AU774555B2 - Chimeric polypeptides of serum albumin and uses related thereto - Google Patents
Chimeric polypeptides of serum albumin and uses related thereto Download PDFInfo
- Publication number
- AU774555B2 AU774555B2 AU61125/00A AU6112500A AU774555B2 AU 774555 B2 AU774555 B2 AU 774555B2 AU 61125/00 A AU61125/00 A AU 61125/00A AU 6112500 A AU6112500 A AU 6112500A AU 774555 B2 AU774555 B2 AU 774555B2
- Authority
- AU
- Australia
- Prior art keywords
- chimeric polypeptide
- cells
- receptor
- polypeptide
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims description 253
- 102000004196 processed proteins & peptides Human genes 0.000 title claims description 207
- 229920001184 polypeptide Polymers 0.000 title claims description 183
- 102000007562 Serum Albumin Human genes 0.000 title claims description 73
- 108010071390 Serum Albumin Proteins 0.000 title claims description 73
- 108090000623 proteins and genes Proteins 0.000 claims description 158
- 210000004027 cell Anatomy 0.000 claims description 147
- 102000005962 receptors Human genes 0.000 claims description 126
- 108020003175 receptors Proteins 0.000 claims description 126
- 102000004169 proteins and genes Human genes 0.000 claims description 106
- 238000000034 method Methods 0.000 claims description 50
- 239000013598 vector Substances 0.000 claims description 38
- 150000001413 amino acids Chemical class 0.000 claims description 33
- 239000012634 fragment Substances 0.000 claims description 26
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 claims description 24
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 claims description 24
- 102000007079 Peptide Fragments Human genes 0.000 claims description 15
- 108010033276 Peptide Fragments Proteins 0.000 claims description 15
- 241000700605 Viruses Species 0.000 claims description 15
- 241001430294 unidentified retrovirus Species 0.000 claims description 15
- 102000004310 Ion Channels Human genes 0.000 claims description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 13
- 150000007523 nucleic acids Chemical class 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 102000039446 nucleic acids Human genes 0.000 claims description 11
- 230000008827 biological function Effects 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 10
- 238000001727 in vivo Methods 0.000 claims description 10
- 241000701161 unidentified adenovirus Species 0.000 claims description 10
- 230000004663 cell proliferation Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 9
- 210000004369 blood Anatomy 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 8
- 108010001857 Cell Surface Receptors Proteins 0.000 claims description 6
- 241000702421 Dependoparvovirus Species 0.000 claims description 6
- 102000016978 Orphan receptors Human genes 0.000 claims description 6
- 108070000031 Orphan receptors Proteins 0.000 claims description 6
- 230000033115 angiogenesis Effects 0.000 claims description 6
- 230000024245 cell differentiation Effects 0.000 claims description 6
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 6
- 210000002363 skeletal muscle cell Anatomy 0.000 claims description 6
- 210000000130 stem cell Anatomy 0.000 claims description 6
- 230000006907 apoptotic process Effects 0.000 claims description 5
- 210000000601 blood cell Anatomy 0.000 claims description 5
- 210000004907 gland Anatomy 0.000 claims description 5
- 210000005229 liver cell Anatomy 0.000 claims description 5
- 230000003248 secreting effect Effects 0.000 claims description 5
- 210000004927 skin cell Anatomy 0.000 claims description 5
- 102000004127 Cytokines Human genes 0.000 claims description 4
- 108090000695 Cytokines Proteins 0.000 claims description 4
- 239000000556 agonist Substances 0.000 claims description 4
- 230000030833 cell death Effects 0.000 claims description 4
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 4
- 230000002401 inhibitory effect Effects 0.000 claims description 4
- 102400000068 Angiostatin Human genes 0.000 claims description 3
- 108010079709 Angiostatins Proteins 0.000 claims description 3
- 102400001047 Endostatin Human genes 0.000 claims description 3
- 108010079505 Endostatins Proteins 0.000 claims description 3
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 3
- 241000700618 Vaccinia virus Species 0.000 claims description 3
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 claims description 3
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 3
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 claims description 2
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 claims description 2
- 241000700584 Simplexvirus Species 0.000 claims description 2
- 101800001415 Bri23 peptide Proteins 0.000 claims 1
- 102400000107 C-terminal peptide Human genes 0.000 claims 1
- 101800000655 C-terminal peptide Proteins 0.000 claims 1
- 102000006240 membrane receptors Human genes 0.000 claims 1
- 239000003643 water by type Substances 0.000 claims 1
- 235000018102 proteins Nutrition 0.000 description 75
- 230000014509 gene expression Effects 0.000 description 27
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 25
- 239000003446 ligand Substances 0.000 description 25
- 235000001014 amino acid Nutrition 0.000 description 23
- 229940024606 amino acid Drugs 0.000 description 23
- 230000000694 effects Effects 0.000 description 21
- 102000030782 GTP binding Human genes 0.000 description 20
- 108091000058 GTP-Binding Proteins 0.000 description 20
- 230000027455 binding Effects 0.000 description 20
- 108091006027 G proteins Proteins 0.000 description 19
- 230000003612 virological effect Effects 0.000 description 19
- 108091000080 Phosphotransferase Proteins 0.000 description 17
- 238000001476 gene delivery Methods 0.000 description 17
- 102000020233 phosphotransferase Human genes 0.000 description 17
- 102000037865 fusion proteins Human genes 0.000 description 15
- 108020001507 fusion proteins Proteins 0.000 description 15
- 230000019491 signal transduction Effects 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 13
- 108020004414 DNA Proteins 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 102000008100 Human Serum Albumin Human genes 0.000 description 11
- 108091006905 Human Serum Albumin Proteins 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 230000004927 fusion Effects 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 230000001177 retroviral effect Effects 0.000 description 11
- 102000050554 Eph Family Receptors Human genes 0.000 description 10
- 108091008815 Eph receptors Proteins 0.000 description 10
- 108090000862 Ion Channels Proteins 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000013603 viral vector Substances 0.000 description 10
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical group NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 9
- 108091006146 Channels Proteins 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 108010057085 cytokine receptors Proteins 0.000 description 9
- 102000003675 cytokine receptors Human genes 0.000 description 9
- 239000012636 effector Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 108700020796 Oncogene Proteins 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- 102000009027 Albumins Human genes 0.000 description 7
- 108010088751 Albumins Proteins 0.000 description 7
- 108010002350 Interleukin-2 Proteins 0.000 description 7
- 102000000588 Interleukin-2 Human genes 0.000 description 7
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 7
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 230000026731 phosphorylation Effects 0.000 description 7
- 238000006366 phosphorylation reaction Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 108010009685 Cholinergic Receptors Proteins 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 6
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 6
- 102000034337 acetylcholine receptors Human genes 0.000 description 6
- UCTWMZQNUQWSLP-UHFFFAOYSA-N adrenaline Chemical compound CNCC(O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-UHFFFAOYSA-N 0.000 description 6
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 6
- 229940126864 fibroblast growth factor Drugs 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 6
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 102000009076 src-Family Kinases Human genes 0.000 description 6
- 108010087686 src-Family Kinases Proteins 0.000 description 6
- 102000000844 Cell Surface Receptors Human genes 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 210000003719 b-lymphocyte Anatomy 0.000 description 5
- -1 cAMP Chemical compound 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 210000002889 endothelial cell Anatomy 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000013268 sustained release Methods 0.000 description 5
- 239000012730 sustained-release form Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 210000005253 yeast cell Anatomy 0.000 description 5
- QGWNDRXFNXRZMB-UUOKFMHZSA-N GDP Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O QGWNDRXFNXRZMB-UUOKFMHZSA-N 0.000 description 4
- 101000818546 Homo sapiens N-formyl peptide receptor 2 Proteins 0.000 description 4
- 108090001007 Interleukin-8 Proteins 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 108010067902 Peptide Library Proteins 0.000 description 4
- 108010039918 Polylysine Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 102000014400 SH2 domains Human genes 0.000 description 4
- 108050003452 SH2 domains Proteins 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 230000001028 anti-proliverative effect Effects 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229940096397 interleukin-8 Drugs 0.000 description 4
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- 230000000865 phosphorylative effect Effects 0.000 description 4
- 229920000656 polylysine Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 102000015554 Dopamine receptor Human genes 0.000 description 3
- 108050004812 Dopamine receptor Proteins 0.000 description 3
- 102100030322 Ephrin type-A receptor 1 Human genes 0.000 description 3
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 3
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 3
- 102000011652 Formyl peptide receptors Human genes 0.000 description 3
- 108010076288 Formyl peptide receptors Proteins 0.000 description 3
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 3
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 3
- 102100034353 Integrase Human genes 0.000 description 3
- 108010050904 Interferons Proteins 0.000 description 3
- 102000014150 Interferons Human genes 0.000 description 3
- 102400001355 Interleukin-8 Human genes 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 102100021126 N-formyl peptide receptor 2 Human genes 0.000 description 3
- 102100022831 Somatoliberin Human genes 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 102000011923 Thyrotropin Human genes 0.000 description 3
- 108010061174 Thyrotropin Proteins 0.000 description 3
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- MMWCIQZXVOZEGG-HOZKJCLWSA-N [(1S,2R,3S,4S,5R,6S)-2,3,5-trihydroxy-4,6-diphosphonooxycyclohexyl] dihydrogen phosphate Chemical compound O[C@H]1[C@@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](O)[C@H]1OP(O)(O)=O MMWCIQZXVOZEGG-HOZKJCLWSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000001772 anti-angiogenic effect Effects 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003557 cannabinoid Substances 0.000 description 3
- 229930003827 cannabinoid Natural products 0.000 description 3
- 210000001043 capillary endothelial cell Anatomy 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 108010078428 env Gene Products Proteins 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000008073 immune recognition Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 210000001161 mammalian embryo Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229960002748 norepinephrine Drugs 0.000 description 3
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- NCYCYZXNIZJOKI-IOUUIBBYSA-N 11-cis-retinal Chemical compound O=C/C=C(\C)/C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-IOUUIBBYSA-N 0.000 description 2
- HVAUUPRFYPCOCA-AREMUKBSSA-N 2-O-acetyl-1-O-hexadecyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCOC[C@@H](OC(C)=O)COP([O-])(=O)OCC[N+](C)(C)C HVAUUPRFYPCOCA-AREMUKBSSA-N 0.000 description 2
- 239000013607 AAV vector Substances 0.000 description 2
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 2
- 102000006306 Antigen Receptors Human genes 0.000 description 2
- 108010083359 Antigen Receptors Proteins 0.000 description 2
- 108010002913 Asialoglycoproteins Proteins 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 102000019260 B-Cell Antigen Receptors Human genes 0.000 description 2
- 108010012919 B-Cell Antigen Receptors Proteins 0.000 description 2
- 102000055006 Calcitonin Human genes 0.000 description 2
- 108060001064 Calcitonin Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 102000034573 Channels Human genes 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 2
- 101710096438 DNA-binding protein Proteins 0.000 description 2
- 101100015729 Drosophila melanogaster drk gene Proteins 0.000 description 2
- 101150088000 Epha6 gene Proteins 0.000 description 2
- 241000724791 Filamentous phage Species 0.000 description 2
- 102400001370 Galanin Human genes 0.000 description 2
- 101800002068 Galanin Proteins 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 101001059802 Homo sapiens N-formyl peptide receptor 3 Proteins 0.000 description 2
- 108010002586 Interleukin-7 Proteins 0.000 description 2
- 102000000704 Interleukin-7 Human genes 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 108010008364 Melanocortins Proteins 0.000 description 2
- 101100445394 Mus musculus Ephb4 gene Proteins 0.000 description 2
- 101100018717 Mus musculus Il1rl1 gene Proteins 0.000 description 2
- 102100028130 N-formyl peptide receptor 3 Human genes 0.000 description 2
- 102400000097 Neurokinin A Human genes 0.000 description 2
- 101800000399 Neurokinin A Proteins 0.000 description 2
- 102400001103 Neurotensin Human genes 0.000 description 2
- 101800001814 Neurotensin Proteins 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 108091007960 PI3Ks Proteins 0.000 description 2
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 2
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 2
- 108010003541 Platelet Activating Factor Proteins 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 108010071563 Proto-Oncogene Proteins c-fos Proteins 0.000 description 2
- 102000007568 Proto-Oncogene Proteins c-fos Human genes 0.000 description 2
- 108091027981 Response element Proteins 0.000 description 2
- 101150006985 STE2 gene Proteins 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 108700025832 Serum Response Element Proteins 0.000 description 2
- 101710142969 Somatoliberin Proteins 0.000 description 2
- 108010056088 Somatostatin Proteins 0.000 description 2
- 102000005157 Somatostatin Human genes 0.000 description 2
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 2
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 2
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 2
- 102000000887 Transcription factor STAT Human genes 0.000 description 2
- 108050007918 Transcription factor STAT Proteins 0.000 description 2
- 108700005077 Viral Genes Proteins 0.000 description 2
- 101000882562 Xenopus laevis Ephrin type-A receptor 4-B Proteins 0.000 description 2
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 2
- 229960004373 acetylcholine Drugs 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012082 adaptor molecule Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 229960004015 calcitonin Drugs 0.000 description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 150000001982 diacylglycerols Chemical class 0.000 description 2
- VBUWHHLIZKOSMS-KDPLEQQTSA-N dnc009566 Chemical compound C([C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1N=CNC=1)C(C)C)[C@@H](C)O)[C@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-KDPLEQQTSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 210000002919 epithelial cell Anatomy 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 101150098203 grb2 gene Proteins 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 210000003494 hepatocyte Anatomy 0.000 description 2
- 210000003630 histaminocyte Anatomy 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002865 melanocortin Substances 0.000 description 2
- 210000004779 membrane envelope Anatomy 0.000 description 2
- SLZIZIJTGAYEKK-CIJSCKBQSA-N molport-023-220-247 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CN)[C@@H](C)O)C1=CNC=N1 SLZIZIJTGAYEKK-CIJSCKBQSA-N 0.000 description 2
- 210000000865 mononuclear phagocyte system Anatomy 0.000 description 2
- 210000004898 n-terminal fragment Anatomy 0.000 description 2
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000004923 pancreatic tissue Anatomy 0.000 description 2
- 238000004091 panning Methods 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 230000001817 pituitary effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 2
- 229960000553 somatostatin Drugs 0.000 description 2
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- DZGWFCGJZKJUFP-UHFFFAOYSA-N tyramine Chemical compound NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- YFGBQHOOROIVKG-BHDDXSALSA-N (2R)-2-[[(2R)-2-[[2-[[2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylsulfanylbutanoic acid Chemical compound C([C@H](C(=O)N[C@H](CCSC)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 YFGBQHOOROIVKG-BHDDXSALSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- DDYAPMZTJAYBOF-ZMYDTDHYSA-N (3S)-4-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(1S)-1-carboxyethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S,3R)-2-[[2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]acetyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-5-oxopentanoyl]amino]-4-oxobutanoic acid Chemical class [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DDYAPMZTJAYBOF-ZMYDTDHYSA-N 0.000 description 1
- HEAUFJZALFKPBA-JPQUDPSNSA-N (3s)-3-[[(2s,3r)-2-[[(2s)-6-amino-2-[[(2s)-2-amino-3-(1h-imidazol-5-yl)propanoyl]amino]hexanoyl]amino]-3-hydroxybutanoyl]amino]-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-[[(2s)-1-amino-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 HEAUFJZALFKPBA-JPQUDPSNSA-N 0.000 description 1
- CUKWUWBLQQDQAC-VEQWQPCFSA-N (3s)-3-amino-4-[[(2s)-1-[[(2s)-1-[[(2s)-1-[[(2s,3s)-1-[[(2s)-1-[(2s)-2-[[(1s)-1-carboxyethyl]carbamoyl]pyrrolidin-1-yl]-3-(1h-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-methyl-1-ox Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C1=CC=C(O)C=C1 CUKWUWBLQQDQAC-VEQWQPCFSA-N 0.000 description 1
