287682 A CA287682 A CA 287682A CA 1064717 A CA1064717 A CA 1064717A
- Authority
- CA
- Canada
- Prior art keywords
- pad
- conduit
- tubing
- compressor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/10—Cooling bags, e.g. ice-bags
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D15/00—Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/06—Removing frost
- F25D21/08—Removing frost by electric heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0054—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0054—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water
- A61F2007/0056—Heating or cooling appliances for medical or therapeutic treatment of the human body with a closed fluid circuit, e.g. hot water for cooling
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0086—Heating or cooling appliances for medical or therapeutic treatment of the human body with a thermostat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
Landscapes
- Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
IMPROVED PORTABLE COOLING APPARATUS
Abstract of the Disclosure An improved portable apparatus for cooling a warm body portion and having at least one flexible pad and tubing fox refrigerant, a compressor for liquifying the refrigerant composition, and a condenser, includes an auxiliary evaporator, a by-pass pipe for the refrigerant composition extending between the compressor and the auxiliary evaporator, and a thermostatically actuated valve cooperating with the pipe to selectively by-pass the flexible pad and tubing. In a preferred apparatus, a resistive heating element is secured in the pad adjacent the tubing so that the device may be selectively utilized for heating. In yet another preferred embodiment the apparatus includes a positive pressure device for maintaining a selected refrigerant pressure in the system and to prevent a possible vacuum in the pad tubing.
Abstract of the Disclosure An improved portable apparatus for cooling a warm body portion and having at least one flexible pad and tubing fox refrigerant, a compressor for liquifying the refrigerant composition, and a condenser, includes an auxiliary evaporator, a by-pass pipe for the refrigerant composition extending between the compressor and the auxiliary evaporator, and a thermostatically actuated valve cooperating with the pipe to selectively by-pass the flexible pad and tubing. In a preferred apparatus, a resistive heating element is secured in the pad adjacent the tubing so that the device may be selectively utilized for heating. In yet another preferred embodiment the apparatus includes a positive pressure device for maintaining a selected refrigerant pressure in the system and to prevent a possible vacuum in the pad tubing.
Description
:~L0647~L7 IMPROVED PORTABLE COOLING APPA~ATUS
BACKGROUND OF THE INVENTION
This application relates to a portable apparatus for cooling a warm body of the type described in my U. S. Patent No. 4,026,299.
In U. S. Patent No. 3,916,911, there is disclosed a portable heating and cooling apparatus utilizing flexible pads to be wrapped around the limb or other body portion of a human or animal, for selectively heating or cooling that body portion.
The portable apparatus is especially useful in treating sprains, strains or other muscular injuries to athletes or race horses, as soon after the injury occurs as possible in order to rapidly reduce swelling, fever or the like to the injured area. Such a device obviates the inconvenient use of ice packs for treating such injuries or muscular diseases or inflammation.
This invention relates to a por~able apparatus for cooling a limb of a patient or the like and comprising a com pressor, a condenser, expansion valve means, at least one flexible pad adapted to be wrapped around a bodily limb and includin~ flexible tubing serving as an evaporator, an auxiliary evaporator, conduit means for circulating a refrigerant com-position serially from said compressor to said condenser, ; expansion valve means, tubing, auxiliary evaporator and back to said compressor, a by-pass conduit operatively connected to said conduit means and extending from a point upstream of said pad to a point downstream o said pad alld upstream of said auxiliary evaporator, and by-pass valve means for selectively opening and closing said by-pass conduit, whereby the temperature of said pad may be controlled by the opening and closing of said by-pass valve means.
In my U. S. Patent No. 4,026,299 there is further disclosed another device for b th heating and cooling, ~0647~7 selection being made by a reversing valve and utilizing at least one flexible pad and tubing as well as quick-connect couplings between the apparatus and the cooling and heating pads. The apparatus of the present invention, unlike the heat pump design of my previous patent, utlizies a refrigerant directing apparatus and cooling tubing and pad, but is designed with an auxiliary evaporator cooperating with a by-pass conduit and valve, preferably thermostatically operated, so that the cooling pad temperature may be selected and maintained auto-matically. In addition, a preferred embodiment includes theuse of a resistance heating element secured in the pad adjacent the cooling tubing so tha~ when desired, the apparatus may be used to heat with the refrigerant directing components - la -7~7 inactive, Other features, embodiments and advantages of the apparatus of the invention will be more fully explained hereinafter.
SUMMARY OF THE INVENTION
.
The apparatus of the presen-t invention comprises a cooling device utilizing refrigerant composition and conduits for directing it through the components including a compressor, condenser and fan, and cooling pad and tubing, acting as an evaporator and for being wrapped around a warm body portion such as an arm, leg or any other desired portion of the body to be cooled. The device also includes an auxiliary evaporator disposed along the refrigerant directing conduit system between the cooling pad and the compressor.
A by-pass pipe intersects the conduit upstream from cooling pad for selectively directing refrigerant to the auxiliary evaporator thereby by-passing the pad and tubing. The by-pass pipe is open and closed by a valve, preferably thermostatically operated, and sensing temperature at the cooling pad and which thermostat may be regulated by suitable temperature selecting contro~ means. Another important feature that may be incorporated is a positive pressure device comprising a supply line extending from the high side of the compressor and to the auxiliary evaporator thereby by-passing the condenser and an expansion valve in the line for maintaining a selected refrigerant pressure in the system. Additional embodiments, advantages and uses of the apparatus will be evident from the following detailed description.
BRIEF DESCRIPTION OF T E DRAWINGS
Figure 1 is an illustration of the internal components of one embodiment of the apparatus of the invention, showing the by-pass pipe feature;
BACKGROUND OF THE INVENTION
This application relates to a portable apparatus for cooling a warm body of the type described in my U. S. Patent No. 4,026,299.
In U. S. Patent No. 3,916,911, there is disclosed a portable heating and cooling apparatus utilizing flexible pads to be wrapped around the limb or other body portion of a human or animal, for selectively heating or cooling that body portion.
The portable apparatus is especially useful in treating sprains, strains or other muscular injuries to athletes or race horses, as soon after the injury occurs as possible in order to rapidly reduce swelling, fever or the like to the injured area. Such a device obviates the inconvenient use of ice packs for treating such injuries or muscular diseases or inflammation.
This invention relates to a por~able apparatus for cooling a limb of a patient or the like and comprising a com pressor, a condenser, expansion valve means, at least one flexible pad adapted to be wrapped around a bodily limb and includin~ flexible tubing serving as an evaporator, an auxiliary evaporator, conduit means for circulating a refrigerant com-position serially from said compressor to said condenser, ; expansion valve means, tubing, auxiliary evaporator and back to said compressor, a by-pass conduit operatively connected to said conduit means and extending from a point upstream of said pad to a point downstream o said pad alld upstream of said auxiliary evaporator, and by-pass valve means for selectively opening and closing said by-pass conduit, whereby the temperature of said pad may be controlled by the opening and closing of said by-pass valve means.
