[go: up one dir, main page]

BR112017022923B1 - METHOD FOR REMOVING HARMFUL COMPOUNDS COMPRISING NITROGEN OXIDES, VOLATILE ORGANIC COMPOUNDS AND CARBON MONOXIDE AND PARTICULATE MATTER FROM EXHAUST GASES AND MULTIFUNCTIONAL WALL-FLOW FILTER FOR CLEANING EXHAUST GASES OF A COMPRESSION IGNITION ENGINE - Google Patents

METHOD FOR REMOVING HARMFUL COMPOUNDS COMPRISING NITROGEN OXIDES, VOLATILE ORGANIC COMPOUNDS AND CARBON MONOXIDE AND PARTICULATE MATTER FROM EXHAUST GASES AND MULTIFUNCTIONAL WALL-FLOW FILTER FOR CLEANING EXHAUST GASES OF A COMPRESSION IGNITION ENGINE Download PDF

Info

Publication number
BR112017022923B1
BR112017022923B1 BR112017022923-4A BR112017022923A BR112017022923B1 BR 112017022923 B1 BR112017022923 B1 BR 112017022923B1 BR 112017022923 A BR112017022923 A BR 112017022923A BR 112017022923 B1 BR112017022923 B1 BR 112017022923B1
Authority
BR
Brazil
Prior art keywords
filter
exhaust gases
partition walls
scr
exhaust gas
Prior art date
Application number
BR112017022923-4A
Other languages
Portuguese (pt)
Other versions
BR112017022923A2 (en
Inventor
Pär L. T. Gabrielsson
Original Assignee
Haldor Topsoe A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe A/S filed Critical Haldor Topsoe A/S
Priority claimed from PCT/EP2016/060682 external-priority patent/WO2016184774A1/en
Publication of BR112017022923A2 publication Critical patent/BR112017022923A2/en
Publication of BR112017022923B1 publication Critical patent/BR112017022923B1/en

Links

Abstract

MÉTODO, FILTRO MULTIFUNCIONAL E SISTEMA PARA A REMOÇÃO DE MATÉRIA PARTICULADA E COMPOSTOS NOCIVOS DOS GASES DE EXAUSTÃO DE MÁQUINAS. A presente invenção se refere a um método, filtro multifuncional e sistema para a remoção de matéria particulada e compostos nocivos dos gases de exaustão de máquinas a diesel.METHOD, MULTIFUNCTIONAL FILTER AND SYSTEM FOR REMOVING PARTICULATE MATTER AND HARMFUL COMPOUNDS FROM MACHINE EXHAUST GASES. The present invention relates to a method, multifunctional filter and system for removing particulate matter and harmful compounds from the exhaust gases of diesel machines.

Description

[001] A presente invenção refere-se a um método e um filtro multifuncional para reduzir a emissão de óxidos de nitrogênio (NOx) e matéria particulada presentes na exaustão de um motor de ignição por compressão interna de queima pobre.[001] The present invention relates to a method and a multifunctional filter for reducing the emission of nitrogen oxides (NOx) and particulate matter present in the exhaust of a lean burn internal compression ignition engine.

[002] O sistema de exaustão de carros modernos com motores de queima pobre é tipicamente equipado com um catalisador de oxidação, um filtro de partículas e um catalisador para a redução seletiva de NOx (SCR) na presença de um agente de redução.[002] The exhaust system of modern cars with lean-burn engines is typically equipped with an oxidation catalyst, a particulate filter and a catalyst for selective NOx reduction (SCR) in the presence of a reducing agent.

[003] Catalisadores de oxidação ativos na oxidação de compostos orgânicos voláteis e monóxido de carbono e catalisadores SCR são conhecidos na técnica e divulgados em numerosas publicações.[003] Oxidation catalysts active in the oxidation of volatile organic compounds and carbon monoxide and SCR catalysts are known in the art and disclosed in numerous publications.

