AU4852593A - Fuel composition for two-cycle engines - Google Patents
Fuel composition for two-cycle enginesInfo
- Publication number
- AU4852593A AU4852593A AU48525/93A AU4852593A AU4852593A AU 4852593 A AU4852593 A AU 4852593A AU 48525/93 A AU48525/93 A AU 48525/93A AU 4852593 A AU4852593 A AU 4852593A AU 4852593 A AU4852593 A AU 4852593A
- Authority
- AU
- Australia
- Prior art keywords
- molybdenum
- sulfur
- compound
- carboxylic acid
- fuel composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims description 132
- 239000000446 fuel Substances 0.000 title claims description 52
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims description 66
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 62
- 229910052717 sulfur Inorganic materials 0.000 claims description 62
- 239000011593 sulfur Substances 0.000 claims description 62
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 60
- 229910052750 molybdenum Inorganic materials 0.000 claims description 60
- 239000011733 molybdenum Substances 0.000 claims description 60
- -1 alkali metal molybdate Chemical class 0.000 claims description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 39
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 37
- 239000000314 lubricant Substances 0.000 claims description 31
- 239000000654 additive Substances 0.000 claims description 30
- 229960002317 succinimide Drugs 0.000 claims description 30
- 125000004429 atom Chemical group 0.000 claims description 27
- 230000000996 additive effect Effects 0.000 claims description 25
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 229910017464 nitrogen compound Inorganic materials 0.000 claims description 20
- 150000002830 nitrogen compounds Chemical class 0.000 claims description 20
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 19
- 238000009472 formulation Methods 0.000 claims description 18
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 18
- 230000002378 acidificating effect Effects 0.000 claims description 16
- 239000005078 molybdenum compound Substances 0.000 claims description 16
- 150000002752 molybdenum compounds Chemical class 0.000 claims description 16
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 15
- 239000002199 base oil Substances 0.000 claims description 15
- 229920000768 polyamine Polymers 0.000 claims description 15
- 239000002585 base Substances 0.000 claims description 14
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- 229940014800 succinic anhydride Drugs 0.000 claims description 12
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 11
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 11
- 239000002270 dispersing agent Substances 0.000 claims description 11
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 claims description 11
- 229960001124 trientine Drugs 0.000 claims description 11
- 239000003963 antioxidant agent Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000001050 lubricating effect Effects 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 150000001412 amines Chemical class 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 239000005077 polysulfide Substances 0.000 claims description 9
- 229920001021 polysulfide Polymers 0.000 claims description 9
- 150000008117 polysulfides Polymers 0.000 claims description 9
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 8
- 239000011609 ammonium molybdate Substances 0.000 claims description 8
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 8
- 229940010552 ammonium molybdate Drugs 0.000 claims description 8
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 7
- 229910052945 inorganic sulfide Inorganic materials 0.000 claims description 7
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 claims description 7
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 claims description 6
- 150000001408 amides Chemical class 0.000 claims description 6
- 239000003112 inhibitor Substances 0.000 claims description 6
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 claims description 6
- YUKQRDCYNOVPGJ-UHFFFAOYSA-N thioacetamide Chemical compound CC(N)=S YUKQRDCYNOVPGJ-UHFFFAOYSA-N 0.000 claims description 6
- DLFVBJFMPXGRIB-UHFFFAOYSA-N thioacetamide Natural products CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 5
- CYEJMVLDXAUOPN-UHFFFAOYSA-N 2-dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=CC=C1O CYEJMVLDXAUOPN-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 125000005541 phosphonamide group Chemical group 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- DMSZORWOGDLWGN-UHFFFAOYSA-N ctk1a3526 Chemical compound NP(N)(N)=O DMSZORWOGDLWGN-UHFFFAOYSA-N 0.000 claims description 3
- PTISTKLWEJDJID-UHFFFAOYSA-N sulfanylidenemolybdenum Chemical compound [Mo]=S PTISTKLWEJDJID-UHFFFAOYSA-N 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 claims description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims 4
- 230000003078 antioxidant effect Effects 0.000 claims 2
- 150000001735 carboxylic acids Chemical class 0.000 claims 2
- JLYVRXJEQTZZBE-UHFFFAOYSA-N ctk1c6083 Chemical compound NP(N)(N)=S JLYVRXJEQTZZBE-UHFFFAOYSA-N 0.000 claims 1
- NHWGPUVJQFTOQX-UHFFFAOYSA-N ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium Chemical compound CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC NHWGPUVJQFTOQX-UHFFFAOYSA-N 0.000 claims 1
- APVPOHHVBBYQAV-UHFFFAOYSA-N n-(4-aminophenyl)sulfonyloctadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NS(=O)(=O)C1=CC=C(N)C=C1 APVPOHHVBBYQAV-UHFFFAOYSA-N 0.000 claims 1
- 239000003921 oil Substances 0.000 description 21
- 235000019198 oils Nutrition 0.000 description 21
- 239000004215 Carbon black (E152) Substances 0.000 description 17
- 229930195733 hydrocarbon Natural products 0.000 description 17
- 150000002430 hydrocarbons Chemical class 0.000 description 17
- 150000002751 molybdenum Chemical class 0.000 description 13
- 239000010687 lubricating oil Substances 0.000 description 12
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 10
- 239000011541 reaction mixture Substances 0.000 description 8
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- RREANTFLPGEWEN-MBLPBCRHSA-N 7-[4-[[(3z)-3-[4-amino-5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidin-2-yl]imino-5-fluoro-2-oxoindol-1-yl]methyl]piperazin-1-yl]-1-cyclopropyl-6-fluoro-4-oxoquinoline-3-carboxylic acid Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(\N=C/3C4=CC(F)=CC=C4N(CN4CCN(CC4)C=4C(=CC=5C(=O)C(C(O)=O)=CN(C=5C=4)C4CC4)F)C\3=O)=NC=2)N)=C1 RREANTFLPGEWEN-MBLPBCRHSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000003599 detergent Substances 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 229910052751 metal Chemical class 0.000 description 5
- 239000002184 metal Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 4
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 239000010705 motor oil Substances 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 4
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920002367 Polyisobutene Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005461 lubrication Methods 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 150000002194 fatty esters Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 150000008039 phosphoramides Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 239000011684 sodium molybdate Substances 0.000 description 2
- 235000015393 sodium molybdate Nutrition 0.000 description 2
- 239000001384 succinic acid Substances 0.000 description 2
- MRMOZBOQVYRSEM-UHFFFAOYSA-N tetraethyllead Chemical compound CC[Pb](CC)(CC)CC MRMOZBOQVYRSEM-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- PAAZPARNPHGIKF-UHFFFAOYSA-N 1,2-dibromoethane Chemical compound BrCCBr PAAZPARNPHGIKF-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- OILQNNHOQFRDJH-UHFFFAOYSA-N 1-hexadecylsulfanylhexadecane Chemical compound CCCCCCCCCCCCCCCCSCCCCCCCCCCCCCCCC OILQNNHOQFRDJH-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NZXZINXFUSKTPH-UHFFFAOYSA-N 4-[4-(4-butylcyclohexyl)cyclohexyl]-1,2-difluorobenzene Chemical compound C1CC(CCCC)CCC1C1CCC(C=2C=C(F)C(F)=CC=2)CC1 NZXZINXFUSKTPH-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- ANHQLUBMNSSPBV-UHFFFAOYSA-N 4h-pyrido[3,2-b][1,4]oxazin-3-one Chemical group C1=CN=C2NC(=O)COC2=C1 ANHQLUBMNSSPBV-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- OXPCWUWUWIWSGI-MSUUIHNZSA-N Lauryl oleate Chemical compound CCCCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC OXPCWUWUWIWSGI-MSUUIHNZSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910015686 MoOCl4 Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- MJCPRFASSBVGQD-OHNCOSGTSA-N Palmityl linoleate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/C\C=C/CCCCC MJCPRFASSBVGQD-OHNCOSGTSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229920002807 Thiomer Polymers 0.000 description 1