In my U. S. Patent No. 4,026,299 there is further disclosed another device for b th heating and cooling, ~0647~7 selection being made by a reversing valve and utilizing at least one flexible pad and tubing as well as quick-connect couplings between the apparatus and the cooling and heating pads. The apparatus of the present invention, unlike the heat pump design of my previous patent, utlizies a refrigerant directing apparatus and cooling tubing and pad, but is designed with an auxiliary evaporator cooperating with a by-pass conduit and valve, preferably thermostatically operated, so that the cooling pad temperature may be selected and maintained auto-matically. In addition, a preferred embodiment includes theuse of a resistance heating element secured in the pad adjacent the cooling tubing so tha~ when desired, the apparatus may be used to heat with the refrigerant directing components - la -7~7 inactive, Other features, embodiments and advantages of the apparatus of the invention will be more fully explained hereinafter.
SUMMARY OF THE INVENTION
.
The apparatus of the presen-t invention comprises a cooling device utilizing refrigerant composition and conduits for directing it through the components including a compressor, condenser and fan, and cooling pad and tubing, acting as an evaporator and for being wrapped around a warm body portion such as an arm, leg or any other desired portion of the body to be cooled. The device also includes an auxiliary evaporator disposed along the refrigerant directing conduit system between the cooling pad and the compressor.
A by-pass pipe intersects the conduit upstream from cooling pad for selectively directing refrigerant to the auxiliary evaporator thereby by-passing the pad and tubing. The by-pass pipe is open and closed by a valve, preferably thermostatically operated, and sensing temperature at the cooling pad and which thermostat may be regulated by suitable temperature selecting contro~ means. Another important feature that may be incorporated is a positive pressure device comprising a supply line extending from the high side of the compressor and to the auxiliary evaporator thereby by-passing the condenser and an expansion valve in the line for maintaining a selected refrigerant pressure in the system. Additional embodiments, advantages and uses of the apparatus will be evident from the following detailed description.
BRIEF DESCRIPTION OF T E DRAWINGS
Figure 1 is an illustration of the internal components of one embodiment of the apparatus of the invention, showing the by-pass pipe feature;
-2-~6~7~7 Figure 2 is a view of an open flexible pad, cooling tube and resistive heating element;
Figure 3 is an illustration of internal components of another embodiment of the invention;
Figures 4 and 5 are schematic views illustrating alternative apparatus component embodiments in directing refrigerant 10w; and Figure 6 shows a skin temperature probe for thermostatically controlling the cooling apparatus.
DET~ILED DESCRIPTION OF T~IE INVENTION
. .
Observing first Figure 1 of the drawings, there is illustrated the apparatus generally 10 which is enclosed in a case member 21, shown cut away in order to expose the apparatus components. Major components include a condenser 12 and cooperating fan 31 for directing air past the condenser coils to condense refrigerant composition therein. Compressor 14 compresses gaseous refrigerant composition directed from conduit 36 and auxiliary evaporator and accumulator 16. The latter includes a length of thermally conductive tubingt, :`
usually copper coils, for ~urther increasin~ the temperature of the refrigerant as it is returned from the cooling pad and the tubing. Conduit 38 directs refrigerant composition .~, from the compressor 14 to the condenser 12.
Conduits 32 and 34 direct refrigerant composition returning from the cooling pad and tubing to the auxiliary evaporator and accumulator 16 via conduit 27. From condenser 12, conduit 20 directs refrigerant composition through dryer 22, into the two conduit segments 25 and 33, through capillary tubes 26 and 24 respectively, and to cooling pads and tubing via conduits 23 and 29. Thus, the apparatus shown illustrates that used for a device having two cooling pads, it being
Figure 3 is an illustration of internal components of another embodiment of the invention;
Figures 4 and 5 are schematic views illustrating alternative apparatus component embodiments in directing refrigerant 10w; and Figure 6 shows a skin temperature probe for thermostatically controlling the cooling apparatus.
DET~ILED DESCRIPTION OF T~IE INVENTION
. .
Observing first Figure 1 of the drawings, there is illustrated the apparatus generally 10 which is enclosed in a case member 21, shown cut away in order to expose the apparatus components. Major components include a condenser 12 and cooperating fan 31 for directing air past the condenser coils to condense refrigerant composition therein. Compressor 14 compresses gaseous refrigerant composition directed from conduit 36 and auxiliary evaporator and accumulator 16. The latter includes a length of thermally conductive tubingt, :`
usually copper coils, for ~urther increasin~ the temperature of the refrigerant as it is returned from the cooling pad and the tubing. Conduit 38 directs refrigerant composition .~, from the compressor 14 to the condenser 12.
Conduits 32 and 34 direct refrigerant composition returning from the cooling pad and tubing to the auxiliary evaporator and accumulator 16 via conduit 27. From condenser 12, conduit 20 directs refrigerant composition through dryer 22, into the two conduit segments 25 and 33, through capillary tubes 26 and 24 respectively, and to cooling pads and tubing via conduits 23 and 29. Thus, the apparatus shown illustrates that used for a device having two cooling pads, it being
-3-~L~647~7 understood where only one coolinq pad is used, only one capillary tube and outlet and inlet conduits are required.
Figure 2 illustrates the flexible pad utilized to be wrapped around a warm body portion to be cooled. The open pad shown has an outside flexible insulating sheet 40, preferably composed of a rubber composition and having a fabric back layer, such material commonly being used for wet suits and the like. Such a rubbery composition provides e~cellent heat lnsulation and at the same time is reasonably lightweight and easy to form to any desired shape around a limb or other body portion. Secured to the inside of the insulating sheet 30 is a flexible hose or tubing 46 for directing refrigerant composition to and from the pad and which tubing may be removably securecl by a plurality of straps 31. These straps may be secured to the inside insu-lating pad surface using snaps, buck]es or the like, or preferably Velcro~, a material in which one mating surface ~-;` has a pluraliky of ~abric loops while the opposite surface comprises small, flexible barbs or hooks for engaging the loops. Such material is described in further detail, for example, in U. S. patents 3,461,511 or 3,387,345. Regardless of the type of disengagable device used for securing the -~ ends of straps 31, a plurality of such straps are located at selected positions on the interior surface of the insulated sheet 40 by which the flexible refrigerant directing conduit or tubing is secured to the sheet. The removable straps allow for removing the tubing from the pad where pad replacement is desired. Moreover, because the cooling tubing is flexible, different shaped cooling pads may be desired for use on different limbs or body portions.
Thus, the cooling tubing simply can be removed from one cooling pad and placed in another pad as desired.
_~r(~f ~ "~ ~) .
7~7 Non-thermal insulating sheet 42 is also removably ~ secured by utilizing Velcro fasteners 49 and 39 or other means ; such as snaps, zippers and the like. Should non-insulating sheet 42 become soiled or worn it may be removed and washed or otherwise cleaned for sanitary purposes, or replaced. It will also be understood that this non-insulating sheet lies against the patient's skin so that the cold from the cooling tubing is readily directed to the patient's limb or warm body portion. Moreover~ removal or disengagement of the non-insulating sheet exposes the tubing for repairs or replacement.
