AU687827B2 - Liquid ink jet ink - Google Patents
Liquid ink jet ink Download PDFInfo
- Publication number
- AU687827B2 AU687827B2 AU70634/94A AU7063494A AU687827B2 AU 687827 B2 AU687827 B2 AU 687827B2 AU 70634/94 A AU70634/94 A AU 70634/94A AU 7063494 A AU7063494 A AU 7063494A AU 687827 B2 AU687827 B2 AU 687827B2
- Authority
- AU
- Australia
- Prior art keywords
- ink
- document
- particles
- abstract
- date
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000007788 liquid Substances 0.000 title claims description 25
- 239000002245 particle Substances 0.000 claims description 49
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 238000007641 inkjet printing Methods 0.000 claims description 9
- 238000007639 printing Methods 0.000 claims description 6
- 230000005686 electrostatic field Effects 0.000 claims description 5
- 238000005054 agglomeration Methods 0.000 claims description 4
- 230000002776 aggregation Effects 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000003814 drug Substances 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 239000004753 textile Substances 0.000 claims description 2
- 239000000976 ink Substances 0.000 description 95
- 239000000049 pigment Substances 0.000 description 19
- 239000003086 colorant Substances 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- 229910052726 zirconium Inorganic materials 0.000 description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- CNPVJWYWYZMPDS-UHFFFAOYSA-N 2-methyldecane Chemical compound CCCCCCCCC(C)C CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 5
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 235000019486 Sunflower oil Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920003345 Elvax® Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000019485 Safflower oil Nutrition 0.000 description 2
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical class CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- PWHULOQIROXLJO-OUBTZVSYSA-N manganese-56 Chemical compound [56Mn] PWHULOQIROXLJO-OUBTZVSYSA-N 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002903 organophosphorus compounds Chemical class 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- -1 polysiloxanes Polymers 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 235000005713 safflower oil Nutrition 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical class CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- YUCTUWYCFFUCOR-UHFFFAOYSA-N 1,4-dihexoxy-1,4-dioxobutane-2-sulfonic acid;sodium Chemical compound [Na].CCCCCCOC(=O)CC(S(O)(=O)=O)C(=O)OCCCCCC YUCTUWYCFFUCOR-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- CVEPFOUZABPRMK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;styrene Chemical compound CC(=C)C(O)=O.C=CC1=CC=CC=C1 CVEPFOUZABPRMK-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- 241001479434 Agfa Species 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 101150039167 Bex3 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 239000005752 Copper oxychloride Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- IWWWBRIIGAXLCJ-BGABXYSRSA-N chembl1185241 Chemical compound C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC IWWWBRIIGAXLCJ-BGABXYSRSA-N 0.000 description 1
- PZTQVMXMKVTIRC-UHFFFAOYSA-L chembl2028348 Chemical compound [Ca+2].[O-]S(=O)(=O)C1=CC(C)=CC=C1N=NC1=C(O)C(C([O-])=O)=CC2=CC=CC=C12 PZTQVMXMKVTIRC-UHFFFAOYSA-L 0.000 description 1
- HKMOPYJWSFRURD-UHFFFAOYSA-N chloro hypochlorite;copper Chemical compound [Cu].ClOCl HKMOPYJWSFRURD-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- VVOLVFOSOPJKED-UHFFFAOYSA-N copper phthalocyanine Chemical compound [Cu].N=1C2=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC(C3=CC=CC=C33)=NC3=NC=1C1=CC=CC=C12 VVOLVFOSOPJKED-UHFFFAOYSA-N 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- RISWUWJFSHOUBJ-UHFFFAOYSA-L disodium;1-amino-4-[4-[[4-[(4-amino-9,10-dioxo-3-sulfonatoanthracen-1-yl)amino]phenyl]methyl]anilino]-9,10-dioxoanthracene-2-sulfonate Chemical compound [Na+].[Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C(N)=C(S([O-])(=O)=O)C=C2NC(C=C1)=CC=C1CC(C=C1)=CC=C1NC1=C2C(=O)C3=CC=CC=C3C(=O)C2=C(N)C(S([O-])(=O)=O)=C1 RISWUWJFSHOUBJ-UHFFFAOYSA-L 0.000 description 1