- 241000364021 Tulsa Species 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000006079 antiknock agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- LUFPJJNWMYZRQE-UHFFFAOYSA-N benzylsulfanylmethylbenzene Chemical compound C=1C=CC=CC=1CSCC1=CC=CC=C1 LUFPJJNWMYZRQE-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- 229940113088 dimethylacetamide Drugs 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- NMBYRULZXULRQF-UHFFFAOYSA-N ethene;piperazine Chemical compound C=C.C1CNCCN1.C1CNCCN1 NMBYRULZXULRQF-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- JYTMDBGMUIAIQH-UHFFFAOYSA-N hexadecyl oleate Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCC=CCCCCCCCC JYTMDBGMUIAIQH-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000006080 lead scavenger Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- AXOJRQLKMVSHHZ-UHFFFAOYSA-N methyl 1-methyl-1,2,3,6-tetrahydropyridin-1-ium-5-carboxylate;bromide Chemical compound Br.COC(=O)C1=CCCN(C)C1 AXOJRQLKMVSHHZ-UHFFFAOYSA-N 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- SFPKXFFNQYDGAH-UHFFFAOYSA-N oxomolybdenum;tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.[Mo]=O SFPKXFFNQYDGAH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- JYTMDBGMUIAIQH-ZPHPHTNESA-N palmityl oleate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC JYTMDBGMUIAIQH-ZPHPHTNESA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 239000010499 rapseed oil Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229940066675 ricinoleate Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/06—Use of additives to fuels or fires for particular purposes for facilitating soot removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/08—Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/16—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/52—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
- C10M133/56—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M143/00—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
- C10M143/06—Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/18—Complexes with metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M167/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1616—Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/16—Hydrocarbons
- C10L1/1625—Hydrocarbons macromolecular compounds
- C10L1/1633—Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
- C10L1/1641—Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/20—Organic compounds containing halogen
- C10L1/201—Organic compounds containing halogen aliphatic bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/20—Organic compounds containing halogen
- C10L1/202—Organic compounds containing halogen aromatic bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/234—Macromolecular compounds
- C10L1/238—Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/2383—Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/301—Organic compounds compounds not mentioned before (complexes) derived from metals
- C10L1/303—Organic compounds compounds not mentioned before (complexes) derived from metals boron compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/305—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/30—Organic compounds compounds not mentioned before (complexes)
- C10L1/305—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
- C10L1/306—Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond) organo Pb compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/09—Metal enolates, i.e. keto-enol metal complexes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
- C10M2215/082—Amides containing hydroxyl groups; Alkoxylated derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/12—Partial amides of polycarboxylic acids
- C10M2215/122—Phtalamic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/26—Amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/046—Polyamines, i.e. macromoleculars obtained by condensation of more than eleven amine monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/06—Macromolecular compounds obtained by functionalisation op polymers with a nitrogen containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/09—Complexes with metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/255—Gasoline engines
- C10N2040/26—Two-strokes or two-cycle engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/025—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Lubricants (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Cosmetics (AREA)
Description
FUEL COMPOSITION FOR TWO-CYCLE ENGINES
BACKGROUND OF THE INVENTION
The present invention relates to a fuel composition for two-cycle internal combustion engines which comprises a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a lubricating oil and an additive formulation containing a molybdenum/sulfur complex of a basic nitrogen compound.
Over the past several decades the use of spark-ignited two-cycle (two-stroke) internal combustion engines including rotary engines such as those of the Wankel type has steadily increased. They are presently found in power lawn mowers and other power-operated garden equipment, power chain saws, pumps, electrical generators, marine outboard engines, snowmobiles, motorcycles, and the like.
The increasing use of two-cycle engines coupled with increasing severity of the conditions in which they have operated has led to an increasing demand for oils to adequately lubricate such engines. Among the problems associated with lubrication of two-cycle engines are piston ring sticking, rusting, lubrication failure of connecting rods and main bearings and the general formation on the engine's interior surface of carbon and varnish deposits. The formation of varnish is a particularly vexatious problem since the build-up of varnish on piston and cylinder walls is believed to ultimately result in ring sticking which leads to failure of the sealing function of piston rings. such seal failure causes loss of cylinder compression which is particularly damaging in two-cycle engines because they depend on suction to draw the new fuel charge into the
exhausted cylinder. Thus, ring sticking can lead to deterioration in engine performance, and unnecessary consumption of fuel and/or lubricant. Spark plug fouling and engine port plugging problems also occur in two-cycle engines.
A variety of compounds have been proposed as additives for fuel-lubricating oil mixtures to be used in two-cycle internal combustion engines. For example, U.S. Patent No. 4,708,809 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one alkyl phenol having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms. Preferably, such lubricant composition will also contain a detergent- dispersant additive selected from (i) a neutral or basic metal salt of an organic sulfur acid, phenol or carboxylic acid, (ii) a hydrocarbyl-substituted amine, (iii) an acylated, nitrogen-containing compound having a substituent of at least 10 aliphatic carbon atoms, (iv) a nitrogen-containing condensate of a phenol, aldehyde and amino compound, and (v) an ester of a substituted polycarboxylic acid.
U.S. Patent No. 4,724,091 to Davis discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of a mixture of at least one alkyl phenol and at least one amino phenol, each phenol having at least one hydrocarbon-based group of at least about 10 aliphatic carbon atoms. Preferably, this composition will additionally contain a detergent-dispersant additive.
U.S. Patent No. 4,740,321 to Davis et al. discloses a lubricant composition for two-cycle engines comprising a major amount of an oil of lubricating viscosity and a minor amount of at least one sulfurized alkyl phenol or metal salt thereof having at least one hydrocarbon-based group of at least 10 aliphatic carbon atoms. This lubricant composition will also preferably contain a detergent-dispersant additive.
U.S. Patent No. 4,705,643 to Nemo discloses a lubricating oil composition for two-cycle engines comprising a lubricating oil and an ashless detergent additive which is the hydrolyzed reaction product of an aliphatic branched chain carboxylic acid of 16 to 20 carbon atoms and a polyamine of at least 3 amine groups. Preferably, the ashless detergent additive is the hydrolyzed reaction product of isostearic acid and tetraethylenepentamine.
U.S. Patent No. 4,994,196 to Kagaya et al. discloses a two-cycle engine oil composition comprising a base oil and a calcium phenate detergent additive, wherein the base oil is a mixture of (a) a copolymer of an alpha-olefin with an ester of a dicarboxylic acid and (b) an ester of pentaerythritol and a fatty acid.