[004] Filtros de partículas (DPF) normalmente empregados em sistemas de limpeza de gases de exaustão de diesel são filtros de fluxo de parede com uma pluralidade de canais de entrada e saída. Os canais de entrada são fechados em seu lado de saída e os canais de saída são fechados em seu lado de entrada, de modo que os gases que fluem para dentro do filtro são forçados através de paredes porosas que definem os canais, pelo que a matéria particulada é removida dos gases por filtração.[004] Particulate filters (DPF) typically employed in diesel exhaust gas cleaning systems are wall flow filters with a plurality of inlet and outlet channels. The inlet channels are closed on their outlet side and the outlet channels are closed on their inlet side, so that gases flowing into the filter are forced through porous walls defining the channels, whereby particulate matter is removed from the gases by filtration.

[005] Cumprir os futuros regulamentos quanto às emissões para carros de passeio e caminhões a diesel requer o uso de tecnologia de filtro de partículas de diesel e catalisador de redução de NOx. Devido ao seu potencial para otimização de combustível e alta eficiência na remoção de NOx, SCR é muitas vezes a tecnologia preferida para a redução de NOx. Os catalisadores DOC (catalisador de oxidação de diesel), DPF (filtro de partículas de diesel) e SCR (redução catalítica seletiva) são combinados sequencialmente no sistema de exaustão, mas tais configurações sequenciais do sistema têm várias desvantagens: 1) grande volume; 2) temperatura insuficiente para o catalisador SCR durante a partida a frio quando DPF é colocado na frente do SCR; e 3) condições desfavoráveis para a regeneração passiva do filtro (menores NO2 e temperatura) se o SCR for colocado a montante do DPF.[005] Meeting future emissions regulations for diesel passenger cars and trucks requires the use of diesel particulate filter and NOx reduction catalyst technology. Due to its potential for fuel optimization and high efficiency in NOx removal, SCR is often the preferred technology for NOx reduction. DOC (diesel oxidation catalyst), DPF (diesel particulate filter) and SCR (selective catalytic reduction) catalysts are combined sequentially in the exhaust system, but such sequential system configurations have several disadvantages: 1) large volume; 2) insufficient temperature for the SCR catalyst during cold start when DPF is placed in front of the SCR; and 3) unfavorable conditions for passive filter regeneration (lower NO2 and temperature) if the SCR is placed upstream of the DPF.

[006] A matéria particulada acumulada nas paredes do filtro no lado de entrada do filtro deve ser removida por regeneração ativa, em que a matéria particulada é queimada cataliticamente em contato com um catalisador de oxidação suportado nas paredes do filtro em combinação com o oxigênio nos gases de exaustão a temperaturas aumentadas dos gases de exaustão ou por regeneração passiva não catalítica.[006] Particulate matter accumulated on the filter walls on the inlet side of the filter must be removed by active regeneration, in which the particulate matter is catalytically burned in contact with an oxidation catalyst supported on the filter walls in combination with oxygen in the exhaust gases at increased exhaust gas temperatures, or by non-catalytic passive regeneration.

[007] A regeneração passiva do filtro é facilitada pela oxidação de carbono a 250 °C - 450 °C com NO2 formado em um DOC a montante pelas seguintes reações:C + NO2 → CO + NO (1)C + 2NO2 → CO2 + 2NO (2)E, como a matéria particulada tipicamente contém um hidrocarboneto como SOF (Fração Orgânica Solúvel), aqui tipificado como o hidrocarboneto “CH”: “CH” + 2,5NO2 → CO2 + 2,5NO + 0,5H2O (3)[007] Passive filter regeneration is facilitated by the oxidation of carbon at 250°C - 450°C with NO2 formed in an upstream DOC by the following reactions:C + NO2 → CO + NO (1)C + 2NO2 → CO2 + 2NO (2)And, as the particulate matter typically contains a hydrocarbon such as SOF (Soluble Organic Fraction), here typified as the hydrocarbon “CH”: “CH” + 2.5NO2 → CO2 + 2.5NO + 0.5H2O (3)

[008] A rápida reação SCR:4NH3 + 2NO + 2NO2 → 4 N2 + 6H2O (4)compete com as reações de carbono acima para a disponibilidade de NO2.[008] The fast reaction SCR:4NH3 + 2NO + 2NO2 → 4 N2 + 6H2O (4)competes with the above carbon reactions for NO2 availability.