- QHGUCRYDKWKLMG-QMMMGPOBSA-N (R)-octopamine Chemical compound NC[C@H](O)C1=CC=C(O)C=C1 QHGUCRYDKWKLMG-QMMMGPOBSA-N 0.000 description 1
- WRGQSWVCFNIUNZ-GDCKJWNLSA-N 1-oleoyl-sn-glycerol 3-phosphate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)COP(O)(O)=O WRGQSWVCFNIUNZ-GDCKJWNLSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- NCYCYZXNIZJOKI-HPNHMNAASA-N 11Z-retinal Natural products CC(=C/C=O)C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-HPNHMNAASA-N 0.000 description 1
- FXEDIXLHKQINFP-UHFFFAOYSA-N 12-O-tetradecanoylphorbol-13-acetate Natural products CCCCCCCCCCCCCC(=O)OC1CC2(O)C(C=C(CO)CC3(O)C2C=C(C)C3=O)C4C(C)(C)C14OC(=O)C FXEDIXLHKQINFP-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 101710138068 5-hydroxytryptamine receptor 1D Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000009346 Adenosine receptors Human genes 0.000 description 1
- 108050000203 Adenosine receptors Proteins 0.000 description 1
- 101150078577 Adora2b gene Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000014303 Amyloid beta-Protein Precursor Human genes 0.000 description 1
- 108010079054 Amyloid beta-Protein Precursor Proteins 0.000 description 1
- 108091006334 Anaphylatoxin receptors Proteins 0.000 description 1
- 102400000345 Angiotensin-2 Human genes 0.000 description 1
- 101800000733 Angiotensin-2 Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- OXDZADMCOWPSOC-UHFFFAOYSA-N Argiprestocin Chemical compound N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 OXDZADMCOWPSOC-UHFFFAOYSA-N 0.000 description 1
- 102100038080 B-cell receptor CD22 Human genes 0.000 description 1
- 102400000748 Beta-endorphin Human genes 0.000 description 1
- 101800005049 Beta-endorphin Proteins 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 102400000967 Bradykinin Human genes 0.000 description 1
- 101800004538 Bradykinin Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- 102000018208 Cannabinoid Receptor Human genes 0.000 description 1
- 108050007331 Cannabinoid receptor Proteins 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 241000766026 Coregonus nasus Species 0.000 description 1
- 102400000739 Corticotropin Human genes 0.000 description 1
- 102000005636 Cyclic AMP Response Element-Binding Protein Human genes 0.000 description 1
- 108010045171 Cyclic AMP Response Element-Binding Protein Proteins 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 101150049660 DRD2 gene Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical class O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 101710158332 Diuretic hormone Proteins 0.000 description 1
- 101150097070 Drd3 gene Proteins 0.000 description 1
- 101150043870 Drd4 gene Proteins 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108010065372 Dynorphins Proteins 0.000 description 1
- 108010049140 Endorphins Proteins 0.000 description 1
- 102000009025 Endorphins Human genes 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000010180 Endothelin receptor Human genes 0.000 description 1
- 108050001739 Endothelin receptor Proteins 0.000 description 1
- 102100040611 Endothelin receptor type B Human genes 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 101150031329 Ets1 gene Proteins 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000002090 Fibronectin type III Human genes 0.000 description 1
- 108050009401 Fibronectin type III Proteins 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- 102100039997 Gastric inhibitory polypeptide receptor Human genes 0.000 description 1
- 102400000921 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 101150102363 Ghrh gene Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 108010063919 Glucagon Receptors Proteins 0.000 description 1
- 102100040890 Glucagon receptor Human genes 0.000 description 1
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 1
- 101150039660 HA gene Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 102000003710 Histamine H2 Receptors Human genes 0.000 description 1
- 108090000050 Histamine H2 Receptors Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 description 1
- 101000887490 Homo sapiens Guanine nucleotide-binding protein G(z) subunit alpha Proteins 0.000 description 1
- 101000831616 Homo sapiens Protachykinin-1 Proteins 0.000 description 1
- 101000829127 Homo sapiens Somatostatin receptor type 2 Proteins 0.000 description 1
- 101000829138 Homo sapiens Somatostatin receptor type 3 Proteins 0.000 description 1
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 1
- 101100155061 Homo sapiens UBE3A gene Proteins 0.000 description 1
- 102000038460 IGF Type 2 Receptor Human genes 0.000 description 1
- 108010031792 IGF Type 2 Receptor Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 101150069380 JAK3 gene Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 102000001291 MAP Kinase Kinase Kinase Human genes 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 108060006687 MAP kinase kinase kinase Proteins 0.000 description 1
- 108010064699 MSH Release-Inhibiting Hormone Proteins 0.000 description 1
- 108010000410 MSH receptor Proteins 0.000 description 1
- 101150060255 MZB1 gene Proteins 0.000 description 1
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 1
- 108010024777 Mating Factor Receptors Proteins 0.000 description 1
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 1
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 1
- 102100034216 Melanocyte-stimulating hormone receptor Human genes 0.000 description 1
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 1
- 102400000988 Met-enkephalin Human genes 0.000 description 1
- 108010042237 Methionine Enkephalin Proteins 0.000 description 1
- 102000004232 Mitogen-Activated Protein Kinase Kinases Human genes 0.000 description 1
- 108090000744 Mitogen-Activated Protein Kinase Kinases Proteins 0.000 description 1
- 101100462550 Mus musculus Adcyap1 gene Proteins 0.000 description 1
- 101100219997 Mus musculus Ccr1 gene Proteins 0.000 description 1
- 101100444898 Mus musculus Egr1 gene Proteins 0.000 description 1
- 101100155062 Mus musculus Ube3a gene Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102000004722 NADPH Oxidases Human genes 0.000 description 1
- 108010002998 NADPH Oxidases Proteins 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- HEAUFJZALFKPBA-YRVBCFNBSA-N Neurokinin A Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)C(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)O)C1=CC=CC=C1 HEAUFJZALFKPBA-YRVBCFNBSA-N 0.000 description 1
- 108050002826 Neuropeptide Y Receptor Proteins 0.000 description 1
- 102000012301 Neuropeptide Y receptor Human genes 0.000 description 1
- 102000028517 Neuropeptide receptor Human genes 0.000 description 1
- 108070000018 Neuropeptide receptor Proteins 0.000 description 1
- 101100117488 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) mip-1 gene Proteins 0.000 description 1
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 1
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 1
- QHGUCRYDKWKLMG-MRVPVSSYSA-N Octopamine Natural products NC[C@@H](O)C1=CC=C(O)C=C1 QHGUCRYDKWKLMG-MRVPVSSYSA-N 0.000 description 1
- 108010093625 Opioid Peptides Proteins 0.000 description 1
- 102000001490 Opioid Peptides Human genes 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 102100028139 Oxytocin receptor Human genes 0.000 description 1
- 108090000876 Oxytocin receptors Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 101150071808 PTHLH gene Proteins 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 108700023400 Platelet-activating factor receptors Proteins 0.000 description 1
- 102100024622 Proenkephalin-B Human genes 0.000 description 1
- 102100024304 Protachykinin-1 Human genes 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 101100244562 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) oprD gene Proteins 0.000 description 1
- 102000007466 Purinergic P2 Receptors Human genes 0.000 description 1
- 108010085249 Purinergic P2 Receptors Proteins 0.000 description 1
- 101100067761 Rattus norvegicus Gast gene Proteins 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108090000820 Rhodopsin Proteins 0.000 description 1
- 102000000395 SH3 domains Human genes 0.000 description 1
- 108050008861 SH3 domains Proteins 0.000 description 1
- 108010017324 STAT3 Transcription Factor Proteins 0.000 description 1
- 101100204213 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) STE3 gene Proteins 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 102100024040 Signal transducer and activator of transcription 3 Human genes 0.000 description 1
- 102100029329 Somatostatin receptor type 1 Human genes 0.000 description 1
- 102100023802 Somatostatin receptor type 2 Human genes 0.000 description 1
- 102100023803 Somatostatin receptor type 3 Human genes 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 108010068542 Somatotropin Receptors Proteins 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108010092262 T-Cell Antigen Receptors Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 101710095528 Tachykinin-like peptide Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 102000003790 Thrombin receptors Human genes 0.000 description 1
- 108090000166 Thrombin receptors Proteins 0.000 description 1
- 102000003938 Thromboxane Receptors Human genes 0.000 description 1
- 108090000300 Thromboxane Receptors Proteins 0.000 description 1
- 102100023132 Transcription factor Jun Human genes 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102000010913 Type 1 Angiotensin Receptor Human genes 0.000 description 1
- 108010062481 Type 1 Angiotensin Receptor Proteins 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 102100030434 Ubiquitin-protein ligase E3A Human genes 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- 108010075974 Vasoactive Intestinal Peptide Receptors Proteins 0.000 description 1
- 102000012088 Vasoactive Intestinal Peptide Receptors Human genes 0.000 description 1
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 102000004136 Vasopressin Receptors Human genes 0.000 description 1
- 108090000643 Vasopressin Receptors Proteins 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 101800003024 Vasotocin Proteins 0.000 description 1
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000008206 alpha-amino acids Nutrition 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LGEQQWMQCRIYKG-DOFZRALJSA-N anandamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCO LGEQQWMQCRIYKG-DOFZRALJSA-N 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 229950006323 angiotensin ii Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- LGEQQWMQCRIYKG-UHFFFAOYSA-N arachidonic acid ethanolamide Natural products CCCCCC=CCC=CCC=CCC=CCCCC(=O)NCCO LGEQQWMQCRIYKG-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- WOPZMFQRCBYPJU-NTXHZHDSSA-N beta-endorphin Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)[C@@H](C)O)C1=CC=CC=C1 WOPZMFQRCBYPJU-NTXHZHDSSA-N 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 229940093761 bile salts Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940065144 cannabinoids Drugs 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 230000001713 cholinergic effect Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 229940047120 colony stimulating factors Drugs 0.000 description 1
- 238000002742 combinatorial mutagenesis Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003131 corticotrophic effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 102000048124 delta Opioid Receptors Human genes 0.000 description 1
- 108700023159 delta Opioid Receptors Proteins 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 239000005548 dental material Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 230000003291 dopaminomimetic effect Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000008190 early vertebrate development Effects 0.000 description 1
- 150000002066 eicosanoids Chemical class 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 230000010595 endothelial cell migration Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 230000002461 excitatory amino acid Effects 0.000 description 1
- 239000003257 excitatory amino acid Substances 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 102100021145 fMet-Leu-Phe receptor Human genes 0.000 description 1
- 101710108492 fMet-Leu-Phe receptor Proteins 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical class O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 230000000799 fusogenic effect Effects 0.000 description 1
- 230000003371 gabaergic effect Effects 0.000 description 1
- 108010036598 gastric inhibitory polypeptide receptor Proteins 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 230000007045 gastrulation Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 101150108262 gnrh1 gene Proteins 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000000442 hair follicle cell Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 1
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 102000057492 human FPR2 Human genes 0.000 description 1
- 102000052301 human GNAZ Human genes 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000002743 insertional mutagenesis Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 102000002467 interleukin receptors Human genes 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 102000027411 intracellular receptors Human genes 0.000 description 1
- 108091008582 intracellular receptors Proteins 0.000 description 1
- 230000010189 intracellular transport Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 102000048260 kappa Opioid Receptors Human genes 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 108010074774 long-wavelength opsin Proteins 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000032575 lytic viral release Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960003987 melatonin Drugs 0.000 description 1
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 108010054609 middle-wavelength opsin Proteins 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 230000003551 muscarinic effect Effects 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- BPGXUIVWLQTVLZ-OFGSCBOVSA-N neuropeptide y(npy) Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 BPGXUIVWLQTVLZ-OFGSCBOVSA-N 0.000 description 1
- 229960001576 octopamine Drugs 0.000 description 1
- 229960002378 oftasceine Drugs 0.000 description 1
- 239000003399 opiate peptide Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 102000030769 platelet activating factor receptor Human genes 0.000 description 1
- 230000036178 pleiotropy Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 230000017363 positive regulation of growth Effects 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009822 protein phosphorylation Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000027425 release of sequestered calcium ion into cytosol Effects 0.000 description 1
- 239000003488 releasing hormone Substances 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 210000005084 renal tissue Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 210000001202 rhombencephalon Anatomy 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 230000002295 serotoninergic effect Effects 0.000 description 1
- 108010079094 short-wavelength opsin Proteins 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 108010082379 somatostatin receptor type 1 Proteins 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- ADNPLDHMAVUMIW-CUZNLEPHSA-N substance P Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 ADNPLDHMAVUMIW-CUZNLEPHSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 1
- 229960000874 thyrotropin Drugs 0.000 description 1
- 230000001748 thyrotropin Effects 0.000 description 1
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 1
- 235000015961 tonic Nutrition 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 229960000716 tonics Drugs 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 108091006106 transcriptional activators Proteins 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229960003732 tyramine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 108020001588 κ-opioid receptors Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70567—Nuclear receptors, e.g. retinoic acid receptor [RAR], RXR, nuclear orphan receptors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/715—Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/72—Receptors; Cell surface antigens; Cell surface determinants for hormones
- C07K14/723—G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH receptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6435—Plasmin (3.4.21.7), i.e. fibrinolysin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21007—Plasmin (3.4.21.7), i.e. fibrinolysin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
- C07K2319/41—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a Myc-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/74—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
- C07K2319/75—Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Endocrinology (AREA)
- High Energy & Nuclear Physics (AREA)
- Plant Pathology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Description
WO 01/05826 PCT/USO0/19689 CHIMERIC POLYPEPTIDES OF SERUM ALBUMIN AND USES RELATED THERETO This application is based on U.S. Provisional Application No. 60/144,534, filed July 19, 1999, the specification of which is hereby incorporated by reference in its entirety.
Background of the Invention Recent advances in recombinant DNA technology have made available a wide range of biologically active peptides. Although in some instances molecular remodeling, for instance by ligated gene fusion or by site directed mutagenesis, has endowed such proteins with properties compatible with optimal activity, it is generally the case that effective use of these products can only be achieved through delivery systems.
Polypeptide therapeutic agents, despite their promise in a number of disease treatments, are readily decomposed by gastric juices and by intestinal proteinases such as pepsin and trypsin. As a result, when these polypeptides are orally administered, they are barely absorbed and produce no effective pharmacological action. In order to obtain the desired biological activity, the polypeptides are at present usually dispensed in injectable dosage forms. However, the injectable route is inconvenient and painful to the patient, particularly when administration must occur on a regular and frequent basis. Consequently, efforts have focused recently on alternative methods for administration of such polypeptides.
Such agents usually exhibit a short half-life in the circulation, being rapidly excreted through the kidneys or taken up by the reticuloendothelial system (RES) and other tissues.
