[go: up one dir, main page]

AU625720B2 - Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use - Google Patents

Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use Download PDF

Info

Publication number
AU625720B2
AU625720B2 AU15080/88A AU1508088A AU625720B2 AU 625720 B2 AU625720 B2 AU 625720B2 AU 15080/88 A AU15080/88 A AU 15080/88A AU 1508088 A AU1508088 A AU 1508088A AU 625720 B2 AU625720 B2 AU 625720B2
Authority
AU
Australia
Prior art keywords
thr
glu
ala
pro
hiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU15080/88A
Other versions
AU1508088A (en
Inventor
Alan Ray Flesher
Mary Kathleen Shriver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genetic Systems Corp
Original Assignee
Genetic Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genetic Systems Corp filed Critical Genetic Systems Corp
Publication of AU1508088A publication Critical patent/AU1508088A/en
Application granted granted Critical
Publication of AU625720B2 publication Critical patent/AU625720B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

6012q/1 MAJL OFFICER-3.4j, Pill BE NO
I"
AUSTRALIA
Patents Act 6 2572 0 C'MOIE1'E SPECIFICUMTION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority ,Related Art: .0 :so ol
APPLICANT'
osem.
Name(s) of Applicant(s): Genetic Systems Corporation Address8(es) of Applicant(s): 3005 First Avenue, Seattle, Washington 98121, UNITED STATES OF A!4IflICA.
Address for~ Service is: S REFERENCE: GS-4007 PHILLIPS 004ZIDE FITZPATRICK Paten~t and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Complete Specification for the invention entitled: ANTIBODIES MI~ SPECIFIC ANTIENIC REG3IONS OF THE HWWI MWNODEICIENCY VIUS AND HETHOODSFOR USE Our Ref 91031 POF Code: 66070/66070 the following statement is a full description of this Invention, including the best method of performing it known to applicant(s): f~i.
6003q/1,
I
14 (11) AU-B-i 5080/88-- 625720 determinant of p25 core protein in the biological sample, and therefrom determining the presence or absence of HIV.
A method for detecting and/or quantitating HIV core antigen in a bi7logical sample, said method comprising: a) incubating said biological sample with one or more capture monoclonal antibodies which bind core protein, wherein said capture monoclonal antibodies bind to an epitope within an amino acid sequence of the following peptide sequences: 1 (141) Met-Gln-Met-Leu-Lys-Glu-Thr-I le-Asn-Glu--Glu-Ala--Ala- Glu-Trp-Asp-ArgVal-His-Pro-Val-Hi-Ala-Gly-Pro-Ile- Al-r-l-l-e-r-luPoAgGySrApIe Ala-Gly-Thr-Thr-Ser-Thr; 11 (147) Ser-Pro-Thr-Ser-I.'e-Leu-Asp-Ile-Arg-GllGlyPro-Lys- Glu-Pro-Phe-Arg -Asp-Tyr-Val -Asp-Arg--Phe-Tyr- Lys-Thr- Leu-Arg-Ala-Glu-Glfl-Ala-Ser-Gln-Glu-Val -Lys-Asn-Trp-- Norleu-Thr-Glu; 111 (88) Asp.7Trp -Nor], eu-Thr-Glu-Thr- Leu- Leu -Val -Gl1n -As n-Al a -As n- Pro-AspCy-LyT Ala-Thr-Leu-Glu-G1u-Norleu-Norleu-Thr-Ala-Cys; b) incubating either simultaneously or sequentially with step said biological sample wlith a labeled antibody composition binding to HIV core antigen such that specific binding occurs, thereby forming a reaction mixture; and C) detecting the reaction mixture formed in step to determine the amount of label associated with an antigenic determinant of p25 core protein and thereby de -tecting and/or quantitating HIV or core antigens thereof present in said sample, i13 NO W (11) AU-B-15080/88 -3- 625720 12. A monoclonal antibody capable of binding to an antigenic determinant of HIV p25 core protein, wherein the monoclonal antibody immunologically competes for the binding of a monoclonal antibody produced by a cell line selected from the group HIV-p25-2. HIV-p25-3, HIV p25 6 and H-IIIV 25 7hereinb:fore described.
(SY
N
GS-4007 MONOCLONAL ANTIBODIES TO SPECIFIC ANTIGENIC REGIONS OF THE HUMAN IMMUNODEFICIENCY VIRUS AND METHODS FOR USE TECHNICAL FIELD The present invention relates generally to novel immunological materials useful in diagnosing and monitoring infections caused by the Human Immunodeficiency Virus (HIV), the etiologic agent of AIDS.
More particularly, the invention provides cell lines which produce monoclonal antibodies to antigenic too determinants of the core proteins of HIV. These antibodies are useful in the diagnosis of HIV infection and monitoring the efficacy of pharmaceutical formulations and vaccine compositions.
it BACKGROUND OF THE INVENTION *I The etiologic agent of Acquired Immune Deficiency Syndrome (AIDS) is a novel lymphotropic retrovirus *termed the Human Immunodeficiency Virus (HIV), which S e may also be referred to in the literature as LAV, HTLV-III, or ARV. As the spread of HIV reaches pandemic proportions, preventing its transmission has become a paramount concern. To reduce the risk of 2 transfusion-associated HIV infection, hospitals, blood S* 25 banks, and other users or manufacturers of bloodrelated products now routinely screen blood donors for the presence of antibodies to HIV. The screening tests typically employ disrupted preparations of purified HIV which have been adsorbed onto a solid surface, such as a microwell or bead. Other screening tests use HIV polypeptides produced by recombinant means, or chemically synthesized peptides which contain immunodominant antigenic regions of HIV.
SUsing such screening tssts, the vast majority of the potentially infective units of blood in the donor pool are identified and removed.
i -2- Despite the high sensitivity and specificity of the HIV antibody screening tests, a small but significant number of infected blood products still pass undetected into the blood supply. Of primary concern are donors who are infected with HIV at the time they donate blood or plasma but have not yet developed antibodies to the virus. Antibodies may not rise to detectable titers until 3-4 weeks or more after infection. Recent evidence puts the window between time of infection and development of detect- *able antibody at six Weeks to six months. If an infected individual donates blood or plasma during *0 this period, the public blood supply is threatened I: with an undetected contamination.
a 15 To help bridge the gap between the time of initial infection and subsequent seroconversion, a sensitive and specific test for HIV 'gens is desirable.
Using conventional enzyme immui,. assay technology, HIV S 20 antigen detection tests have been developed in which polyclonal antibodies to HIV are used to "capture" HIV antigen from a patient or culture sample. The polyclonal antibodies take the form of sera which have been obtained from patients having high antibody 25 titers to HIV, or has been generated in animal species 25 by immunization. These polyclona based antigen capture tests have been found to correlate well with the appearance of reverse transcriptase (RT) activity in cell cultures, and they are faster and easier to perform than the RT assay. The use of antisera, however, frequently imparts a lack of specificity to the tests, which may yield high background readings, require relatively long incubation periods, and may pose a number of difficulties in the manufacturing process.
Monoclonal antibodies of high affinity and s!pecificity to certain conserved epitopes of HIV could -3provide a significant improvement over the polyclonal based antigen capture assays described above. While several groups have reported monoclonal antibodies which bind to HIV, the suitability of these antibodies for use in antigen capture assays is unknown. What is needed in the art are monoclonal antibodies specific for conserved antigenic regions of HIV proteins, which antigens are present soon after an individual becomes infected with HIV and, desirably, may be detected with the monoclonal antibodies prior to seroconversion.
The present invention fulfills these and other related needs.
e Summary of the Invention Immortalized cell lines which produce monoclonal antibodies have been generated, which antibodies are specific for epitopes of antigenic determinants within 20 a region of the core proteins of HIV defined by a f* f 20 recombinant fusion protein, pGAG3. Of particular interest are monoclonal antibodies which react with antigenic determinants encoded within the DNA sequences from about base pair (bp) 1167 through about bp 1292, from about bp 1278 through about bp 1385, and to 25 within the latter sequence, from about bp 1320 through 1385. These regions correspond to the amino acid sequences of peptides 147, 88, and 15, respectively.
Also provided are monoclonal antibodies which bind to 3 antigenic determinants encoded within the DNA sequences of pGAGi, pGAG2, and pGAG3. More particularly, the antibodies bind to antigenic determinants encoded within bp 691 to about bp 961, from bp 927 through about bp 1061 (peptide 141), or from about bp 927 through about 961.
3b The monoclonal antibodies of the invention provide a method for detecting and/or quantitating HIV in a I
A