- YHAIUSTWZPMYGG-UHFFFAOYSA-L disodium;2,2-dioctyl-3-sulfobutanedioate Chemical compound [Na+].[Na+].CCCCCCCCC(C([O-])=O)(C(C([O-])=O)S(O)(=O)=O)CCCCCCCC YHAIUSTWZPMYGG-UHFFFAOYSA-L 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- ZQXDUKMRLYGEHT-UHFFFAOYSA-N ethene hydrochloride Chemical compound Cl.C=C.C=C ZQXDUKMRLYGEHT-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012208 gear oil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000001042 pigment based ink Substances 0.000 description 1
- 229940099800 pigment red 48 Drugs 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 239000000992 solvent dye Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229960004793 sucrose Drugs 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- LLWJPGAKXJBKKA-UHFFFAOYSA-N victoria blue B Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC(=CC=1)N(C)C)=C(C=C1)C2=CC=CC=C2C1=[NH+]C1=CC=CC=C1 LLWJPGAKXJBKKA-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Inks, Pencil-Leads, Or Crayons (AREA)
- Ink Jet (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Description
WO 95/01404 PCT/I94100357 1
TITLE
LIQUID INK JET INK FIELD OF THE INVENTION This invention relates to inks and more particularly to inks suitable for ink jet printing apparatus.
BACKGROUND OF THE INVENTION Inks are generally a liquid with a dye dissolved in them. Inks are also known which comprise a liquid and particles dispersed in the ink. The actual composition of machine inks as distinct from writing inks is determined by the type of application method for such inks.
There are two prime types of ink jet application techniques in use today.
The first of these is known as continuous ink jet and the second is impulse ink jet.
In continuous ink jet systems, droplets of ink are produced as a result of hydrostatic pressure on a liquid ink forcing said ink through a nozzle.
The nozzle can be stimulated, such as by piezo-electric vibration to cause the droplets to be ejected on a regular basis. At the point of formation, the droplets may be conductively and/or electro-chemically charged and subsequently pass through electrodes which provide a constant electrostatic field causing these droplets to be deflected.
Therefore the required droplets are controlled to a substrate and unwanted ones are removed. Due to the charging requirements it is necessary that the ink be conductive. Such an ink may be water or solvent based and the colorant may be a pigment or soluble dye.
In the impulse ink jet system, droplets are produced only as required by the generation of a pressure disturbance within the ink adjacent to a jet nozzle. The application of pressure may be by stimulation caused by a piezo-electric crystal or by thermal stimulation where a micro bubble is WO 95101404 PCT/AU9400735 2 created by an electrically resistive heater. Typical inks are water based and use a dye for the colorant though the use of solvents and pignments are not precluded for this process. As there is no need for droplet charging there is no specific requirement concerning conductivity of the ink.
A further embodiment of the impulse system is hot melt ink jet technology.
This process is similar to the piezo-electric drop on demand except that the ink is solid at room temperature but is maintained at an elevated temperature in the print head such that it is a liquid under operating conditions. Again therefore, there is no need for the ink's conductivity to be suited to some equipment performance standard.
A final system that utilises small electromechanical valves to produce droplets is known as the valve jet process. This is in essence a micro spray gun system and produces much larger droplets than the true ink jet technologies. As the droplets are produced mechanically there is no requirement concerning the conduct;vity of the ink.
The preceding technologies are limited in terms of achievable resolution due to droplet formation being a function of the jet nozzle diameter. The smallest nozzles used have diameter in the range of 7.5 to micrometers which produce droplets of the order of 14 to 20 micrometers and this translates to a dot size of 30 to 40 micrometers on selected papers. Further, the inks used in these small nozzle jet printers are based on water soluble dyes, as pigment based inks cause problems with nozzle blocking. Therefore the advantages of pigment formulations, namely better waterfastness and lightfastness as well as a broader range of available colours, are precluded.