To compensate for such premature drug loss, larger doses are required so that sufficient amounts of drug can concentrate in areas in need of treatment. However, this is not only costly; it can also lead to toxicity and an immune response to the foreign protein. Sustainedrelease formulations (Putney, S.D. et al. Nature Biotechnology 1998, 16, 153-157) generally reduce the necessary dosage, but still depend on injection or more objectionable forms of delivery. A therapeutic protein with a longer half-life in the body would maintain a more stable blood level in much the same way as a sustained-release formulation, but would not entail the difficulties of preparing a sustained-release formulation and would require an even lower dosage because it is destroyed less quickly. For instance, cytokines such as interferon (IFN-gamma) and interleukin-2 (IL-2) would be more effective, less toxic and could be used in smaller quantities, if their presence in the circulation could be extended.
-1a irtl~1. I R*MP4w"W;.
WO 01/05826 PCT/US00/19689 Summary of the Invention One aspect of the present invention provides a chimeric polypeptide comprising a biologically active heterologous peptide fragment inserted into a serum albumin protein or a homolog thereof. The heterologous peptide fragment may optionally replace a portion of the serum albumin protein sequence. A peptide fragment which replaces a portion of the serum albumin protein sequence need not be of the same length as the fragment it replaces. A chimeric polypeptide according to this aspect may include more than one heterologous peptide fragment which replaces a portion of the serum albumin protein sequence. The included fragments may be identical, may be distinct sequences from a protein unrelated to serum albumin protein, or may be distinct sequences of unrelated origin.
A chimeric polypeptide of this aspect, for example, may comprise the structure A-B- C, wherein A represents a first fragment of a serum albumin protein or homolog thereof, B represents a biologically active heterologous peptide sequence, and C represents another fragment of a serum albumin protein or a homolog thereof. Similarly, a chimeric polypeptide may comprise the structure A-B-C-D-E, wherein A, C, and E represent fragments of a serum albumin protein and B and D represent identical biologically active heterologous peptide sequences, two different biologically active sequences of a protein unrelated to serum albumin protein, or two different biologically active sequences of two different proteins unrelated to serum albumin protein. Analogously, a chimeric polypeptide may comprise the structure A-B-C-D-E-F-G, wherein A, C, E, and G represent fragments of a serum albumin protein and B, D, and F represent identical biologically active heterologous peptide sequences, at least two different biologically active sequences of a protein unrelated to serum albumin protein, or at least two different biologically active sequences of two different proteins unrelated to serum albumin protein. In certain embodiments, a peptide fragment of serum albumin or a heterologous peptide sequence includes at least 6 amino acids, at least 12 amino acids, or at least 18 amino acids.
A chimeric polypeptide may comprise the structure CO- or H 2 N-(A-B-C),-CO2H, wherein A, independently for each occurrence, represents a fragment of serum albumin B, independently for each occurrence, represents a biologically active heterologous peptide sequence, C, independently for each occurrence, represents a second biologically active heterologous peptide sequence or a fragment of serum albumin and n is an integer greater than 0. In certain embodiments, a peptide fragment ~I Imr~n -uu~u*n-n~ mlir*~nnili i r mr~clr~~:r~?~iYinrrr~ ~l ur WO 01/05826 PCT/US00/19689 of serum albumin or a heterologous peptide sequence includes at least 6 amino acids, at least 12 amino acids, or at least 18 amino acids.
Alternatively, such a chimeric polypeptide may comprise an N-terminal fragment of a serum albumin protein or a homolog thereof, a biologically active heterologous peptide sequence, and a C-terminal fragment of a serum albumin protein or a homolog thereof. The heterologous peptide sequence may be between about 3 and about 500 or between about 4 and about 400 residues in length, preferably between about 4 and about 200 residues, more preferably between about 4 and 100 residues, and most preferably between about 4 and about residues.
In one embodiment, the chimeric polypeptide has a half-life in the blood no less than days, preferably no less than about 14 days, and most preferably no less than 50% of the half-life of the native serum albumin protein or homolog thereof.
In another embodiment, the heterologous peptide sequence is capable of binding to a cell surface receptor protein. Examples of such a receptor protein include a G protein-coupled receptor, a tyrosine kinase receptor, a cytokine receptor, an MIRR receptor, and an orphan receptor.
In another embodiment, the chimeric polypeptide is capable of binding to an extracellular receptor or ion channel. The chimeric polypeptide may be an agonist or an antagonist of an extracellular receptor or ion channel. The chimeric polypeptide of this embodiment may, for example, induce apoptosis, modulate cell proliferation, or modulate differentiation of cell types.
The invention also comprises a nucleic acid sequence which encodes a chimeric polypeptide as described above.
The invention further comprises a delivery vector, such as a viral or retroviral vector comprising a nucleic acid sequence encoding the chimeric polypeptide. Suitable vectors may include, for example, an adenovirus, an adeno-associated virus, a herpes simplex virus, a human immunodeficiency viruses, or a vaccinia virus.
The invention also comprises a pharmaceutical composition comprising a chimeric polypeptide as described above, and methods for treating a disease in an organism by administering an effective dose of such a pharmaceutical composition to the organism. In a currently preferred embodiment, a chimeric polypeptide according to the invention comprises a fragment of an angiogenesis-inhibiting protein, such as angiostatin or endostatin, as the heterologous peptide sequence and is capable of inhibiting angiogenesis. For example, a R~l~~ill-~n~:YT~PRCI~~lfi~i~lL~ OS;1~~ ;,l-i*llirrirr^r- xl--l ~r-r*xri*r IC~m~ WO 01/05826 PCT/US00/19689 peptide fragment that inhibits angiogenesis and which may be incorporated into a subject polypeptide is RGD (Arg-Gly-Asp), or a sequence which includes the sequence RGD VRGDF). Analogous methods may be used to modulate conditions such as cell proliferation, cell differentiation, and cell death.
In a currently preferred embodiment, the present invention provides a method of treating a disease in an organism by introducing into cells of the organism genetic material encoding a chimeric polypeptide protein comprising serum albumin protein or segments thereof and one or more therapeutic proteins or polypeptides or fragments thereof, such that the introduced genetic material is expressed by the transfected cells of the organism.
Analogous methods may be used to modulate conditions such as cell proliferation, cell differentiation, and cell death.
In another aspect, the present invention provides a method for treating a disease in an organism by introducing genetic material encoding a chimeric polypeptide comprising serum albumin protein or segments thereof and one or more therapeutic proteins or polypeptides or fragments thereof into target cells ex vivo under conditions sufficient to cause the genetic material to be incorporated into the cell, thereby causing the cell to express the genetic material encoding said proteins or polypeptides. The target cells are then introduced into the host organism such that the introduced genetic material encoding said proteins or polypeptides is expressed by the target cells in the organism. The target cells may be selected from the group consisting of blood cells, skeletal muscle cells, smooth muscle cells, stem cells, skin cells, liver cells, secretory gland cells, hematopoietic cells, and marrow cells.
Another aspect of the present invention provides transfected cells comprising target cells which have been exposed to a delivery vector comprising a nucleic acid encoding the chimeric protein or polypeptide of this invention. These cells are preferably selected from the group consisting of blood cells, skeletal muscle cells, smooth muscle cells, stem cells, skin cells, liver cells, secretory gland cells, hematopoietic cells, and marrow cells.
Brief Description of the Figures Figure 1 shows the tertiary structure of human serum albumin (HSA).
Figure 2 illustrates the transfection of cells with mouse serum albumin (MSA)-Myc fusion constructs and successful expression of the fusion protein, as well as binding of MSA and Myc antibodies to MSA-Myc fusion proteins depending on the location of the heterologous sequence in the MSA protein.
II~K~~N IZe~~~~CYCIIra~~~:~ ppp~.~m3~Y*~ WO 01/05826 PCT/US00/19689 Figure 3 depicts inhibition of FGF-induced proliferation of bovine capillary endothelial cells by RGD peptide and by MSA-myc-RGD fusion proteins.
Detailed Description of the Invention The systems and methods disclosed herein are directed towards increasing the lifetime of therapeutic polypeptides in the bloodstream by creating chimeric polypeptides containing segments of serum albumin (SA) and segments of biologically active heterologous peptide sequences. SA is the major protein constituent of the circulatory system, has a half-life in the blood of about three weeks (Rothschild, M.A. et al. Hepatology 1988, 8, 385-401), and is present in quantity (40 g/L in the serum). It is also known that the normal adult human liver produces approximately 15 grams of human serum albumin (HSA) per day, or about 200 mg per kilogram of body weight. Serum albumin has no immunological activity or enzymatic function, and is a natural carrier protein used to transport many natural and therapeutic molecules. Fusion proteins wherein a therapeutic polypeptide has been covalently linked to serum albumin have been shown to have serum half-lives many times longer than the half-life of the therapeutic peptide itself (Syed, S. et al. Blood 1997, 89, 3243-3252; Yeh, P. et al.
Proc. Natl. Acad. Sci. USA 1992, 89, 1904-1908). In both cited publications, the half-life of the fusion protein was more than 140 times greater than that of the therapeutic polypeptide itself, and approached the half-life ofunfused serum albumin. Furthermore, the aminoterminal portion of serum albumin has been found to favor particularly efficient translocation and export of the fusion proteins in eukaryotic cells (PCT publication WO 90/13653).
Generally, this means that such proteins are more efficiently secreted by a cell manufacturing such proteins than are the free therapeutic polypeptides themselves.
From a drug delivery standpoint, chimeric polypeptides of serum albumin proteins offer substantial promise because serum albumins are found in tissues and secretions throughout the body. It is known, for example, that serum albumin is responsible for the transport of compounds across organ-circulatory interfaces into such organs as the liver, intestine, kidney, and brain. Chimeric proteins of serum albumin may thus manifest their biological activity anywhere in the body, crossing even the daunting blood-brain barrier.
The three-dimensional structure and the chemistry of SA have been well studied (Carter, D.C. et al. Eur. J. Biochem. 1994, 226, 1049-1052; He, X.M. et al. Nature 1992, 358, 209-215; Carter, D.C. et al. Science 1989, 244, 1195-1198). Thus, rather than relying on o- n e L'4 i~~ WO 01/05826 PCTIUS00/19689 simple, binary fusion proteins as discussed above, portions of the SA protein may be strategically or combinatorially replaced by therapeutic polypeptides.
Techniques of combinatorial mutagenesis combined with structurally motivated grafting procedures allow the random preparation of a library of many related polypeptides which carry a biologically active peptide fragment and are substantially similar to serum albumin in tertiary structure. For example, a chimeric polypeptide of the present invention may include a biologically active heterologous peptide sequence inserted into the peptide sequence of a serum albumin protein. The inserted sequence may optionally replace a portion of the serum albumin sequence, whether that portion is of similar or dissimilar length. In some cases, more than one insertion may be required to obtain the desired biological activity.
Alternatively, a biologically active heterologous peptide sequence may be placed between two fragments of a serum albumin sequence to create such a chimeric polypeptide.
Optionally, one or more additional biologically active peptide sequences may be placed between fragments of serum albumin protein. Chimeric polypeptides of the present invention may also be described as a biologically active heterologous peptide sequence flanked on one side by an N-terminal fragment of serum albumin protein and on the other side by a Cterminal fragment of serum albumin protein.
The advantage of such chimeric polypeptides is that the similarity to serum albumin protein in structure may camouflage these polypeptides to biological mechanisms which degrade foreign peptides even more effectively than known fusion proteins, because the foreign polypeptide fragments are carried on a protein that is substantially similar to a protein that is pervasive within the organism. Such proteins may retain the beneficial characteristics of serum albumin (non-immunogenicity, high level of expression, efficient secretion, and long half-life), while supporting the additional desired biological function.
Many therapeutic applications of such chimeric polypeptides will be obvious to those skilled in the art. For example, inclusion of a peptide fragment which inhibits cell proliferation might serve as a treatment for cancer and other diseases characterized by cell proliferation known to those in the art. Inclusion of a peptide fragment which modulates the differentiation of immature cells into particular cell types may create a chimeric polypeptide which may be effective in the treatment of neurological conditions, nerve damage and neurodegenerative diseases, hyperplastic and neoplastic disorders of pancreatic tissue, and other conditions characterized by undesirable proliferation and differentiation of tissue.
Inclusion of a peptide fragment which induces apoptosis may provide a polypeptide effective lr~" n j WO 01/05826 PCT/US00/19689 in treating diseases marked by unwanted cell proliferation, such as cancer, and other conditions known to those in the art as amenable to apoptotic therapy. Inclusion of an antiangiogenic peptide fragment, a fragment of angiostatin or endostatin, may yield a chimeric polypeptide useful in the treatment of cancer and other conditions resulting from or enabled by angiogenesis.
Definitions The term 'peptide' refers to an oligomer in which the monomers are amino acids (usually alpha-amino acids) joined together through amide bonds. Peptides are two or more amino acid monomers long, but more often are between 5 to 10 amino acid monomers long and can be even longer, up to 20 amino acids or more, although peptides longer than 20 amino acids are more likely to be called 'polypeptides'. The term 'protein' is well known in the art and usually refers to a very large polypeptide, or set of associated homologous or heterologous polypeptides, that has some biological function. For purposes of the present invention the terms 'peptide', 'polypeptide', and 'protein' are largely interchangeable as all three types are collectively referred to as peptides.
The interchangeable terms 'fusion' and 'chimeric', as used herein to describe proteins and polypeptides, relate to polypeptides or proteins wherein two individual polypeptides or portions thereof are fused to form a single amino acid chain. Such fusion may arise from the expression of a single continuous coding sequence formed by recombinant DNA techniques. Thus, 'fusion' polypeptides and 'chimeric' polypeptides include contiguous polypeptides comprising a first polypeptide covalently linked via an amide bond to one or more amino acid sequences which define polypeptide domains that are foreign to and not substantially homologous with any domain of the first polypeptide.
Gene constructs encoding fusion proteins are likewise referred to a 'chimeric genes' or 'fusion genes'.
'Homology' and 'identity' each refer to sequence similarity between two polypeptide sequences, with identity being a more strict comparison. Homology and identity can each be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same amino acid residue, then the polypeptides can be referred to as identical at that position; when the equivalent site is occupied by the same amino acid identical) or a similar amino acid similar in steric and/or electronic nature), then the molecules can be referred to as homologous at that I. 1 m..I l. r- il~l lr i n ~~rnr Y rh -~x WO 01/05826 PCT/US00/19689 position. A percentage of homology or identity between sequences is a function of the number of matching or homologous positions shared by the sequences. An 'unrelated', 'heterologous', or 'non-homologous' sequence shares less than 40 percent identity, though preferably less than percent identity, with a sequence to which it is compared. Thus, a 'heterologous peptide sequence' is a peptide sequence substantially dissimilar to a sequence to which it is compared.
The term'serum albumin' (SA) is intended to include (but not necessarily to be restricted to) serum albumin proteins of living organisms, preferably mammalian serum albumins, even more preferably known or yet-to-be-discovered polymorphic forms of human serum albumin (HSA), and variants thereof. For example, the human serum albumin Naskapi has Lys-372 in place of Glu-372, and albumin Christchurch has.an altered pro-sequence. The term 'variants' is intended to include (but not necessarily be restricted to) homologs of SA proteins with minor artificial variations in sequence (such as molecules lacking one or a few residues, having conservative substitutions or minor insertions of residues, or having minor variations of amino acid structure). Thus, polypeptides which have 80%, 85%, 90%, or 99% homology with a native SA are deemed to be 'variants'. It is also preferred for such variants to share at least one pharmacological utility with a native SA. Any putative variant which is to be used pharmacologically should be non-immunogenic in the animal (especially human) being treated.