[009] Os problemas podem ser potencialmente resolvidos pela integração dos catalisadores DOC e SCR ao filtro de partículas como uma unidade multifuncional.[009] The problems can potentially be solved by integrating the DOC and SCR catalysts into the particulate filter as a multifunctional unit.

[010] Um dos desafios de integrar a função de oxidação em uma unidade é que pode consumir ou oxidar o redutor de amônia antes de atingir o catalisador SCR. O DOX é importante para a produção de NO2 a partir de NO que é usado para oxidar a fuligem no filtro de fuligem. A oxidação da fuligem por NO2 mantém o filtro limpo e assegura uma baixa queda de pressão no sistema. A solução de acordo com a invenção é que apenas a entrada do filtro é revestida por zona com a funcionalidade DOC. NO, que é um gás, irá difundir no material catalítico e reagir a NO2, enquanto a ureia, que é usada como precursor para NH3 e é líquida, passará pela zona com o DOC e hidrolisará para NH3 após a DOC, como mostrado na Figura 1. A camada superior do DOC pode ser passivada pela adição de um revestimento fino de um material mais inerte, que não reage com a ureia.[010] One of the challenges of integrating the oxidation function into a unit is that it may consume or oxidize the ammonia reductant before reaching the SCR catalyst. DOX is important for the production of NO2 from NO which is used to oxidize the soot in the soot filter. The oxidation of the soot by NO2 keeps the filter clean and ensures a low pressure drop in the system. The solution according to the invention is that only the filter inlet is zone coated with the DOC functionality. NO, which is a gas, will diffuse into the catalytic material and react to NO2, while urea, which is used as a precursor for NH3 and is liquid, will pass through the zone with the DOC and hydrolyze to NH3 after DOC, as shown in Figure 1. The top layer of DOC can be passivated by adding a thin coating of a more inert material, which does not react with urea.

[011] Assim, um primeiro aspecto da invenção consiste em um método para a remoção de compostos nocivos e matéria particulada de gases de exaustão de um motor de ignição por compressão compreendendo em série as etapas dentre:(a) adicionar uma quantidade de redutor de SCR na forma de gotículas de uma solução aquosa de ureia aos gases de exaustão;(b) introduzir os gases de exaustão misturados com as gotículas da solução aquosa de ureia aos canais de entrada de um filtro de fluxo de parede e oxidar os compostos orgânicos voláteis e monóxido de carbono em dióxido de carbono, e água e monóxido de nitrogênio em dióxido de nitrogênio na presença de um catalisador de oxidação disposto em paredes de divisão porosas permeáveis no lado de entrada do filtro de fluxo de parede;(c) subsequente evaporar e decompor as gotículas da solução aquosa de ureia nos gases de exaustão da etapa (b) em amônia;(d) passar os gases de exaustão contendo amônia através das paredes de divisão porosas permeáveis do filtro de fluxo de parede para os canais de saída do filtro e capturar a matéria particulada na superfície das paredes de divisão porosas permeáveis voltadas para os canais de entrada do filtro;(e) remover continuamente a matéria particulada capturada por reação com o dióxido de nitrogênio contido nos gases de exaustão; e(f) subsequentemente remover as quantidades remanescentes de dióxido de nitrogênio dos gases de exaustão por reação com amônia na presença de um catalisador ativo SCR disposto dentro das paredes de divisão porosas permeáveis aos gases e/ou na parede voltada para os canais de saída do filtro de partículas de fluxo de parede.[011] Thus, a first aspect of the invention consists of a method for removing harmful compounds and particulate matter from exhaust gases of a compression ignition engine comprising in series the steps of: (a) adding an amount of SCR reductant in the form of droplets of an aqueous urea solution to the exhaust gases; (b) introducing the exhaust gases mixed with the droplets of the aqueous urea solution to the inlet channels of a wall flow filter and oxidizing the volatile organic compounds and carbon monoxide to carbon dioxide, and water and nitrogen monoxide to nitrogen dioxide in the presence of an oxidation catalyst disposed in permeable porous partition walls on the inlet side of the wall flow filter; (c) subsequently evaporating and decomposing the droplets of the aqueous urea solution in the exhaust gases from step (b) into ammonia; (d) passing the exhaust gases containing ammonia through the permeable porous partition walls of the wall flow filter to the outlet channels of the filter and capturing the ammonia particulate matter on the surface of the permeable porous partition walls facing the filter inlet channels;(e) continuously removing the captured particulate matter by reaction with nitrogen dioxide contained in the exhaust gases; and(f) subsequently removing the remaining quantities of nitrogen dioxide from the exhaust gases by reaction with ammonia in the presence of an active SCR catalyst disposed within the gas-permeable porous partition walls and/or on the wall facing the outlet channels of the wall-flow particulate filter.