Electrostatic ink jet is a further technology which is characterised by droplets being drawn from an orifice under the influence of an electrostatic field. This field acting between a valving electrode and the orifice, attracts free charges within the ink to its surface such that a droplet is produced when the electrostatic pull exceeds the surface tension of the WO 95101404 PCTAU9/00357 3 ink. As this technique relies on attraction of free charges, it therefore requires that the ink be conductive.
A new ink jet printing technology has been described in WO-A- 9311866 in the name of Research Laboratories Of Australia published on the 24 th of June 1993. This process provides a means of producing variable sized droplets that contain a high concentration of particulate material, Specific advantages conveyed by this process include the ability to form droplets as small as a few micrometers while still using pigments as the colorant material. This is because the size of the droplets are controlled primarily by the voltage on an ejection point plus the ability of the particles to be charged and so, are not limited by the size of an ink jet nozzle. Also the colorant material is significantly concentrated in the ejected droplets. Therefore high resolution and high density images based on light and water resistant pigments can be produced.
SUMMARY OF THE INVENTION This present invention is in relation to an ink that can be used with the new ink jet printing technology outlined above where the ejected droplets formed are substantially solid colorant and comprise only a small amount of a liquid. Specifically the ink has characteristics that are essential for the concentration of the colorant material at the point of droplet ejection.
The various inks discussed in the prior art cannot produce droplets of ink which are substantially all colorant because of the necessity of having a liquid or solvent which transfers with the colorant. Hence these arrangements have a limitation producing a high intensity marking droplet.
The ink jet ink of the present invention also has properties that are readily utilised for the production of high resolution marking. This results in part from ihe intrinsically small droplets produced by the jet printer and a reduced tendency for wicking and bleeding due to the concentration of colorant particles within the droplets.
It is an object of this invention to produce an ink jet ink which can give a high intensity marking or at least to provide an alternative ink for ink jet printing.
A further object of the invention is to provide an ink jet ink that can be used for high resolution marking.
It is yet another object to provide an ink jet ink that has a minimal tendency to wick or bleed.
This invention will be discussed generally in relation to printing with inks but it is to be realised that the invention is not so limited but can be used for a number 10 of applications in which it is required to apply or administer fine particulate material which can be supported in a liquid.
In one form therefore the invention is said to reside in an ink jet ink comprising a liquid having an electrical resistivity of at least 109 ohm.cm, and insoluble marking particles dispersed in the liquid, wherein said particles are capable of 15 being charged and concentrated into agglomerations and ejected from the ink in an ink jet apparatus in the presence of electrostatic field of significant gradient.
In an alternative form the invention may be said to reside in an ink jet ink S"composition comprising; a liquid having an electrical resistivity of at least 109 ohm.cm, insoluble chargeable marking particles, and a particle charging agent.
:i/ I
I_
4a The liquid may be selected from the group of aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated solvents, polysiloxanes or mixtures thereof or is a vegetable oil selected from olive oil, safflower oil, sunflower oil, soya oil and linseed oil or mixtures thereof.
The marking particle may be a pigment, an insoluble dyestuff, a polymer, a Spharmaceutical or mixture thereof and may be present in a concentration of from 0.5% to 30% by weight, preferably 3% to 20%. It is surprising that an ink 10 jet ink with such a high solids content can be *o* PC/AU 9 4 0 0 3 5 7 RECEIVEO 3 1 MAR I19 successfully used, thereby reducing formulation and storage costs and allowing the use of smaller tanks, pumps and cartridges for a given solids content.
The particle charging agent may be a metal soap, a fatty acid, lecithin, an organic phosphorus compound, a succinimide, a sulphosuccinate or a mixture thereof. Alternatively the particle charging agent may be a soluble or partially soluble resin such as a modified rosin ester, an acrylic, a vinyl, a hydrocarbon or a mixture thereof. The particle charging agent may be present in a concentration of from 0.05% to 5% by weight and a preferred range of from 0.1% to 1% by weight.