Additional features of the pad includes straps 37 also having snaps or Velcro closure means cooperating on the pad so that the pad simply may be wrapped around the patient and secured.
Other features of such a pad are disclosed fully in my aforesaid parent application, the description thereof being further incorporated herein by reference.
Although only one flexible pad and cooling tubing are shown, it will again be understood that a plurality of such pads may be used, depending on the size of the apparatus including the compressor and condenser. In utilizing the single pad shown, tubing end 47 would be connected to conduit 34 whereas tubing end 45 will be connected to conduit 29 of the apparatus shown in Figure 1. Thus, cold refrigerant composition will pass from outlet conduit 29 through the tubing in the cooling pad and return at the opposite tubing end via conduit 34 where it will be directed via conduit 27 into the au~iliary evaporator 16. It is convenient to incorporate ~uick-connect couplings to allow for easy connection or dis-connection between the pad or pads and apparatus. Such couplings are of the type referred to, for example, in U. S.
patent 2,823,048 and which couplings are conveniently incorporated on a top panel for the apparatus (not shown) andas further described in my parent application.
As previously noted, a significant improvement of the apparatus of the present invention is the incorporation of a by-pass pipe and cooperating valve for maintaining selected pad cooling temperatures. Such a pipe 28 is shown in Figure 1 interconnecting conduits 20 and 2~. Solenoid valve 30 opens and closes pipe 28. When the valve opens the pipe, refrigerant composition will pass through the pipe into conduit 27 and auxiliary evaporator and accumulator 16 thereby by-passing dryer 22, capillary tubes 24 and 26 and the cooling tubing and pads. Instead, the cooled refrigerant composition is directed to the auxiliary evaporator and circulates through the apparatus without further cooling the pad and flexible tubing. Actually, as refrigerant flows into conduit 27, this causes a back pressure to build up in the pads and tubing which concomitantly elevates the pad temperature. Preferably, the valve cooperating with by-pass 28 and which opens and `- closes the by-pass pipe, is responsive to a thermostat control.
I
20 A thermostat will monitor temperature at the cooling pad and when the pad temperature is elevated past a selected temperature the valve closes the by-pass pipe thereby directing the cooled refrigerant composition through the tubing at the cooling pad.
When the pad has again cooled to the selected temperature, the sensing thermostat will cause the by-pass valve to open, whereupon refrigerant composition by-passes the pad. Preferably, the thermostat control will include a temperature selecting member such as a selector control and thermometer scale located on the apparatus control panel, as shown in Figure 6 and illustrated in my aforesaid patent. Accordingly, the desired pad temperature can simply be dialed or otherwise L7~L7 selected and the apparatus, when functioning r will maintain selected temperature at the cooling pad, again, by periodically opening and closing the by-pass pipe.
; Figure 3 illustrates an alternative embodiment for the by-pass pipe and valve when utilizing an expansion valve instead of the capillary tubes shown in Figure 1. For some applications it may be preferred to use an expansion valve since such a valve incorporates means for manually adjusting ; minimum pad temperatures. Moreover, the use of an expansion valve also allows the incorporation of a receiver or reservoir for storing additional refrigerant composition for automatically compensating for any re~rigerant losses during operation of the apparatus. The use of such a receiver or reservoir thus eliminates the necessity for charging refrigerant composition ; to the apparatus in case of minor leakage which may occur throughout the conduit and tubing system, especially where rubber tubing is used in the flexible cooling pads. It will be understood that such rubber tubing normally has some inherent porosity, thus causing some loss of refrigerant during normal usage.
Referring specifically to Figure 3, conduit portion 80 receives refrigerant composition from condenser 12 where it passes through dryer 75, conduit 82 and into expansion valve 72. From the expansion valve, the refrigerant then passes to the cooling pads (not shown) via conduits 23 and 29.
Expansion valve 72 incorporates a manual knob 73 so that an operator may select or vary the extent of composition expansion in the valve and concomitantly the temperature characteristics of the cooling pad. Between conduits 80 and 82 also is located receiver or refrigerant reservoir 70 which holds a supply of refrigerant, for example, about 16 ounces. A sight _7_ ~6917~L7 glass 71 may also be present for observing refrigerant flow and any bubbles or other indications of low refrigerant composition in the system as it passes the glass.
In the embodiment shown in Figure 3, the by-pass pipe 88 intersects conduit 38 between compressor 14 and ~ condenser 12 rather than in the mode illustrated in Figure l.
; The reason for by-passing the condenser in the embodiment illustrated in Figure 3 is due to the fact that when utilizing an expansion valve and receiver or reservoir in the apparatus, there may be more li~uid refrigerant delivered to the auxiliary evaporator in the by-pass mocle than it can handle. This is not a problem when utilizing the capillary tubes and without a refrigerant composition reservoir shown in Figure 1. However~
because it is a potential problem when utilizing the arrange-ment of Figure 3, it is preferred to divert the refrigerant composition during by-pass to the auxiliary evaporator from the high side of the compressor prior to condensation in the condenser. Otherwise, the apparatus illustrated in Figure 3 operates much like that shown in Figure l. When the cooling pad has been cooled to the desired temperature, the thermostat sensor will actuate solenoid valve 30 which will open conduit 88 thereby sending the refrigerant composition to conduit 27 - and into auxiliary evaporator 16 and by-passing condenser 12, expansion valve 72, and the cooling pads.
In still another embodiment, a positive pressure device may be incorporated to maintain a minimum pressure in the pad or pads and tubing. Thus, this feature is desirable in order to avoid possible vacuum in the cooling pad tubing.
Since this flexible tubing may consist of rubber or synthetic elastomer, which may be slightly porous, if a vacuum were to occur because of low refrigerant composition in the system, _~_ 1~64~7~7 air would be taken into the tubing and passed through the system which could cause contamination as well as damage to the compressor. In order to avoid such a situation, a positive pressure device consisting of a conduit and a manually reyulated expansion valve are used. Such a feature is illustrated ~urther in Figure 3, although it must be appreciated that it can also be used with the apparatus shown in Figure 1 as well (see Figure ~). A positive pressure device consists of a supply line or conduit 89 which taps or communicates with conduit 38 on the compressor high side. The supply line extends to e~pansion valve 61 and supply line 85 communicates with expansion valve 61 and thus supply line 85 communicates with conduit 27 which then enters auxiliary evaporator 16. Expansion valve 61 may be adjusted by an operator utilizing manual adjustment knob 87 so that when the pressure in the system falls to or below a selected minimum pressure to which expansion valve 61 has been set, for example, 1-2 psi., it will cause the valve `` to open thereby directing the refrigerant composition from conduit 38 into line 89, expansion valve 61, line 85, conduit 27 and into the auxiliary evaporator. This flow of refrigerant composition will continue until such time as the pressure in the system has again exceeded the minimum pressure. Thus, by so directing the composition, it will cause a back pressure to be created in the pad tubing and will prevent the creation of possible vacuum in the cooling pad tubing. It will also be noted in Figure 3, that supply line 89 intersects or communicates with conduit 38 upstream from by-pass pipe 88.