Sequences of a number of contemplated serum albumin proteins can be obtained from GenBank (National Center for Biotechnology Information), including human, bovine, mouse, pig, horse, sheep, and chick serum albumins.
The term 'native' is used to describe a protein which occurs naturally in a living organism.
Wild-type proteins are thus native proteins. Proteins which are non-native are those which have been generated by artificial mutation, recombinant design, or other laboratory modification and are not known in natural populations.
'Conservative substitutions' are those where one or more amino acids are substituted for others having similar properties such that one skilled in the art ofpolypeptide chemistry would expect at least the secondary structure, and preferably the tertiary structure, of the polypeptide to be substantially unchanged. For example, typical such substitutions include asparagine for glutamine, serine for asparagine, and arginine for lysine. The term 'physiologically functional equivalents' also encompasses larger molecules comprising the native sequence plus a further sequence at the N-terminus (for example, pro-HSA, pre-pre-HSA, and met-HSA).
'Tertiary structure' refers to the three-dimensional structure of a protein. Proteins which have similar tertiary structures will have similar shapes and surfaces, even if the amino acid ~yTJU T WO 01/05826 PCT/US00/19689 sequences (the 'secondary structure') is not identical. Tertiary structure is a consequence of the folding and twisting of an amino acid chain upon itself and can be disrupted by chemical means, strong acid or base, or by physical means, heating.
The term'biologically active' refers to an entity which interacts in some way with a living organism on a molecular level. Entities which are biologically active may activate a receptor, provoke an immune reaction, interact with a membrane or ion channel, or otherwise induce a change in a biological function of an organism or any part of an organism.
The term 'ligand' refers to a molecule that is recognized by a particular protein, a receptor. Any agent bound by or reacting with a protein is called a 'ligand', so the term encompasses the substrate of an enzyme and the reactants of a catalyzed reaction. The term 'ligand' does not imply any particular molecular size or other structural or compositional feature other than that the substance in question is capable of binding or otherwise interacting with a protein. A 'ligand' may serve either as the natural ligand to which the protein binds or as a functional analogue that may act as an agonist or antagonist.
The term 'vector' refers to a DNA molecule, capable of replication in a host cell, into which a gene can be inserted to construct a recombinant DNA molecule. Examples of vectors include plasmids and infective microorganisms such as viruses, or non-viral vectors such as ligand-DNA conjugates, liposomes, or lipid-DNA complexes.
As used herein, 'cell surface receptor' refers to molecules that occur on the surface of cells, interact with the extracellular environment, and (directly or indirectly) transmit or transduce the information regarding the environment intracellularly in a manner that may modulate intracellular second messenger activities or transcription of specific promoters, resulting in transcription of specific genes.
As used herein, 'extracellular signals' include a molecule or other change in the extracellular environment that is transduced intracellularly via cell surface proteins that interact, directly or indirectly, with the signal. An extracellular signal or effector molecule includes any compound or substance that in some manner alters the activity of a cell surface protein.
Examples of such signals include, but are not limited to, molecules such as acetylcholine, growth factors and hormones, lipids, sugars and nucleotides that bind to cell surface and/or intracellular receptors and ion channels and modulate the activity of such receptors and channels.
As used herein, 'extracellular signals' also include as yet unidentified substances that modulate the activity of a cellular receptor, and thereby influence intracellular functions. Such WO 01/05826 PCT/US00/19689 extracellular signals are potential pharmacological agents that may be used to treat specific diseases by modulating the activity of specific cell surface receptors.
'Orphan receptors' is a designation given to receptors for which no specific natural ligand has been described and/or for which no function has been determined.
The term 'target cells' as used herein means cells, either in vivo or ex vivo, into which it is desired to introduce exogenous genetic material. Target cells may be any type of cell, including blood cells, skeletal muscle cells, stem cells, skin cells, liver cells, secretory gland cells, hematopoietic cells, and marrow cells.
An 'effective amount' of a fusion polypeptide, with respect to the subject method of treatment, refers to an amount of the polypeptide in a preparation which, when applied as part of a desired dosage regimen, provides inhibition of angiogenesis so as to reduce or cure a disorder according to clinically acceptable standards.
'Serum half-life' as used herein refers to the time required for half of a quantity of a peptide in the bloodstream to be degraded.
Exemplification As set out above, the chimeric polypeptide of the present invention can be constructed as a chimeric polypeptide containing a sequence homologous to at least a portion of a serum albumin and at least a portion of one or more heterologous proteins, expressed as one contiguous polypeptide chain. In preparing the chimeric polypeptide, a fusion gene is constructed comprising DNA encoding at least one sequence each of a serum albumin, a heterologous protein, and, optionally, a peptide linker sequence to span the fragments. If more than one heterologous sequences are included in the chimeric polypeptide, they may be identical, related, or unrelated sequences. Identical sequences may be included to increase the effective concentration of the sequence. Related sequences may be included to more accurately mimic the native protein from which they are derived. Unrelated sequences may be useful for activating two or more distinct receptors that stimulate the same response, or for imparting two or more distinct activities to the chimeric polypeptide. For example, the chimeric polypeptide might include a sequence that has antiangiogenic activity and a sequence which induces apoptosis of tumor cells.
To make this chimeric polypeptide, an entire protein can be cloned and expressed as part of the protein, or alternatively, a suitable fragment thereof containing a biologically active moiety can be used. The use of recombinant DNA techniques to create a fusion gene, with the translational product being the desired chimeric polypeptide, is well known in the art. Both the WO 01/05826 PCT/US00/19689 coding sequence of a gene and its regulatory regions can be redesigned to change the functional properties of the protein product, the amount of protein made, or the cell type in which the protein is produced. The coding sequence of a gene can be extensively altered, for example, by fusing part of it to the coding sequence of a different gene to produce a novel hybrid gene that encodes a fusion protein. Examples of methods for producing fusion proteins are described in PCT applications PCT/US87/02968, PCT/US89/03587 and PCT/US90/07335, as well as Traunecker et al. (1989) Nature 339:68, all of which are incorporated by reference herein.
Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
Alternatively, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. In another method, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, Eds. Ausubel et al. John Wiley Sons: 1992).
This invention also provides expression vectors comprising a nucleotide sequence encoding a subject chimeric polypeptide operably linked to at least one regulatory sequence.
'Operably linked' is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleotide sequence. Regulatory sequences are art-recognized and are selected to direct expression of the encoded polypeptide.
Accordingly, the term regulatory sequence includes promoters, enhancers and other expression control elements. Exemplary regulatory sequences are described in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). For instance, any of a wide variety of expression control sequences-sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding the chimeric polypeptides of this invention. Such useful expression control sequences, include, for example, the early and late promoters of SV40, adenovirus or cytomegalovirus immediate early promoter, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for Ily"NlyYAIYln3~ns~~i-;:~R ~IYYYI ll~t~Y* WO 01/05826 PCTUSOO/19689 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., the promoters of the yeast ax-mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other proteins encoded by the vector, such as antibiotic markers, should also be considered.
As will be apparent, the subject gene constructs can be used to cause expression of the subject chimeric polypeptides in cells propagated in culture, to produce chimeric polypeptides, for purification. This represents a method for preparing substantial quantities of the polypeptide, for research, clinical, and pharmaceutical uses.
In certain therapeutic applications, the ex vivo-derived chimeric polypeptides are utilized in a manner appropriate for therapy in general. For such therapy, the polypeptides of the invention can be formulated for a variety of modes of administration, including systemic and topical or localized administration. In such embodiments, the polypeptide may by combined with a pharmaceutically acceptable excipient, a non-pyrogenic excipient. Techniques and formulations generally may be found in Remmington's Pharmaceutical Sciences, Meade Publishing Co., Easton, PA. For systemic administration, injection being preferred, including intramuscular, intravenous, intraperitoneal, and subcutaneous injection, the polypeptides of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the polypeptides may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included.
Systemic administration can also be by transmucosal or transdermal means, or the compounds can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the. barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the peptides are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, -12- 111 1 11 WO 01/05826 PCT/US00/19689 particularly cosmetic formulations, the oligomers of the invention are formulated into ointments, salves, gels, or creams as generally known in the art.
Alternative means of administration ofpeptides have been developed. Sustained-release formulations (Putney, et al. Nature Biotechnology 1998, 16, 153-157) are advantageous, requiring fewer administrations and, often, lower dosages. Techniques for oral delivery of peptides have been reviewed (Fasano, A. Trends in Biotechnology 1998, 16, 152-157), as have several site-specific means ofpeptide delivery (Pettit, D.K. et al. Trends in Biotechnology 1998, 16, 343-349). Additional techniques for therapeutic administration of peptides are known to those of skill in the art.
Genetic material of the present invention can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces the desired chimeric polypeptide.
In another embodiment, the genetic material is provided by use of an "expression" construct, which can be transcribed in a cell to produce the chimeric polypeptide. Such expression constructs may be administered in any biologically effective carrier, any formulation or composition capable of effectively transfecting cells either ex vivo or in vivo with genetic material encoding a chimeric polypeptide. Approaches include insertion of the antisense nucleic acid in viral vectors including recombinant retroviruses, adenoviruses, adeno-associated viruses, human immunodeficiency viruses, and herpes simplex viruses-1, or recombinant bacterial or eukaryotic plasmids. Viral vectors can be used to transfect cells directly; plasmid DNA can be delivered with the help of, for example, cationic liposomes (lipofectin) or derivatized antibody conjugated), polylysine conjugates, gramacidin S, artificial viral envelopes or other such intracellular carriers, as well as direct injection of the gene construct or calcium phosphate precipitation carried out in vivo. It will be appreciated that because transduction of appropriate target cells represents the critical first step in gene therapy, choice of the particular gene delivery system will depend on such factors as the phenotype of the intended target and the route of administration, locally or systemically.
A preferred approach for in vivo introduction of genetic material encoding one of the subject proteins into a cell is by use of a viral vector containing said genetic material. Infection of cells with a viral vector has the advantage that a large proportion of the targeted cells can receive the nucleic acid. Additionally, chimeric polypeptides encoded by genetic material in the viral vector, by a nucleic acid contained in the viral vector, are expressed efficiently in cells which have taken up viral vector nucleic acid. Such a strategy may be particularly effective when ~un :r WO 01/05826 PCT/US00/19689 skeletal muscle cells are the targets of the vector (Fisher, K.J. et al. Nature Medicine 1997, 3, 306-312).
Retrovirus vectors and adeno-associated virus vectors are generally understood to be the recombinant gene delivery system of choice for the transfer of exogenous genes in vivo, particularly into humans. These vectors provide efficient delivery of genes into cells, and the transferred nucleic acids are stably integrated into the chromosomal DNA of the host. A major prerequisite for the use of retroviruses is to ensure the safety of their use, particularly with regard to the possibility of the spread of wild-type virus in the cell population. The development of specialized cell lines (termed "packaging cells") which produce only replication-defective retroviruses has increased the utility ofretroviruses for gene therapy, and defective retroviruses are well characterized for use in gene transfer for gene therapy purposes (for a review see Miller, A.D. (1990) Blood 76:271). Thus, recombinant retrovirus can be constructed in which part of the retroviral coding sequence (gag, pol, env) has been replaced by nucleic acid encoding one of the antisense E6AP constructs, rendering the retrovirus replication defective. The replication defective retrovirus is then packaged into virions which can be used to infect a target cell through the use of a helper virus by standard techniques. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F.M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14, and other standard laboratory manuals. Examples of suitable retroviruses include pLJ, pZIP, pWE and pEM which are well known to those skilled in the art.
Examples of suitable packaging virus lines for preparing both ecotropic and amphotropic retroviral systems include yCrip, yCre, y 2 and yAm. Retroviruses have been used to introduce a variety of genes into many different cell types, including neural cells, epithelial cells, endothelial cells, lymphocytes, myoblasts, hepatocytes, bone marrow cells, in vitro and/or in vivo (see for example Eglitis, et al. (1985) Science 230:1395-1398; Danos and Mulligan (1988) Proc.
Natl. Acad. Sci. USA 85:6460-6464; Wilson et al. (1988) Proc. Natl. Acad. Sci. USA 85:3014- 3018; Armentano et al. (1990) Proc. Natl. Acad. Sci. USA 87:6141-6145; Huber et al. (1991) Proc. Natl. Acad. Sci. USA 88:8039-8043; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381; Chowdhury et al. (1991) Science 254:1802-1805; van Beusechem et al. (1992) Proc. Natl. Acad. Sci. USA 89:7640-7644; Kay et al. (1992) Human Gene 77Terapy 3:641-647; Dai et al. (1992) Proc. Natl. Acad. Sci. USA 89:10892-10895; Hwu et al. (1993)J. Immunol.
150:4104-4115; U.S. Patent No. 4,868,116; U.S. Patent No. 4,980,286; PCT Application WO -i lr .mnl~nnrmnn~n~ xni nn~-ma~~liiil-lrr rI.rr.:nll ~nm~inn"t ~m r. mr~~:I~NMY~-~linnwI~~rriiPllil!lll(l'; WO 01/05826 PCT/US00/19689 89/07136; PCT Application WO 89/02468; PCT Application WO 89/05345; and PCT Application WO 92/07573).
In choosing retroviral vectors as a gene delivery system for genetic material encoding the subject chimeric polypeptides, it is important to note that a prerequisite for the successful infection of target cells by most retroviruses, and therefore of stable introduction of the genetic material, is that the target cells must be dividing. In general, this requirement will not be a hindrance to use of retroviral vectors. In fact, such limitation on infection can be beneficial in circumstances wherein the tissue nontransformed cells) surrounding the target cells does not undergo extensive cell division and is therefore refractory to infection with retroviral vectors.
Furthermore, it has been shown that it is possible to limit the infection spectrum of retroviruses and consequently of retroviral-based vectors, by modifying the viral packaging proteins on the surface of the viral particle (see, for example, PCT publications W093/25234, W094/06920, and W094/11524). For instance, strategies for the modification of the infection spectrum ofretroviral vectors include: coupling antibodies specific for cell surface antigens to the viral env protein (Roux et al. (1989) PNAS 86:9079-9083; Julan et al. (1992) J Gen Virol 73:3251-3255; and Goud et al. (1983) Virology 163:251-254); or coupling cell surface ligands to the viral env proteins (Neda et al. (1991) JBiol Chem 266:14143-14146). Coupling can be in the form of the chemical cross-linking with a protein or other variety lactose to convert the env protein to an asialoglycoprotein), as well as by generating chimeric proteins singlechain antibody/env chimeric proteins). This technique, while useful to limit or otherwise direct the infection to certain tissue types, and can also be used to convert an ecotropic vector in to an amphotropic vector.
Moreover, use of retroviral gene delivery can be further enhanced by the use of tissueor cell-specific transcriptional regulatory sequences which control expression of the genetic material of the retroviral vector.
Another viral gene delivery system useful in the present invention utilizes adenovirusderived vectors. The genome of an adenovirus can be manipulated such that it encodes a gene product of interest, but is inactive in terms of its ability to replicate in a normal lytic viral life cycle (see, for example, Berkner et al. (1988) BioTechniques 6:616; Rosenfeld et al. (1991) Science 252:431-434; and Rosenfeld et al. (1992) Cell 68:143-155). Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 d1324 or other strains of adenovirus Ad2, Ad3, Ad7, etc.) are well known to those skilled in the art. Recombinant adenoviruses can be ~l B-v;rt~o WO 01/05826 PCT/US00/19689 advantageous in certain circumstances in that they are capable of infecting non-dividing cells and can be used to infect a wide variety of cell types, including airway epithelium (Rosenfeld et al.