U.S. Patent No. 3,888,776 to Silverstein discloses a two-cycle engine lubricant which comprises a major amount of a polypropylene glycol and minor amounts of a sulfurized oxymolybdenum organophosphorodithioate, a finely divided molybdenum disulfide and a halogenated hydrocarbon detergent, such as 1, 1, l-trichloroethylene, orthodichlorobenzene, perchlorinated biphenyl, and the like.
Molybdenum/sulfur complexes of basic nitrogen compounds have previously been described in the art as useful antioxidant additives for lubricant compositions finding application, for example, as crosshead diesel engine lubricants, automobile and railroad crankcase lubricants, lubricants for heavy machinery, greases for bearings, and the like.
For example, U.S. Patent No. 4,263,152 to King et al. discloses an antioxidant additive for lubricating oils which is prepared by combining an acidic molybdenum compound, a polar promoter, a basic nitrogen-containing compound and a sulfur source to form a molybdenum and sulfur-containing complex. Similar molybdenum-containing antioxidant additives are disclosed in U.S. Patent Nos. 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195; and 4,259,194. However, none of these patents teaches or appreciates the use of such antioxidant additives, or lubricating oils containing such additives, in admixture with fuels in two-cycle engines. Furthermore, none of these patents teaches or appreciates that such antioxidant additives would be effective deposit control agents or would reduce piston sticking when utilized in fuel-lubricating oil mixtures in two-cycle engines.
Moreover, as taught in the aforementioned U.S. Patent No. 4,708,809, the unique problems and techniques associated with the lubrication of two-cycle engines has led to the recognition by those skilled in the art of two-cycle engine lubricants as a distinct lubricant type.
Accordingly, the present invention is directed to minimizing the problems of varnish build-up and ring sticking in two-cycle engines through the provision of effective additives for fuel-lubricating oil combinations which
eliminate or reduce two-cycle engine varnish deposits and piston ring seal failure.
SUMMARY OF THE INVENTION
The present invention provides a fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:
(A) a major amount of a base oil of lubricating viscosity, and
(B) a minor amount of an additive formulation comprising:
(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphora ide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby form a sulfur- and molybdenum-containing composition,
(2) a carboxylic acid amide, and
(3) a succinimide.
Among other factors, the present invention is based upon the unexpected discovery that additive formulations containing a molybdenum/sulfur complex of a basic nitrogen compound, plus a carboxylic acid amide and a succinimide are surprisingly effective agents for deposit control and reduction of piston ring sticking when combined in fuel-lubricating oil mixtures in two-cycle engines.
DETAILED DESCRIPTION OF THE INVENTION
The fuel composition of the present invention will comprise a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising a base oil of lubricating viscosity and an additive formulation containing (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
The sulfurized molybdenum-containing composition employed in the present invention may be generally characterized as a molybdenum/sulfur complex of a basic nitrogen compound. Such molybdenum/sulfur complexes are known in the art and are described, for example, in U.S. Patent No. 4,263,152 to King et al., the disclosure of which is hereby incorporated by reference.
The precise molecular formula of the molybdenum compositions employed in this invention is not known with certainty; however, they are believed to be compounds in which molybdenum, whose valences are satisfied with atoms of
oxygen or sulfur, is either complexed by, or the salt of, one or more nitrogen atoms of the basic nitrogen containing compound used in the preparation of these compositions.
The molybdenum compounds used to prepare the molybdenum/sulfur complexes employed in this invention are acidic molybdenum compounds. By acidic is meant that the molybdenum compounds will react with a basic nitrogen compound as measured by ASTM test D-664 or D-2896 titration procedure. Typically these molybdenum compounds are hexavalent and are represented by the following compositions: molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate and other alkaline metal olybdates and other molybdenum salts such as hydrogen salts, e.g., hydrogen sodium molybdate, MoOCl4, Mo02Br2, Mo203Cl6, molybdenum trioxide or similar acidic molybdenum compounds. Preferred acidic molybdenum compounds are molybdic acid, ammonium molybdate, and alkali metal molybdates. Particularly preferred are molybdic acid and ammonium molybdate.
The basic nitrogen compound used to prepare the molybdenum/sulfur complexes must have a basic nitrogen content as measured by ASTM D-664 or D-2896. It is preferably oil-soluble. Typical of such compositions are succinimides, carboxylic acid amides, hydrocarbyl monoamines, hydrocarbon polya ines, Mannich bases, phosphoramides, thiophosphoramides, phoεphonamides, dispersant viscosity index improvers, and mixtures thereof. These basic nitrogen-containing compounds are described below (keeping in mind the reservation that each must have at least one basic nitrogen) . Any of the nitrogen-containing compositions may be after-treated with,
e.g., boron, using procedures well known in the art so long as the compositions continue to contain basic nitrogen. These after-treatments are particularly applicable to succinimides and Mannich base compositions.
The mono and polysuccinimides that can be used to prepare the molybdenum/sulfur complexes described herein are disclosed in numerous references and are well known in the art. Certain fundamental types of succinimides and the related materials encompassed by the term of art "succinimide" are taught in U.S. Patent Nos. 3,219,666; 3,172,892; and 3,272,746, the disclosures of which are hereby incorporated by reference. The term "succinimide" is understood in the art to include many of the amide, imide, and amidine species which may also be formed. The predominant product however is a succinimide and this term has been generally accepted as meaning the product of a reaction of an alkenyl substituted succinic acid or anhydride with a nitrogen-containing compound. Preferred succinimides, because of their commercial availability, are those succinimides prepared from a hydrocarbyl succinic anhydride, wherein the hydrocarbyl group contains from about 24 to about 350 carbon atoms, and an ethylene amine, said ethylene amines being especially characterized by ethylene diamine, diethylene triamine, triethylene tetra ine, and tetraethylene pentamine. Particularly preferred are those succinimides prepared from polyisobutenyl succinic anhydride of 70 to 128 carbon atoms and tetraethylene pentamine or triethylene tetramine or mixtures thereof.
Also included within the term "succinimide" are the cooligomers of a hydrocarbyl succinic acid or anhydride and a poly secondary amine containing at least one tertiary amino nitrogen in addition to two or more secondary amino
groups. Ordinarily this composition has between 1,500 and 50,000 average molecular weight. A typical compound would be that prepared by reacting polyisobutenyl succinic anhydride and ethylene dipiperazine.
Carboxylic acid amide compositions are also suitable starting materials for preparing the molybdenum/sulfur complexes employed in this invention. Typical of such compounds are those disclosed in U.S. Patent No. 3,405,064, the disclosure of which is hereby incorporated by reference. These compositions are ordinarily prepared by reacting a carboxylic acid or anhydride or ester thereof, having at least 12 to about 350 aliphatic carbon atoms in the principal aliphatic chain and, if desired, having sufficient pendant aliphatic groups to render the molecule oil soluble with an amine or a hydrocarbyl polyamine, such as an ethylene amine, to give a mono or polycarboxylic acid amide. Preferred are those amides prepared from (1) a carboxylic acid of the formula R2COOH, where R2 is C12_2o alkyl or a mixture of this acid with a polyisobutenyl carboxylic acid in which the polyisobutenyl group contains from 72 to 128 carbon atoms and (2) an ethylene amine, especially triethylene tetramine or tetraethylene pentamine or mixtures thereof.