DESCRIPTION OF PREFERRED EMBODIMENTS The present invention provides for an ink that comprises marking particles that are dispersed in a liquid which has an electrical resistivity of at least 109 ohm.cm. In addition the ink contains particle charging agents.
The liquid may be any suitable liquid with the characteristics as discussed above and may include aliphatic hydrocarbons such as hexane, cyclohexane, iso-decane, Isopar (manufactured by Exxon) and Shellsol T (manufactured by Shell); aromatic hydrocarbons such as xylene, toluene and Solvesso 100 (manufactured by Exxon); chlorinated solvents such as diethylene chloride and chloroform; silicone fluids or oils such as dimethyl polysiloxane, for instance DC 200 (manufactured by Dow Corning) and cyclic dimethyl polysiloxane, for instance DC 345 (manufactured by Dow Coming) and vegetable oils such as olive, safflower, sunflower, soya and linseed oil.
Marking particles that are insoluble in the liquid may be selected upon their particular proposed end use and may be made from a wide range of colorants, polymers and chemicals or mixtures thereof. Examples of colorants suitable for use in the ink are organic pigments such as pigment yellow 1, pigment yellow 14, pigment red 48:2, pigment red 122, pigment blue 15:3 and pigment blue 56; inorganic pigments such as AMENDED SHEET
PEA/AU
PcrlAu 9 4 0 3 5 7 RECEIVED j AR 1995 6 pigment white 6, pigment yellow 35, pigment blue 27, pigment black 7 and pigment black 11; solvent dyes such as solvent red 7, solvent yellow 88, solvent blue 49, basic red 1 and basic blue 26 and metallic pigments such pigment metal 1 and pigment metal 2.
Examples of polymers suitable for use in the ink as particles are epoxy resins such as bisphenol A epoxy, novolac epoxy and cycloaliphatic epoxy; acrylic resins such as polymers and copolymers of acrylic acid and esters thereof, polymers and copolymers of methacrylic acid and esters thereof; vinyl resins such as polymers and copolymers including vinyl acetate, vinyl chloride, vinyl alcohol and vinyl butyral; alkyd resins such as oil, phenolic and rosin modified alkyds and finally modified rosin esters such as dimerised pentaerythritol rosin ester. These polymers may be dyed or include pigments dispersed therewith.
Examples of chemicals suitable for use as the ink particles are pharmaceuticals such as acetyl salicylic Acid, sucrose and ascorbic acid, agricultural chemicals such as copper oxychloride and elemental sulphur and industrial chemicals. The marking particles may be present in a concentration of from 0.5% to 30% by weight of the composition.
In addition, resins and polymers that are soluble or partially soluble may be used to disperse the marking particles in the liquid and to function as a binder for said marking particles to a substrate. Examples of suitable resins include certain modified rosin esters, acrylic resins and vinyl resins that are similar to those listed above except that these have larger alkyl groups which impart the solubility in the liquid. In addition hydrocarbon resins such as alpha methyl styrene and polyisobutylene are also suitable.
The particle charging agent may be any material that is soluble or partly soluble in the liquid and that assists in the charging process. Examples of such agents include metal soaps such as lithium, cadmium, calcium, manganese and magnesium salts of heptanoic acid as well as zirconium, aluminium, cobalt and manganese salts of 2-ethyl hexanoic acid; fatty acids; lecithin; organic phosphorus compounds; succinimides; AMENDED SHEET n A/AU PC/Au 9 4 0 0 3 5 7 RECEIVED R !995 7 sulphosuccinates such as sodium dihexyl sulphosuccinate and sodium dioctyl sulphosuccinate and polar solvents such as alcohols, ketones and esters. Also the previously mentioned soluble polymers and resins that provide the particle dispersion and binder functions have been found to contribute to charge modification. It is important that the quantity of said agents added to the formulation does not decrease the electrical resistivity of the ink beyond the limit of 109 ohm.cm. The action of such particle charging agents in the :nk is not fully understood but it is believed that they assist with charging of the particles to assist with the formation of agglomerations of charged particles in the non-conductive liquid in the presence of a non-uniform electrostatic field of significant gradient on or about an ejection location. The particle charging agent may be present in a concentration of from 0.05% to 5% by weight of the composition.