[012] Um segundo aspecto da invenção é o filtro multifuncional de fluxo de parede para limpeza dos gases de exaustão de um motor de ignição por compressão, compreendendo uma pluralidade de canais de fluxo de entrada dos gases de exaustão e uma pluralidade de canais de saída dos gases de exaustão separados por paredes de divisão porosas permeáveis a gás;um catalisador de oxidação a diesel aplicado nos canais de fluxo de entrada dos gases de exaustão nas paredes de divisão no lado da entrada dos gases de exaustão;e um catalisador SCR para redução seletiva de óxidos de nitrogênio aplicados dentro das paredes de divisão e/ou na superfície das paredes de divisão voltadas para os canais de saída em uma região entre o lado de entrada dos gases de exaustão e o lado de saída, em que a camada superior do catalisador de oxidação a diesel é passivada com uma revestimento de material inerte.[012] A second aspect of the invention is the multifunctional wall flow filter for cleaning the exhaust gases of a compression ignition engine, comprising a plurality of exhaust gas inlet flow channels and a plurality of exhaust gas outlet channels separated by gas-permeable porous partition walls; a diesel oxidation catalyst applied to the exhaust gas inlet flow channels on the partition walls on the exhaust gas inlet side; and an SCR catalyst for selective reduction of nitrogen oxides applied inside the partition walls and/or on the surface of the partition walls facing the outlet channels in a region between the exhaust gas inlet side and the outlet side, wherein the upper layer of the diesel oxidation catalyst is passivated with a coating of inert material.

[013] À distância típica de 0,5 m do injetor para o filtro multifuncional de fluxo de parede, como no caso dos veículos a diesel, é necessário fornecer o tamanho das gotículas a pelo menos 7 micrômetros para evitar a gaseificação das gotículas na fase gasosa a montante do filtro e dentro do DOC.[013] At the typical distance of 0.5 m from the injector to the multi-function wall flow filter, as in the case of diesel vehicles, it is necessary to provide a droplet size of at least 7 micrometers to avoid gasification of droplets in the gas phase upstream of the filter and within the DOC.

[014] Com um tamanho de gotícula da solução de ureia- água maior a menos de 7 micrômetros, a distância do injetor deve ser reduzida para abaixo de 0,5 metro para evitar a evaporação da solução dentro do DOC.[014] With a droplet size of the urea-water solution larger than 7 micrometers, the injector distance should be reduced to below 0.5 meter to avoid evaporation of the solution within the DOC.

[015] As vantagens adicionais do método e do filtro multifuncional de acordo com os aspectos acima da invenção são além da separação física, uma dissociação térmica da matéria particulada e das reações de NOx, pois o NO2 é principalmente necessário para a rápida reação de SCR no intervalo de temperatura de 180 °C - 280 °C, embora o NO2 para combustão de partículas passivas seja necessário no intervalo de 280 °C - 450 °C. Durante a partida a frio de um veículo, o NO2 estará, portanto, totalmente disponível para a conversão de NOx necessária, e a combustão da matéria particulada acumulada pode aguardar o aquecimento do sistema.[015] Additional advantages of the method and the multifunctional filter according to the above aspects of the invention are in addition to the physical separation, a thermal dissociation of the particulate matter and NOx reactions, since NO2 is mainly required for the rapid SCR reaction in the temperature range of 180°C - 280°C, while NO2 for passive particulate combustion is required in the range of 280°C - 450°C. During a cold start of a vehicle, NO2 will therefore be fully available for the necessary NOx conversion, and the combustion of the accumulated particulate matter can wait for the system to warm up.