Another class of compounds which are useful in this invention are hydrocarbyl monoamines and hydrocarbyl polyamines, preferably of the type disclosed in U.S. Patent No. 3,574,576, the disclosure of which is hereby incorporated by reference. The hydrocarbyl group, which is preferably alkyl, or olefinic having one or two sites of unsaturation, usually contains from 9 to 350, preferably from 20 to 200 carbon atoms. Particularly preferred
hydrocarbyl polyamines are those which are derived, e.g., by reacting polyisobutenyl chloride and a polyalkylene polyamine, such as an ethylene amine, e.g., ethylene diamine, diethylene tria ine, tetraethylene pentamine, 2-aminoethylpiperazine, 1, 3-propylene diamine, 1,2-propylenediamine, and the like.
Another class of compounds useful for supplying basic nitrogen are the Mannich base compositions. These compositions are prepared from a phenol or C9_20g alkylphenol, an aldehyde, such as formaldehyde or formaldehyde precursor such as paraformaldehyde, and an amine compound. The amine may be a mono or polyamine and typical compositions are prepared from an alkylamine, such as methylamine or an ethylene amine, such as, diethylene triamine, or tetraethylene pentamine, and the like. The phenolic material may be sulfurized and preferably is dodecylphenol or a C80_100 alkylphenol. Typical Mannich bases which can be used in this invention are disclosed in U.S. Patent No. 4,157,309 and U.S. Patent Nos. 3,649,229; 3,368,972; and 3,539,663, the disclosures of which are hereby incorporated by reference. The last referenced patent discloses Mannich bases prepared by reacting an alkylphenol having at least 50 carbon atoms, preferably 50 to 200 carbon atoms with formaldehyde and an alkylene polyamine HN(ANH)nH where A is a saturated divalent alkyl hydrocarbon of 2 to 6 carbon atoms and n is 1-10 and where the condensation product of said alkylene polyamine may be further reacted with urea or thiourea. The utility of these Mannich bases as starting materials for preparing lubricating oil additives can often be significantly improved by treating the Mannich base using conventional techniques to introduce boron into the composition.
Another class of composition useful for preparing the molybdenum/sulfur complexes employed in this invention are the phosphoramides and phosphonamides such as those disclosed in U.S. Patent Nos. 3,909,430 and 3,968,157, the disclosures of which are hereby incorporated by reference. These compositions may be prepared by forming a phosphorus compound having at least one P-N bond. They can be prepared, for example, by reacting phosphorus oxychloride with a hydrocarbyl diol in the presence of a monoamine or by reacting phosphorus oxychloride with a difunctional secondary amine and a mono-functional amine. Thiophosphoramides can be prepared by reacting an unsaturated hydrocarbon compound containing from 2 to 450 or more carbon atoms, such as polyethylene, polyisobutylene, polypropylene, ethylene, 1-hexene, 1,3-hexadiene, isobutylene, 4-methyl-l-pentene, and the like, with phosphorus pentasulfide and a nitrogen-containing compound as defined above, particularly an alkylamine, alkyldiamine, alkylpolyamine, or an alkyleneamine, such as ethylene diamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and the like.
Another class of nitrogen-containing compositions useful in preparing the molybdenum complexes employed in this invention includes the so-called dispersant viscosity index improvers (VI improvers) . These VI improvers are commonly prepared by functionalizing a hydrocarbon polymer, especially a polymer derived from ethylene and/or propylene, optionally containing additional units derived from one or more co-monomers such as alicyclic or aliphatic olefins or diolefins. The functionalization may be carried out by a variety of processes which introduce a reactive site or sites which usually has at least one oxygen atom on the polymer. The polymer is then contacted with a
1 nitrogen-containing source to introduce nitrogen-containing 2 functional groups on the polymer backbone. Commonly used 3 nitrogen sources include any basic nitrogen compound 4 especially those nitrogen-containing compounds and 5 compositions described herein. Preferred nitrogen sources 6 are alkylene amines, such as ethylene amines, alkyl amines, 7 and Mannich bases. 8 9 Preferred basic nitrogen compounds for use in this invention 0 are succinimides, carboxylic acid amides, and Mannich bases. 1 2 Representative sulfur sources for preparing the molybdenum
13 complexes used in this invention are sulfur, hydrogen
1* sulfide, sulfur monochloride, sulfur dichloride, phosphorus
15 pentasulfide, R2Sχ where R is hydrocarbyl, preferably Cj^0
16 alkyl, and x is at least 2, inorganic sulfides and
17 polysulfides such as (NH4)2Sχ, where x is at least 1, 18 thioacetamide, thiourea, and mercaptans of the formula RSH 19 where R is as defined above. Also useful as sulfurizing
20 agents are traditional sulfur-containing antioxidants such 2 211 as wax sulfides and polysulfides, sulfurized olefins,
22 sulfurized carboxylic and esters and sulfurized
23 ester-olefins, and sulfurized alkylphenols and the metal 24 salts thereof. 25 26 The sulfurized fatty acid esters are prepared by reacting 27 sulfur, sulfur monochloride, and/or sulfur dichloride with 28 an unsaturated fatty ester under elevated temperatures. 29 Typical esters include Cj-C20 alkyl esters of C8-C2 30 unsaturated fatty acids, such as palmitoleic, oleic, 31 ricinoleic, petroselinic, vaccenic, linoleic, linolenic, 32 oleostearic, licanic, paranaric, tariric, gadoleic, 33 arachidonic, cetoleic, etc. Particularly good results have 34
been obtained with mixed unsaturated fatty acid esters, such as are obtained from animal fats and vegetable oils, such as tall oil, linseed oil, olive oil, caster oil, peanut oil, rape oil, fish oil, sperm oil, and so forth.
Exemplary fatty esters include lauryl tallate, methyl oleate, ethyl oleate, lauryl oleate, cetyl oleate, cetyl linoleate, lauryl ricinoleate, oleyl linoleate, oleyl stearate, and alkyl glycerides.
Cross-sulfurized ester olefins, such as a sulfurized mixture of Cj0-C25 olefins with fatty acid esters of C10-C25 fatty acids and Cj-C25 alkyl or alkenyl alcohols, wherein the fatty acid and/or the alcohol is unsaturated may also be used.
Sulfurized olefins are prepared by the reaction of the ^-C^ olefin or a low-molecular-weight polyolefin derived therefrom with a sulfur-containing compound such as sulfur, sulfur monochloride, and/or sulfur dichloride.
Also useful are the aromatic and alkyl sulfides, such as dibenzyl sulfide, dixylyl sulfide, dicetyl sulfide, diparaffin wax sulfide and polysulfide, cracked wax-olefin sulfides and so forth. They can be prepared by treating the starting material, e.g., olefinically unsaturated compounds, with sulfur, sulfur monochloride, and sulfur dichloride. Particularly preferred are the paraffin wax thiomers described in U.S. Patent No. 2,346,156.
Sulfurized alkyl phenols and the metal salts thereof include compositions such as sulfurized dodecylphenol and the calcium salts thereof. The alkyl group ordinarily contains
from 9-300 carbon atoms. The metal salt may be preferably, a Group I or Group II salt, especially sodium, calcium, magnesium, or barium.
Preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, R2Sχ where R is hydrocarbyl, preferably Cj-C10 alkyl, and x is at least 3, mercaptans wherein R is CJ-CJQ alkyl, inorganic sulfides and polysulfides, thioacetamide, and thiourea. Most preferred sulfur sources are sulfur, hydrogen sulfide, phosphorus pentasulfide, and inorganic sulfides and polysulfides.