Again this positive pressure system may be used even without a by-pass system so long as an auxiliary evaporator is present.
The auxiliary evaporator also functions as an accumulator in the cooliny apparatus which function will be well understood ~ ?6~
to those skilled in the art. Thus, the auxiliary evaporator also acting as an accumulator insures that no liquid refrigerant is passed on to foul the compressor.
Referring again to Figure 2, the use of a resistive heating wire or coil is illustrated. The purpose for such an embodiment is to provide the apparatus of the invention with a heating capability separate and distinct from the refrigerant cooling operation previously described. Thus, there is incorporated a heating wire 44 conveniently placed along sicle or otherwise adjacent the cooling coil within the pad utilizing the same tie down or secu~ing straps 31. The ends 41 and 43 of the heating element are shown and these will be secured properly to a switching member whereby a current will be supplied simply by fllpping an on-off switch j on the apparatus control panel. Normally, such a heating function will not be used when the pad is to be used for ', cooling a warm body portion. Instead, when the compressor and other refrigerant cooling components are not operating, the pad simply may be used for providing heat to a patient where injury dictates that heat be applied instead of cooling.
It will be understood that the resistive heating wire will be insulated and of the type that can be safely incorporated adjacent the flexible cooling tubing and secured in a flexible pad of the type shown in Figure 2 and previously describedO
Observing now Figures 4 and 5, there is shown schematically the apparatus of the invention including the conduits for directing refrigerant composition and the cooling pad 84 having the flexible tubing therein and which pad and tubing are wrapped around a warm body portion to be cooled.
It will be appxeciated that the pad and tubing act as an evaporator for the refrigerant composition. Figure 4 ~LO~ L7 illustrates the apparatus shown in Figure 1 with the addition of a positive pressure device embodiment, while Figure 5 is directed to the apparatus of Figure 3~ Referring first to Fi~ure 4, in operation, refrigerant composition is directed via conduit A to auxiliary evaporator 52 where it absorbs further energy b~ being heated. Again, the auxiliary evaporator also sexves as an accumulator. The refrigerant compositions leaves auxiliary evaporator 52 via conduit B and enters compressor 51. Thereafter, the composition is forced via conduit C into condenser 55 where it is cooled as it passes through the condenser coils and which cooling is aided by fan 56 which directs relatively cool ambient air over fins normally associated with the condenser coils. From the condenser, the refrigerant composition is directed along conduit D. Where pad 64 is to be cooled, the refrigerant is directed through dryer 62 where desiccant removes any moisture~ Normally, the dryer Will also preferably inclucle a filter or strainer, for example, a 100 mesh screen, so as to prevent any particulate matter from entering capillary tube 63 via conduit E. There-after, the cooled refrigerant composition is directed to the ; pad via conduit F~ When the pad has attained a suitably low temperature selected by an operator, a thermostat sensing the pad temperature electrically energizes solenoid valve 57 which valve opens conduit G and the refrigerant composition by-passes the dryer, capillary tube and cooling pad and is directed to conduit A and again to the auxiliary evaporator. This refrigerant flow path is maintained until cooling pad 64 has become warn enough to require further cooling which condition is again sensed by a thermostatic sensor which energizes solenoid valve 57 and then closes by-pass pipe G.
~69~7 In addition to the above cliscussed components regarding Figure 4, the positive pressure device is a line or conduit H which communicates with conduit C downstream from condenser 55 but upstream from compressor 51 and an expansion valve 61, which may be adjusted to maintain any desirable minimum pressure in the system as previously described.
Supply line J then directs refrigerant composition from the expansion valve to conduit A and auxiliary evaporator 52.
Figure 5 shows schematically the apparatus of Figure 3 whereby refrigerant composition travels in the manner described regarding Figure 4 with the major difference being that this embodiment incorporates a receiver or reservoir ~or refrigerant composition and expansion valve 72 in place of capillary tubes. The receiver includes a dryer 75 and may also incorporate a window 71 ~or observing refrigerant flow in the conduit. When pad 64 is to be cooled t re~rigerant ` composition travels from compressor 51 via conduit C through condenser 55, throu~h conduits D and E and into expansion valve 72, through conduit F and cooling pad 64, conduit A into auxiliary evaporator 52 and back to compressor 51 via conduit B. Once the cooling pad has achieved the desired low temperature, upon command from a sensing thermostat~
valve 57 will open whereby refrigerant composition will pass from compressor 51 through conduits L, G, A, auxiliary evaporator 52 and back to compressor via conduit B. This condition will continue until further cooling of cooling pad 64 is required whereupon valve 57 will close and the compo-sition will then be directed as previously described. Again, the incorporation of a positive pressure device comprising conduits H and J with manually adjustable expansion valve 61 may be used. It should be appreciated that the positive ~G4~L'7 pressure device may be used with or without the by~pass lines described so long as an auxiliary evaporator is present in the apparatus.
As previously mentioned, it is desirable to thermo-statically operate the cooling apparatus by sensing the pad temperature Figure 2 illustrates a temperature sensing probe secured to the pad insulated sheet 40 adjacent the cooling tubes so that the pad temperature is monitored and the by-pass pipe in the apparatus is automatically opened and closed in response to the monitored temperature. Probe 84 is secured at the end of insulated conductive wire 83 and disconnecting plug 87 which may be attached to a plug and wire leading to the apparatus control panel. Thus, the temperature probe may be moved with the pad or independently replaced or repaired.
Pigure 6 shows the use of such a probe 94 and wire 96 for sensing the skin temperature rather than pad temperature.
This feature is especially desirable when treating a patient wearing a cast 92 as is illustrated. For example, it may be desirable to reduce swelling of a limb on which a cast is 20 located. Yet, since a cast, usually plaster, is itself thermally insulating, temperature selection and maintenance will be different than when the pad is directly applied to a limb.
It may be necessary to maintain pad -temperature at 20-40 F.
in order to achieve and hold skin temperature of 60 F., and this will vary with the cast thickness and composition.
; Accordingly, it is highly desirable and advantageous to insert a temperature sensing probe 94 between cast 92 and the patient's skin. Cooling pad 90 will supply cooling to the cast in response to the temperature sensing probe, which will open and close electronic switching means for actuating the by-pass pipe valve feature of the apparatus in the manner - previously explained. Conveniently a temperature scale on 7~7 control panel 95 will be indexed for a desirable temperate range and a temperature selection control 9~ will then be set to the specific temperature to be monitored by the probe and maintained by the by-pass valve feature. Such skin temperature selection is also very desirable for patients who are quite sensitive to cold and have low cold exposure tolerance. Thus, the cold temperature selection and maintenance feature of the invention is a highly advantageous embodiment, made possible by the by-pass valve and pipe and auxiliary evaporator components~
The type of temperature probes used for skin or pad temperature monitoring is not critical. State of -the art devices include temperature sensitive materials and cooperating resistors, etc., usually sealed in a hard resin cover. Conveniently the skin probe cover may have a flat side or sides for lying against the patient's skin and of a thickness suitable for sliding between the skin and a cast.