[016] Outras modalidades preferidas da invenção estão descritas nas reivindicações dependentes.[016] Other preferred embodiments of the invention are described in the dependent claims.

[017] Os catalisadores de oxidação e SCR adequados para utilização na invenção são bem conhecidos na técnica.[017] Oxidation and SCR catalysts suitable for use in the invention are well known in the art.

[018] Para citar alguns, as formulações de catalisador à base de vanádio da família V2O5 / WO3 / TiO2 mostraram alto desempenho e durabilidade de NOx. Os zeólitos de cobre e ferro com a estrutura beta foram comercializados há alguns anos e atualmente são usados como catalisadores SCR para limpeza de exaustão de diesel. Os tipos de Cu- zeólitos com a estrutura da chabazita possuem uma combinação de estabilidade a altas temperaturas e alta atividade a baixas temperaturas. Destes, são preferidos os catalisadores SCR de Cu-SAPO-34 e Cu-SSZ-13.[018] To name a few, vanadium-based catalyst formulations of the V2O5/WO3/TiO2 family have shown high NOx performance and durability. Copper-iron zeolites with the beta structure have been commercialized for some years and are currently used as SCR catalysts for diesel exhaust cleaning. Cu-zeolite types with the chabazite structure possess a combination of high-temperature stability and high low-temperature activity. Of these, Cu-SAPO-34 and Cu-SSZ-13 SCR catalysts are preferred.

[019] Os catalisadores de oxidação que formam dióxido de nitrogênio para utilização na invenção são platina ou misturas de platina e paládio. Estes metais são depositados sobre alumina e/ou titânia e/ou sílica. A estabilização com óxidos de metal de terras raras pode ser benéfica.[019] The oxidation catalysts that form nitrogen dioxide for use in the invention are platinum or mixtures of platinum and palladium. These metals are deposited on alumina and/or titania and/or silica. Stabilization with rare earth metal oxides may be beneficial.

Claims (15)