The polar promoter used in the preparation of the molybdenum complexes employed in this invention is one which facilitates the interaction between the acidic molybdenum compound and the basic nitrogen compound. A wide variety of such promoters are well known to those skilled in the art. Typical promoters are 1,3-propanediol, 1,4-butane-diol, diethylene glycol, butyl cellosolve, propylene glycol, 1,4-butyleneglycol, methyl carbitol, ethanolamine, diethanolamine, N-methyl-diethanol-amine, dimethyl formamide, N-methyl acetamide, dimethyl acetamide, methanol, ethylene glycol, dimethyl sulfoxide, hexamethyl phosphoramide, tetrahydrofuran and water. Preferred are water and ethylene glycol. Particularly preferred is water.
While ordinarily the polar promoter is separately added to the reaction mixture, it may also be present, particularly in the case of water, as a component of non-anhydrous starting materials or as waters of hydration in the acidic molybdenum compound, such as (NH4)6Mo7024.4 H20. Water may also be added as ammonium hydroxide.
A method for preparing the molybdenum/sulfur complexes used in this invention is to prepare a solution of the acidic molybdenum precursor and a polar promoter with a basic nitrogen-containing compound with or without diluent. The diluent is used, if necessary, to provide a suitable viscosity for easy stirring. Typical diluents are lubricating oil and liquid compounds containing only carbon and hydrogen. If desired, ammonium hydroxide may also be added to the reaction mixture to provide a solution of ammonium molybdate. This reaction is carried out at a temperature from the melting point of the mixture to reflux temperature. It is ordinarily carried out at atmospheric pressure although higher or lower pressures may be used if desired. This reaction mixture is treated with a sulfur source as defined above at a suitable pressure and temperature for the sulfur source to react with the acidic molybdenum and basic nitrogen compounds. In some cases, removal of water from the reaction mixture may be desirable prior to completion of reaction with the sulfur source.
in the reaction mixture, the ratio of molybdenum compound to basic nitrogen compound is not critical; however, as the amount of molybdenum with respect to basic nitrogen increases, the filtration of the product becomes more difficult. Since the molybdenum component probably oligomerizes, it is advantageous to add as much molybdenum as can easily be maintained in the composition. Usually, the reaction mixture will have charged to it from 0.01 to 2.00 atoms of molybdenum per basic nitrogen atom. Preferably from 0.4 to 1.0, and most preferably from 0.4 to 0.7, atoms of molybdenum per atom of basic nitrogen is added to the reaction mixture.
The sulfur source is usually charged to the reaction mixture in such a ratio to provide 1.5 to 4.0 atoms of sulfur per atom of molybdenum. Preferably from 2.0 to 4.0 atoms of sulfur per atom of molybdenum is added, and most preferably, 2.5 to 4.0 atoms of sulfur per atom of molybdenum.
The polar promoter, which is preferably water, is ordinarily present in the ratio of 0.1 to 50 moles of promoter per mole of molybdenum. Preferably from 0.5 to 25 and most preferably 1.0 to 15 moles of the promoter is present per mole of molybdenum.
As described above, the additive formulation employed in the present invention contains (1) a sulfurized molybdenum-containing composition, (2) a carboxylic acid amide, and (3) a succinimide.
The carboxylic amide component of the presently employed additive formulation may be any of the carboxylic acid amide compounds described herein as useful in the preparation of the molybdenum/sulfur complex. Preferred carboxylic acid amide components include those amides derived from a carboxylic acid of the formula R2COOH, wherein R2 is C12-C2Q alkyl, and an ethylene amine, such as triethylene tetramine or tetraethylene pentamine.
Similarly, the succinimide component of the presently employed additive formulation may be any of the succinimide compounds described herein as useful in the preparation of the molybdenum/sulfur complex. Preferred succinimide components include those derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene
amine, such as triethylene tetramine or tetraethylene pentamine.
The additive formulation employed in the present invention may additionally contain a flocculant inhibitor and/or a lubricity agent, such as a polyisobutene. If necessary, a diluent oil may also be included.
Other additives such as viscosity index improvers, antioxidants, dispersants, coupling agents, pour point depressants, extreme pressure agents, color stabilizers, rust inhibitors, anticorrosion agents, and the like, may also be present in the additive formulation.
The lubricant composition employed in the present invention comprises a major amount of a base oil of lubricating viscosity and a minor amount of the additive formulation described above.
The base oil employed may be any of a wide variety of oils of lubricating viscosity. Thus, the base oil can be a refined paraffin type base oil, a refined naphthenic base oil, or a synthetic hydrocarbon or non-hydrocarbon oil of lubricating viscosity. The base oil can also be a mixture of mineral and synthetic oils. For purposes of the present invention, the mineral lubricating oils are preferred, since they are presently in more general use in two-cycle engines.
The presently employed lubricant composition containing the additive formulation described herein can be conveniently prepared using conventional techniques by admixing the appropriate amount of each component of the additive formulation with a lubricating oil.
Generally, the amount of the molybdenum-containing additive will vary from about 0.05 to 15% by weight and preferably from about 0.2 to 10% by weight, based on the total lubricant composition, including base oil. The carboxylic acid amide component will vary from about 0.05 to 20% by weight and preferably from about 0.2 to 15% by weight. The succinimide component will vary from about 0.5 to 15% by weight and preferably from about 0.2 to 10% by weight.
The two-cycle engine fuel composition contemplated by the present invention comprises a major amount of fuel boiling in the gasoline range and minor amount of the lubricant composition disclosed herein.
For purposes of the present invention, the lubricant composition will generally be added directly to the fuel to form a mixture of lubricant and fuel which is then introduced into the two-cycle engine cylinder. Generally, the resulting fuel composition will contain from about 15 to 250 parts fuel per 1 part lubricant, and more typically about 50 to 100 parts fuel per 1 part lubricant. For some two-cycle engine applications, the lubricant may be directly injected into the combustion chamber along with the fuel or into the fuel just prior to the time the fuel enters the combustion chamber.
The fuel employed in the present fuel composition is a hydrocarbon distillate fuel boiling in the gasoline range. in such gasoline fuels, other fuel additives may also be included such as antiknock agents, e.g., methylcyclopentadienyl manganese tricarbonyl, tetramethyl or tetraethyl lead, or other dispersants or detergents such as various substituted amines, etc. Also included may be lead scavengers such as aryl halides, e.g., dichlorobenzene or
alkyl halides, e.g., ethylene dibromide. Additionally, antioxidants, metal deactivators, pour point depressants, corrosion inhibitors and demulsifiers may be present.
The following examples are presented to illustrate specific embodiments of this invention and are not to be construed in any way as limiting the scope of the invention.
EXAMPLES
Example 1
To a 5000 ml flask was added 114 grams molybdenum trioxide and 196 grams of water. Stirring was started and 1200 grams of a solution of a 45% concentrate in oil of the polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride having a number average molecular weight for the polyisobutenyl group of about 950 and tetraethylene pentamine, and 1200 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 51 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced 1244 grams of product containing 1.80% nitrogen, 5.63% molybdenum, and 3.57% sulfur.