biological sample suspected of containing the virus or antigenic determinants thereof. Accordingly there is provided a method for determining the presence of HIV core antigen in a biological sample, comprising: a) incubating said biological sample with a monoclonal antibody capable of reacting with HIV p25 core protein, wherein, said monoclonal antibody binds to an epitopc included within an amino acid sequence of the following peptide sequences: lC 1 (141) M4et-.Gn-Met-Leu--Lys-Glu-Thr-I le-Asn-Glu-Glu-Ala-Ala-Glu-Trp-Asp- A rg-va l-His-Pro-Val-His-Ala-Gly-Pro-Ile-Ala-Pro-Gly-Gn-Met-Arg- Glu-Pro-Arg--Gly-Ser-Asp-I le-Al a-Gly-Thr-Thr-Ser-Thr; 11 (147) Ser-Pro--Thr-Ser-Ile-Leu--Asp-Ile-Arg-Gln-Gly-Pro-Lys-Glu-Pro-Phe- Arg-Asp-Tyr-Val-Asp-Arg-Phe-Tyr-Lys-Thr-Leu-Arg-Ala-Glu-Gln-Al a- Ser-Gln-Glu-Val-Lys-Asn-Trp-Norleu-Thr-Glu; Asn-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Val-Gln-Asn-Ala-Asn-Pro-Asp- ,2~oCys-Lys-Thr-I le-Leu-Lys-Ala-Leu-G.4lu-Pro-Ala-Ala-Thr-Leu-Glu-Glu- Norleu-Norleu-Thr-Ala-Cys; and detecting the presence of immune complexes formed between the monoclonal antibody and an antigenic determinant of p25 core protein in the biological sample, and therefrom determining the presence or absence of IIV.
The antigen detection 3. b 0o 000000 -4- S-biologic l sample supoted of centain-i the 3ntigonio otcrminantc -thereof.-The antigen detetion method comprises incubating the sample with one or ore capture monoclonal antibodies, wherein the antibodies are specific for an HIV antigenic determinant within the gag regions enumerated above.
The sample and capture antibodies may be incubated simultaneously or sequentially with a second antibody composition which may be labeled or unlabeled, thereby forning a reaction mixture. If the second antibody e* composition is labeled, the reaction mixture is then detected to determine the amount of label associated with HIV. If the second antibody composition is 15 unlabeled, a third labeled composition is necessary to s provide for detection. The second antibody composition may be selected from the group consisting of antibodies which bind to the capture antibodies, monoclonal antibodies of the present invention, 0 monoclonal antibodies to other determinants of HIV, 20 and polyclonal antiserum, the latter being obtained from humans previously exposed to HIV and containing antibodies to the virus, or animals immunized with antigenic portions of the virus.
DESCRIPTION OF THE SPECIFIC EMBODIMNTS In accordance with the present invention, novel S monoclonal antibodies that bind to antigenic determinants contained within certain regions of the core (or gag) proteins of HIV are provided. The monoclonal antibodies bind to p"teins and. protein precursors of HIV clinical isolates which oantain the Stargeted regions of antigenic determinants, in addition to binding to recombinant proteins and synthetic analogues of the proteins which contain the K> a 1 M- ~d antigenic determinants. The immortalized cells which produce the monoclonal antibodies have identifiable chromosomes which encode an antibody or fragment thereof having a binding site for an epitope of an antigenic determinant contained within the gag protein regions described more fully below, which antigenic determinant is conserved among HIV clinical isolates.
The monoclonal antibodies produced by the immortalized cells find use separately or in combination in a wide S..o variety of ways, including diagnostic immunoassay s e* methods.
The preparation of monoclonal antibodies can be accomplished by immortalizing the expression of nucleic acid .sequences that code for antibodies or binding fragments therefor specific for HIV, by introducing such sequences into a host capable of cultivation in culture. The immortalized cell line may be a mammalian cell line that has been transformed through oncogenesis, by transfection, mutation or the 20 like. Such cells include myeloma lines, lymphoma I *lines, or other cell lines capable of supporting the expression and secretion of the antibody in vitro.
The antibody may be a naturally occurring immuno- 2 globulin of a mammal, produced by transformation of a 0 25 :lymphocyte, particularly a splenocyte, by means of a *0 virus or by fusion of the lymphocyte with a neoplastic cell, a myeloma, to produce a hybrid cel'. line.
Typically, the splenocyte will be obtained from an S animal immunized against the HIV virus or a fragment thereof containing an artigenic determinant viithin a region of the gag' proten recognized by the monoclonal antibodies of the prsent invention.
Immunization protocols are well known and can vary 1 3g considerably yet remain effective (Sie, Goding, 1983, Monocloral Antibodies: Principles and Practice, Academic Press, incorporated herein by i~j r T7 *see 00 000*0 a 0 0 9000 a so 0*00 00 0 *0 9. S 0 *0 0 0000 0 -6reference, and commonly owned pending U.S. patent applications serial no. 898,273, 045,026, and 067,996). Immunogenic amounts of antigenic preparations are injected, generally at concentrations in the range of 1 ug to 20 mg/kg'of host. Administration of the antigenic preparations may be one or a plurality of times, usually at one to four week intervals.
Immunized animals are monitored for production of antibody to the desired antigenic determinants or gag proteins containing the desired determinants, the lymphoblastoid cells are then removed and B lymphocytes isolated and transformed or fused with a myeloma cell line. The fusion or transformation can be 15 carried out in conventional ways, the fusion technique being described in an extensive number of patents.
See generally, U.S. Nos. 4,172,124; 4,350,683; 4,363,799; 4,381,292; and 4,423,147. See also, Kennett at al., 1980, Monoclonal Antibodies, Plenum, 20 New York, and references cited therein, and Goding, supra, all of which are incorporated herein by reference.
The immortalized cell lines may be cloned and screened by modification of conventional techniques, and antibodies in the cell supernatants detected Which are capable of binding to the desired regions of antigenic determinants of HIV, as determined by binding to recombinant fusion proteins or synthetic peptides which contain the region of the antigenic determinants of interest. The appropriate immortalized cell lines may then be grown in large scale culture in vitr or injected into the peritoneal cavity of an appropriate host for production of ascites fluid. By virtue of having the antibodies of the present invention, other cell line supernatants may be scree d in competition with the subject monoclonal antibodies in a competitive assay. Thus,
U.
-7immortalized cell lines can be readily produced from a variety of sources based on the availability of the present monoclonal antibodies. Cell lines that produce monoclonal antibodies which are capable of reacting with the HIV antigenic regions identified herein, as well as those which block the binding of antibodies described below in a competitive assay, are specifically included within the scope of the present invention.
Alternatively, the immortalized cell lines of the •too present invention may be fused with other neoplastic 0* B-cells, where such other B-cells may serve as Se.* recipients for genomic DNA coding for the antibody.
15 Or, using recombinant DNA techniques, the monoclonal antibody or fragment thereof may be produced by inserting genomic DNA or cDNA coding for one or both heavy and light chains into an expression vector for ultimate expression of the chains. These chimeric e• 0 antibodies may be constructed wherein the antigen 20 binding fragment of an immunoglobulin molecule (variable region) is connected by a peptide linkage to at least part of another protein, such as the constant portion of a human immunoglobulin molecule. This can be accomplished by fusing the variable region genes 25 with constant region genes of the desired species source and subtype. See, for example European patent publications Nos. 171,496 and 173,494.
While rodent, particularly murine, neoplastic B-cells are preferred, other mammalian species may be employed, such as human, lagomorpha, bovine, ovine, equine, porcine, avian or the like, so long as the species recognizes the regions of the gag protein containing the determinants as antigenic and can provide lymphocytes, particularly splenocytes, for fusion or transformation.
The moncrlonal antibody secreted by the i n i
;~I
-8e g.
S.
OSOS
*5 *r
S.
S S *i 5
S
C
transformed or hybrid cell lines may be of any of the classes or subclasses of immunoglobulins, such as IgM, IgD, IgA, or subclasses of IgG known for each species of animal. As IgG is the most common isotype utilized in diagnostic assays, it is preferred for this purpose. The monoclonal antibodies may be used intact, or as fragments, such as Fv, Fab, F(ab') 2 but usually intact.
Monoclonal antibodies of the present invention are particularly useful in diagnostic assays because of their specificity for HIV antigenic determinants of the gag proteins, which determinants are within protein regions defined by immunologically reactive recombinant fusion proteins and peptide sequences.
Using a variety of recombinant fusion proteins and synthetically constructed HIV peptides (see commonly owned U.S. Patent 4,629,783, and U.S.S.N. 763,460, 828,828 and 844,485, which are incorporated herein by reference) the monoclonal antibodies of the present invention may be identified as binding to antigenic determinants within regions encoded by gag sequences of the HIV genome.