Again, it will be further undersood by those skilled in the art that the pad by-pass features disclosed herein do not actually result in completely by-passing or isolating the cooling pads and tubing. Instead, when the by-pass pipe or the positive pressure expansion valve are opened, the flow of refrigerant composition therein causes a back pressure in the pad or pads as some refrigerant will continue to be provided to the pads and because of significant refrigerant flow into the conduit between the pads and auxiliary evaporator.
In either case, this will cause increased pressure in the pads and concomitant temperature increase.
The apparatus of the invention is preferably enclosed in a case, such as a portable carrying case as disclosed in my aforesaid patent. Again, different sized and shaped cooling -3L~69~
pads may be use~ as may means for injecting make-up refrigerant composition in the disclosed apparatus as described in my parent application and which description is incorporated herein by reference. Although the cooling pad has been described as used with flexible tubing, normally of a rubber or synthetic elastomer type, it is also within the scope of the invention to use any tubing which may be secured to the cooling pad to be wrapped around a warm body portion to be cooled. For examplet a ductile copper tubing as disclosed in the aforesaid patent may be used. These as well as other embodiments within the purview of the invention will be evident to those skilled in the art.
Figure 2 illustrates the flexible pad utilized to be wrapped around a warm body portion to be cooled. The open pad shown has an outside flexible insulating sheet 40, preferably composed of a rubber composition and having a fabric back layer, such material commonly being used for wet suits and the like. Such a rubbery composition provides e~cellent heat lnsulation and at the same time is reasonably lightweight and easy to form to any desired shape around a limb or other body portion. Secured to the inside of the insulating sheet 30 is a flexible hose or tubing 46 for directing refrigerant composition to and from the pad and which tubing may be removably securecl by a plurality of straps 31. These straps may be secured to the inside insu-lating pad surface using snaps, buck]es or the like, or preferably Velcro~, a material in which one mating surface ~-;` has a pluraliky of ~abric loops while the opposite surface comprises small, flexible barbs or hooks for engaging the loops. Such material is described in further detail, for example, in U. S. patents 3,461,511 or 3,387,345. Regardless of the type of disengagable device used for securing the -~ ends of straps 31, a plurality of such straps are located at selected positions on the interior surface of the insulated sheet 40 by which the flexible refrigerant directing conduit or tubing is secured to the sheet. The removable straps allow for removing the tubing from the pad where pad replacement is desired. Moreover, because the cooling tubing is flexible, different shaped cooling pads may be desired for use on different limbs or body portions.
Thus, the cooling tubing simply can be removed from one cooling pad and placed in another pad as desired.
_~r(~f ~ "~ ~) .
7~7 Non-thermal insulating sheet 42 is also removably ~ secured by utilizing Velcro fasteners 49 and 39 or other means ; such as snaps, zippers and the like. Should non-insulating sheet 42 become soiled or worn it may be removed and washed or otherwise cleaned for sanitary purposes, or replaced. It will also be understood that this non-insulating sheet lies against the patient's skin so that the cold from the cooling tubing is readily directed to the patient's limb or warm body portion. Moreover~ removal or disengagement of the non-insulating sheet exposes the tubing for repairs or replacement.
Additional features of the pad includes straps 37 also having snaps or Velcro closure means cooperating on the pad so that the pad simply may be wrapped around the patient and secured.
Other features of such a pad are disclosed fully in my aforesaid parent application, the description thereof being further incorporated herein by reference.
Although only one flexible pad and cooling tubing are shown, it will again be understood that a plurality of such pads may be used, depending on the size of the apparatus including the compressor and condenser. In utilizing the single pad shown, tubing end 47 would be connected to conduit 34 whereas tubing end 45 will be connected to conduit 29 of the apparatus shown in Figure 1. Thus, cold refrigerant composition will pass from outlet conduit 29 through the tubing in the cooling pad and return at the opposite tubing end via conduit 34 where it will be directed via conduit 27 into the au~iliary evaporator 16. It is convenient to incorporate ~uick-connect couplings to allow for easy connection or dis-connection between the pad or pads and apparatus. Such couplings are of the type referred to, for example, in U. S.
patent 2,823,048 and which couplings are conveniently incorporated on a top panel for the apparatus (not shown) andas further described in my parent application.
As previously noted, a significant improvement of the apparatus of the present invention is the incorporation of a by-pass pipe and cooperating valve for maintaining selected pad cooling temperatures. Such a pipe 28 is shown in Figure 1 interconnecting conduits 20 and 2~. Solenoid valve 30 opens and closes pipe 28. When the valve opens the pipe, refrigerant composition will pass through the pipe into conduit 27 and auxiliary evaporator and accumulator 16 thereby by-passing dryer 22, capillary tubes 24 and 26 and the cooling tubing and pads. Instead, the cooled refrigerant composition is directed to the auxiliary evaporator and circulates through the apparatus without further cooling the pad and flexible tubing. Actually, as refrigerant flows into conduit 27, this causes a back pressure to build up in the pads and tubing which concomitantly elevates the pad temperature. Preferably, the valve cooperating with by-pass 28 and which opens and `- closes the by-pass pipe, is responsive to a thermostat control.
I
20 A thermostat will monitor temperature at the cooling pad and when the pad temperature is elevated past a selected temperature the valve closes the by-pass pipe thereby directing the cooled refrigerant composition through the tubing at the cooling pad.
When the pad has again cooled to the selected temperature, the sensing thermostat will cause the by-pass valve to open, whereupon refrigerant composition by-passes the pad. Preferably, the thermostat control will include a temperature selecting member such as a selector control and thermometer scale located on the apparatus control panel, as shown in Figure 6 and illustrated in my aforesaid patent. Accordingly, the desired pad temperature can simply be dialed or otherwise L7~L7 selected and the apparatus, when functioning r will maintain selected temperature at the cooling pad, again, by periodically opening and closing the by-pass pipe.
; Figure 3 illustrates an alternative embodiment for the by-pass pipe and valve when utilizing an expansion valve instead of the capillary tubes shown in Figure 1. For some applications it may be preferred to use an expansion valve since such a valve incorporates means for manually adjusting ; minimum pad temperatures. Moreover, the use of an expansion valve also allows the incorporation of a receiver or reservoir for storing additional refrigerant composition for automatically compensating for any re~rigerant losses during operation of the apparatus. The use of such a receiver or reservoir thus eliminates the necessity for charging refrigerant composition ; to the apparatus in case of minor leakage which may occur throughout the conduit and tubing system, especially where rubber tubing is used in the flexible cooling pads. It will be understood that such rubber tubing normally has some inherent porosity, thus causing some loss of refrigerant during normal usage.