(1992) cited supra), endothelial cells (Lemarchand et al. (1992) Proc. Natl. Acad. Sci. USA 89:6482-6486), hepatocytes (Herz and Gerard (1993) Proc. Natl. Acad. Sci. USA 90:2812-2816) and muscle cells (Quantin et al. (1992) Proc. Natl. Acad. Sci. USA 89:2581-2584). Furthermore, the virus particle is relatively stable and amenable to purification and concentration, and, as above, can be modified so as to affect the spectrum of infectivity. Additionally, introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situations where introduced DNA becomes integrated into the host genome retroviral DNA). Moreover, the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors (Berkner et al., supra; Haj-Ahmand and Graham (1986) J. Virol. 57:267). Most replication-defective adenoviral vectors currently in use and therefore favored by the present invention are deleted for all or parts of the viral El and E3 genes but retain as much as 80% of the adenoviral genetic material (see, for example, Jones et al. (1979) Cell 16:683; Berkner et al., supra; and Graham et al. in Methods in Molecular Biology, E.J. Murray, Ed. (Humana, Clifton, NJ, 1991) vol. 7. pp. 109-127).
Expression of the inserted genetic material can be under control of, for example, the El A promoter, the major late promoter (MLP) and associated leader sequences, the E3 promoter, or exogenously added promoter sequences.
Yet another viral vector system useful for delivery of genetic material encoding the subject chimeric polypeptides is the adeno-associated virus (AAV). Adeno-associated virus is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle. (For a review see Muzyczka et al. Curr. Topics in Micro, andlmmunol. (1992) 158:97-129). It is also one of the few viruses that may integrate its DNA into non-dividing cells, and exhibits a high frequency of stable integration (see for example Flotte et al. (1992) Am. 1. Respir. Cell. Mol. Biol. 7:349- 356; Samulski et al. (1989) J Virol. 63:3822-3828; and McLaughlin et al. (1989) J. Virol.
62:1963-1973). Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate. Space for exogenous DNA is limited to about 4.5 kb. An AAV vector such as that described in Tratschin et al. (1985) Mol. Cell. Biol. 5:3251-3260 can be used to introduce DNA into cells. A variety of nucleic acids have been introduced into different cell types using AAV vectors (see for example Hermonat et al. (1984) Proc. Natl. Acad. Sci. USA 81:6466-6470; WO 01/05826 PCT/US00/19689 Tratschin et al. (1985) Mol. Cell. Biol. 4:2072-2081; Wondisford et al. (1988) Mol. Endocrinol.
2:32-39; Tratschin et al. (1984) J. Virol. 51:611-619; and Flotte et al. (1993) J. Biol. Chem.
268:3781-3790).
Other viral vector systems that may have application in gene therapy have been derived from herpes virus, vaccinia virus, and several RNA viruses.
In addition to viral transfer methods, such as those illustrated above, non-viral methods can also be employed to cause expression of genetic material encoding the subject chimeric polypeptides in the tissue of an animal. Most nonviral methods of gene transfer rely on normal mechanisms used by mammalian cells for the uptake and intracellular transport of macromolecules. In preferred embodiments, non-viral gene delivery systems of the present invention rely on endocytic pathways for the uptake of genetic material by the targeted cell.
Exemplary gene delivery systems of this type include liposomal derived systems, polylysine conjugates, and artificial viral envelopes.
In a representative embodiment, genetic material can be entrapped in liposomes bearing positive charges on their surface lipofectins) and, optionally, which are tagged with antibodies against cell surface antigens of the target tissue (Mizuno et al. (1992) No Shinkei Geka 20:547-551; PCT publication W091/06309; Japanese patent application 1047381; and European patent publication EP-A-43075). For example, lipofection of papilloma-infected cells can be carried out using liposomes tagged with monoclonal antibodies against PV-associated antigen (see Viac et al. (1978) JInvest Dermatol 70:263-266; see also Mizuno et al. (1992) Neurol. Med.
Chir. 32:873-876).
In yet another illustrative embodiment, the gene delivery system comprises an antibody or cell surface ligand which is cross-linked with a gene binding agent such as polylysine (see, for example, PCT publications W093/04701, W092/22635, W092/20316, W092/19749, and W092/06180). For example, genetic material encoding the subject chimeric polypeptides can be used to transfect hepatocytic cells in vivo using a soluble polynucleotide carrier comprising an asialoglycoprotein conjugated to a polycation, polylysine (see U.S. Patent 5,166,320).
It will also be appreciated that effective delivery of the subject nucleic acid constructs via mediated endocytosis can be improved using agents which enhance escape of the gene from the endosomal structures. For instance, whole adenovirus or fusogenic peptides of the influenza HA gene product can be used as part of the delivery system to induce efficient disruption of DNAcontaining endosomes (Mulligan et al. (1993) Science 260-926; Wagner et al. (1992) PNAS 89:7934; and Christiano et al. (1993) PNAS 90:2122).
-17- ~i YMU"' WO 01105826 PCTUS00/19689 In clinical settings, the gene delivery systems can be introduced into a patient by any of a number of methods, each of which is familiar in the art. For instance, a pharmaceutical preparation of the gene delivery system can be introduced systemically, by intravenous injection, and specific transduction of the target cells occurs predominantly from specificity of transfection provided by the gene delivery vehicle, cell-type or tissue-type expression due to the transcriptional regulatory sequences controlling expression of the gene, or a combination thereof In other embodiments, initial delivery of the recombinant gene is more limited with introduction into the animal being quite localized. For example, the gene delivery vehicle can be introduced by catheter (see U.S. Patent 5,328,470) or by stereotactic injection Chen et al. (1994) PNAS 91: 3054-3057).
Moreover, the pharmaceutical preparation can consist essentially of the gene delivery system in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery system can be produced intact from recombinant cells, retroviral packages, the pharmaceutical preparation can comprise one or more cells which produce the gene delivery system. In the latter case, methods of introducing the viral packaging cells may be provided by, for example, rechargeable or biodegradable devices. Various slow release polymeric devices have been developed and tested in vivo in recent years for the controlled delivery of drugs, including proteinaceous biopharmaceuticals, and can be adapted for release of viral particles through the manipulation of the polymer composition and form. A variety of biocompatible polymers (including hydrogels), including both biodegradable and non-degradable polymers, can be used to form an implant for the sustained release of an the viral particles by cells implanted at a particular target site. Such embodiments of the present invention can be used for the delivery of an exogenously purified virus, which has been incorporated in the polymeric device, or for the delivery of viral particles produced by a cell encapsulated in the polymeric device.
By choice of monomer composition or polymerization technique, the amount of water, porosity and consequent permeability characteristics can be controlled. The selection of the shape, size, polymer, and method for implantation can be determined on an individual basis according to the disorder to be treated and the individual patient response. The generation of such implants is generally known in the art. See, for example, Concise Encyclopedia ofMedical Dental Materials, ed. by David Williams (MIT Press: Cambridge, MA, 1990); and the Sabel et al. U.S. Patent No. 4,883,666. In another embodiment of an implant, a source of cells producing a the recombinant virus is encapsulated in implantable hollow fibers. Such fibers can be prc- -18- WO 01/05826 PCTIUS00/19689 spun and subsequently loaded with the viral source (Aebischer et al. U.S. Patent No. 4,892,538; Aebischer et al. U.S. Patent No. 5,106,627; Hoffman et al. (1990) Expt. Neurobiol. 110:39-44; Jaeger et al. (1990) Prog. Brain Res. 82:41-46; and Aebischer et al. (1991) J Biomech. Eng.
113:178-183), or can be co-extruded with a polymer which acts to form a polymeric coat about the viral packaging cells (Lim U.S. Patent No. 4,391,909; Sefton U.S. Patent No. 4,353,888; Sugamori et al. (1989) Trans. Am. Artif Intern. Organs 35:791-799; Sefton et al. (1987) Biotechnol. Bioeng. 29:1135-1143; and Aebischer et al. (1991) Biomaterials 12:50-55). Again, manipulation of the polymer can be carried out to provide for optimal release of viral particles.
Chimeric polypeptides of the present invention can be designed by using molecular modeling. A computer model of serum albumin may be altered to include a selected heterologous sequence and the resulting structure may be submitted to calculations designed to determine how the resulting peptide will change in shape, how much strain the alteration introduces into the polypeptide, how the heterologous sequence is displayed in three dimensions, and other data relevant to the resulting structure of the chimeric polypeptide. Alternatively, the nature of the sequence to be included might be determined by the calculation, based on knowledge of a receptor or binding pocket. In another embodiment, the calculations might best determine how to insert a desired sequence to maintain the tertiary structure of the serum albumin backbone, or to display the insertion in the proper orientation. Other calculational strategies will be known to those skilled in the art. Calculations such as these can be useful for directing the synthesis of chimeric polypeptides of the present invention in a time- and material-efficient manner, before actual synthesis and screening techniques begin.
Methods for screening chimeric polypeptides of the present invention are well known in the art, independent of the use of computer modeling. The use of peptide libraries is one way of screening large numbers of polypeptides at once. In one screening assay, the candidate peptides are displayed on the surface of a cell or viral particle, and the ability of particular cells or viral particles to bind a target molecule, such as a receptor protein via this gene product is detected in a "panning assay". For instance, the gene library can be cloned into the gene for a surface membrane protein of a bacterial cell, and the resulting chimeric polypeptide detected by panning (Ladner et al., WO 88/06630; Fuchs et al. (1991) Bio/Technology 9:1370-1371; and Goward et al. (1992) TIBS 18:136-140).
In an alternate embodiment, the peptide library is expressed as chimeric polypeptides on the surface of a viral particle. For instance, in the filamentous phage system, foreign peptide sequences can be expressed on the surface of infectious phage, thereby conferring two significant WO 01/05826 PCT/US00/19689 benefits. First, since these phage can be applied to affinity matrices at very high concentrations, a large number of phage can be screened at one time. Second, since each infectious phage displays the combinatorial gene product on its surface, if a particular phage is recovered from an affinity matrix in low yield, the phage can be amplified by another round of infection. The group of almost identical E. coli filamentous phages M13, fd, and fl are most often used in phage display libraries, as either of the phage gIII or gVEI coat proteins can be used to generate chimeric polypeptides without disrupting the ultimate packaging of the viral particle (Ladner et al. PCT publication WO 90/02809; Garrard et al., PCT publication WO 92/09690; Marks et al.
(1992) J. Biol. Chem. 267:16007-16010; Griffiths et al. (1993) EMBO J 12:725-734; Clackson et al. (1991) Nature 352:624-628; and Barbas'et al. (1992) PNAS 89:4457-4461).
The field of combinatorial peptide libraries has been reviewed (Gallop et al. J. Med.
Chem. 1994, 37, 1233-1251), and additional techniques are known in the art (Gustin, K. Virology 1993, 193, 653-660; Goeddel et al. U.S. Patent 5,223,408; Markland et al. PCT publication W092/15679; Bass et al. Proteins: Structure, Function and Genetics 1990, 8, 309- 314;Cunningham, B.C. Science 1990, 247, 1461-1465; Lowman, H.B. Biochemistry 1991, 10832-10838; Fowlkes et al. U.S. Patent No. 5,789,184; Houghton, Proc. Natl. Acad. Sci. U.S.A.
1985, 82, 5131-5135) for generating and screening peptide libraries.
U.S. patent application 09/174,943, filed October 19, 1998, discloses a method for isolating biologically active peptides. Using the techniques disclosed therein, a chimeric polypeptide of the present invention may be developed which interacts with a chosen receptor.
In a representative example, this method is utilized to identify polypeptides which have antiproliferative activity with respect to one or more types of cells. One of skill in the art will readily be able to modify the procedures outlined below to find polypeptides withany desired activity. In the example, in the display mode, the chimeric polypeptide library can be panned with the target cells for which an antiproliferative is desired in order to enrich for polypeptides which bind to that cell. At that stage, the polypeptide library can also be panned against one or more control cell lines in order to remove polypeptides which bind the control cells. In this manner, the polypeptide library which is then tested in the secretion mode can be enriched for polypeptides which selectively bind target cells (relative to the control cells). Thus, for example, the display mode can produce a polypeptide library enriched for polypcptides which preferentially bind tumor cells relative to normal cells, which preferentially bind p53- cells relative to p53+ cells, which preferentially bind hair follicle cells relative to other epithelial cells, or any other differential binding characteristic.
~17rn I~L1 Y~ W I~RI 1 W- WO 01/05826 PCT/US00/19689 In the secretion mode, the polypeptides are tested for antiproliferative activity against the target cell using any of a number of techniques known in the art. For instance, BrdU or other nucleotide uptake can be measured as an indicator of proliferation. As above, the secretion mode can include negative controls in order to select for polypeptides with specific antiproliferative activity.
In similar fashion, polypeptides can be isolated from the library based on their ability to induce apoptosis or cell lysis, for example, in a cell-selective manner.
Also, this method can be used to identify polypeptides with angiogenic or antiangiogenic activity. For instance, the polypeptide library can be enriched for polypeptides that bind to endothelial cells but which do not bind to fibroblasts. The resulting sub-library can be screened for polypeptides which inhibit capillary endothelial cell proliferation and/or endothelial cell migration. Polypeptides scoring positive for one or both of these activities can also be tested for activity against other cell types, such as smooth muscle cells or fibroblasts, in order to select polypeptides active only against endothelial cells.
Furthermore, this method can be used to identify anti-infective polypeptides, for example, which are active as anti-fiungal or antibacterial agents.
In addition, this assay can be used for identifying effectors of a receptor protein or complex thereof. In general, the assay is characterized by the use of a test cell which includes a target receptor or ion channel protein whose signal transduction activity can be modulated by interaction with an extracellular signal, the transduction activity being able to generate a detectable signal.
In general, such assays are characterized by the use of a mixture of cells expressing a target receptor protein or ion channel capable of transducing a detectable signal in the reagent cell. The receptor/channel protein can be either endogenous or heterologous. In combination with the disclosed detection means, a culture of the instant reagent cells will provide means for detecting agonists or antagonists of receptor function.
The ability of particular polypeptides to modulate a signal transduction activity of the target receptor or channel can be scored for by detecting up or down-regulation of the detection signal. For example, second messenger generation GTPase activity, phospholipid hydrolysis, or protein phosphorylation patterns as examples) can be measured directly.
Alternatively, the use of an indicator gene can provide a convenient readout. In other embodiments a detection means consists of an indicator gene. In any event, a statistically WO 01/05826 PCT/US00/19689 significant change in the detection signal can be used to facilitate identification of compounds which modulate receptor or ion channel activities.
By this method, polypeptides which induce a signal pathway from a particular receptor or channel can be identified. If a test polypeptide does not appear to induce the activity of the receptor/channel protein, the assay may be repeated as described above, and modified by the introduction of a step in which the reagent cell is first contacted with a known activator of the target receptor/channel to induce signal transduction, and the test peptide can be assayed for its ability to inhibit the activated receptor/channel, for example, to identify antagonists. In yet other embodiments, peptides can be screened for those which potentiate the response to a known activator of the receptor.