The ecombinant fusion proteins and synthetic peptides which define the antigenic regions of interest are all encoded within the gag region of the HIV genome. Of particular interest are regions within the gag open reading frame defined by the recombinant fusion protein GAG3, which is encoded by a DNA sequence pGAG3, which extends from about base pair (bp) 691 to about 1642 of the LAVBRU isolate of HIV. Within the region encoded by pGAG3, antigenic determinants encoded by nucleotide sequences included within and encoded by pGAGI and pGAG2 are also of interest. The area of overlap between pGAGI and pGAG3 extends from about bp 691 to about 961, and the area of overlap between pGAG2 and pGAG3 extends from about bp 691 to about bp 1224. The numbering is accor' ,n to Wain-Hobson et al., 1985, Cell 44:9, .whi incorporated herein by reference. The productis, the recombinant gag fusion protein is described in detail in commonly owned U.S. patent applications U.S.S.N. 763,460 and 828,828, both of which are incorporated herein by reference. Of further interest are monoclonal antibodies which bind to antigenic determinants encoded within the DNA sequence from about bp 691 to about bp 1061, including the region encoded by from about bp 927 through about bp 1061.
Also of interest are antibodies which bind to the antigenic determinants encoded by the DNA sequence of HIV from about bp 1167 through about bp 1385, particularly the determinants encoded within the regions of about bp 1167 through about bp 1292, and bp 1278 through about bp 1385.
S00i Synthetic peptides within the p25 core protein regions containing the antigenic determinants to which the monoclonal antibodies of present invention bind have been synthesized. These include peptide I, also designated 141, which extends from about amino acid residue 198 to about 242 (bp 927 to 1061) and has the .e 25 following amino acid sequence, where oligopeptides 25 o* within the following sequence will include linear epitopes within such sequence: I (141) W (Cys-Gly-Gly-Cys) -Met-Gln-Met-Leu-Lys-Glu-Thr-Ile-Asn-Glu- Glu-Ala-Al aGlu-Trp-Asp-Arg-Val-His-Pro-Val-His-Ala-Gly- Pro-Ile-Ala-Pro-Gly-Gln-Met-Arg-Glu-Pro-Arg-Gly-Ser- Asp-Ile-Ala-Gly-Thr-Thr-Ser-Thr- (Cys) where the amino acids within the parentheses have been S added for ease of synthesis or possible post synthetic uses known to those skilled in the art.
Peptide II, also designated 147, of the p25 region 1 of the gag open reading frame is comprised of the amino acid residues encoded from about bp 1167 to about bp 1292 and has the following amino acid sequence, where oligopeptides included within the following sequence will include linear epitopes within such sequence: II (147) 4 (Cys-Gly-Gly-Cys) -Ser-Pro-Thr-Ser-Ile-Leu-Asp-Ile-Arg-Gln- 1 Gly-Pro-Lys-G1lu-Pro:Phe-Arg-Asp-Tyr-Val-Asp-Arg-Phe-Tyr-LyseI Thr-Leu-Arg AlaGIU-nGln-Ala Ser-Gln-Gl-Val-Lys-Asn- Trp-Norleu-Thr-Glu-(Gly-ys) i: geee where the amino aci'a ithin the parent' -ses have been added for ease of synthesis or possible post synthetic use. Peptide III, also designated 88, comprises an antigenic determinant from the p25 region of the gag 20 open Zrading frame and contains the amino acid 20 residues encoded from about bp 1278 to about bp 1385 and is made up of the following amino acid sequence, and is further described in pending U.S. Patent application 844,485, included herein by reference: *i III (88)
(NH
2 -0j) -a&n-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Val-Gln-Asn Ala-Asn-Pro-Asp-Cys-Lys-Thr-Ile-Leu-Lys-Ala-Leu-Glu- Pro-Ala-Ala-Thr-Leu-Glu- Glu-Norleu-Norleu-Thr-Ala-Cys Wherein the amino acids within the parentheses have been added for ease of synthesir or possible post synthetic use. Alternatively, truncated sequences of peptide XIl have been prepared. In this regard, the following sequence may be particularly useful and is further described in issued U.S. Patent 4,629,783: r b
T;~
6:i -11- IV (15)1
(NH
2 -Cys-Gly)-Asp-Cys-Lys-Tht-Ile-Leu-Lys-Ala-Leu- Gly-Pro-Ala-Ala-Thr-Leu-Glu-Gl-Norleu-Norleu-Leu-Thr- Ala-Cys For diagnostic uses, methods such as the enzyme linked immunoadsorbent assay (ELISA), radioimmunoprecipitation assay, and immunoblotting are typically employed. Generally these procedures are well known in the art. See, Immunological Methods, Vols. I and II, 1979 and 1981, Eds. Lefkovits and Pernis, Academic 0* e* Press, New York; Monoclonal Antibodies, 1982, eds.
Kennett, et al., Plenum Press, New York; and Handbook •of Experimental Immunoloiy, 1978, ed. Weir, Blackwell Scientific Publications, St. Louis, MO; all of which are incorporated herein by reference.
Typically, the diagnostic immunoassays will entail 20 the detection of immune complexes formed between the capture monoclonal antibody and the HIV antigen possessing an epitope on an antigenic determinant from a region defined by the above preferred sequences.
Generally, to provide for detection the antibodies may 25 either be labeled or unlabeled. A wide variety of labels may be employed, such as radionuclides, fluorescers, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, ligands (particularly haptens), etc. Numerous types of immunoassays are available, and by way of example, some include tho'ee described in U.S. Patent Nos. 3,817,827; 3,850,752; 3,901,654; 3,935,074; 3,984,533; 3,996,345; 4,034,074; 4,098,876; and 4,376,110, all of which are incorporated herein by reference. When unlabeled, detection can be accomplished in agglutination assays. In addition, unlabeled antibody compositions can be used in combination with other labeled -iti- -12bodies (second antibodies) that are reactive with the antibody compositions, such as antibodies specific for imxunoglobulin.
In general it is necessary to at least partially purify the monoclonal antibody from the ascites fluid or culture supernatants before labeling. Methods of purification are well known (Mishell, et al., supra) and can, include ammonium sulfate fractionation, ion exchange chromatography, gel filtration, chroma- *age* tography, affinity chromatography, or some combination thereof.
~e.The monoclonal antibodies of the present invention find particular use in sandwich enzyme immunoassays to 15 capture and detect HIV or antigenic portions thereof A biological sample suspected of containing HIV *antigens is combined with the subject monoclonal antibodies, which may be first attached to a solid ~*support. The sample is then reacted with the monoclonal antibody or antibodies under conditions conducive to immune complex formation and binding occurs between the antibodies and those molecules exhibiting the selected antigenic determinants of HIV. The immune complexes may then be separated from 01 i'ke a uncomplexed material then and, if the capture antibody **is labeled, signal is detected. If the capture antibody is unlabeled, a second antibody, which may be a monoclonal antibody of the present invention, polyclonal antisera to HIV, or an antibody to the capture antibody, and may be labeled or unlabeled, is added. If the second antibody composition is labeled the presence of the antibody-label conjugate spectfically bound to the antigen is determined. In a convenient embodiment, the second antibody composition is labeled, and is incubated simultaneously with the uai,.ple and cap ture antibodies. If the second antibody oIposition is unlabeled, a third antibody composition -13conjugated to a label may be used. Other conventional techniques well known to those skilled in the art may also be utilized. For instance, in another embodiment, a method for determining the presence of HIV in a biological sample comprises incubating a monoclonal antibody of the present invention with a biological sample, and detecting the presence of immune complexes formed between the monoclonal antibody and the antigenic deterinant of HIV, and therefrom determining the presence or absence of HIV.
O* The biological sample tested for the presence of HIV may comprise a physiological fluid, such as human serum, saliva, semen, vaginal secretions, or breast 15 milk, human tissues, cerebrospinal fluid, or cell •o 15 culture supernatants or the like.
The capture antibodies may be affixed to a solid support in a variety of ways familiar to those skilled 6* in the art. The support may include, but is not 0 limited to, polystyrenes, polyacrylamides, latex, 9 20 silica, agarose, ferrous compounds, nylon, cellulose Sacetate, nitrocellulose, and thc like. These supports may take the form of tubes, microwell plates, sliders beads, filters, etc.
25 The labeled antibody composition may be a 25 .polyclonal antiserum obtained from animals rabbits, goats, or mice) immunized with HIV or fragments thereof by methods known to those skilled in the art. Antisera may also be obtained from.humans previously exposed to HIV and containing high titers of antibodies to the virus.