Referring specifically to Figure 3, conduit portion 80 receives refrigerant composition from condenser 12 where it passes through dryer 75, conduit 82 and into expansion valve 72. From the expansion valve, the refrigerant then passes to the cooling pads (not shown) via conduits 23 and 29.
Expansion valve 72 incorporates a manual knob 73 so that an operator may select or vary the extent of composition expansion in the valve and concomitantly the temperature characteristics of the cooling pad. Between conduits 80 and 82 also is located receiver or refrigerant reservoir 70 which holds a supply of refrigerant, for example, about 16 ounces. A sight _7_ ~6917~L7 glass 71 may also be present for observing refrigerant flow and any bubbles or other indications of low refrigerant composition in the system as it passes the glass.
In the embodiment shown in Figure 3, the by-pass pipe 88 intersects conduit 38 between compressor 14 and ~ condenser 12 rather than in the mode illustrated in Figure l.
; The reason for by-passing the condenser in the embodiment illustrated in Figure 3 is due to the fact that when utilizing an expansion valve and receiver or reservoir in the apparatus, there may be more li~uid refrigerant delivered to the auxiliary evaporator in the by-pass mocle than it can handle. This is not a problem when utilizing the capillary tubes and without a refrigerant composition reservoir shown in Figure 1. However~
because it is a potential problem when utilizing the arrange-ment of Figure 3, it is preferred to divert the refrigerant composition during by-pass to the auxiliary evaporator from the high side of the compressor prior to condensation in the condenser. Otherwise, the apparatus illustrated in Figure 3 operates much like that shown in Figure l. When the cooling pad has been cooled to the desired temperature, the thermostat sensor will actuate solenoid valve 30 which will open conduit 88 thereby sending the refrigerant composition to conduit 27 - and into auxiliary evaporator 16 and by-passing condenser 12, expansion valve 72, and the cooling pads.
In still another embodiment, a positive pressure device may be incorporated to maintain a minimum pressure in the pad or pads and tubing. Thus, this feature is desirable in order to avoid possible vacuum in the cooling pad tubing.
Since this flexible tubing may consist of rubber or synthetic elastomer, which may be slightly porous, if a vacuum were to occur because of low refrigerant composition in the system, _~_ 1~64~7~7 air would be taken into the tubing and passed through the system which could cause contamination as well as damage to the compressor. In order to avoid such a situation, a positive pressure device consisting of a conduit and a manually reyulated expansion valve are used. Such a feature is illustrated ~urther in Figure 3, although it must be appreciated that it can also be used with the apparatus shown in Figure 1 as well (see Figure ~). A positive pressure device consists of a supply line or conduit 89 which taps or communicates with conduit 38 on the compressor high side. The supply line extends to e~pansion valve 61 and supply line 85 communicates with expansion valve 61 and thus supply line 85 communicates with conduit 27 which then enters auxiliary evaporator 16. Expansion valve 61 may be adjusted by an operator utilizing manual adjustment knob 87 so that when the pressure in the system falls to or below a selected minimum pressure to which expansion valve 61 has been set, for example, 1-2 psi., it will cause the valve `` to open thereby directing the refrigerant composition from conduit 38 into line 89, expansion valve 61, line 85, conduit 27 and into the auxiliary evaporator. This flow of refrigerant composition will continue until such time as the pressure in the system has again exceeded the minimum pressure. Thus, by so directing the composition, it will cause a back pressure to be created in the pad tubing and will prevent the creation of possible vacuum in the cooling pad tubing. It will also be noted in Figure 3, that supply line 89 intersects or communicates with conduit 38 upstream from by-pass pipe 88.
Again this positive pressure system may be used even without a by-pass system so long as an auxiliary evaporator is present.
The auxiliary evaporator also functions as an accumulator in the cooliny apparatus which function will be well understood ~ ?6~
to those skilled in the art. Thus, the auxiliary evaporator also acting as an accumulator insures that no liquid refrigerant is passed on to foul the compressor.
Referring again to Figure 2, the use of a resistive heating wire or coil is illustrated. The purpose for such an embodiment is to provide the apparatus of the invention with a heating capability separate and distinct from the refrigerant cooling operation previously described. Thus, there is incorporated a heating wire 44 conveniently placed along sicle or otherwise adjacent the cooling coil within the pad utilizing the same tie down or secu~ing straps 31. The ends 41 and 43 of the heating element are shown and these will be secured properly to a switching member whereby a current will be supplied simply by fllpping an on-off switch j on the apparatus control panel. Normally, such a heating function will not be used when the pad is to be used for ', cooling a warm body portion. Instead, when the compressor and other refrigerant cooling components are not operating, the pad simply may be used for providing heat to a patient where injury dictates that heat be applied instead of cooling.
It will be understood that the resistive heating wire will be insulated and of the type that can be safely incorporated adjacent the flexible cooling tubing and secured in a flexible pad of the type shown in Figure 2 and previously describedO
Observing now Figures 4 and 5, there is shown schematically the apparatus of the invention including the conduits for directing refrigerant composition and the cooling pad 84 having the flexible tubing therein and which pad and tubing are wrapped around a warm body portion to be cooled.
It will be appxeciated that the pad and tubing act as an evaporator for the refrigerant composition. Figure 4 ~LO~ L7 illustrates the apparatus shown in Figure 1 with the addition of a positive pressure device embodiment, while Figure 5 is directed to the apparatus of Figure 3~ Referring first to Fi~ure 4, in operation, refrigerant composition is directed via conduit A to auxiliary evaporator 52 where it absorbs further energy b~ being heated. Again, the auxiliary evaporator also sexves as an accumulator. The refrigerant compositions leaves auxiliary evaporator 52 via conduit B and enters compressor 51. Thereafter, the composition is forced via conduit C into condenser 55 where it is cooled as it passes through the condenser coils and which cooling is aided by fan 56 which directs relatively cool ambient air over fins normally associated with the condenser coils. From the condenser, the refrigerant composition is directed along conduit D. Where pad 64 is to be cooled, the refrigerant is directed through dryer 62 where desiccant removes any moisture~ Normally, the dryer Will also preferably inclucle a filter or strainer, for example, a 100 mesh screen, so as to prevent any particulate matter from entering capillary tube 63 via conduit E. There-after, the cooled refrigerant composition is directed to the ; pad via conduit F~ When the pad has attained a suitably low temperature selected by an operator, a thermostat sensing the pad temperature electrically energizes solenoid valve 57 which valve opens conduit G and the refrigerant composition by-passes the dryer, capillary tube and cooling pad and is directed to conduit A and again to the auxiliary evaporator. This refrigerant flow path is maintained until cooling pad 64 has become warn enough to require further cooling which condition is again sensed by a thermostatic sensor which energizes solenoid valve 57 and then closes by-pass pipe G.
~69~7 In addition to the above cliscussed components regarding Figure 4, the positive pressure device is a line or conduit H which communicates with conduit C downstream from condenser 55 but upstream from compressor 51 and an expansion valve 61, which may be adjusted to maintain any desirable minimum pressure in the system as previously described.