Example 2
To a 5000 ml flask was added 52 grams molybdenum trioxide and 111 grams of water. Stirring was started and 1184 grams of a solution of a 45% concentrate in oil of the succinimide described in Example 1 and 1184 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 47 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced 1220 grams of product containing 1.94% nitrogen, 2.78% molybdenum, and 3.64% sulfur.
Example 3
To a 5000 ml flask was added 49 grams molybdenum trioxide and 105 grams of water. Stirring was started and 1133 grams of a solution of a 45% concentrate in oil of the succinimide described in Example 1 and 1133 grams of hydrocarbon thinner were added. The mixture was refluxed at 100°C for 3 hours. The temperature was gradually increased over approximately ι hour to 170°C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 22 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon
thinner. This produced 1163 grams of product containing 1.83% nitrogen, 2.79% molybdenum, and 1.97% sulfur.
Example 4
o a 5000 ml flask was added 1200 grams of a polyamide prepared from a Clg carboxylic acid and tetraethylene pentamine and containing 6.4% nitrogen, 1200 grams hydrocarbon thinner, 42 grams molybdenum trioxide, and go grams water. The mixture was refluxed at 100βC for 3 hours. The temperature was gradually increased over approximately 1 hour to 170"C while distilling water. The temperature was maintained an additional hour after the water was removed. The temperature was lowered to 100°C-120°C and the mixture filtered and returned to the reaction vessel. To the solution was added 21 grams of sulfur. The mixture was heated to 160°C-180°C for 7 hours. The pressure was slowly reduced to about 50 mm of mercury to remove the hydrocarbon thinner. This produced a product containing 5.88% nitrogen, 2.29% molybdenum, and 1.63% sulfur.
Example 5
The molybdenum/sulfur complexes of Examples 1, 2 and 4 were formulated to provide lubricant compositions containing 10% of the carboxylic acid amide reaction product of isostearic acid and tetraethylene pentamine, 2% of a polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride wherein the polyisobutenyl group has a number average molecular weight of about 950 and tetraethylene pentamine, 2% of the molybdenum/sulfur complex of Examples 1, 2 and 4, respectively, 5% of a polyisobutene having a number average
molecular weight of about 950 as a lubricity agent, 0.5% of a flocculant inhibitor, 1% of a diluent oil and about 79.5% of a base oil. The base oil contains about 10% of a 150 bright stock, about 70% of a mixture of 350N and 650N neutral oils, and about 20% of a petroleum distillate solvent.
Example 6 Two-Cvcle Gasoline Engine Test
This test was used to evaluate the detergency and general performance of the fuel composition of this invention in a two-cycle water-cooled outboard engine. Piston varnish, ring sticking and general engine deposits were evaluated.
The test engine used was an Outboard Marine Company Johnson Model No. J70ELEIE outboard engine, which is a 70 horsepower, water-cooled, three-cylinder, two-cycle engine.
The test procedure involved a two-hour break-in period, wherein the engine was run at 3,000 rpm for 1 hour, then at 4,000 rpm for 1 hour, using a fuel:lubricant ratio of 50:1.
The test was then conducted for 98 hours using a 50:1 fuel to lubricant ratio on a 55 minute wide-open throttle, 5 minute idle cycle. The total test time, including break-in, was 100 hours.
At the conclusion of the test, the engine was disassembled and rated. The average piston rating and average second-ring sticking rating for 3 cylinders was measured. in the rating system employed, the higher the numerical rating, the better the cleanliness performance, with 10.0
being the maximum rating. Except for the piston rings, the ratings are for cleanliness. The piston rings are rated for the degree of sticking, with a rating of 10.0 indicating a completely free piston ring.
The second-ring sticking values include a National Marine Manufacturers Association (NMMA) rating, a visual rating, and an adjusted rating, which is an average of the NMMA and visual ratings.
The reference oil employed in this test was NMMA reference oil TCW II, used as an industry standard in two-cycle engine tests to measure engine cleanliness. The TCW II reference oil is a standard mineral lubricating oil containing a commercial ashless dispersant for gasoline two-cycle engines. The reference oil is available from Citgo Petroleum Corporation, Tulsa, Oklahoma.
Engine test runs were performed with a 50:1 fuel to lubricant ratio, using lubricant compositions containing the molybdenum/sulfur complexes of Examples l, 2 and 4, formulated as described in Example 5. The results of the engine tests are shown in Table 1.
The results shown in Table 1 demonstrate that the fuel composition of the present invention is highly effective in reducing piston deposits and piston ring sticking in two-cycle engines, and generally exceeds the performance of a fuel containing the industry standard reference oil.
(a) Formulated as in Example 5.
Claims (36)
- WHAT IS CLAIMED IS:l. A fuel composition for two-cycle engines comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:(A) a major amount of a base oil of lubricating viscosity, and(B) a minor amount of an additive formulation comprising:(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphoramide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby form a sulfur- and molybdenum-containing composition, 1 (2) a carboxylic acid amide, and 2 3 (3) a succinimide. 4 5
- 2. The fuel composition of Claim 1, wherein the sulfur 6 source for component (1) is sulfur, hydrogen sulfide, 7 phosphorus pentasulfide, R2Sχ where R is hydrocarbyl,08 and x is at least 2, inorganic sulfides or inorganic 9 polysulfides, thioacetamide, thiourea, mercaptans of10 the formula RSH where R is hydrocarbyl, or a11 sulfur-containing antioxidant. 1213
- 3. The fuel composition of Claim 2, wherein the sulfur■*■* source for component (1) is sulfur, hydrogen sulfide,15 phosphorus pentasulfide, R2Sχ where R is C-*^16 hydrocarbyl, and x is at least 3, inorganic sulfides, 1 or inorganic polysulfides, thioacetamide, thiourea or18 RSH where R is Cj^0 alkyl, and the acidic molybdenum19 compound is molybdic acid, ammonium molybdate, or20 alkali metal molybdate.2122
- 4. The fuel composition of Claim 3, wherein said sulfur23 source is sulfur, hydrogen sulfide, RSH where R is C^Q24 alkyl, phosphorus pentasulfide, or (NH4)2Sχ., where x'25 is at least 1, said acidic molybdenum compound is26 molybdic acid, or ammonium molybdate, and said basic27 nitrogen compound is a succinimide, carboxylic acid28 amide, or Mannich base.2930
- 5. The fuel composition of Claim 4, wherein said basic31 nitrogen compound is a C24.350 hydrocarbyl succinimide,32 carboxylic acid amide, or a Mannich base prepared from33 a C9.20o alkylphenol, formaldehyde, and an amine.34
- 6. The fuel composition of Claim 5, wherein said basic nitrogen compound is a polyisobutenyl succinimide prepared from polyisobutenyl succinic anhydride and tetraethylene pentamine or triethylene tetramine.
- 7. The fuel composition of Claim 5, wherein said basic nitrogen compound is a carboxylic acid amide prepared from one or more carboxylic acids of the formula R2COOH, or a derivative thereof which upon reaction with an amine yields a carboxylic acid amide, wherein R2 is Cj2_35o alkyl or C12-35θ alkenyl and a hydrocarbyl polyamine.
- 8. The fuel composition of Claim 7, wherein R2 is C12_20 alkyl or C12_2o alkenyl and the hydrocarbyl polyamine is tetraethylene pentamine or triethylene tetramine.
- 9. The fuel composition of Claim 5, wherein said basic nitrogen compound is a Mannich base prepared from dodecylphenol, formaldehyde, and methylamine.