Biological fluids or samples may also be directly examined for the presence of HIV antigens by first affixing the specimen to a solid support, which may be accomplished in a variety of ways. Polystyrene can be used as a solid support as microwell plates) or, alternatively, the sample may be attached to other -14solid supports including nylon, cellulose acetate, nitrocellulose or other membranes as well as glass, polyacrylamide, etc. The affixed samples are incubated with the desired monoclonal antibody or with a composition comprised of two or more monoclonal antibodies specific for HIV epitopes contained within different antigenic regions under conditions conducive to immune complex formation. The antigen-antibody complex is then washed and signal detected when a primary antibody is used. If the first antibody is unlabeled, a second labeled immunoglobulin-specific antibody is added. Thereafter, the presence of the label specifically bound to the antigen-antibody 15 complex is determined.
Kits can also be supplied for use with the subject
S
monoclonal antibodies of the present invention in the detection of HIV infection or for the presence of HIV antigen. Thus, the subject monoclonal antibody 20 composition of the present invention may be provided, usually adsorbed to a solid phase or in a lyophilized form, either alone or in conjunction with additional antibodies specific for other antigenic determinants of HIV. The antibodies, which may be conjugated to a S label or unconjugated, are included in the kits with buffers, such as Tris, phosphate, carbonate, etc., stabilizers, biocides, inert proteins, bovine serum albumin, or the like. Generally, these materials will be present in less than about 5% wt.
based on the amount of active antibody, and usually present in total amount of at least about 0.001% wt.
based again on the antibody concentration.
Frequently, it will be desirable to include an inert extender or excipient to dilute the active ingredients, wherel the excipient may be present in from about 1 to 99% wt. of the total composition.
Where a second antibody capable of binding to the il monoclonal antibody is employed, this will usually be present in a separate vial. The second antibody is typically conjugated to a label and formulated in an analogous manner with the antibody formulations described above. The kits themselves comprise compartments containing vials or other containers for the reagents described above which are necessary for the performance of the particular diagnostic immunoassay. Such kits may find considerable 'itility in monitoring the presence or replication of e virus in vitro, particularly in studies where the efficacy of anti-HIV drugs is assessed. The treatment of humans or animal model systems with possible therapeutic 15 drugs or vaccines may be monitored via the methods of the instant invention.
b Other. features and advantages of the present invention will become apparent from the following experimental descriptions, which describe the Sinvention by way of example. The examples are offered by way of illustration and not by way of limitation.
*9 EXAMPLE I Example I demonstrates methods for the production of hybrid cell lines which produce monoclonal antibodies that react with proteins and antigenic fragments of HIV containing the desired antigenic determinants. These monoclonal antibodies were characterized by their ability to react with HIV antigens in ELISAs, immunoblots, radioimmunoprecipitation and indirect immunofluorescence assays. The antigenic determinants with which the antibodies reacted were identified in ELISA assays using bacterial expressed fusion proteins and synthetic peptides which comprise regions of antigenic determinants of HIV core proteins.
jLr~ -16- Hybrid cell lines were produced by fusing myeloma cells with lymphoblastoid cells obtained from animals immunized with HIV antigens. Initially, purified virus disrupted ir detergent was used to immunize host animals, and this resulted in antibodies specific for core (gag) proteins and precursors. The LAV-1 strain of HIV was purified from infected CEM cells (ATCC #CRL 8904) on a 30-40% discontinuous sucrose gradient and pelleted. The purified virus was disrupted in Triton X-100 (Triton is a registered trademark of the Rohm Haas Co. for octylphenoxypolyethoxyethanol) and fixed with 1% formalin. This suspension was mixed in a 1:1 ratio with Freunds incomplete adjuvant, and 15 100 ul used to immunize the mice. Boosters were given at weeks two and three, and sera were monitored for
OS
the production of antibodies by the immunized mice.
When anti-HIV circulating antibodies were detected by ELISA, immunoblot and RIP, the animals' spleens were 20 removed and the splenocytes used in cell fusions as described below.
be e A bacterially-expressed fusion protein from the gag region of HIV was also used as an immunogen. 'The "0 pGAG3 construct, from about base pair (bp) 691 through bp 1642 (numbering according to Wain-Hobson et al., 1985, _iP1 was inserted into the B-galactosidase gene and expressed in col.i The expressed protein was purified from the expression system and used as an immunogen in compositions with Freunds complete adjuvant. Booster injections were given about two weeks apart. One week following the second boost the mice were bled and tested for circulating antibody to the disrupted virus and other desired molecules by ELISA, radioimmunoprecipitation (RIP) and 35 immunoblot. Splenocytes from animals with the appro-
O
priate immune response were used in cell fusions.
Protocols uted for the generation of cell lines i NJ 1982, Infect. Immun. 38:273). Splenic B-lymphocytes V cells using 40% polyethylene glycol. Following fusion the cell mixture was resuspended in HAT medium -17were generally those of Kohler and Milstein (Nature 256:495 (1975)) with modifications (Goldstein, et al., 1982, Infect. Immun. 38:273). Splenic B-lymphocytes from the immunized mice were fused with NS-1 myeloma cells using 40% polyethylene glycol. Following fusion the cell mixture was resuspended in HAT medium (RPMI-1640 medium supplemented with 15% fetal calf serum, lx10 4 M hypoxanthine, 4x10 7 M aminopterin and 1.6x10 5 M thymidine) to select for the growth of hybrid cells, and then dispensed into 96-well microculture trays at a concentration of 1 to x10 6 cells/mi with an approximately equal number of mouse thymocytes and incubated at 37"C in a humidified atmosphere containing 6% CO 2 Cultures were fed by 15 2 replacing one-half of the culture medium with fresh HAT medium and wells were observed for cell proliferation with an inverted microscope. When cells in a well were of a sufficient density the medium was tested for anti-HIV antibody and reactivity with *20 various HIV antigens.
Wells containing hybrid cells producing antibody oto HIV or recombinant HIV proteins were identified by ELISAs measuring the binding to either purified whole disrupted virus or biologically-expressed agg or env fusion proteins (see copending and commonly owned U.S.
S. patent applications serial nos. 763,460, 828,828, and 721,237). ELISA assays using disrupted virus were carried out on LAV EIA plates (Genetic Systems, Seattle, WA). ELISA plates using recombinant fusion proteins were prepared by dissolving the recombinai: protein in 0.05 M carbonate/bicarbonate buffer to a final concentration of about 2 ug/ml. The suspension was aliquoted into plate wells and incubated at 4'C Sovernight. The plates were then blocked with bloiking reagent, 5% non-fat dry milk, 001% thimerosol, 0.01% t antifoam A, in PBS. Plates were incubated with spent.
cell culture medium at 37*C for 45 minutes and then i I* i 1 4 -t C -18washed three times with 0.05% Tween 20 in PBS (PBS-Tween). Peroxidase-goat anti-mouse IgG (1:2,000 dilution in PBS-Tween; Zymed Laboratories, Inc., South San Francisco, CA) was added (100 ul per well), and the plates were incubated for 45 minutes at 37'C and washed as above. Substrate (0.025 M citric acid, 0.05 M dibasic sodium phosphate, pH 5.0 containing 14 mg of o-phenylenediamine and 10 ul of 30% hydrogen peroxide per 50 ml) was added and the plates were incubated for 30 minutes at room temperature in the dark. The reaction was stopped with 3N sulfuric acid and colorimetric reactions were quantitated with an **9 e .g automated microplate reader. Wells that gave positive 15 results were subcloned by limiting dilution, retested for specificity, then expanded.
Cell lines were further characterized as to specificity and reactivity by immunoblotting, immunoprecipitation and ELISA using disrupted HIV 20 virus, recombinant HIV fusion proteins and synthetic 20 o* HIV peptides. Designations of regions encompassed by S0. the recombinant fusion protein and synthetic peptides are described in Tables I and II.
Table I: Recombinant Fusion Proteins From the GAG Region
I
0 59 1 9 g..
30 Name Base Pair Number* ATCC Accession Number GAG1 375-961 53379 GAG2 631-1224 53111 GAG3 691-1642 33112 Numbering according to Wain-Hobson et al., Cel 4A4:9. The production of the recombinant fusion 35 proteins is described in detail in commonly owned U.S. patent applications, serial nos. 763,460 and 828,828, which are incorporated herein by reference.
'^l °1-1, 0 S "r
*SS
S
S
a a -19- Table II: Synthetic Peptides From the GAG Region Name Residue Number Base Pair Number 329-350 1320-1385 88 315-350 1278-1385 141 198-242 927-1061 147 278-319 1167-1292 The various methods used to further characterize the specificity of the monoclonal antibodies of the present invention are described below. A summation of the results is found in Table III.