1. Método para remover compostos nocivos compreendendo óxidos de nitrogênio, compostos orgânicos voláteis e monóxido de carbono e matéria particulada de gases de exaustão de um motor de ignição por compressão compreendendo sequencialmente as etapas de:(a) adicionar uma quantidade de redutor SCR na forma de gotículas de uma solução aquosa de ureia aos gases de exaustão por meio de um injetor;(b) introduzir os gases de exaustão misturados com as gotículas da solução aquosa de ureia aos canais de entrada de um filtro de fluxo de parede multifuncional compreendendo uma pluralidade de canais de fluxo de entrada de gases de exaustão e uma pluralidade de canais de saída de gases de exaustão separados por paredes divisórias porosas permeáveis a gases e oxidar os compostos orgânicos voláteis e monóxido de carbono em dióxido de carbono; e água e monóxido de nitrogênio em dióxido de nitrogênio na presença de um catalisador de oxidação disposto em paredes de divisão porosas permeáveis ao lado da entrada do filtro de fluxo de parede, o catalisador de oxidação sendo ativo na oxidação de compostos orgânicos voláteis e monóxido de carbono;(c) subsequentemente evaporar e decompor as gotículas da solução aquosa de ureia nos gases de exaustão da etapa (b) em amônia;(d) passar os gases de exaustão contendo amônia através das paredes de divisão porosas permeáveis do filtro de fluxo de parede para os canais de saída do filtro e capturar a matéria particulada na superfície das paredes de divisão porosas permeáveis voltadas para os canais de entrada do filtro;(e) remover continuamente a matéria particulada capturada por reação com o dióxido de nitrogênio contida nos gases de exaustão; e(f) remover subsequentemente as quantidades remanescentes de dióxido de nitrogênio dos gases de exaustão por reação com amônia na presença de um catalisador ativo SCR disposto dentro das paredes de divisão porosas permeáveis a gás e/ou ao lado da parede voltado para os canais de saída do filtro de partículas de fluxo de parede, caracterizado pelo fato de que:(g) apenas a entrada do filtro é revestida por zona com a funcionalidade DOC e a camada superior do catalisador de oxidação de diesel é passivada com um revestimento de um material inerte, que não reage com a ureia, e(h) a distância do injetor é reduzida para menos de 0,5 metros para fornecer um tamanho de gota de ureia aquosa de pelo menos 7 micrômetros, a fim de evitar a evaporação da solução com o DOC.1. A method for removing harmful compounds comprising nitrogen oxides, volatile organic compounds and carbon monoxide and particulate matter from exhaust gases of a compression ignition engine sequentially comprising the steps of: (a) adding an amount of SCR reductant in the form of droplets of an aqueous urea solution to the exhaust gases by means of an injector; (b) introducing the exhaust gases mixed with the droplets of the aqueous urea solution to the inlet channels of a multifunctional wall flow filter comprising a plurality of exhaust gas inlet flow channels and a plurality of exhaust gas outlet channels separated by gas-permeable porous partition walls and oxidizing the volatile organic compounds and carbon monoxide to carbon dioxide; and water and nitrogen monoxide into nitrogen dioxide in the presence of an oxidation catalyst disposed on permeable porous partition walls adjacent to the inlet of the wall-flow filter, the oxidation catalyst being active in the oxidation of volatile organic compounds and carbon monoxide; (c) subsequently evaporating and decomposing the droplets of the aqueous urea solution in the exhaust gases from step (b) into ammonia; (d) passing the exhaust gases containing ammonia through the permeable porous partition walls of the wall-flow filter into the outlet channels of the filter and capturing particulate matter on the surface of the permeable porous partition walls facing the inlet channels of the filter; (e) continuously removing the captured particulate matter by reaction with nitrogen dioxide contained in the exhaust gases; and(f) subsequently removing remaining amounts of nitrogen dioxide from the exhaust gases by reaction with ammonia in the presence of an active SCR catalyst disposed within the gas-permeable porous partition walls and/or on the side of the wall facing the outlet channels of the wall-flow particulate filter, characterized in that:(g) only the filter inlet is zone coated with the DOC functionality and the top layer of the diesel oxidation catalyst is passivated with a coating of an inert material, which does not react with urea, and(h) the injector distance is reduced to less than 0.5 meters to provide an aqueous urea droplet size of at least 7 micrometers in order to avoid evaporation of the solution with the DOC. 2. Método, de acordo com a reivindicação 1, caracterizado por compreender ainda uma etapa para remover o excesso de amônia contido nos gases de exaustão pelo contato com um catalisador de síntese de amônia disposto na saída dos canais de saída do filtro de fluxo de parede.2. Method according to claim 1, characterized in that it further comprises a step for removing excess ammonia contained in the exhaust gases by contact with an ammonia synthesis catalyst disposed at the outlet of the outlet channels of the wall flow filter. 3. Método, de acordo com a reivindicação 1 ou 2, caracterizado por o catalisador SCR compreender óxidos de vanádio e/ou tungstênio e titânia.3. Method according to claim 1 or 2, characterized in that the SCR catalyst comprises oxides of vanadium and/or tungsten and titania. 4. Método, de acordo com a reivindicação 1 ou 2, caracterizado por o catalisador ativo SCR compreender um ou mais zeólitos beta promovidos com cobre ou ferro.4. The method of claim 1 or 2, wherein the SCR active catalyst comprises one or more beta zeolites promoted with copper or iron. 5. Método, de acordo com a reivindicação 1 ou 2, caracterizado por o catalisador ativo SCR compreender SAP0- 34 promovido com cobre e/ou SSZ-13 promovido com cobre.5. The method of claim 1 or 2, wherein the SCR active catalyst comprises copper-promoted SAP0-34 and/or copper-promoted SSZ-13. 