Supply line J then directs refrigerant composition from the expansion valve to conduit A and auxiliary evaporator 52.
Figure 5 shows schematically the apparatus of Figure 3 whereby refrigerant composition travels in the manner described regarding Figure 4 with the major difference being that this embodiment incorporates a receiver or reservoir ~or refrigerant composition and expansion valve 72 in place of capillary tubes. The receiver includes a dryer 75 and may also incorporate a window 71 ~or observing refrigerant flow in the conduit. When pad 64 is to be cooled t re~rigerant ` composition travels from compressor 51 via conduit C through condenser 55, throu~h conduits D and E and into expansion valve 72, through conduit F and cooling pad 64, conduit A into auxiliary evaporator 52 and back to compressor 51 via conduit B. Once the cooling pad has achieved the desired low temperature, upon command from a sensing thermostat~
valve 57 will open whereby refrigerant composition will pass from compressor 51 through conduits L, G, A, auxiliary evaporator 52 and back to compressor via conduit B. This condition will continue until further cooling of cooling pad 64 is required whereupon valve 57 will close and the compo-sition will then be directed as previously described. Again, the incorporation of a positive pressure device comprising conduits H and J with manually adjustable expansion valve 61 may be used. It should be appreciated that the positive ~G4~L'7 pressure device may be used with or without the by~pass lines described so long as an auxiliary evaporator is present in the apparatus.
As previously mentioned, it is desirable to thermo-statically operate the cooling apparatus by sensing the pad temperature Figure 2 illustrates a temperature sensing probe secured to the pad insulated sheet 40 adjacent the cooling tubes so that the pad temperature is monitored and the by-pass pipe in the apparatus is automatically opened and closed in response to the monitored temperature. Probe 84 is secured at the end of insulated conductive wire 83 and disconnecting plug 87 which may be attached to a plug and wire leading to the apparatus control panel. Thus, the temperature probe may be moved with the pad or independently replaced or repaired.
Pigure 6 shows the use of such a probe 94 and wire 96 for sensing the skin temperature rather than pad temperature.
This feature is especially desirable when treating a patient wearing a cast 92 as is illustrated. For example, it may be desirable to reduce swelling of a limb on which a cast is 20 located. Yet, since a cast, usually plaster, is itself thermally insulating, temperature selection and maintenance will be different than when the pad is directly applied to a limb.
It may be necessary to maintain pad -temperature at 20-40 F.
in order to achieve and hold skin temperature of 60 F., and this will vary with the cast thickness and composition.
; Accordingly, it is highly desirable and advantageous to insert a temperature sensing probe 94 between cast 92 and the patient's skin. Cooling pad 90 will supply cooling to the cast in response to the temperature sensing probe, which will open and close electronic switching means for actuating the by-pass pipe valve feature of the apparatus in the manner - previously explained. Conveniently a temperature scale on 7~7 control panel 95 will be indexed for a desirable temperate range and a temperature selection control 9~ will then be set to the specific temperature to be monitored by the probe and maintained by the by-pass valve feature. Such skin temperature selection is also very desirable for patients who are quite sensitive to cold and have low cold exposure tolerance. Thus, the cold temperature selection and maintenance feature of the invention is a highly advantageous embodiment, made possible by the by-pass valve and pipe and auxiliary evaporator components~
The type of temperature probes used for skin or pad temperature monitoring is not critical. State of -the art devices include temperature sensitive materials and cooperating resistors, etc., usually sealed in a hard resin cover. Conveniently the skin probe cover may have a flat side or sides for lying against the patient's skin and of a thickness suitable for sliding between the skin and a cast.
Again, it will be further undersood by those skilled in the art that the pad by-pass features disclosed herein do not actually result in completely by-passing or isolating the cooling pads and tubing. Instead, when the by-pass pipe or the positive pressure expansion valve are opened, the flow of refrigerant composition therein causes a back pressure in the pad or pads as some refrigerant will continue to be provided to the pads and because of significant refrigerant flow into the conduit between the pads and auxiliary evaporator.
In either case, this will cause increased pressure in the pads and concomitant temperature increase.
The apparatus of the invention is preferably enclosed in a case, such as a portable carrying case as disclosed in my aforesaid patent. Again, different sized and shaped cooling -3L~69~
pads may be use~ as may means for injecting make-up refrigerant composition in the disclosed apparatus as described in my parent application and which description is incorporated herein by reference. Although the cooling pad has been described as used with flexible tubing, normally of a rubber or synthetic elastomer type, it is also within the scope of the invention to use any tubing which may be secured to the cooling pad to be wrapped around a warm body portion to be cooled. For examplet a ductile copper tubing as disclosed in the aforesaid patent may be used. These as well as other embodiments within the purview of the invention will be evident to those skilled in the art.
Claims (14)
1. A portable apparatus for cooling a limb of a patient or the like and comprising a compressor, a condenser, expansion valve means, at least one flexible pad adapted to be wrapped around a bodily limb and including flexible tubing serving as an evaporator, an auxiliary evaporator, conduit means for circulating a refrigerant composition serially from said compressor to said condenser, expansion valve means, tubing, auxiliary evaporator and back to said compressor, a by-pass conduit operatively connected to said conduit means and extending from a point upstream of said pad to a point downstream of said pad and upstream of said auxiliary evaporator, and by-pass valve means for selectively opening and closing said by-pass conduit, whereby the temperature of said pad may be controlled by the opening and closing of said by-pass valve means.
2. The apparatus as defined in Claim 1 wherein said by-pass valve means includes means for monitoring the temperature at said pad, and means for closing said by-pass valve means when the temperature at the pad is above a pre-selected temperature, and for opening said by pass valve means when the temperature at the pad is below a pre-selected temperature.
3. The apparatus as defined in Claim 2 wherein said temperature monitoring means comprises a temperature sensing probe secured to said pad.
4. The apparatus as defined in Claim 1 wherein said expansion valve means comprises a capillary tube, and wherein said by-pass conduit extends from a point downstream of said condenser and upstream from said capillary tube to said auxiliary evaporator.
5. The apparatus as defined in Claim 1 wherein said expansion valve means comprises an expansion valve, and wherein said by-pass conduit extends from a point downstream from said compressor and upstream from said condenser to said auxiliary evaporator.
6. The apparatus as defined in Claim 5 further comprising a refrigerant composition reservoir communicating with said conduit means upstream from said expansion valve for maintaining a supply of said composition in said apparatus.
7. The apparatus as defined in Claim 1 further comprising positive pressure means for maintaining a selected refrigerant composition minimum pressure in said tubing, said positive pressure means comprising a supply line communicating with said conduit means downstream from said compressor and extending to said auxiliary evaporator, and valve means in said supply line.
8. The apparatus as defined in Claim 1 wherein said pad further includes a resistive heating element to permit the heating thereof.
9. The apparatus as defined in Claim 1 further comprising a fan operatively associated with said condenser for facilitating the removal of heat therefrom.