Characterization by immunoblotting was carried out on clone supernatants or ascites fluid using purified, detergent disrupted LAV virus and recombinant fusion proteins as antigens. The recombinant proteins were from the gag region and included Gag-1 (bp375-961), Gag-2 (bp631-1224) and Gag-3 (bp691-1642). The antigens were first separated by polyacrylamide gradient gel electrophoresis (7.0-1510%) and transferred to nitrocellulose membrane (NCM) by electrophoresis for four hours at 25 V in 25 mM sodium phosphate (pH After transfer, the NCM was blocked to prevent nonspecific interactions by incubation in blocking reagent nonfat dry milk, 0.01% thimerosol, 0.01% antifoam A, in PBS) for one hour at room temperature. The NCM was incubated with cell culture supernatant or ascites fluid diluted in PBS-Tween for one hour at room temperature and was rinsed with three changes of PBS-Tween. In the second step the NCM was incubated with goat anti-mouse IgG-horseradish peroxidase diluted in PBS-Tween for one hour at room temperature. This incubation was followed by washing with PBS-Tween and then immersion in horseradish peroxidase color development solution (Bio-Rad Laboratories, Richmond, CA) for 20 minutes.
The reaction was stopped by immersion in deionized water. Monoclonal antibody reactivity was compared to a positive control serum reactive with purified disrupted virus or expressed fusion protein.
Viral extracts for radioimmunoprecipitation were prepared from CEM cells infected with the LAV-1 isolate of HIV adapted to lytic growth by continuous passage. When early cytopathic effects were evident, the cells were transferred to labeling media containing 35 [S]-methionine f0.05 mCi/ml) or 3 [H]-glucosamine (0.025 mCi/ml), then incubated for 1 24h until most of the cells had lysed, releasing virus I into the culture supernatant. Virus was pelleted (one hour at 100,000 xg) from the cell-free supernatant, and detergent extracts were prepared in P-RIPA buffer (phosphate buffered saline containing 1.0% Triton X- S 100, 1.0% deoxycholate, 0.1% SDS, and 1% Aprotinin).
Similar extracts were prepared from uninfected CEM cells.
Immunoprecipitation assays were performed with 100 ul of virus extract incubated with 100 ul culture supernatant from the hybrid cell lines for one hour on ice. Four microliters of rabbit anti-mouse Ig (Zymed Laboratories, So. San Francisco, CA) was added to each sample and incubated for 30 minutes. Immunoprecipitin (100 ul; Bethesda Research Laboratory, Bethesda, MD) resuspended in P-RIPA buffer containing 1.0% cvalbumin was added to each sample and incubated for an additional 30 minutes. The bound complexes were washed and separated by SDS-polyacrylamide gel electrophoresis (15.0% acrylamide:DATD gel). Following electrophoresis the gels were fixed, soaked in EnHance (New England Nuclear, Boston, MA), dried and exposed to Kodak XR-5 film. A positive reference s Ters-, summarized in III, s *th a U o I B -21serum which immunoprecipitated all HIV viral proteins was reacted with viral-infected and mock-infected CEM cell supernatants as positive and negative controls.
The results, summarized in Table III, showed that four monoclonal antibodies specifically immunoprecipitated p25 and the gag precursor proteins p55 and Each of the monoclonal antibodies was of the IgG1 isotype.
Characterization by indirect immunofluorescence was carried out by gently pelleting infected CEM cells (approx. 1x10 6 cells/ml) at low speed and washing the cells twice with cold PBS and resuspending in the o same volume. Twenty microliters of the cell S 15 suspension was dropped into each well of Multiwell slides (Carlson) and allowed to air dry for two hours. Cells were fixed to the slides by immersion in O•O: 100% acetone or methanol-acetone for 10 minutes at room temperature. Slides were allowed to dry and O 20 were stained immediately thereafter or stored at with dessicant.
Antibody ascites was diluted 1:100 in PBS and Ul was dropped into each well. Slides were incubated for 45 minutes at 37*C in a humidified chamber before aspiration of the antibody solution and washing twice with PBS. The excess PBS was aspirated *from the area around each well without allowing the cells to dry. FITC-goat anti-mouse F(ab') "Zymed Laboratories) was diluted 1:50 or 1:100 and 20 ul was 301 added to each well. This was incubated with the cells for 30 minutes at 371C in a humidified chamber.
Slides were again washed with PBS followed by a distilled water wash. The cells were counter stained Swith Evan's Blue (0.05% in PBS) f'r one minute with a distilled water wash. Slides were examined with a fluorescent microscope for positive reactions.
Alternatively, the infected cells could be i -22incubated directly with the monoclonal antibodies (for minutes at 37'C) before being dropped .onto the Multiwell slides and allowed to air dry. The slides could then be fixed with acetone or methanol:acetone as above. The remaining steps in the procedure would be the same as those described above. All of the monoclonal antibodies react with HIV infected cells by the immunofluorescent assay.
To map the regions containing the antigenic determinants which were recognized by the monoclonal antibodies of the present invention, culture superg*fe natants from hybrid cell lines or ascites fluid were further characterized by their reactivity in ELISAs ses, 15 with synthetic peptides. Th6 SLISA procedure was the *t same as that described above except that synthetic peptides replaced disrupted virus or fusion protein as the antigen adsorbed to the surface of the microwells. When peptides were used as the antigen the ,f plating protocol was as follows. Lyophilized peptide 20 was dissolved in 6 M guanidine HC1; just prior to plating in the 96 well plates, the guanidine solution was diluted into 0.05 M4 carbonate/ bicarbonate buffer (pH 9.6) to a final peptide concentration of up to 100 ug/ml. A 50 ul volume of the dilute peptide solution was added to each well of the microtiter plate and the plates were then incubated overnight at 4'C. Excess peptide solution was "shaken out," plates were blocked with blocking reagent, and the procedure described above for the ELISA of disrupted virus was followed. The results are summarized in Table III.
Monoclonal antibodies produced by cell lines specific for core proteins reacted with recombinant fusion proteins from the gag region. Monoclonal antibodies from the cell lines HIV p25-2 and HIV p25-3 reacted with all three gag fusion proteins tested. Monoclonal antibodies from cell lines HIV p25,- and HIV p25-7 1
I
by. -23reacted only with GAG3. The antigenic- tAjrZingt@p containing the epitopes with which the ytnoelcal antibody reacted were narrowed to smaller rgiQons by their reactivity with synthetic peptides, eccept foV antibody 25-2. The peptides with which each aof the monoclonal antibodies react are found in Table IST To further exemplify the utility of thiis vrontlon the monoclonal antibodies were used in the following examples to detect the presence of HIV in a variety of specimens and assay formats.
gage 0 **0 *$0
OSSO
006 0
S
S.1 0 *0 a* .00 a S 0O 5 05 0 5* 0 Table III: Characterization of bodies Mouse Monoclonal Anti- Recomb- Anti- AV inant bodI Protein Proteins 25-2 p25/p40/ GAG-1, -3 25-3 p25/p40/ GAG-1, -3 25-6 p25/p4P/ GAG3 25-7 p25/p40/ GAG3 Assay Methods Immuno- Blot RIP EIA FA gen* 141 147 15,88
B
B
A
B
Immunogen: A. Whole inactivated virus, B. Recombinant 9g9 fusion protein.
SND Not Determined EXAMPLE II Singe -Wash HIV Antigen Cavture Enzyme-linked Immunosorbent Assa Example 11 describes a single wash format of an 1J 11. A method according to claim 0, wherein said ant1igen capture enzyme-linked immunosorbent assay (EXA) where monoclonal antibodies derived from hybrid c11. lines HIV p25-2 and HIV p2 15-13 were used to capture antigen and purified immunoglobulin from a high titered human sera 'conjugated to horseradish ,peroxidaise was used to &det,)t captured antigen. A 2 hiour and overnight (16-18 hours) incubation format with an antigen containing sample are described.
a. Conjugation of Purified Immunoglobulin and Horseradish peroxidase 99OW 04 mmunoglobulin from high, titered AIDS positive human sera wa6 purifPed by precipitation in ammonium sulfate, extensive dialysis ar~d elution .'from, a DE-5i2 cellulose column (Whatman). Purified immunoglc.7-ulin was conjugated to horseradish peroxidase (Calbiochem) using the procedure of Nakane 20 *t a. (eJjj 1974, 21.:1084) with 20" the following medi.fications. Purified immunoglobulin X was adjusted to 4.0 mg/mi and d~ialyzed against 0.2 M sodtum carbonate/l M Nadl pH 9.5. Purified Horseradish Peroxidase (URP) was oxidized with 0.07 M sodium periodate and~ conjugated to the immunoglobulin using a molar ratio of 1:5 (ab:HRP) for 30 minutes.
The reaction mixture was stopped ulith sodium boro- 1hydride. The resultant product was precipitated with saturated ammonium sulfate and the precipitate, dialyzed against a buffer of 100 mM TRIS/l M NaCi.
The conjugate was then adjusted to 4 mg/mi and diluted to 2 mg/mi with glycerol.
