BE852559A - INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY - Google Patents
INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGYInfo
- Publication number
- BE852559A BE852559A BE175859A BE175859A BE852559A BE 852559 A BE852559 A BE 852559A BE 175859 A BE175859 A BE 175859A BE 175859 A BE175859 A BE 175859A BE 852559 A BE852559 A BE 852559A
- Authority
- BE
- Belgium
- Prior art keywords
- temperature
- boiler
- heat transfer
- draw
- increase
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/0015—Domestic hot-water supply systems using solar energy
- F24D17/0021—Domestic hot-water supply systems using solar energy with accumulation of the heated water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
<EMI ID=1.1>
Augmentation du rendement d'un circuit de chauffage à
partir d'un fluide chauffé par l'énergie solaire.
Description et 1ère revendication:
Le procédé, faisant l'objet du brevet, consiste à augmenter
la quantité d'énergie captée par le panneau solaire et transportée par le fluide caloporteur, en agissant sur le rendement de l'installation.
A cette fin, on utilise deux ou plusieurs boilers dont les circuits chauffants sont raccordés en série. Les circuits
d'eau à chauffer sont également placés en série de telle sorte
que le dernier boiler, celui de puisage, reçoive le fluide caloporteur chaud, venant des capteurs.
Le premier boiler, celui d'arrivée, reçoit le fluide caloporteur après sont passage dans les autres boilers, et le recycle vers la batterie de capteurs.
Le circuit d'eau à chauffer de ce premier boiler est raccordé
au réseau d'alimentation et la sortie de ce circuit passe dans
le circuit correspondant du second boiler, et ainsi de suite, jusqu'au dernier boiler de puisage.
INTERET DU SYSTEME.
Ce procédé consiste à favoriser un facteur essentiel du rendement d'une installation thermique: la différence de température existant entre les deux milieux appelés à réaliser les échanges thermiques.
Les boilers en cascade vont progressivement réduire la température du fluide caloporteur, au profit d'un échauffement progressif des réserves d'eau dans les différentes unités; eau
qui est supposée arriver froide du réseau d'entrée.
On constitue donc avant le boiler de puisage, une ou plusieurs réserves d'eau tempérée.
Le rendement de ces échangeurs (boilers) est fonction du ^. température: au moment où la température du dernier boiler approchera celle du fluide caloporteur, son efficacité diminuera jusqu'au zéro et le boiler suivant prend la relève
en augmentant sa température; et ainsi de suite.
La réserve d'eau chaude et tiède se trouve donc augmentée,
ainsi que la chaleur en réserve. Ce rapport entre la quantité d'eau et celle de chaleur est assez évident, mais la disposition en étages permet ( outre la montée en température
au boiler de puisage ) d'obtenir avant recyclage, un fluide caloporteur froid (thermiquement épuisé), qui augmentera donc
<EMI ID=2.1>
ci.
<EMI ID = 1.1>
Increase in the efficiency of a heating circuit
from a fluid heated by solar energy.
Description and 1st claim:
The process, which is the subject of the patent, consists in increasing
the quantity of energy captured by the solar panel and transported by the heat transfer fluid, acting on the efficiency of the installation.
To this end, two or more boilers are used, the heating circuits of which are connected in series. The circuits
of water to be heated are also placed in series in such a way
that the last boiler, the draw-off boiler, receives the hot heat transfer fluid from the sensors.
The first boiler, the inlet one, receives the heat transfer fluid after passing through the other boilers, and recycles it to the battery of sensors.
The water circuit to be heated for this first boiler is connected
to the supply network and the output of this circuit passes through
the corresponding circuit of the second boiler, and so on, up to the last draw-off boiler.
INTEREST OF THE SYSTEM.
This process consists in favoring an essential factor of the efficiency of a thermal installation: the temperature difference existing between the two environments called upon to carry out the thermal exchanges.
The cascade boilers will gradually reduce the temperature of the heat transfer fluid, in favor of a gradual heating of the water reserves in the different units; water
which is supposed to arrive cold from the input network.