In particular, the assays can be used to test functional ligand-receptor or ligand-ion channel interactions for cell surface-localized receptors and channels. As described in more detail below, the subject assay can be used to identify effectors of, for example, G proteincoupled receptors, receptor tyrosine kinases, cytokine receptors, and ion channels. In certain embodiments the method described herein is used for identifying ligands for "orphan receptors" for which no ligand is known.
In some examples, the receptor is a cell surface receptor, such as: a receptor tyrosine kinase, for example, an EPH receptor; an ion channel; a cytokine receptor; an multisubunit immune recognition receptor, a chemokine receptor; a growth factor receptor, or a G-protein coupled receptor, such as a chemoattracttractant peptide receptor, a neuropeptide receptor, a light receptor, a neurotransmitter receptor, or a polypeptide hormone receptor.
Preferred G protein-coupled receptors include al A-adrenergic receptor, alB-adrenergic receptor, c2-adrenergic receptor, a2B-adrenergic receptor, 1 -adrenergic receptor, p2-adrenergic receptor, p3-adrenergic receptor, ml acetylcholine receptor (AChR), m2 AChR, m3 AChR, m4 AChR, m5 AChR, D1 dopamine receptor, D2 dopamine receptor, D3 dopamine receptor, D4 dopamine receptor, D5 dopamine receptor, Al adenosine receptor, A2b adenosine receptor, HT1a receptor, 5-HTlb receptor, 5HTI-like receptor, 5-HTld receptor, 5HTld-like receptor, 5HT1d beta receptor, substance K (neurokinin A) receptor, fMLP receptor, fMLP-like receptor, angiotensin II type 1 receptor, endothelin ETA receptor, endothelin ETB receptor, thrombin receptor, growth hormone-releasing hormone (GHRH) receptor, vasoactive intestinal peptide receptor, oxytocin receptor, somatostatin SSTR1 and SSTR2, SSTR3, cannabinoid receptor, follicle stimulating hormone (FSH) receptor, leutropin (LH/HCG) receptor, thyroid stimulating hormone (TSH) receptor, thromboxane A2 receptor, platelet-activating factor (PAF) receptor, 4aii r n n.~r ri~ r F AWA~1i *J -t jiy~ p~ WO 01/05826 PCT/US00/19689 anaphylatoxin receptor, Interleukin 8 (IL-8) IL-8RA, IL-8RB, Delta Opioid receptor, Kappa Opioid receptor, mip-1/RANTES receptor, Rhodopsin, Red opsin, Green opsin, Blue opsin, metabotropic glutamate mGluR1-6, histamine H2 receptor, ATP receptor, neuropeptide Y receptor, amyloid protein precursor receptor, insulin-like growth factor II receptor, bradykinin receptor, gonadotropin-releasing hormone receptor, cholecystokinin receptor, melanocyte stimulating hormone receptor receptor, antidiuretic hormone receptor, glucagon receptor, and adrenocorticotropic hormone II receptor.
Preferred EPH receptors inlcude eph, elk, eck, sek, mek4, hek, hek2, eek, erk, tyrol, tyro4, tyro6, tyroll, cek4, cek5, cek6, cek7, cek8, cek9, ceklO, bsk, rtkl, rtk2, rtk3, mykl, myk2, ehkl, ehk2, pagliaccio, htk, erk and nuk receptors.
A. Cytokine Receptors In one example the target receptor is a cytokine receptor. Cytokines are a family of soluble mediators of cell-to-cell communication that includes interleukins, interferons, and colony-stimulating factors. The characteristic features of cytokines lie in their functional redundancy and pleiotropy. Most of the cytokine receptors that constitute distinct superfamilies do not possess intrinsic protein tyrosine kinase domains, yet receptor stimulation usually invokes rapid tyrosine phosphorylation of intracellular proteins, including the receptors themselves.
Many members of the cytokine receptor superfamily activate the Jak protein tyrosine kinase family, with resultant phosphorylation of the STAT transcriptional activator factors. IL-2, IL-7, IL-2 and Interferon y have all been shown to activate Jak kinases (Frank et al (1995) Proc Natl AcadSci USA 92:7779-7783); Scharfe et al. (1995) Blood 86:2077-2085); (Bacon et al. (1995) Proc Natl Acad Sci USA 92:7307-7311); and (Sakatsume et al (1995) J. Biol Chem 270:17528- 17534). Events downstream of Jak phosphorylation have also been elucidated. For example, exposure of T lymphocytes to IL-2 has been shown to lead to the phosphorylation of signal transducers and activators of transcription (STAT) proteins STAT Ia, STAT23, and STAT3, as well as of two STAT-related proteins, p94 and p95. The STAT proteins were found to translocate to the nucleus and to bind to a specific DNA sequence, thus suggesting a mechanism by which IL-2 may activate specific genes involved in immune cell function (Frank et al. supra).
Jak3 is associated with the gamma chain of the IL-2, IL-4, and IL-7 cytokine receptors (Fujii et al. (1995) Proc Natl Acad Sci 92:5482-5486) and (Musso et al (1995) J Exp Med. 181:1425- 1431). The Jak kinases have also been shown to be activated by numerous ligands that signal WO 01/05826 PCT/USOO/19689 via cytokine receptors such as, growth hormone and erythropoietin and IL-6 (Kishimoto (1994) Stem cells Suppl 12:37-44).
Detection means which may be scored for in the present assay, in addition to direct detection of second messengers, such as by changes in phosphorylation, includes reporter constructs or indicator genes which include transcriptional regulatory elements responsive to the STAT proteins. Described infra.
B Multisubunit Immune Recognition Receptor (MIRR).
In another example the receptor is a multisubunit receptor. Receptors can be comprised of multiple proteins referred to as subunits, one category of which is referred to as a multisubunit receptor is a multisubunit immune recognition receptor (MIRR). MIRRs include receptors having multiple noncovalently associated subunits and are capable of interacting with src-family tyrosine kinases. MIRRs can include, but are not limited to, B cell antigen receptors, T cell antigen receptors, Fc receptors and CD22. One example of an MIRR is an antigen receptor on the surface of a B cell. To further illustrate, the MIRR on the surface of a B cell comprises membrane-bound immunoglobulin (mlg) associated with the subunits Ig-a and Ig- or Ig-y, which forms a complex capable of regulating B cell function when bound by antigen. An antigen receptor can be functionally linked to an amplifier molecule in a manner such that the amplifier molecule is capable of regulating gene transcription.
Src-family tyrosine kinases are enzymes capable of phosphorylating tyrosine residues of a target molecule. Typically, a src-family tyrosine kinase contains one or more binding domains and a kinase domain. A binding domain of a src-family tyrosine kinase is capable of binding to a target molecule and a kinase domain is capable of phosphorylating a target molecule bound to the kinase. Members of the src family of tyrosine kinases are characterized by an N-terminal unique region followed by three regions that contain different degrees of homology among all the members of the family. These three regions are referred to as src homology region 1 (SH 1), src homology region 2 (SH2) and src homology region 3 (SH3). Both the SH2 and SH3 domains are believed to have protein association functions important for the formation of signal transduction complexes. The amino acid sequence of an N-terminal unique region, varies between each src-family tyrosine kinase. An N-terminal unique region can be at least about the first 40 amino acid residues of the N-terminal of a src-family tyrosine kinase.
-24- WO 01/05826 PCT/US00/19689 Syk-family kinases are enzymes capable of phosphorylating tyrosine residues of a target molecule. Typically, a syk-family kinase contains one or more binding domains and a kinase domain. A binding domain of a syk-family tyrosine kinase is capable of binding to a target molecule and a kinase domain is capable of phosphorylating a target molecule bound to the kinase. Members of the syk family of tyrosine kinases are characterized by two SH2 domains for protein association function and a tyrosine kinase domain.
A primary target molecule is capable of further extending a signal transduction pathway by modifying a second messenger molecule. Primary target molecules can include, but are not limited to, phosphatidylinositol 3-kinase (PI-3K), P21rasGAPase-activating protein and associated P190 and P62 protein, phospholipases such as PLCyl and PLC 2, MAP kinase, She and VAV. A primary target molecule is capable of producing second messenger molecule which is capable of further amplifying a transduced signal. Second messenger molecules include, but are not limited to diacylglycerol and inositol 1,4,5-triphosphate (IP3). Second messenger molecules are capable of initiating physiological events which can lead to alterations in gene transcription. For example, production of IP3 can result in release ofintracellular calcium, which can then lead to activation ofcalmodulin kinase II, which can then lead to serine phosphorylation of a DNA binding protein referred to as ets-1 proto-onco-protein. Diacylglycerol is capable of activating the signal transduction protein, protein kinase C which affects the activity of the AP1 DNA binding protein complex. Signal transduction pathways can lead to transcriptional activation of genes such as c-fos, egr-1, and c-myc.
She can be thought of as an adaptor molecule. An adaptor molecule comprises a protein that enables two other proteins to form a complex a three molecule complex). She protein enables a complex to form which includes Grb2 and SOS. She comprises an SH2 domain that is capable of associating with the SH2 domain of Grb2.
Molecules of a signal transduction pathway can associate with one another using recognition sequences. Recognition sequences enable specific binding between two molecules.
Recognition sequences can vary depending upon the structure of the molecules that are associating with one another. A molecule can have one or more recognition sequences, and as such can associate with one or more different molecules.
Signal transduction pathways for MIRR complexes are capable of regulating the biological functions of a cell. Such functions can include, but are not limited to the ability of a cell to grow, to differentiate and to secrete cellular products. MIRR-induced signal transduction wv 'X A!N MMW It ?V3f EAL L J&4P WO 01/05826 PCT/US00/19689 pathways can regulate the biological functions of specific types of cells involved in particular responses by an animal, such as immune responses, inflammatory responses and allergic responses. Cells involved in an immune response can include, for example, B cells, T cells, macrophages, dendritic cells, natural killer cells and plasma cells. Cells involved in inflammatory responses can include, for example, basophils, mast cells, eosinophils, neutrophils and macrophages. Cells involved in allergic responses can include, for example mast cells, basophils, B cells, T cells and macrophages.
In certain examples, the detection signal is a second messenger, such as a phosphorylated src-like protein, including reporter constructs or indicator genes which include transcriptional regulatory elements such as serum response element (SRE), 12-O-tetradecanoyl-phorbol-13acetate response element, cyclic AMP response element, c- fos promoter, or a CREB-responsive element.
C. Recentor tvrosine kinases.
In still another example, the target receptor is a receptor tyrosine kinase. The receptor tyrosine kinases can be divided into five subgroups on the basis of structural similarities in their extracellular domains and the organization of the tyrosine kinase catalytic region in their cytoplasmic domains. Sub-groups I (epidermal growth factor (EGF) receptor-like), 11 (insulin receptor-like) and the eph/eck family contain cysteine-rich sequences (Hirai et al., (1987) Science 238:1717-1720 and Lindberg and Hunter, (1990) Mol. Cell. Biol. 10:6316-6324). The functional domains of the kinase region of these three classes of receptor tyrosine kinases are encoded as a contiguous sequence Hanks et al. (1988) Science 241:42-52). Subgroups III (platelet-derived growth factor (PDGF) receptor-like) and IV (the fibro-blast growth factor (FGF) receptors) are characterized as having immunoglobulin (Ig)-like folds in their extracellular domains, as well as having their kinase domains divided in two parts by a variable stretch of unrelated amino acids (Yanden and Ullrich (1988) supra and Hanks et al. (1988) supra).
The family with by far the largest number of known members is the EPH family. Since the description of the prototype, the EPH receptor (Hirai et al. (1987) Science 238:1717-1720), sequences have been reported for at least ten members of this family, not counting apparently orthologous receptors found in more than one species. Additional partial sequences, and the rate at which new members are still being reported, suggest the family is even larger (Maisonpierre et al. (1993) Oncogene 8:3277-3288; Andres et al. (1994) Oncogene 9:1461-1467; Henkemeyer et al. (1994) Oncogene 9:1001-1014; Ruiz et al. (1994) Mech Dev 46:87-100; Xu et al. (1994) i i ii r~ i I;isl :f WO 01/05826 PCT/US00/19689 Development 120:287-299; Zhou et al. (1994) JNeurosci Res 37:129-143; and references in Tuzi and Gullick (1994) BrJ Cancer 69:417-421). Remarkably, despite the large number of members in the EPH family, all of these molecules were identified as orphan receptors without known ligands.
The expression patterns determined for some of the EPH family receptors have implied important roles for these molecules in early vertebrate development. In particular, the timing and pattern of expression of sek, mek4 and some of the other receptors during the phase of gastrulation and early organogenesis has suggested functions for these receptors in the important cellular interactions involved in patterning the embryo at this stage (Gilardi-Hebenstreit et al.
(1992) Oncogene 7:2499-2506; Nieto et al. (1992) Development 116:1137-1150; Henkemeyer et al., supra; Ruiz et al., supra; and Xu et al., supra). Sek, for example, shows a notable early expression in the two areas of the mouse embryo that show obvious segmentation, namely the somites in the mesoderm and the rhombomeres of the hindbrain; hence the name sek, for segmentally expressed kinase (Gilardi-Hebenstreit et al., supra; Nieto et al., supra). As in Drosophila, these segmental structures of the mammalian embryo are implicated as important elements in establishing the body plan. The observation that Sek expression precedes the appearance of morphological segmentation suggests a role for sek in forming these segmental structures, or in determining segment-specific cell properties such as lineage compartmentation (Nieto et al., supra). Moreover, EPH receptors have been implicated, by their pattern of expression, in the development and maintenance of nearly every tissue in the embryonic and adult body. For instance, EPH receptors have been detected throughout the nervous system, the testes, the cartilaginous model of the skeleton, tooth primordia, the infundibular component of the pituitary, various epithelial tissues, lung, pancreas, liver and kidney tissues. Observations such as this have been indicative of important and unique roles for EPH family kinases in development and physiology, but further progress in understanding their action has been severely limited by the lack of information on their ligands.
As used herein, the terms "EPH receptor" or "EPH-type receptor" refer to a class of receptor tyrosine kinases, comprising at least eleven paralogous genes, though many more orthologs exist within this class, homologs from different species. EPH receptors, in general, are a discrete group of receptors related by homology and easily recognizable, for example, they are typically characterized by an extracellular domain containing a characteristic spacing ofcysteine residues near the N-terminus and two fibronectin type III repeats (Hirai et al. (1987) Science 238:1717-1720; Lindberg et al. (1990) Mol CellBiol 10:6316-6324; Chan et iY~3~~ WO 01/05826 PCT/USOO/19689 al. (1991) Oncogene 6:1057-1061; Maisonpierre et al. (1993) Oncogene 8:3277-3288; Andres et al. (1994) Oncogene 9:1461-1467; Henkemeyer et al. (1994) Oncogene 9:1001-1014; Ruiz et al. (1994) Mech Dev 46:87-100; Xu et al. (1994) Development 120:287-299; Zhou et al. (1994) JNeurosci Res 37:129-143; and references in Tuzi and Gullick (1994) BrJCancer 69:417-421).
Exemplary EPH receptors include the eph, elk, eck, sek, mek4, hek, hek2, eek, erk, tyrol, tyro4, tyro6, tyrol 1, cek4, cek5, cek6, cek7, cek8, cek9, ceklO, bsk, rtkl, rtk2, rtk3, mykl, myk2, ehkl, ehk2, pagliaccio, htk, erk and nuk receptors. The term "EPH receptor" refers to the membrane form of the receptor protein, as well as soluble extracellular fragments which retain the ability to bind the ligand of the present invention.