b. $tandard Curve,, with Purified Virus in Human Plamma and Cell Culture Media Ascites derived- 'from hylbridotma cell line;..
HIV-p25-2 (ATCC No HB9408) were dilut pH 8.5, and 200 microtiter strips.
incubated for abou Antibody solution aspiratioi before sucrose in PBS was at room temperature aspiration and the room temperature.
HB9407) and HIV-p25-3 (ATCC No.
;ed 1:5,000 in 25 mM Tris buffer, ul was added to each well of Nunc The strips were sealed and t 16-18 hours st room temperature.
was removed from the well by a blocking solution of 0.3% BSA, Sadded and incubated for 60 minutes Blocking solution was removed by strips were allowed to air dry at The strips could then be used .e 0000 0O
S~
0I 0 immediately or couldc be stored for up to eight months at 4* without significant loss of reactivity.
Samples were made up of 0-500 pg/ml purified inactivated virus (LAV) diluted in either normal human plasma or cell culture media. Two hundred micrcliters of each virus concentration was added to each of three wells with 50 ul of Triton X-100 in water. For the test employing a 2 hour incubation period, 50 ul of immunoglobulin/HRP conjugate (about 100 ug/ml) in 1% normal goat serum, citrate buffer, pH 7.0 was added and the we; I incubated 2 hours at 37"C with gentle agitation, In the overnight (16-18 hour) format, the 25 samples in Triton X-100/water were incubated in the wells overnight at 37C, and then the conjugate added, followed by an additional 2 hour incubation at 37'C.
The solution was then removed from the wells by aspiratic.n and the wells were then washed with 0.05% Tween 20 in 0.15 M NaCl six times. Two hundred microlitera of substrate (80 ug/ml tetramethylbenzidine, 0.0015% hydrogen peroxide, cijtrate/ phosphate buffer, pH 6.0) was added to each well eind incubated at room temperature for 30 minutes before the reaction was stopped by the addition of 1 N HSO0 4 and colormetric reactions were quantitated bj the optical density ratio at 450:630 nm.
*i 0&
S.
p. 5
S.
*5
I-
-ji IIr -37- -26- Results. for the 2 hour and 24 hour formats of the sincjle-wash HIV antigen EIA in normal human sera and celX culture media are shown in Table IV. The sensitivities of each format were extrapolated from the results and about 59 pg/mi of virus can be detected in normal human plasma and about 70 pg/mi of virus in cell culture media using the 2 hour format while 32 ri 7ml of virus is detectable in both normal human p);asma and cell culture media using the longer, 16-18 hour, incubation step.
Table IV: Standard Curves of Virus Detection in Normal *0 6066: Human Plasma and Cell Culture Media Plasma HIV 2Hour 24 Hour- Antigen incubalion incubation (pg/ml) Cell Culture Media 2 Hour 24 Hour Incubation Incubation 00 00 0 0 0.
O 00 0 0 00 p000
S
~00e 0@ 0 0 00
S
O 0 00 500.0 0.419(.008) 1.235(.020) 20 250.0 0.245(.008) 0.682(.007) 125.0 0.125(.013) 0.405(.008) 62.5 0.082(.004) 0.200(.003) 31.0 0.Q58(.003) 0.127(.006) 15.5 0.047(.008) 0.072(.002) 25 83.0 0.039(.002) 0.049(.0101) Neg.
Cntrl. 0.028(.002) 0.031(.D05) 0. 527 002) 0.281(.013) 0.181(.001) 0. 122 .005) 0.100(.003) 0.097(.011) 0..093(.004) 1.400 (.013) 0.690( .014) 0. 380 .009) 0.215( .001) 0.139( .014) 0.081(.001) 0.060( .002) 0.088(.001) 0.039(.003) 1. S.D. Stahdard Deviation C. Specificity of Single Capture EIA Wash Format HIV Antigen The specificity of the HIV antigen capture ZIA for detecting qnly antiger,. of HIV-l isolates was demonstrated by t.osting HIV isolates including LAV-1, LAI, ELI (Pasteur institute, Montagnier), -27- ARV-2 (Levy, et CF-65 and CF-70 (Genetic Systems Corp., Seattle, WA) and heterologous virus including Human T cell Leukemia Virus I (HTLV-1), Simian T Cell Lymphotropic Virus III (STLV-III), Epstein-Barr Virus (EBV), and Cytomegalovirus (CMV) as well as the HUT and CEM transformed human cell lines. Viruses were grown using methods outlined above. After periods of about 3-7 days cell culture supernatanto were were removed and 200 ul was added to microtit.r wells and assayed by the HIV antigen capture EIA described in Example IIb. All HIV-1 isolates were positive in the HIV antigen capture EIA and none of the heter l'ogous viruses was cross reactive.
S d. HIV Antigen Capture EIA of Normal Donor Serum and Plasma Samples The HIV antigen capture EIA for detection of 2 antigens in serum or plasma specimens from a normal donor population was tested. A total of 500 serum or plasma specimens were tested in the overnight format i of the HIV antigen detection EIA described in Example IIb. A summary of the results for the donor S: 25 population screen indicates that 488 of the population were non-reactive and 12 were initially reactive. Of the twelve that were initially reactive, none was repeatably reactive.
e. Two Wash Format of the HIV Antigen Capture EIA Using Monoclonal Antibody for Capture and Detection of Antigen Example IIe illustrates an alternate format for the HIV antigen capture EIA which uses a wash step between the addition of the capture and detection antibodies. Also in this example monoclonal -28antibodies derived from the hybrid cell lines HIV-p25-6 (ATCC No. HB9409) and HIV-p25-7 (ATCC No.
HB9410) were conjugated to horseradish peroxidase and were used in the detection step. A clinical feasibility panel of sera from different diagnostic groups was tested by this assay format.
The wells of the microtiter strips were coated with monoclonal antibodies 25-2 and 25-3, sample preparation, and incubation were as described in Example lie. Serum and plasma samples were selected from the AIDS, ARC, LAS, healthy homosexual and normal donor populations. Following the incubation of the sample with the adsorbed monoclonal antibodies the S 15 sample was aspirated from the wells and the wells were :lo: washed with 0.05% Tween 20 in 0.15 M NaC1.
Monoclonal antibodies 25-6 and 25-7 from ascites fluid purified were conjugated with horseradish peroxidase as described in Example IIa and diluted 20 1:3,000 in a diluent containing 20% immunoglobulinfree mouse ascites fluid, 5% unrelated isotypic monoclonal antibody, 5% bovine serum albumin, 0.01% *e thimerosal, and 0.005% gentamicin in 150 mM NaCl, mM Tris, pH 7.2. Dilute conjugate, 200 ul, was added to each well and incubated for 1 hour at 37*C *before washing the wells as above. The remainder of the assay was carried out as described for the one wash assay described above.
Results obtained with the two wash monoclonal antibody capture/monoclonal antibody detection HIV antigen capture EIA with a clinical feasibility panel are given in Table V. Within the various diagnostic groups 75% of AIDS patients were positive for antigen, 57% of ARC, 17% of LAS, 12% of healthy homosexuals and none of the normal human aera samples was found to be positive for antigen.
ii I-D pror-eins.
-29- Table V: Clinical Feasibilit :y Panel, 2wo Wash Mono- HIV Antigen Capture EIA clonal/Monoclonal Format e C So e* ee S9 Diagnostic Group Healthy Normal Negative AIDS ARC LAS Homosexual Human Sera Control 0.1181 0.076 0.058 0.088 0.057 0.059 0.154 0.080 0.064 0.090 0.058 0.068 0.207 0.083 0.068 0.096 0.082 0.072 0.210 0.139 0.075 0.100 0.084 0.073 0.161 0.076 0.104 0.085 0.074 0.198 0.079 0.107 0.086 0.078 0.213 0.083 0.110 0.089 0.084 0.085 0.143 0.093 0.088 0.091 0.092 0.095 0.095 0.097 0.099 0.101 0.102 0.116 0.120 0.123 0.131 0.471 0.643 Optical density values below the line are greater than the cutoff value which was determined by taking the mean of the negative control and adding 0.050 optical density units. In this case the cutoff value was 0.123.
69 S9 Seroconversion of Chimpanzees Tested by hIV Antigen Detection and Antibody Detection Methods are needed to monitor the effectiveness of various vaccine and therapeutic preparations as I 1 ;Irl they are tested in animals and humans. In Example III the HIV antigen detection method of the instant invention is compared to a commercially available HIV antibody screening kit.
A chimpanzee was pre-bled and inoculated with HIV. Every two weeks the animal was bled and monitored for both antigen and antibody levels with the one wash overnight HIV antigen detection method described in Example IIb and the Genetic Systems LAV EIA Kit (Genetic Systems Corporation, Seattle, WA).
*Results are seen in Table VII and are summarized as follows. Antigen could be detected during the second week and before antibody levels were detectable.
S 15 Antibody titers were detectable the fourth week after inoculation and increased through week twelve.
Antigen levels decreased from week four as the antibody level increased. The data suggest that there is a period of time when an animal is potentially infectious before antibodies are detectable. The 20 antigenemia detected using the monoclonal antibodies of the present invention may be an earlier indicator of HIV infection in animals than antibody seroconversion.
S 9*
I:
P
-31- Table VII Comparison of HIV Antigen Detection and Antibody =IA in Testing for Seroconversion in a chimpanzee Serum Samn1 e Antigen Detection Antibody Detection pre-bleed week 2 week 4 week 6 week 8 week 10 week 12 0.118 0.497 0.209 0.032 0.038 0 0J6
NT
0.085 0.086 0.284 0.818 1.464 1.947 2.045
S
I*
9
S.
5 0
S
*69560
S
9.
S 5 0 a.
0* S 0*
S
1. NT Not Tested .0S1 a 9 1082RO03