6. Método, de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por o catalisador de oxidação compreender platina e/ou paládio.6. Method according to any one of claims 1 to 5, characterized in that the oxidation catalyst comprises platinum and/or palladium. 7. Método, de acordo com a reivindicação 2, caracterizado por o catalisador de síntese de amônia compreender platina e CuSAP0-34 e/ou SSZ-13.7. Method according to claim 2, characterized in that the ammonia synthesis catalyst comprises platinum and CuSAP0-34 and/or SSZ-13. 8. Filtro multifuncional de fluxo de parede para limpeza de gases de exaustão de um motor de ignição por compressão adaptado para o método, conforme definido na reivindicação 1, caracterizado por compreender uma pluralidade de canais de fluxo de entrada dos gases de exaustão e uma pluralidade de canais de saída dos gases de exaustão separadas por paredes de divisão porosas permeáveis a gás; um catalisador de oxidação a diesel aplicado nos canais de fluxo de entrada dos gases de exaustão nas paredes de divisão no lado de entrada dos gases de exaustão, o catalisador de oxidação de diesel sendo ativo na oxidação de compostos orgânicos voláteis e monóxido de carbono; e um catalisador SCR para redução seletiva de óxidos de nitrogênio aplicados dentro das paredes de divisão e/ou na superfície das paredes de divisão voltadas para os canais de saída em uma região entre o lado de entrada e o lado de saída dos gases de exaustão, em que:- apenas a entrada do filtro é revestida por zona com a funcionalidade DOC, e a camada superior do catalisador de oxidação de diesel é passivada com um revestimento de um material inerte, que não reage com a ureia; e- a distância do injetor é reduzida para menos de 0,5 metros para fornecer um tamanho de gota de ureia aquosa de pelo menos 7 micrômetros, a fim de evitar a evaporação da solução dentro do DOC.8. A multifunctional wall-flow filter for cleaning exhaust gases from a compression ignition engine adapted for the method as defined in claim 1, characterized in that it comprises a plurality of exhaust gas inlet flow channels and a plurality of exhaust gas outlet channels separated by porous gas-permeable partition walls; a diesel oxidation catalyst applied to the exhaust gas inlet flow channels in the partition walls on the exhaust gas inlet side, the diesel oxidation catalyst being active in the oxidation of volatile organic compounds and carbon monoxide; and an SCR catalyst for selective reduction of nitrogen oxides applied inside the partition walls and/or on the surface of the partition walls facing the outlet channels in a region between the exhaust gas inlet side and the exhaust gas outlet side, wherein:- only the filter inlet is zone coated with the DOC functionality, and the top layer of the diesel oxidation catalyst is passivated with a coating of an inert material, which does not react with urea; e- the injector distance is reduced to less than 0.5 meters to provide an aqueous urea droplet size of at least 7 micrometers in order to avoid evaporation of the solution within the DOC. 9. Filtro, de acordo com a reivindicação 8, caracterizado por o lado de saída dos canais de saída ser adicionalmente equipado com um catalisador de síntese de amônia.9. Filter according to claim 8, characterized in that the outlet side of the outlet channels is additionally equipped with an ammonia synthesis catalyst. 10. Filtro, de acordo com a reivindicação 8 ou 9, caracterizado por o catalisador SCR compreender óxidos de vanádio e/ou tungstênio e titânia.10. Filter according to claim 8 or 9, characterized in that the SCR catalyst comprises vanadium and/or tungsten and titania oxides. 11. Filtro, de acordo com a reivindicação 8 ou 9, caracterizado por o catalisador ativo SCR compreender um ou mais zeólitos beta promovidos com cobre ou ferro.11. Filter according to claim 8 or 9, characterized in that the active SCR catalyst comprises one or more beta zeolites promoted with copper or iron. 12. Filtro, de acordo com a reivindicação 8 ou 9, caracterizado por o catalisador SCR compreender SAP0-34 promovido com cobre e/ou SSZ-13 promovido com cobre.12. The filter of claim 8 or 9, wherein the SCR catalyst comprises copper-promoted SAP0-34 and/or copper-promoted SSZ-13. 13. Filtro, de acordo com qualquer uma das reivindicações 8 a 12, caracterizado por o catalisador de oxidação compreender platina e/ou paládio.13. Filter according to any one of claims 8 to 12, characterized in that the oxidation catalyst comprises platinum and/or palladium. 14. Filtro, de acordo com a reivindicação 9, caracterizado por o catalisador de síntese de amônia compreender platina e CuSAP0-34 e/ou SSZ-13.14. Filter according to claim 9, characterized in that the ammonia synthesis catalyst comprises platinum and CuSAP0-34 and/or SSZ-13. 15. Filtro, de acordo com qualquer uma das reivindicações 8 a 14, caracterizado por o revestimento de uma camada inerte compreender um material, que não hidrolisa ureia em amônia.15. Filter according to any one of claims 8 to 14, characterized in that the coating of an inert layer comprises a material, which does not hydrolyze urea to ammonia.
BR112017022923-4A 2015-05-19 2016-05-12 METHOD FOR REMOVING HARMFUL COMPOUNDS COMPRISING NITROGEN OXIDES, VOLATILE ORGANIC COMPOUNDS AND CARBON MONOXIDE AND PARTICULATE MATTER FROM EXHAUST GASES AND MULTIFUNCTIONAL WALL-FLOW FILTER FOR CLEANING EXHAUST GASES OF A COMPRESSION IGNITION ENGINE BR112017022923B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201570290 2015-05-19
DKPA201570290 2015-05-19
PCT/EP2016/060682 WO2016184774A1 (en) 2015-05-19 2016-05-12 Method, multifunctional filter and system for the removal of particulate matter and noxious compounds from engine exhaust gas