In certain examples, the detection signal is provided by detecting phosphorylation of intracellular proteins, MEKKs, MEKs, or Map kinases, or by the use of reporter constructs or indicator genes which include transcriptional regulatory elements responsive to c-fos and/or c-jun. Described infra.
D. G Protein-Coupled Recentors.
One family of signal transduction cascades found in eukaryotic cells utilizes heterotrimeric "G proteins." Many different G proteins are known to interact with receptors. G protein signaling systems include three components: the receptor itself, a GTP-binding protein (G protein), and an intracellular target protein.
The cell membrane acts as a switchboard. Messages arriving through different receptors can produce a single effect if the receptors act on the same type of G protein. On the other hand, signals activating a single receptor can produce more than one effect if the receptor acts on different kinds of G proteins, or if the G proteins can act on different effectors.
In their resting state, the G proteins, which consist of alpha beta and gamma (v) subunits, are complexed with the nucleotide guanosine diphosphate (GDP) and are in contact with receptors. When a hormone or other first messenger binds to receptor, the receptor changes conformation and this alters its interaction with the G protein. This spurs the a subunit to release GDP, and the more abundant nucleotide guanosine triphosphate (GTP), replaces it, activating the G protein. The G protein then dissociates to separate the a subunit from the still complexed beta and gamma subunits. Either the Ga subunit, or the Gpy complex, depending on the pathway, interacts with an effector. The effector (which is often an enzyme) in turn converts an inactive precursor molecule into an active "second messenger," which may diffuse through the WO 01/05826 PCT/US00/19689 cytoplasm, triggering a metabolic cascade. After a few seconds, the Ga converts the GTP to GDP, thereby inactivating itself. The inactivated Ga may then reassociate with the Gpy complex.
Hundreds, if not thousands, of receptors convey messages through heterotrimeric G proteins, of which at least 17 distinct forms have been isolated. Although the greatest variability has been seen in the a subunit, several different (3 and y structures have been reported. There are, additionally, several different G protein-dependent effectors.
Most G protein-coupled receptors are comprised of a single protein chain that is threaded through the plasma membrane seven times. Such receptors are often referred to as seventransmembrane receptors (STRs). More than a hundred different STRs have been found, including many distinct receptors that bind the same ligand, and there are likely many more STRs awaiting discovery.
In addition, STRs have been identified for which the natural ligands are unknown; these receptors are termed "orphan" G protein-coupled receptors, as described above. Examples include receptors cloned by Neote et al. (1993) Cell 72, 415; Kouba et al. FEBS Lett. (1993) 321, 173; Birkenbach et al.(1993) J. Virol. 67, 2209.
The 'exogenous receptors' of this example may be any G protein-coupled receptor which is exogenous to the cell which is to be genetically engineered for the purpose of the present invention. This receptor may be a plant or animal cell receptor. Screening for binding to plant cell receptors may be useful in the development of, for example, herbicides. In the case of an animal receptor, it may be of invertebrate or vertebrate origin. If an invertebrate receptor, an insect receptor is preferred, and would facilitate development of insecticides. The receptor may also be a vertebrate, more preferably a mammalian, still more preferably a human, receptor. The exogenous receptor is also preferably a seven transmembrane segment receptor.
Known ligands for G protein coupled receptors include: purines and nucleotides, such as adenosine, cAMP, ATP, UTP, ADP, melatonin and the like; biogenic amines (and related natural ligands), such as 5-hydroxytryptamine, acetylcholine, dopamine, adrenaline, adrenaline, adrenaline., histamine, noradrenaline, noradrenaline, noradrenaline., tyramine/octopamine and other related compounds; peptides such as adrenocorticotrophic hormone (acth), melanocyte stimulating hormone (msh), melanocortins, neurotensin bombesin and related peptides, endothelins, cholecystokinin, gastrin, neurokinin b (nk3), invertebrate tachykinin-like peptides, substance k (nk2), substance p (nkl), neuropeptide y (npy), thyrotropin releasing-factor (trf), bradykinin, angiotensin ii, beta-endorphin, c5a anaphalatoxin, calcitonin, chemokines (also called intercrines), corticotrophic releasing factor (crf), dynorphin, endorphin, fmlp and other LW~"l' 2 ri 2~2 u n~ A n WO 01/05826 PCT/US00/19689 formylated peptides, follitropin (fsh), fungal mating pheremones, galanin, gastric inhibitory polypeptide receptor (gip), glucagon-like peptides (glps), glucagon, gonadotropin releasing hormone (gnrh), growth hormone releasing hormone(ghrh), insect diuretic hormone, interleukin- 8, leutropin (lh/hcg), met-enkephalin, opioid peptides, oxytocin, parathyroid hormone (pth) and pthrp, pituitary adenylyl cyclase activiating peptide (pacap), secretin, somatostatin, thrombin, thyrotropin (tsh), vasoactive intestinal peptide (vip), vasopressin, vasotocin; eicosanoids such as ip-prostacyclin, pg-prostaglandins, tx-thromboxanes; retinal based compounds such as vertebrate 11 -cis retinal, invertebrate I11-cis retinal and other related compounds; lipids and lipidbased compounds such as cannabinoids, anandamide, lysophosphatidic acid, platelet activating factor, leukotrienes and the like; excitatory amino acids and ions such as calcium ions and glutamate.
Suitable examples of G-protein coupled receptors include, but are not limited to, dopaminergic, muscarinic cholinergic, a-adrenergic, b-adrenergic, opioid (including delta and mu), cannabinoid, serotoninergic, and GABAergic receptors. Preferred receptors include the family of receptors, dopamine receptors, C5a receptor and FPRL-1 receptor, cyclo-histidylproline-diketoplperazine receptors, melanocyte stimulating hormone release inhibiting factor receptor, and receptors for neurotensin, thyrotropin releasing hormone, calcitonin, cholecytokinin-A, neurokinin-2, histamine-3, cannabinoid, melanocortin, or adrenomodulin, neuropeptide-Yl or galanin. Other suitable receptors are listed in the art. The term 'receptor,' as used herein, encompasses both naturally occurring and mutant receptors.
Many of these G protein-coupled receptors, like the yeast a- and a-factor receptors, contain seven hydrophobic amino acid-rich regions which are assumed to lie within the plasma membrane. Specific human G protein-coupled STRs for which genes have been isolated and for which expression vectors could be constructed include those listed herein and others known in the art. Thus, the gene would be operably linked to a promoter functional in the cell to be engineered and to a signal sequence that also functions in the cell. For example in the case of yeast, suitable promoters include Ste2, SteI and gallO. Suitable signal sequences include those ofSte2, Ste3 and of other genes which encode proteins secreted by yeast cells. Preferably, when a yeast cell is used, the codons of the gene would be optimized for expression in yeast. See Hoekema et al.,(1987) Mol. Cell. Biol., 7:2914-24; Sharp, et al., (1986)14:5125-43.
The homology of STRs is discussed in Dohlman et al., Ann. Rev. Biochem., (1991) 60:653-88. When STRs are compared, a distinct spatial pattern of homology is discernible. The ~ll~hl~~ WO 01/05826 PCT/US00/19689 transmembrane domains are often the most similar, whereas the N- and C-terminal regions, and the cytoplasmic loop connecting transmembrane segments V and VI are more divergent.
The functional significance of different STR regions has been studied by introducing point mutations (both substitutions and deletions) and by constructing chimeras of different but related STRs. Synthetic peptides corresponding to individual segments have also been tested for activity. Affinity labeling has been used to identify ligand binding sites.
It is conceivable that when the host cell is a yeast cell, a foreign receptor will fail to functionally integrate into the yeast membrane, and there interact with the endogenous yeast G protein. More likely, either the receptor will need to be modified by replacing its V-VI loop with that of the yeast STE2 or STE3 receptor), or a compatible G protein should be provided.
If the wild-type exogenous G protein-coupled receptor cannot be made functional in yeast, it may be mutated for this purpose. A comparison would be made of the amino acid sequences of the exogenous receptor and of the yeast receptors, and regions of high and low homology identified. Trial mutations would then be made to distinguish regions involved in ligand or G protein binding, from those necessary for functional integration in the membrane.
The exogenous receptor would then be mutated in the latter region to more closely resemble the yeast receptor, until functional integration was achieved. If this were insufficient to achieve functionality, mutations would next be made in the regions involved in G protein binding.
Mutations would be made in regions involved in ligand binding only as a last resort, and then an effort would be made to preserve ligand binding by making conservative substitutions whenever possible.
Preferably, the yeast genome is modified so that it is unable to produce the yeast receptors which are homologous to the exogenous receptors in functional form. Otherwise, a positive assay score might reflect the ability of a peptide to activate the endogenous G proteincoupled receptor, and not the receptor of interest.
Chemoattractant receptors The N-formyl peptide receptor is a classic example of a calcium mobilizing G proteincoupled receptor expressed by neutrophils and other phagocytic cells of the mammalian immune system (Snyderman et al. (1988) In Inflammation: Basic Principles and Clinical Correlates, pp.
309-323). N-Formyl peptides of bacterial origin bind to the receptor and engage a complex activation program that results in directed cell movement, release of inflammatory granule contents, and activation of a latent NADPH oxidase which is important for the production of -31- Ir~ ~"~IIULF~%I~~IOTL~C~*nn~ni~Ni~~lL~ ~i3~Ii~~i WO 01/05826 PCT/US00/19689 metabolites of molecular oxygen. This pathway initiated by receptor-ligand interaction is critical in host protection from pyogenic infections. Similar signal transduction occurs in response to the inflammatory peptides C5a and IL-8.
Two other formyl peptide receptor like (FPRL) genes have been cloned based on their ability to hybridize to a fragment of the NFPR cDNA coding sequence. These have been named FPRL1 (Murphy et al. (1992) J. Biol Chem. 267:7637-7643) and FPRL2 (Ye et al. (1992) Biochem Biophys Res. Comm. 184:582-589). FPRL2 was found to mediate calcium mobilization in mouse fibroblasts transfected with the gene and exposed to formyl peptide. In contrast, although FPRL1 was found to be 69% identical in amino acid sequence to NFPR, it did not bind prototype N-formyl peptides ligands when expressed in heterologous cell types. This lead to the hypothesis of the existence of an as yet unidentified ligand for the FPRL1 orphan receptor (Murphy et al. supra).
G proteins In the case of an exogenous Gprotein-coupled receptor, the yeast cell must be able to produce a G protein which is activated by the exogenous receptor, and which can in turn activate the yeast effector(s). The art suggests that the endogenous yeast Ga subunit GPA) will be often be sufficiently homologous to the "cognate" Ga subunit which is natively associated with the exogenous receptor for coupling to occur. More likely, it will be necessary to genetically engineer the yeast cell to produce a foreign Ga subunit which can properly interact with the exogenous receptor. For example, the Ga subunit of the yeast G protein may be replaced by the Ga subunit natively associated with the exogenous receptor.
Dietzel and Kurjan, (1987) Cell, 50:1001) demonstrated that rat Gas functionally coupled to the yeast GPy complex. However, rat Gai2 complemented only when substantially overexpressed, while GaO did not complement at all. Kang, et al., Mol. Cell. Biol., (1990)10:2582). Consequently, with some foreign Ga subunits, it is not feasible to simply replace the yeast Ga.
If the exogenous G protein coupled receptor is not adequately coupled to yeast Gpy by the Ga subunit natively associated with the receptor, the Ga subunit may be modified to improve coupling. These modifications often will take the form of mutations which increase the resemblance of the Ga subunit to the yeast Ga while decreasing its resemblance to the receptorassociated Ga. For example, a residue may be changed so as to become identical to the *T 4il *lsst W~*C P,2flYn :YI WO 01/05826 PCTIUSOO/19689 corresponding yeast Ga residue, or to at least belong to the same exchange group of that residue.
After modification, the modified Ga subunit might or might not be "substantially homologous" to the foreign and/or the yeast Ga subunit.
The modifications are preferably concentrated in regions of the Gax which are likely to be involved in GP3y binding. In some examples, the modifications will take the form of replacing one or more segments of the receptor-associated Gax with the corresponding yeast Ga segment(s), thereby forming a chimeric Gat subunit. (For the purpose of the appended claims, the term "segment" refers to three or more consecutive amino acids.) In other examples, point mutations may be sufficient.
This chimeric Gax subunit will interact with the exogenous receptor and the yeast GIPy complex, thereby permitting signal transduction. While use of the endogenous yeast Gpy is preferred, if a foreign or chimeric GI~y is capable of transducing the signal to the yeast effector, it may be used instead.
Although many of the techniques presented above require specific knowledge of a receptor active in a particular biological pathway, it will be recognized by those skilled in the art that such knowledge is not required for the screening of a library of chimeric polypeptides of the present invention. Rather, cell-based assays are well known in the art in which cells of a selected phenotype can be used to screen chimeric polypeptides; for those which induce a particular alteration in the phenotype. In this way, chimeric polypeptides can be found that have a desired biological function that is not understood on a molecular level.
Exemplification The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
Serum albumin loop regions. A space-filling model of human serum albumin (HSA) is shown in Figure 1. The tertiary structure of NSA reveals the presence of ten approximate helical regions or loops, each constrained by disulfide bonded cysteine pairs. The space-filling model was used to predict loop regions that are exposed on the surface of the protein. Two amino ~I MW, 4~ji~,,sL!z*~Awvm ,YY4~ XVt U ~flhI~II' l~WW~~C~ WO 01/05826 PCTIUS00/19689 acid segments were chosen to represent surface exposed regions (loop 53-62 and loop 360-369) and a third to represent a region assumed to be buried within the protein (loop 450-463).
Myc epitome display in MSA loop regions. In order to determine whether the predicted loops were indeed exposed on the surface of the albumin molecule, mouse serum albumin (MSA) was modified to include the myc epitope, EQKLISEEDL. The myc epitope was inserted in the middle of each of three amino acid segments: between amino acids 57-58 for loop 53-62, amino acids 364-365 for loop 360-369 and amino acids 467-468 for loop 450-467. Cos7 cells were transfected with either wild type MSA or the various myc containing MSA constructs. The presence of the proteins in the medium was first determined by Western blot analysis using antibodies specific for MSA and the myc epitope. As can be seen in the left half of Figure 2, only samples from media from cells transfected with MSA or MSA-Myc reveal the presence of the albumin protein. Additionally, only the samples from cells transfected with MSA-Myc are positive for the myc epitope. As the samples are all denatured by virtue of the SDS-PAGE system, this analysis does not allow for the differentiation of myc epitopes that would be exposed on the surface versus one that was buried within the protein. For this analysis immunoprecipitation with the myc-specific antibody was utilized. In this experiment, the conditioned media was either mixed directly with the antibody native) or first denatured in the presence of 0.1% SDS, 1 mM 1-mercapthoethanol and heat (100 °C for 10 min) and then antibody added denatured). Following immunoprecipitation the presence of the proteins that could be precipitated by the myc antibody were revealed by Western blot analysis using the MSA specific antibody. The right panel of Figure 2 shows that, as predicted, the albumin proteins with myc inserted in loops 53-62 and 360-369 were bound by the myc antibody regardless of whether the protein was in its native or denatured form. On the other hand, when myc was inserted in the predicted buried region, loop 450-463, the protein only bound the antibody when it was first denatured. This experiment clearly demonstrates that loops 53-62 and 360-369 are exposed on the surface of the MSA protein and therefore good for display.