Claims (3)

1. A method for determining the presence of HIV core antigen in a biological sample, comprising: a) incubating said biological sample with a monoclonal antibody capable of reacting with HIV p25 core protein, wherein said monoclonal antibody binds to an epitope inc7,uded within an amino acid sequence of the following peptide sequences: 1 (141) Met-Gln-Met-Leu-Lys -Glu-Thr-Ile-Asn-Glu-Glu-Ala-Ala-Glu-Trp-Asp- Arg-Val-His-Pro-Va1-His-Ala-Gly-Pro-Ile-Ala-Pro-Gly-Gln-Met-Acg- Glu-Pro-Arg-Gly-Ser-Asp-Ile-Ala-Gly-Thr-Thr-Ser-Thr; 1I (147) Ser-Pro-Thr-Ser-Ile-Leu-Asp-Ile-Arg-Gln-Gly-Pro-Lys-Glu-Pro-Phe- Arg-Asp-Tyr-Val-Asp-Arg-Phe-Tyr-Lys-Thr-Leu-Arg-Ala-Glu-Gln-Ala- Ser-Gln-Glu-Val-Lys-Asn-Trp-Norleu-Thr-Glu; 111 (88) Asn-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Val-Gn-Asn-Ali -An-Pro-Asp- Cys-Lys-Thr-Ile-Leu-LysAla-Leu-Glu-Pro-Ala-Ala-Thr-Leu-GluGlu 'ego Norleu-Norleu-Thr-Ala-Cys; and b) detecting the presence of immune complexes formed between the monoclonal antibody and an antigenic *E determinant of p25 core protein in the biological sample, and therefrom determining the presence or absence of HIV.
2. A method according to Claim 1, wherein said monoclonal antibody is selected from the group consisting of
25-3, 25-6 and 25-7 as hereinbefore desocibed. I 39 39 L NOB -32a- 3. A method for determining the presence of HIV core antigen in a biological sample, comprising: a) incubating said biological sample with a monoclonal antibody capable of binding with HiIV p25 core protein, wherein said monoclonal antibody binds to an epitope encoded by a DNA sequence within pGAG1, pGAG2, and pGAG3; and b) detecting the presence of immune complexes formed between the monoclonal antibody and an antigenic deter'minant of p25 core protein in the biological sample. 4. A method according to claim 3, wherein said monoclonal antibody is 25-2 as hereinbefore described. 5 e 39 NOB 1 1 -33- HIV core antigen in a biological ample, comprising: a) incubating said ioloalgical sample with a monoclonal antibody capabi of binding with HIV core protein, wherein s d monoclonal antibody binds to an epitope encoded a DNA sequence within pGAG1, pGAG2, and pGAG3; and b) detect g the presence of immune complexes formed between the monoclonal antibody and the antigenic dete inant in the biological sample. 4. A method according to claim 3, wherein said 0O 0O 0 0 5. A method for detecting and/or Squantitating HIV core antigen in a biological sample, said method comprising: a) incubating said biological sample with one 0 00 or more capture monoclonal antibodies which bind 0 0 core protein, wherein said capture monoclonal 0 s 20 antibodies bind to an epitope within an amino acid sequence of the following peptide sequences: see: 1(141) Met-Gln-Met-Leu-Lys-Glu-Thr-Ile-Asn-Glu-Glu-Ala-Ala- GlU-Trp-Asp-Arg-Val-His-Pro-Val-His-Ala-Gly-Pro-Ile- 25 Ala-Pro-Gly-Gln-Me't-Arg-Glu-Pro-Arg -Gly-Ser-Asp-lle- 0* t Aa-Gly-Thr-Thr-sFer-Thr; 11 (147) Ser-Pro-Thr-S4r-Ile-Leu-Asp-Ile-Arg-Gln-Gly-Pro-Lys- Glu-Pro-Phe-Atg-Asp-Tyr-,Val-Asp-Arg-Phe-Tyr-Lys-Thr- i Lou-Arg-Ala-G1U-Gln-A1a-Ser-GIn-Glu-Va1 -Lys-Asn-Trp- Norleu-Thr-Glu; 111 (88) ARn-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Val-Gln-Asn-Ala-Asn- Pro-sp*-Cys-Lys-Thr-Ile-Leu-Lys-Ala-Leu-Glu-Pro-Ala- 't ],.a-Thr-Leu-Glu-Glu-Norleu-NorleU-Thr-Ala-Cys; *1 C. -34- b) incubating either simultaneously or sequentially with step said biological sample with a labeled antibody composition binding to HIV core antigen such that specific binding occurs, thereby forming a reaction mixture; and c) detecting the reaction mixture formed in step to determine the amount of label associated with an antigenic determinant of p25 core protein and thereby detecting and/or quantitating HIV or core antigens thereof present in said sample. 6. A method according to claim 5, wherein said capture monoclonal antibodies are immobilized on a solid phase. 7. A method according to claim 5 or claim 6, wherein said labeled antibody composition comprises a polyclonal S antiserum containing antibodies to HIV core proteins. 8. A method according to any one of claims 5 to 7, wherein the step of detection is by enzyme reaction, fluorescencet radioactivity, cell lysis, or luminescent emission. S 9. A method according to any one of claims 5 to 8, S wherein said capture monoclonal antibodies are selected from the group consisting of 25-3, 25-6, and 25-7 as hereinbefore described. A method according to claim 5, wherein said labeled antibody composition comprises one or more monoclonal antibodies which bind to HIV core proteins. 393 L NOB 11, A method according to claim iC0, wherein said labeled monoclonal antibody binds to an epitope within an amino acid sequence of the following peptide sequences: 1 (141) Met-Gln-Net-Leu-Lys-Glu-Thr-',Ile-Asn-Glu-Glu- ,Ala-MUa- Glu-Trp-Asp-Arg-Val-His-Pro-~Val-Hi-Aa-Gly-Pro-Ile- Ala-Pro-Gly-Gln'-Met-Arg-Glu-Pro-A,' -Gly-Ser-Asp-Ile- Ala-Gly-Thr-Thr-Ser-Thr; II (147) Glu-Pro-Phe-Arg-Asp-Tyr-Val -Asp-Arg-Phe -Tyr-Lys-Thr- Leu-Arg-Al a-Glu-Gln-Al a-Ser-Gl n-Glu-Val1-Lys -Asn-Trp- see* Norleu-Thr-Glu; and 15111, (88) se Asn-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Val-Gln-Asn-Ala-Asn- sees**Pro-Asp-Cys-Lys-Thr-Ile-Leu-Lys-Ala-Leu-Glu-Pro-Ala- Ala-Thr-Leu-Glu-Glu-Norleu-Norlet,-Thr-Ala-Cys. 0* 12. An. Iimtrtal i zd e~l- 4e-se-] ev It-ed-f-rem--- *,49 a~ 20 the group consisting of HIV-p25-2,elo( HIV-p25-3, see@ HIV-p25-6 and HIV-p25-7. 1.3. A monoclonal a b~ody produced by a cell 25line according to claim 12 6* *14. A m, oclona. antibody capable of binding to an antige c determinant of HIV p25 core protein, wherein e monoclonal ant ibtpdy immunologically compete f or the binding of a monoclonal antibody prodlueed by a eel 12. A monoclonal antibody capable of binding to an antigenic determinant of HIV p25 core protein, wherein the monoclonal antibody immunologically competes for the binding of a monoclonal antibody przoduced by a cell 1.Line selected from the group HIV-p25-2 4HIV-p25-3, HIY p25 6 and] HIV p25 :7 *a-s- hereinbefore described. S. S S S S S S. S S S* 0** S* S. 9.55 S. S S S .55555 3C~ NOB ,L T i 'ZI 13 3AY. A kit for detecting the presence of HIV core antigens, said kit comprising compartments containing a, first antibody composition wherein said antibody composition comprises a monoclonal antibody which binds to an epitope wit'in an amino acid sequence of the following peptid sequences: 1 (141) Met-Gln-Met-Leu-Lys-lu-Thr-Ile-Asn-Glu-Glu-Ala-Ala- Glu-Trp-Asp-rg-Val-His-Pro-Val-His-Ala-Gly-Pro-Ile- Ala-Pro-Gly-Gln-Met-Arg-Glu-Pro-rg-Gly-Ser-Asp-Ile- Ala-Gly-Thr-Thr-Ser-Thr; 11 (147) Ser-Pro-Thr--Ser-Ile-Leu-Asp-Ile-Arg-Gln-Gly-Pro-Lys- Glu-Pro-Phe-Arg-Asp-Tyr-Val-Asp-Arg-Phe-Tyr-Lys-Thr- 0@ Norleu-Thr-Glu; 5 111 (88) Asn-Trp-Norleu-Thr-Glu-Thr-Leu-Leu-Va1-Gln-Asn-Ala-Asn- Pro-Asp-Cys-Lys-Thr-I1e-Leu-Lys-Ala-Leu-Glu-Pro-Ala- Ala-Thr-ILeu-G1u-Glu-Norleu-Norleu-Thr-Ala-Cys; Ve and a second antibody composition which binds to HTV sees core proteins, and labels providing for a detectable signal covalently bonded to said second antibody composition or bonded to antibodies reacti-ve with said r r 25 25 second antibody composition. h 1-tanrdrnii nt clai __i8wherein-% said monocl nal. antibody is selectec' from the group consisting of 2-3, 25-6, and 25-7. A metho accordinq to claim 1 substantially as hereinbefore describeth referene t any one O the examples. 3 aTED: 22 April 1988 PHILLIPS ORMONDE FITZPATRICK Attorneys for: CEN ETIc SYST'MS_._R(P 1Cfl ptTn ri I*i I Ill B It I1:, -38- 14. A kit according to claim 13, wherein said monoclonal antibody is selected from the group consisting of 25-3, 25-6, and 25-7 as hereinbefore described. 15. A method a hereinbefore describ examples. DATED: 9 APRIL 1992 PHILLIPS ORMONDE FI' Attorneys for: GENETIC SYSTEMS CORPO A ccording ed with to claim 1 reference to substantially as any one of the TZPATRICK RATION *1 6346i U U 3 NOB
AU15080/88A 1987-05-01 1988-04-22 Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use Expired AU625720B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4502687A 1987-05-01 1987-05-01
US045026 1987-05-01