The ink jet ink according to the present invention may be prepared by dispersing the said marking particles and other aforementioned components into the liquid. A variety of processes can be employed for the preparation of the ink including ball mills, .ttritors, colloid mills, threeroll mills, pearl mills and high speed dispersers. Alternatively the particles may be formed by polymerisation of the particles in the liquid.
Examples of applications for the ink according to this invention are diverse and include office printers, component marking, magnetic ink character recognition, to mark integrated circuits, to mark glass, plastics and ceramics, to mark metals and alloys, food stuffs marking, textile printing and the making of printing plates to function as an offset master.
It will be realised that the proposed end use will determine the selection of the various components.
The ink composition of the present invention may also be used for the administration of pharmaceuticals either directly into an animal or human or onto a substrate such as an inert tablet where it is desired to apply an exact amount of the pharmaceutical.
l', u r'l AMENDED SHEET __-IPPLA/All PCT/AU 94 0 3 5 7 RECEIVED 3 1 MAR 1995 8 This then generally describes the invention but to assist with understanding the invention reference will now be made to examples of ink formulations.
EXAMPLE 1 Isopar L zinc oxide 1 g Piccotex LC Nuodex Zirconium 6% 0.1g Piccotex LC is an methyl styrene made by Hercules Inc.
Nuodex Zirconium 6% is a zirconium octoate nade by HOls America Inc.
Isopar G and Isopar L are isoparaffinic solvents made by Exxon Chemical.
The above ingredients were added to a ball jar and milled for 4 days to prepare a white ink suitable for certain marking applications. The ink had a marking particle content of a particle charging agent content of 0.1% and an electrical resistivity of 1011 ohm.cm. This ink was used to generate an image on an integrated circuit where it produced good optical density. The ink also displayed adequate fix without the use of additional heating which is significant as such heating could well cause the co'ruption of information contained on the integrated circuit.
EXAMPLE 2 Isopar G 500g 2-ethyl hexyl acrylate vinyl acetate 150g benzoyl peroxide 1g The above ingredients were heated under reflux conditions to effect the polymerisation of a poly (vinyl acetate/2-ethyl hexyl acrylate) co-polymer.
To this white resinous solution was then added the following: 1 -J ^ot- ^1 AMENDED
SHEET
J109AlAi___In PCT'/AU Q 7 (1 2 5 RECEIVED 3 1 MAR 1995 9 Orasol Black RL 2g Manganese 56% Orasol Black RL (CI Solvent Black 29) made by Ciba-Geigy.
Manganese 56% is a manganese naphthenate made by A. C. Hattrick Chemicals.
A black ink with a marking particle content of 28%, a particle charging agent content of 0.7% and an electrical resistivity of 1010 ohm.cm. was so formed which exhibited good dispersion stability. This ink was r in the ink jet printing device described in WO-A-9311866 to ima. ,j bond paper. The image was of low density and showed very i the paper.
EXAMPLE 3 sunflower oil 194g Microlith Blue 4GT 3g polyethylene wax 1g Elvax 210 1g Nuodex Zirconium 6% 1g Elvax 210 is an ethylene-vinyl acetate made by E.I. DuPont Co.
Ingredients were milled in a heated attritor for 3 hours to prepare a blue ink with a marking particle content of a particle charging agent content of 0.5% and an electrical resistivity of 1011 ohm.cm. The ink formed may be used for the direct marking of food stuffs (only as permitted by relevant safety authorities). This ink was used in the ink jet printing device described in WO-A-9311866 to print onto confectionery where good image quality and optical density was achieved.