Additionally, the 450-463 loop is buried.
Inhibition of bovine capillary endothelial cells (BCE) MSA-RGD. The goal of this experiment was determine the function of MSA with the RGD peptide (VRGDF) was displayed on the surface of the protein in the loop 53-58 region (MSA-myc-RGD). RGD was chosen as this peptide can efficiently bind to avP3 integrin receptors on endothelial cells and inhibit their proliferation. Triplicate wells of Cos7 cells were transfected with the following constructs: ~~L~~rCNU*IIIIU ~VSI' i ~.n~*III.IY X: WO 01/05826 PCT/US00/19689 MSA-myc (the myc epitope was added to the C-terminal tail of MSA in this iteration); MSA-myc-RGD; or pAM7-stuffer. These Cos7 cells were grown in the lower chamber of a Transwell® tissue culture plate with BCE cells in the upper chamber. To stimulate growth of the BCE cells, FGF was added to the lower chamber or not in the case of no FGF control and the cells allowed to grow for 72 hours. To one set of wells, those with pAM7-stuffer, 6.25 gM c-RGD peptide was also added. Cell growth was determined by a Calcein-binding fluorescence assay. The left panel of Figure 3 is a graph of the optical density (OD) for each. The data reveals the addition of FGF results in a 2-fold stimulation of growth of the BCE cells. This growth was inhibited by the c-RGD peptide and also by the secreted MSA-myc-RGD protein. The right panel is a different way of looking at the same data. In this instance the degree of inhibition of growth is graphed for each. The data shows that the MSA-Myc-RGD protein inhibited the growth of the BCE cell by 53% and the degree of inhibition was equivalent to that of the added RGD peptide.
The RGD peptide displayed on the surface of the MSA molecule inhibited BCE cell growth as efficiently as the endogenously added free RGD peptide demonstrating that the peptide retains its activity in the looped orientation.
The skilled artisan will recognize many equivalents to the disclosed invention, all of which are intended to be within the scope of the present invention. All articles, patents, and applications cited above are incorporated herein by reference.
~CI=~ri~i~fili~"_~i;i~lYlii~L *Fi~i*n*l. r t~i~JI-i~lii*YEt"'-."
Claims (37)
1. A chimeric polypeptide comprising serum albumin protein (SA) having a biologically active heterologous peptide inserted into at least one region selected from residues 360-369 and residues 450-463, optionally replacing one or more residues of the region into which it is inserted, wherein the heterologous peptide interacts with a living organism to induce a change in a biological function of the organism or any part of the organism.
2. A chimeric polypeptide having the structure A-B-C, wherein: A represents a first fragment of serum albumin (SA) terminating in an amino acid corresponding to one of residues 359-368; B represents a biologically active heterologous peptide; and C represents a second peptide fragment of SA beginning from an amino acid corresponding to one of residues 361-370; wherein A and C do not include overlapping portions of the regions 360-369 and wherein the heterologous peptide interacts with a living organism to induce a change in a biological function of the organism or any part of the organism.
3. A chimeric polypeptide having the structure A-B-C, wherein: A represents an N-terminal, peptide fragment of serum albumin (SA) terminating in an amino acid corresponding to one of residues 449-462; B represents a biologically active heterologous peptide; and C represents a C-terminal peptide fragment of SA beginning from an amino acid corresponding to one of residues 451-464; corresponding to one of residues 451-464; 500345369 1.DOC/BSW l AYJI~ ~.W~iiY~Y -37- wherein A and C do not include overlapping portions of the regions 450-463 and wherein the heterologous peptide interacts with a living organism to induce a change in a biological function of the organism or any part of the organism.
4. The chimeric polypeptide of claim 1, 2 or 3, wherein the heterologous peptide sequence comprises a fragment of an angiogenesis-inhibiting protein or polypeptide. The chimeric polypeptide of claim 4, wherein said angiogenesis-inhibiting protein or polypeptide is selected from the group consisting of angiostatin, endostatin, and peptide fragments thereof.
6. The chimeric polypeptide of claim 1, 2 or 3 wherein the heterologous peptide sequence binds to a cell surface receptor protein.
7. The chimeric polypeptide of claim 6, wherein the receptor protein is a G-protein coupled receptor.
8. The chimeric polypeptide of claim 6, wherein the receptor protein is a tyrosine kinase receptor.
9. The chimeric polypeptide of claim 6, wherein the receptor protein is a cytokine S receptor.
10. The chimeric polypeptide of claim 6, wherein the receptor protein is an MIRR receptor.
11. The chimeric polypeptide of claim 6, wherein the receptor protein is a orphan receptor.
12. The chimeric polypeptide of claim 1, 2 or 3, wherein the chimeric polypeptide binds to an extracellular receptor or ion channel.
13. The chimeric polypeptide of claim 12, wherein the chimeric polypeptide is an agonist of said receptor or ion channel. 500345369 _.DOC/BSW P ~I~IJ~ Lf~~ r~~'u~sil-*r ~rr~uu~R~ c n~~~unn~?~~~Nlrr. -38-
14. The chimeric polypeptide of claim 12, wherein the chimeric polypeptide is an antagionist of said receptor or ion channel. The chimeric polypeptide of claim 1, 2 or 3, wherein the chimeric polypeptide induces apoptosis.
16. The chimeric polypeptide of claim 1, 2 or 3, wherein the chimeric polypeptide modulates cell proliferation.
17. The chimeric polypeptide of claim 1, 2 or 3, wherein the chimeric polypeptide modulates differentiation of cell types.
18. The chimeric polypeptide of claim 1, 2 or 3, wherein the heterologous peptide sequence comprises between 4 and 400 residues.
19. The chimeric polypeptide of claim 1, 2 or 3, wherein the heterologous peptide sequence comprises between 4 and 200 residues. The chimeric polypeptide of claim 1, 2 or 3, wherein the heterologous peptide sequence comprises between 4 and 100 residues.
21. The chimeric polypeptide of claim 1, 2 or 3, wherein the heterologous peptide sequence comprises between 4 and 20 residues.
22. The chimeric polypeptide of claim 1, 2 or 3, wherein the tertiary structure of the chimeric polypeptide is similar to the tertiary structure of native SA. :o 23. The chimeric polypeptide of claim 1, wherein the inserted peptide sequence replaces a portion of native SA sequence.
24. The chimeric polypeptide of claim 23, wherein the inserted peptide sequence and the replaced portion of native SA sequence are of unequal length.
25. The chimeric polypeptide of claim 1, 2 or 3, wherein the half-life of the polypeptide in the blood is no less than 14 days. 500345369 1.DOC/BSW ~*irn~~ -39-
26. The chimeric polypeptide of claim 1, 2 or 3, wherein the half-life of the polypeptide in the blood is no less than 10 days.
27. The chimeric polypeptide of claim 1, 2 or 3, wherein the half-life of the polypeptide in the blood is no less than 50% of the half-live of native SA.
28. A nucleic acid encoding the chimeric polypeptide of claim 1, 2 or 3.
29. A delivery vector comprising the nucleic acid of claim 28. The delivery vector of claim 29, wherein said delivery vector comprises a virus or retrovirus.
31. The delivery vector of claim 30, wherein said virus or retrovirus is selected from the group consisting of adenoviruses, adeno-associated viruses, herpes simplex viruses, human immunodeficiency viruses, or vaccinia viruses.
32. Transfected cells comprising target cells which have been exposed to the delivery vector of claim 29.
33. The transfected cells of claim 32, wherein the cells are selected from the group consisting of blood cells, skeletal muscle cells, stem cells, skin cells, liver cells, secretory gland cells, hematopoitic cells, and marrow cells.
34. A pharmaceutical preparation comprising a phamacetucailly acceptable excipient a0 and the chimeric polypeptide of claim 1, 2 or 3.
35. A method for treating disease in an organism, comprising administering as a pharmaceutical preparation to the organism the chimeric polypeptide of claim 1, 2 or 3. *oo
36. A method for treating disease in an organism, said method comprising: providing a delivery vector comprising genetic material which encodes the chimeric polypeptide of claim 1, 2 or 3; •introducing said vector into target cells ex vivo; under conditions sufficient to induce said target cells to express said polypeptide. 500345369_I.DOC/BSW
37. A method for treating disease in an organism, said method comprising: providing a delivery vector comprising genetic material which encodes the chimeric polypeptide of claim 1, 2 or 3; introducing said vector into target cells ex vivo; and introducing said target cells containing the introduced vector into the organism under conditions sufficient to induce said target cells to express said polypeptide.
38. The method of claim 36 or 37, wherein the target cells are selected from the group consisting of blood cells, skeletal muscle cells, stem cells, skin cells, liver cells, secretory gland cells, hematopoietic cells, and marrow cells.
39. A chimeric polypeptide comprising serum albumin protein (SA) having at least two biologically active heterologous peptides inserted into at least one region selected from residues 360-369 and residues 450-463, optionally replacing one or more residues of the region into which it is inserted, wherein the heterologous peptides interact with a living organism to induce a change in a biological function of the organism or any part 15 of the organism. The polypeptide of claim 43, wherein the heterologous peptides are identical.
41. The polypeptide of claim 43, wherein the heterologous peptides comprise distinct sequences of a protein.
42. The polypeptide of claim 44, wherein the heterologous peptides comprise distinct 20 sequences from at least two different proteins. S43. A method for modulating one or more of cell proliferation, cell differentiation, and o* cell death in an organism, comprising administering as a pharmaceutical preparation to the organism the chimeric polypeptide of claim 1, 2 or 3.
44. A method of modulating one or more of cell prolideration, cell differentiation, and cell death in an organism, comprising: 500345369_1DOC/BSW 9n^' Y M9 3i4'W- L l s -41- providing a delivery vector comprising genetic material which encodes the chimeric polypeptide of claim 1, 2 or 3; and introducing said vector into target cells in vivo, under conditions sufficient to induce said target cells to express said polypeptide. DATED this 4 th day of May 2004 BALDWIN SHELSTON WATERS Attorneys for: GPC BIOTECH INC. i:o 500345369 .DOc/BSW ^^^i^TOWMW~ffW-474W&-
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14453499P | 1999-07-19 | 1999-07-19 | |
US60/144534 | 1999-07-19 | ||
PCT/US2000/019689 WO2001005826A2 (en) | 1999-07-19 | 2000-07-19 | Chimeric polypeptides of serum albumin and uses related thereto |
Publications (2)
Publication Number | Publication Date |
---|---|
AU6112500A AU6112500A (en) | 2001-02-05 |
AU774555B2 true AU774555B2 (en) | 2004-07-01 |
Family
ID=22509022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU61125/00A Ceased AU774555B2 (en) | 1999-07-19 | 2000-07-19 | Chimeric polypeptides of serum albumin and uses related thereto |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1200608A2 (en) |
JP (1) | JP2003505043A (en) |
AU (1) | AU774555B2 (en) |
CA (1) | CA2376641A1 (en) |
IL (1) | IL147714A0 (en) |
WO (1) | WO2001005826A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020048571A1 (en) * | 1999-07-19 | 2002-04-25 | Jeno Gyuris | Chimeric polypeptides of serum albumin and uses related thereto |
CA2471363C (en) | 2001-12-21 | 2014-02-11 | Human Genome Sciences, Inc. | Albumin fusion proteins |
CA2484556A1 (en) | 2001-12-21 | 2003-07-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
EP1501861A4 (en) * | 2002-05-06 | 2007-06-20 | Univ Texas | TARGETING PROTEINS FOR THE DELIVERY OF THERAPEUTIC OR DIAGNOSTIC REAGENTS |
ES2567634T3 (en) | 2004-02-09 | 2016-04-25 | Human Genome Sciences, Inc. | Albumin Fusion Proteins |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995030759A1 (en) * | 1994-05-06 | 1995-11-16 | Rhone-Poulenc Rorer S.A. | Biologically active polypeptides inserted into an albumin |
-
2000
- 2000-07-19 JP JP2001511483A patent/JP2003505043A/en not_active Withdrawn
- 2000-07-19 CA CA002376641A patent/CA2376641A1/en not_active Abandoned
- 2000-07-19 IL IL14771400A patent/IL147714A0/en unknown
- 2000-07-19 WO PCT/US2000/019689 patent/WO2001005826A2/en active IP Right Grant
- 2000-07-19 EP EP00947541A patent/EP1200608A2/en not_active Withdrawn
- 2000-07-19 AU AU61125/00A patent/AU774555B2/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995030759A1 (en) * | 1994-05-06 | 1995-11-16 | Rhone-Poulenc Rorer S.A. | Biologically active polypeptides inserted into an albumin |
Also Published As
Publication number | Publication date |
---|---|
AU6112500A (en) | 2001-02-05 |
WO2001005826A2 (en) | 2001-01-25 |
EP1200608A2 (en) | 2002-05-02 |
JP2003505043A (en) | 2003-02-12 |
IL147714A0 (en) | 2002-08-14 |
CA2376641A1 (en) | 2001-01-25 |
WO2001005826A3 (en) | 2001-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020048571A1 (en) | Chimeric polypeptides of serum albumin and uses related thereto | |
US12037611B2 (en) | Enhanced hAT family transposon-mediated gene transfer and associated compositions, systems, and methods | |
JP3343357B2 (en) | Gene transfer method to target cells by retrovirus | |
JP4697982B2 (en) | Modular transfection system | |
KR20210053228A (en) | An engineered guide RNA for the optimized CRISPR/Cas12f1 system and use thereof | |
CN101384621A (en) | Methods for production of receptor and ligand isoforms | |
EP3556766B1 (en) | Use of a cell membrane penetrating peptide and intracellular delivery carrier including the same | |
JP2007525187A (en) | Intron fusion proteins and methods for identifying and using the same | |
ES2246088T3 (en) | VARIANTS OF PROTEIN 3 UNION OF SIMILAR GROWTH FACTOR TO INSULIN. | |
US20030099932A1 (en) | Retroviral vectors with separation sequences | |
CN104995518A (en) | NME variant species expression and suppression | |
KR20030062788A (en) | Biomolecule transduction peptide mph1-btm and biotechnological products including it | |
AU774555B2 (en) | Chimeric polypeptides of serum albumin and uses related thereto | |
JP2024133642A (en) | Active DNA transposon system and methods of use thereof | |
US20010056075A1 (en) | Chimeric polypeptides of serum albumin and uses related thereto | |
JP2022513319A (en) | SSI cells with predictable and stable transgene expression and methods of formation | |
EP3158058B1 (en) | Fusion proteins and uses thereof | |
KR20030062789A (en) | Biomolecule transduction peptide sim2-btm and biotechnological products including it | |
CA2230138A1 (en) | Cyclin/cdk proteins, and uses related thereto | |
AU2002253866A1 (en) | Chimeric polypeptides of serum albumin and uses related thereto | |
JP2025501887A (en) | Compositions Comprising Alpha Factor Prepro Sequences and Uses Thereof | |
Samara et al. | Molecular biology and therapy of disease | |
US20240093206A1 (en) | System of stable gene expression in cell lines and methods of making and using the same | |
EP4417619A1 (en) | Nucleotide sequence encoding a fusion protein | |
ES2382036T3 (en) | Suitable fusion polypeptide as cytotoxin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DA3 | Amendments made section 104 |
Free format text: THE NATURE OF THE AMENDMENT IS: AMEND INVENTORS NAME TO ADD: AARON MORRIS |
|
FGA | Letters patent sealed or granted (standard patent) |