Publications (2)

Publication Number Publication Date
AU1508088A AU1508088A (en) 1988-11-03
AU625720B2 true AU625720B2 (en) 1992-07-16

Family

ID=21935613

Family Applications (1)

Application Number Title Priority Date Filing Date
AU15080/88A Expired AU625720B2 (en) 1987-05-01 1988-04-22 Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use

Country Status (1)

Country Link
AU (1) AU625720B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7720187A (en) * 1986-08-20 1988-05-19 Genetic Systems Corporation Monoclonal antibodies and peptides useful in treating and diagnosing HIV infections
AU600227B2 (en) * 1985-01-21 1990-08-09 Centre National De La Recherche Scientifique Monoclonal antibodies against core proteins of lymphadenopathy-associated-viruses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU600227B2 (en) * 1985-01-21 1990-08-09 Centre National De La Recherche Scientifique Monoclonal antibodies against core proteins of lymphadenopathy-associated-viruses
AU7720187A (en) * 1986-08-20 1988-05-19 Genetic Systems Corporation Monoclonal antibodies and peptides useful in treating and diagnosing HIV infections

Also Published As

Publication number Publication date
AU1508088A (en) 1988-11-03

Similar Documents

Publication Publication Date Title
JP4097162B2 (en) HCV-specific peptides, agents for them and their use
US5104790A (en) Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use
US4812556A (en) Synthetic peptide antigen for the detection of HIV-2 infection
US5017687A (en) Peptides for the detection of HTLV-1 infection
CA1340919C (en) Mouse monoclonal antibodies to hiv-1p24 and their use in diagnostic tests
US5087557A (en) Human monoclonal antibody to lymphadenopathy-associated virus
RU2300769C2 (en) Method for simultaneous detection of antigens and antibodies raised against infectious microorganism
JPS63225398A (en) Synthetic polypeptide and antibody relating to epstein-barr virus initial antigen (diffusion)
JP2626680B2 (en) Human monoclonal antibody against lymph node damage related virus
CA2009198C (en) Monoclonal antibody for differentiating hiv-2 from hiv-1 seropositive individuals
EP0446273A1 (en) Monoclonal antibodies to feline-t-lymphotropic lentivirus
JP2001504572A (en) Assays for detecting HIV antigens and HIV antibodies
EP0290893B1 (en) Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use
CA2171144A1 (en) Human t-cell line infected with hiv-2 which secretes functionally intact hiv-2 gp160
CA1340157C (en) Hiv peptides and methods for detection of hiv
JP3506252B2 (en) Analysis and method of HTLV-I / HTLV-II
EP0335134B1 (en) Mouse monoclonal antibody to human immunodeficiency virus gp41 protein
US20030118985A1 (en) Mouse monoclonal antibody (5-21-3) to human immunodeficiency virus gp41 protein
AU625720B2 (en) Monoclonal antibodies to specific antigenic regions of the human immunodeficiency virus and methods for use
EP0386713A2 (en) Immunoassay for antibodies to HIV
KR20000041180A (en) Synthetic oligopeptide for diagnosis of haemorrhage fever with renal syndrome and method thereof
Nielsen et al. Antigen-antibody reaction in solution in capture competition immunoassay for human immunodeficiency virus antibodies
EP0424931A2 (en) Immunoassays which select virus-specific neutralizing antibodies
JPH02500590A (en) peptide