EXAMPLE 4 Magnox B350 200g Mogul L M" E H E AMENDED
SHEET
eP.A IA
U
I
PcT/AU 9 4 00 3 5 7 RECEIVED 3 1 i,:A1 !995 Synthetic Resin SK 400g The above materials were mixed together in a hot melt blender to form a solid pigment dispersion. 100g of this pigment and resin composite was then milled for 5 days with the following materials: Plexol 917 Nuodex Zirconium 6% Isopar G 400g Magnox B350 is a magnetic iron oxide made by Magnox Inc.
Synthetic Resin SK is a modified ketone resin made by Chemishe Werke Huls.
Mogul L is a Cl Pigment Black 7 made by Cabot Corporation.
Plexol 917 is a gear oil additive made by Rohm Haas.
This ink concentrate was diluted 20 fold in Isopar G to form an ink dispersion suitable for use in magnetic ink character recognition (MICR) applications. The ink had a marking particle content of a particle charging agent content of 1.1% and an electrical resistivity of 1010 ohm.cm. The ink was used to generate characters on bond paper which were analysed using a magnetic character recognition tester namely an Atlantic/Force Codatest-SST. The determined magnetic response easily met the USA Standard E-13B.
EXAMPLE DC 200 Fluid 1 cs 500g Araldite 6084 200g Irgalite Blue LGLD Nuodex Zirconium 6% 2g Araldite 6084 is an epoxy resin made by Ciba-Geigy.
DC 200 Fluid is a si!!cone oil made by Dow Corning.
(3 s a-' AMENDED
SHEET
1-r
I
PCT/A g 94 0 3 5 7 RECEIVED 3 I MAR 1995 11 The above ingredients were added to a ball jar and milled for 4 days to prepare a blue resinous ink. The ink concentrate so formed was diluted in silicone fluid (1 mPa.s) to produce a thermoplastic ink dispersion with a marking particle content of a particle charging agent content of 0.3% and an electrical resistivity of 1011 ohm.cm.
The said jet ink printing device was used to image an Agfa CRAA alumina printing plate which was then fused at 1100C for 2 minutes. The plate was printed using an AM 1250 duplicator and gave 50,000 good copies.
EXAMPLE 6 Tintacarb 300 Reflex Blue 3G FOA-2 13.5g Nuodex Zirconium 6% Isopar L 372.5g Tintacarb 300 is a Cl Pigment Black 7 made by Cah. t Corporation.
Reflex Blue 3G is a Cl Pigment Blue 56 made by Hoecnst Ltd.
FOA-2 is a styrene methacrylate terpolymer made by DuPont.
The above ingredients were added to a ball jar and milled for 2 days to prepare a black ink with a marking particle content of a particle charging agent content of 4.4% and an electrical resistivity of 109 ohm.cm. The FOA-2 polymer used in this ink acts as a particle charging agent in combination with the metal soap zirconium octoate. This ink was used in the ink jet printing device described in WO-A-9311866 to image copy bond paper where it gave 20 micron dots at a very high frequency of 34.5 kHz.
EXAMPLE 7 Kayanol Milling Blue 2RW Acryloid 958 A RAL'vomr- -L -r I PCTYAu 94 0 3 .5 7 ItECEVFPn I MAO 1995 Isopar G 170g Kayanol Milling Blue 2RW is an Acid Blue 140 made by Nippon Kayaku Co.
Acryloid 958 is a polymeric oil additive made by Rohm Haas.
the above ingredients were added to a ball jar and milled for 3 days to prepare an ink concentrate. This was then diluted 20 fold in Isopar G to prepare a blue ink dispersion with a marking particle content of a particle charging agent content of 0.25% and an electrical resistivity of 11 ohm.cm. This ink was used in the ink jet printing device described in WO-A-9311866 to image silk fabric. The printed material so formed was then treated with steam to fix the acid dyestuff to the silk, thereby forming a high density, waterfast image with good resolution.
It will be seen that by this invention there is produced an ink jet ink which is distinctly different from other inks and which is particularly useful for novel ink jet applications.