One or more reserves of tempered water are therefore constituted before the draw-off boiler.
The efficiency of these exchangers (boilers) depends on the ^. temperature: when the temperature of the last boiler approaches that of the heat transfer fluid, its efficiency will drop to zero and the next boiler takes over
by increasing its temperature; And so on.
The hot and lukewarm water reserve is therefore increased,
as well as the heat in reserve. This relationship between the quantity of water and that of heat is fairly obvious, but the arrangement in stages allows (in addition to the rise in temperature
before recycling, to obtain a cold heat transfer fluid (thermally exhausted), which will therefore increase
<EMI ID = 2.1>
this.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE175859A BE852559A (en) | 1977-03-17 | 1977-03-17 | INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE175859A BE852559A (en) | 1977-03-17 | 1977-03-17 | INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY |
BE852559 | 1977-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
BE852559A true BE852559A (en) | 1977-07-18 |
Family
ID=25649933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE175859A BE852559A (en) | 1977-03-17 | 1977-03-17 | INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY |
Country Status (1)
Country | Link |
---|---|
BE (1) | BE852559A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0897090A1 (en) * | 1997-08-13 | 1999-02-17 | Josef Mayrhofer | Solar system |
-
1977
- 1977-03-17 BE BE175859A patent/BE852559A/en unknown
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0897090A1 (en) * | 1997-08-13 | 1999-02-17 | Josef Mayrhofer | Solar system |
WO1999009356A1 (en) * | 1997-08-13 | 1999-02-25 | Josef Mayrhofer | Solar plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100554792C (en) | Method that a kind of Teat pump boiler combines with solar water heater and hot-water heating system | |
Song et al. | Performance analyses on a novel heat pump with a hybrid condenser combined with flat plate micro-channel heat pipe plus TEG and FPV evaporator | |
JPS57150757A (en) | Solar heat utilizing plant | |
CN106482389A (en) | A kind of coupled thermomechanics are using solar energy system and method | |
US4606404A (en) | Method and apparatus for recycling thermal energy | |
Su et al. | Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment | |
US4345586A (en) | Cascade solar heater | |
BE852559A (en) | INCREASE IN THE EFFICIENCY OF A HEATING CIRCUIT FROM A FLUID HEATED BY SOLAR ENERGY | |
US20180224162A1 (en) | Efficient solar flat plate heat absorption system and operation method thereof | |
CN109373603A (en) | A two-storage temperature-controlled split direct-heating solar water heater | |
CN210328732U (en) | Multi-energy complementary greenhouse heating and power generation system | |
FR2487959A2 (en) | Heater using geothermal and solar heat - has solar collectors to heat underground back-up reservoir | |
CN106322834B (en) | The flow control method of direct-expansion type heat pump assembly and thermal-arrest liquid | |
FR2569469A1 (en) | Method for saving energy and heating installation with domestic hot water production making use thereof | |
CN218062552U (en) | Geothermal-solar series coupling power generation system | |
CN218096020U (en) | Hydrophobic recycling energy-saving system of boiler plasma air heater | |
EP4056922A1 (en) | High efficiency solar pvt trigeneration system | |
SU1249179A1 (en) | Power plant | |
SU1044903A1 (en) | Combined solar-wind power plant | |
BE1017461A6 (en) | Solar energy usage system for e.g. heating dwelling, has solar sensors to heat accumulators of small water quantity in relation to surface of sensors through plate exchangers, where sensors are positioned vertically | |
SU1483053A1 (en) | Heat-and-power steam plant | |
Anarbaev et al. | Schematic and parametric optimization of solar+ fuel boiler installations | |
FR3136271A1 (en) | Process for preheating domestic water using hot condensates from the building steam generator in district heating. | |
RU2045714C1 (en) | Two-loop hot water supply heliosystem | |
CN119244337A (en) | A renewable energy cold start system for gas-steam combined cycle |