Publications (2)

Publication Number Publication Date
BR112017022923A2 BR112017022923A2 (en) 2018-07-24
BR112017022923B1 true BR112017022923B1 (en) 2024-11-19

Family

ID=

Similar Documents

Publication Publication Date Title
US20250032984A1 (en) Close-coupled scr system
US8904760B2 (en) Exhaust gas treatment system including an HC-SCR and two-way catalyst and method of using the same
US8635855B2 (en) Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US8555617B2 (en) Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
JP6074912B2 (en) Exhaust gas purification system and exhaust gas purification method
EP2819769B1 (en) Method for the removal of noxious compounds from engine exhaust gas
US10279313B2 (en) Method, multifunctional filter and system for the removal of particulate matter and noxious compounds from engine exhaust gas
US8505279B2 (en) Exhaust gas treatment system including a four-way catalyst and urea SCR catalyst and method of using the same
BRPI0924120B1 (en) method for purifying exhaust gas from a diesel engine in a system
BR112013030719A2 (en) article and method for treating an exhaust gas, and, system for treating nox in a poorly burning exhaust gas
US9267408B2 (en) Method for use in conjunction with an exhaust-gas aftertreatment system
US20120247088A1 (en) Exhaust gas after-treatment system
KR20110117323A (en) Diesel Engine Exhaust System with Ammonia Decomposition Module
RU2687854C2 (en) Method of exhaust gas purification of engine with compression ignition
CN207363741U (en) Exhaust gas aftertreatment system for a diesel engine
BR112012015467B1 (en) EXHAUST SYSTEM FOR A VEHICLE POSITIVE IGNITION INTERNAL COMBUSTION ENGINE AND METHOD TO HOLD AND COMBURE PARTICULATED EXHAUST GAS MATTER
US20180038298A1 (en) Method for controlling an exhaust gas treatment system
US10760464B2 (en) Methods for monitoring and regenerating selective catalytic reduction filter devices
US20200131961A1 (en) Exhaust gas treatment systems and methods for diagnosing the same
US10138779B2 (en) Selective catalytic reduction filter devices having NOx storage capabilities
BR112017022923B1 (en) METHOD FOR REMOVING HARMFUL COMPOUNDS COMPRISING NITROGEN OXIDES, VOLATILE ORGANIC COMPOUNDS AND CARBON MONOXIDE AND PARTICULATE MATTER FROM EXHAUST GASES AND MULTIFUNCTIONAL WALL-FLOW FILTER FOR CLEANING EXHAUST GASES OF A COMPRESSION IGNITION ENGINE
Karamitros et al. Exhaust gas aftertreatment technologies and model based optimization
JP2015014197A (en) Exhaust gas post-processing apparatus
JP2020169640A (en) Exhaust emission control system