10. The apparatus as defined in Claim 1 wherein said pad further comprises a flexible thermal insulating outer sheet, a flexible inner sheet, and means for releasably interconnecting said outer and inner sheets in an overlying relationship and with said flexible tubing disposed there-between.
11. The apparatus as defined in Claim 10 wherein said pad further comprises means for releasably holding the same in a wrapped position around the bodily limb.
12. The apparatus as defined in Claim 11 wherein said flexible tubing is disposed in a serpentine configuration and is releasably secured to said outer sheet.
13. The apparatus as defined in Claim 1 wherein said auxiliary evaporator is positioned with respect to that portion of said conduit means between said compressor and pad 50 as to be substantially free of any heat exchange relation-ship therewith.
14. The apparatus as defined in Claim 13 wherein said auxiliary evaporator is positioned immediately adjacent said compressor.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/728,262 US4170998A (en) | 1975-09-26 | 1976-09-30 | Portable cooling apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1064717A true CA1064717A (en) | 1979-10-23 |
Family
ID=24926103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA287,682A Expired CA1064717A (en) | 1976-09-30 | 1977-09-28 | Portable cooling apparatus |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS5348390A (en) |
CA (1) | CA1064717A (en) |
DE (2) | DE2743919A1 (en) |
DK (1) | DK431377A (en) |
FR (1) | FR2366008A1 (en) |
GB (1) | GB1595916A (en) |
NO (1) | NO143832C (en) |
SE (1) | SE7710998L (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005030100A1 (en) * | 2003-10-01 | 2005-04-07 | Multivet International Inc. | Bandage cooling apparatus and method of using same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3015787A1 (en) * | 1980-04-24 | 1981-10-29 | Peter 6380 Bad Homburg Steingraf | DEVICE FOR COOLING BODY SITES OR BODY PARTS AS A THERAPEUTIC OR DIAGNOSTIC MEASURE |
US4523594A (en) * | 1982-02-12 | 1985-06-18 | Lawrence Kuznetz | Stretchable textile heat-exchange jacket |
JPS5969714U (en) * | 1982-11-01 | 1984-05-11 | 初鹿 衛 | water sac |
DE3308553C2 (en) * | 1983-03-10 | 1986-04-10 | Udo Prof. Dr.med. 4130 Moers Smidt | Means for reducing the human body weight |
JPS61100243A (en) * | 1984-10-23 | 1986-05-19 | 工業技術院長 | Apparatus for automatically controlling bodily temperature |
IT1259424B (en) * | 1992-03-11 | 1996-03-18 | CONTAINMENT AND COOLING ELEMENT TO APPLY TO ARTS AFFECTED BY TRAUMAS | |
JPH08299379A (en) * | 1995-05-11 | 1996-11-19 | Shigeru Takehisa | Device for cooling affected part |
GB2316872A (en) * | 1996-09-10 | 1998-03-11 | Secr Defence | Cooling cuff |
CA2463367C (en) * | 2001-10-11 | 2010-12-21 | Medivance, Incorporated | Patient temperature control system with fluid temperature response |
DE102006030499B4 (en) * | 2006-07-01 | 2010-02-18 | Ralf Averbeck | Apparatus for cold or heat treatment of the extremities of bi- or tetrapod vertebrates and their use |
WO2008053227A1 (en) * | 2006-11-01 | 2008-05-08 | Remploy Limited | Material cooling system |
KR101027628B1 (en) | 2009-06-29 | 2011-04-07 | 김현성 | Cosmetic refrigerator |
DE102013012759A1 (en) * | 2013-07-31 | 2015-02-05 | Sartorius Stedim Biotech Gmbh | temperature control; Use and arrangement |
DE102021106966A1 (en) | 2021-03-22 | 2022-09-22 | Barkey Gmbh & Co. Kg | Device and method for tempering an item to be tempered |
-
0
- DE DE7730219U patent/DE7730219U1/en not_active Expired
-
1977
- 1977-09-27 GB GB40223/77A patent/GB1595916A/en not_active Expired
- 1977-09-28 CA CA287,682A patent/CA1064717A/en not_active Expired
- 1977-09-29 JP JP11775377A patent/JPS5348390A/en active Pending
- 1977-09-29 DE DE19772743919 patent/DE2743919A1/en not_active Withdrawn
- 1977-09-29 FR FR7729340A patent/FR2366008A1/en not_active Withdrawn
- 1977-09-29 DK DK431377A patent/DK431377A/en not_active Application Discontinuation
- 1977-09-29 NO NO773341A patent/NO143832C/en unknown
- 1977-09-30 SE SE7710998A patent/SE7710998L/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005030100A1 (en) * | 2003-10-01 | 2005-04-07 | Multivet International Inc. | Bandage cooling apparatus and method of using same |
Also Published As
Publication number | Publication date |
---|---|
GB1595916A (en) | 1981-08-19 |
FR2366008A1 (en) | 1978-04-28 |
SE7710998L (en) | 1978-03-31 |
DE2743919A1 (en) | 1978-04-06 |
JPS5348390A (en) | 1978-05-01 |
DE7730219U1 (en) | 1978-06-15 |
NO143832C (en) | 1981-04-22 |
NO143832B (en) | 1981-01-12 |
NO773341L (en) | 1978-03-31 |
DK431377A (en) | 1978-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4170998A (en) | Portable cooling apparatus | |
US4184537A (en) | Selective heating and cooling apparatus | |
CA1064717A (en) | Portable cooling apparatus | |
US4026299A (en) | Cooling and heating apparatus | |
CA1155028A (en) | Therapeutic device | |
US2504308A (en) | Heating and cooling cover | |
AU2003255480B2 (en) | Portable air-conditioning unit, particularly a personal air-conditioning unit | |
US5269369A (en) | Temperature regulation system for the human body using heat pipes | |
CA2435429C (en) | Catheter | |
EP0898473B1 (en) | Cooling system | |
US3916911A (en) | Portable cooling apparatus | |
US4688390A (en) | Refrigerant control for multiple heat exchangers | |
US4677970A (en) | Orthopedic heat transfer system for orthopedic casts | |
WO1994000086A1 (en) | Temperature controlled body pads | |
CN107485075A (en) | Air-conditioned clothes | |
JPS61100243A (en) | Apparatus for automatically controlling bodily temperature | |
JP2001147063A (en) | Personal cooling system | |
KR970066412A (en) | Absorption Chiller | |
DE3219277A1 (en) | Air-conditioning plant for spaces with hot water supply | |
GB2237372A (en) | Air conditioning systems | |
USRE28657E (en) | Cryosurgical apparatus | |
CN206892693U (en) | A kind of rewarming apparatus and rewarming transport vehicle | |
WO2000024348A9 (en) | Pad for warming a patient | |
CN106666864B (en) | Honeycomb fashion part refrigeration-heating air-conditioner takes | |
JPH01268553A (en) | Apparatus for automatically lowering and raising bodily temperature |