- 10. The fuel composition of Claim 5, wherein said basic nitrogen compound is a Mannich base prepared from c80-100 alkylphenol, formaldehyde and triethylene tetramine, tetraethylene pentamine, or mixtures thereof.
- 11. The fuel composition of Claim 1, wherein the polar promoter is water.
- 12. The fuel composition of Claim 1, wherein the carboxylic acid amide of component (2) is derived from a carboxylic acid of the formula R2COOH, wherein R2 is ci2-20 &lkyl» and an ethylene amine.
- 13. The fuel composition of Claim 1, wherein the succinimide of component (3) is derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine.
- 14. The fuel composition of Claim 1, wherein the lubricant composition contains about 0.05 to 15% by weight of the molybdenum-containing composition of component (1) , about 0.05 to 20% by weight of the carboxylic acid amide of component (2), and about 0.05 to 15% by weight of the succinimide of component (3) .
- 15. The fuel composition of Claim 1, wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.0 to 4.0 atoms of sulfur per atom of molybdenum.
- 16. The fuel composition of Claim 15, wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.5 to 4.0 atoms of sulf r per atom of molybdenum.
- 17. The fuel composition of Claim 1, wherein the additive . . . formulation further contains a flocculant inhibitor.
- 18. The fuel composition of Claim 17, wherein the additive formulation further contains a lubricity agent.
- 19. A method for reducing engine deposits and piston ring sticking in a two-cycle engine which comprises operating the two-cycle engine with a fuel composition comprising a major amount of fuel boiling in the gasoline range and a minor amount of a lubricant composition comprising:(A) a major amount of a base oil of lubricating viscosity, and(B) a minor amount effective to reduce engine deposits and piston ring sticking of an additive formulation comprising:(1) a sulfurized molybdenum-containing composition prepared by (i) reacting an acidic molybdenum compound and a basic nitrogen compound selected from the group consisting of a succinimide, a carboxylic acid amide, a hydrocarbyl monoamine, a hydrocarbyl polyamine, a Mannich base, a phosphoramide, a thiophosphora ide, a phosphonamide, a dispersant viscosity index improver, or a mixture thereof, in the presence of a polar promoter, to form a molybdenum complex wherein from 0.01 to 2 atoms of molybdenum are present per basic nitrogen atom, and the promoter is present in the ratio of 0.01 to 50 moles of polar promoter per mole of molybdenum; and (ii) reacting the molybdenum complex with a sulfur-containing compound in an amount sufficient to provide about 1.5 to 4.0 atoms of sulfur per atom of molybdenum, to thereby 1 form a sulfur- and molybdenum-containing 2 composition; 3 4 (2) a carboxylic acid amide; and 5 6 (3) a succinimide. 7 8
- 20. The method of Claim 19 wherein the sulfur source for 9 component (1) is sulfur, hydrogen sulfide, phosphorus 0 pentasulfide, R2Sχ where R is hydrocarbyl, and x is at 1 least 2, inorganic sulfides or inorganic polysulfides, 2 thioacetamide, thiourea, mercaptans of the formula RSH 3 where R is hydrocarbyl, or a sulfur-containing1 antioxidant. 516 21. The method of Claim 20 wherein the sulfur source for17 component (1) is sulfur, hydrogen sulfide, phosphorus18 pentasulfide, R2Sχ where R is C hydrocarbyl, and x is ■*■ at least 3, inorganic sulfides, or inorganic2 polysulfides, thioacetamide, thiourea or RSH where R is
- 21 CI^ alkyl, and the acidic molybdenum compound is 22 molybdic acid, ammonium molybdate, or alkali metal 23 molybdate. 24 25
- 22. The method of Claim 21 wherein said sulfur source is 26 sulfur, hydrogen sulfide, RSH where R is CJ.JQ alkyl, 27 phosphorus pentasulfide, or (NH4)2Sχ., where x' is at 28 least 1, said acidic molybdenum compound is molybdic 29 acid, or ammonium molybdate, and said basic nitrogen 30 compound is a succinimide, carboxylic acid amide, or 31 Mannich base. 32 33 34
- 01 23. The method of Claim 22 wherein said basic nitrogen02 compound is a C24_350 hydrocarbyl succinimide,03 carboxylic acid amide, or a Mannich base prepared from°* a C9_20) alkylphenol, formaldehyde, and an amine. 05
- 06 24. The method of Claim 23 wherein said basic nitrogen07 compound is a polyisobutenyl succinimide prepared from08 polyisobutenyl succinic anhydride and tetraethylene09 pentamine or triethylene tetramine.1011
- 25. The method of Claim 23 wherein said basic nitrogen12 compound is a carboxylic acid amide prepared from one1 or more carboxylic acids of the formula R2COOH, or a 14 derivative thereof which upon reaction with an amine yields a carboxylic acid amide, wherein R2 is C12.35016 alkyl or C12_350 alkenyl and a hydrocarbyl polyamine. 17 18
- 26. The method of Claim 25 wherein R2 is C12.20 alkyl or 19 c12-20 alkenyl and the hydrocarbyl polyamine is 2021 tetraethylene pentamine or triethylene tetramine.222_
- 27. The method of Claim 23 wherein said basic nitrogen,. compound is a Mannich base prepared from dodecylphenol,-5 formaldehyde, and methylamine.262_
- 28. The method of Claim 23 wherein said basic nitrogen28 compound is a Mannich base prepared from C80.ιoo29 alkylphenol, formaldehyde and triethylene tetramine, 30 tetraethylene pentamine, or mixtures thereof.31
- 32 29. The method of Claim 19 wherein the polar promoter is33 water. 34
- 30. The method of Claim 19 wherein the carboxylic acid amide of component (2) is derived from a carboxylic acid of the formula R2COOH, wherein R2 is C12. o alkyl, and an ethylene amine.
- 31. The method of Claim 19 wherein the succinimide of component (3) is derived from polyisobutenyl succinic anhydride, wherein the polyisobutenyl group contains from about 50 to 250 carbon atoms, and an ethylene amine.
- 32. The method of Claim 19 wherein the lubricant composition contains about 0.05 to 15% by weight of the molybdenum-containing composition of component (1) , about 0.05 to 20% by weight of the carboxylic acid amide of component (2), and about 0.05 to 15% by weight of the succinimide of component (3) .
- 33. The method of Claim 19 wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.0 to 4.0 atoms of sulfur per atom of molybdenum.
- 34. The method of Claim 33 wherein the molybdenum complex is reacted with the sulfur-containing compound in an amount sufficient to provide about 2.5 to 4.0 atoms of sulfur per atom of molybdenum.
- 35. The method of Claim 19 wherein the additive formulation further contains a flocculant inhibitor.