AMENDED
SHEET
'PFtAU1
Claims (4)
19. A method as in Claim 11 when used to mark plastics. A method as in Claim 11 when used to mark ceramics.
21. A method as in Claim 11 when used to mark textiles.
22. A method of administration of pharmaceuticals either directly to a human or animal or onto a substrate including the step of ejecting an agglomeration of particles from an ink jet ink composition as defined in any one of claims 1 to wherein the particles are a pharmaceutical.
23. An ink jet ink comprising a liquid having an electrical resistivity of at least 109ohm.cm, insoluble marking particles and a particle charging agent dispersed in the liquid, wherein said particles are capable of being charged and concentrated into agglomerations of the particles and ejected from the ink in an ink jet printing apparatus in the presence of electrostatic field of significant gradient. Dated this 17th day of December 1997 TONEJET CORPORATION PTY LTD By their Patent Attorneys COLLISON CO. A I I INTECRNXTIONAI,)NAI SEARCII I'(H' Intcrnational application No. PCT/AU 94/00357 A. CLASSIFICATION OF SUBJECT MATTER Int. Cl. 6 C09D 11/02 11/06 11/10 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC C09D 13/02 11/06 11/10 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched AU:IPC as above Electronic data base consulted during the international search (name of data base, and where practicable, search terms used) DERWENT:INK(S)JET OR BUBBLE(S)JET JAPIO: C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to Claim No. Patent Abstracts of Japan, C-709, page 18, JP,A, 2-29474 (RICOH CO LTD) 31 January 1990 (31.01.90) X abstract 1 A abstract 2-23 Patent Abstracts of Japan, C-709, page 18 JP,A, 2-29473 (RICOH CO LTD) 31 January 1990 (31.10.90) X abstract 1 A abstract 2-23 F Further documents are listed See patent family annex. in the continuation of Box C. Special categories of cited documents later document published after the international filing date or priorit date and not in conflict document definin the eneral state of the art which is with the application ut cited to understand the not considered to be o particular relevance principle or theory underlying the invention earlier document but published on or after the document of particular reevance; the claimed international filing date invention cannot be considered novel or cannot be document which may throw doubts on priority claim(s) considered to involve an inventive step when the or which is cited to establish the publication date of document is taken alone another citation or other special reason (as specified) document of particular relevance; the claimed document referring to an oral disclosure, use, invention cannot be considered to involve an exhibition or other means inventive step when the document is combined document published prior to the international filing date with one or more other such documents, such but later than the priority date claimed combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 September 1994 (18.09.94) 1 2 OCT 1994 1 2. 1 0. 94 Name and mailing address of the ISA/AU Authorized officer 7 AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION-- PO BOX 200 WODEN ACT 2606 AUSTRALIA S. CHEW Facsimile No. 06 2853929 Telephone No. (06) 2832248 Form PCT/ISA/210 (continuation of first sheet (July 1992) copjhw I N'IVlNAIONA I SlHARICi I R ICP( )Iri interznitiona:I pplicilioi No. PCT/AU 94/00357 C(Continuation). DOCUME NTS CONSIDERED TO BE RELEVANT Category* Citation or document, with indication, where appropriate or the relevant passages Relevant to Claim No. WO,A, 93/11866 (RESEARCH LABORATORIES OF AUSTRALIA PTY. LTD.) 24 June 1993 (24.06.93) A whole document 1-23 EP,AI, 540203 (DOMINO PRINTING SCIENCES PLC) May 1993 (05 .05.93) A whole document 1-23 EP,AI, 306947 (CANON KK) March 1989 (15.03.89) A whole document 1-23 Patent Abstracts of Japan, C-1181, page 154, JP,A, 5-331397 (SEIKO EPSON CORP) 14 December 1993 (14. 12.93) A abstract 1-23 Patent Abstracts of Japan, M-1007, page 62, JP,A, 2-130183 (CANON INC) 18 May 1990 (18.05.90) A abstract 1-23 Form PCT/ISA/210 (continuation of second sheet)(July 1992) copjhW I NTEIRNATIONAL SIKARCI I R~ETORT Inforinaion on patent fanuly rnenibe, IntcrnationaiI appilitioo No. PCTIAU 94/00357 This Annex lists the known publication level patent family members relating to theptent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information. Patent Document Cited in Search Patent Family Member Report JP 5331397 JP 2029473 JP 2029474 JP 2130183 EP 306947 JP 1069679 US 5100468 JP 1190775 EP 540203 GB 9123070 JP 5214280 us 5275646 EP 465039 GB 9014299 JP 5214279 WO 9311866 AU 31526/93 END OF ANNEX Form PCTI5AI21(patent family annex)aJuly 1992) copjhw
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU70634/94A AU687827B2 (en) | 1993-07-01 | 1994-06-29 | Liquid ink jet ink |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPL9710 | 1993-07-01 | ||
AUPL971093 | 1993-07-01 | ||
AU70634/94A AU687827B2 (en) | 1993-07-01 | 1994-06-29 | Liquid ink jet ink |
PCT/AU1994/000357 WO1995001404A1 (en) | 1993-07-01 | 1994-06-29 | Liquid ink jet ink |
Publications (2)
Publication Number | Publication Date |
---|---|
AU7063494A AU7063494A (en) | 1995-01-24 |
AU687827B2 true AU687827B2 (en) | 1998-03-05 |
Family
ID=25636358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU70634/94A Expired AU687827B2 (en) | 1993-07-01 | 1994-06-29 | Liquid ink jet ink |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU687827B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPM844994A0 (en) * | 1994-09-29 | 1994-10-20 | Tonejet Corporation Pty Ltd | Improvements in ink jet inks |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0229473A (en) * | 1988-07-19 | 1990-01-31 | Ricoh Co Ltd | Ink composition having electrically variable viscosity |
JPH0229474A (en) * | 1988-07-19 | 1990-01-31 | Ricoh Co Ltd | Ink composition |
WO1993011866A1 (en) * | 1991-12-18 | 1993-06-24 | Research Laboratories Of Australia Pty. Ltd. | Method and apparatus for the production of discrete agglomerations of particulate matter |
-
1994
- 1994-06-29 AU AU70634/94A patent/AU687827B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0229473A (en) * | 1988-07-19 | 1990-01-31 | Ricoh Co Ltd | Ink composition having electrically variable viscosity |
JPH0229474A (en) * | 1988-07-19 | 1990-01-31 | Ricoh Co Ltd | Ink composition |
WO1993011866A1 (en) * | 1991-12-18 | 1993-06-24 | Research Laboratories Of Australia Pty. Ltd. | Method and apparatus for the production of discrete agglomerations of particulate matter |
Also Published As
Publication number | Publication date |
---|---|
AU7063494A (en) | 1995-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2166419C (en) | Liquid ink jet ink | |
US5800600A (en) | Solid ink jet ink | |
EP0868490B1 (en) | Method of preparation of inks | |
DE60303533T2 (en) | Oil-based ink composition for ink jet printers | |
US7264344B2 (en) | Electrostatic inkjet ink composition | |
US6117225A (en) | Method of preparation of inks | |
AU687827B2 (en) | Liquid ink jet ink | |
EP0783549B1 (en) | Improvements in ink jet inks | |
JPS6218585B2 (en) | ||
AU682975B2 (en) | Solid ink jet ink | |
JP2001279139A (en) | Black ink for electrostatic ink jet recording device and method for manufacturing the same | |
JP2000119576A (en) | Ink for electrostatic ink jet printing use | |
JP2000053896A (en) | Oil-soluble ink for inkjet | |
JP2001139856A (en) | Electrostatic ink jet ink and method for controlling charge of colorant | |
JP2001123095A (en) | Ink jet ink and electrostatic ink jet recording method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC | Assignment registered |
Owner name: TONEJET LIMITED Free format text: FORMER OWNER WAS: TONEJET CORPORATION PTY LTD |