- 36. The method of Claim 35 wherein the additive formulation further contains a lubricity agent.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94384492A | 1992-09-11 | 1992-09-11 | |
US943844 | 1992-09-11 | ||
PCT/US1993/008471 WO1994006897A1 (en) | 1992-09-11 | 1993-09-09 | Fuel composition for two-cycle engines |
Publications (2)
Publication Number | Publication Date |
---|---|
AU4852593A true AU4852593A (en) | 1994-04-12 |
AU670118B2 AU670118B2 (en) | 1996-07-04 |
Family
ID=25480365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU48525/93A Ceased AU670118B2 (en) | 1992-09-11 | 1993-09-09 | Fuel composition for two-cycle engines |
Country Status (8)
Country | Link |
---|---|
US (1) | US20020038525A1 (en) |
EP (1) | EP0616635B1 (en) |
JP (1) | JP3495043B2 (en) |
AU (1) | AU670118B2 (en) |
CA (1) | CA2122825C (en) |
DE (1) | DE69322952T2 (en) |
SG (1) | SG71668A1 (en) |
WO (1) | WO1994006897A1 (en) |
Families Citing this family (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9610363D0 (en) * | 1996-05-17 | 1996-07-24 | Ethyl Petroleum Additives Ltd | Fuel additives and compositions |
US20030056431A1 (en) * | 2001-09-14 | 2003-03-27 | Schwab Scott D. | Deposit control additives for direct injection gasoline engines |
EP1497399B1 (en) * | 2002-04-19 | 2018-08-15 | The Lubrizol Corporation | Lubricant composition suitable for direct fuel injected, crankcase-scavenged two-stroke engines |
US6962896B2 (en) * | 2002-05-31 | 2005-11-08 | Chevron Oronite Company Llc | Reduced color molybdenum-containing composition and a method of making same |
HUP0300105A3 (en) * | 2003-01-13 | 2005-05-30 | Cserta Peter | A new application of phosphorus-nitrogen-metal complex layer |
EP1471130A1 (en) * | 2003-04-23 | 2004-10-27 | Ethyl Petroleum Additives Ltd | Fuel composition containing molybdenum source and metal-containing detergent, and its use in two-stroke engines |
ZA200600052B (en) * | 2003-06-23 | 2007-12-27 | Envirofuels Lp | Additive for hydrocarbon fuel and related process |
US7491248B2 (en) | 2003-09-25 | 2009-02-17 | Afton Chemical Corporation | Fuels compositions and methods for using same |
UY29142A1 (en) * | 2004-09-28 | 2006-11-30 | Envirofuels Lp | LIQUID OR LIQUID HYDROCARBON FUEL ADDITIVE FOR DIRECT FIRE BURNERS, OPEN CALLS AND RELATED PROCESSES |
AR052791A1 (en) * | 2004-11-15 | 2007-04-04 | Envirofuels Lp | SOLID FOR SOLID HYDROCARBON FUEL IN DIRECT FIRE BURNERS, OVENS, OPEN FLAMES AND RELATED PROCESSES |
BRPI0610039A2 (en) * | 2005-04-22 | 2010-06-01 | Envirofuels L L C | hydrocarbon fuel additive consisting of inorganic, non-acidic boron compounds and related processes |
US20070049693A1 (en) * | 2005-08-22 | 2007-03-01 | Envirofuels, Llc | Flow enhancement compositions for liquid and gases in tubes and pipes |
US20080263939A1 (en) * | 2006-12-08 | 2008-10-30 | Baxter C Edward | Lubricity improver compositions and methods for improving lubricity of hydrocarbon fuels |
US8586516B2 (en) | 2007-01-19 | 2013-11-19 | Afton Chemical Corporation | High TBN / low phosphorus economic STUO lubricants |
JP5273699B2 (en) * | 2007-03-22 | 2013-08-28 | Jx日鉱日石エネルギー株式会社 | Lubricant composition and lubrication system using the same |
US20080280791A1 (en) | 2007-05-01 | 2008-11-13 | Chip Hewette | Lubricating Oil Composition for Marine Applications |
US20090163392A1 (en) | 2007-12-20 | 2009-06-25 | Boffa Alexander B | Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate |
US8207099B2 (en) * | 2009-09-22 | 2012-06-26 | Afton Chemical Corporation | Lubricating oil composition for crankcase applications |
JP5909184B2 (en) * | 2009-09-30 | 2016-04-26 | シェブロン・オロナイト・カンパニー・エルエルシー | Preparation of sulfurized molybdenum amide complex and additive composition with low residual active sulfur |
US8183189B2 (en) * | 2009-09-30 | 2012-05-22 | Chevron Oronite Company Llc | Preparation of a sulfurized molybdenum amide complex and additive compositions having low residual active sulfur |
US9725673B2 (en) | 2010-03-25 | 2017-08-08 | Afton Chemical Corporation | Lubricant compositions for improved engine performance |
US8334243B2 (en) | 2011-03-16 | 2012-12-18 | Afton Chemical Corporation | Lubricant compositions containing a functionalized dispersant for improved soot or sludge handling capabilities |
US9090847B2 (en) | 2011-05-20 | 2015-07-28 | Afton Chemical Corporation | Lubricant compositions containing a heteroaromatic compound |
US8927469B2 (en) | 2011-08-11 | 2015-01-06 | Afton Chemical Corporation | Lubricant compositions containing a functionalized dispersant |
US9963656B2 (en) | 2012-04-12 | 2018-05-08 | Infineum International Limited | Lubricating oil compositions |
US9963655B2 (en) | 2012-04-12 | 2018-05-08 | Infineum International Limited | Lubricating oil compositions |
US20140020645A1 (en) | 2012-07-18 | 2014-01-23 | Afton Chemical Corporation | Lubricant compositions for direct injection engines |
US9499761B2 (en) | 2012-12-21 | 2016-11-22 | Afton Chemical Corporation | Additive compositions with a friction modifier and a metal dialkyl dithio phosphate salt |
US9550955B2 (en) | 2012-12-21 | 2017-01-24 | Afton Chemical Corporation | Friction modifiers for lubricating oils |
US9499762B2 (en) | 2012-12-21 | 2016-11-22 | Afton Chemical Corporation | Additive compositions with a friction modifier and a detergent |
US9249371B2 (en) | 2012-12-21 | 2016-02-02 | Afton Chemical Corporation | Additive compositions with a friction modifier and a dispersant |
US9279094B2 (en) | 2012-12-21 | 2016-03-08 | Afton Chemical Corporation | Friction modifiers for use in lubricating oil compositions |
US9499763B2 (en) | 2012-12-21 | 2016-11-22 | Afton Chemical Corporation | Additive compositions with plural friction modifiers |
US9193932B2 (en) | 2013-07-18 | 2015-11-24 | Afton Chemical Corporation | Amide alcohol friction modifiers for lubricating oils |
US9296971B2 (en) | 2013-07-18 | 2016-03-29 | Afton Chemical Corporation | Friction modifiers for lubricating oils |
US8927471B1 (en) | 2013-07-18 | 2015-01-06 | Afton Chemical Corporation | Friction modifiers for engine oils |
US9068135B1 (en) | 2014-02-26 | 2015-06-30 | Afton Chemical Corporation | Lubricating oil composition and additive therefor having improved piston deposit control and emulsion stability |
US9657252B2 (en) | 2014-04-17 | 2017-05-23 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
SG10201504242RA (en) | 2014-06-02 | 2016-01-28 | Infineum Int Ltd | Lubricating oil compositions |
US9090850B1 (en) | 2014-06-19 | 2015-07-28 | Afton Chemical Corporation | Phosphorus anti-wear compounds for use in lubricant compositions |
EP2990469B1 (en) | 2014-08-27 | 2019-06-12 | Afton Chemical Corporation | Use in gasoline direct injection engines |
JP2015063564A (en) * | 2014-12-26 | 2015-04-09 | シェブロン・オロナイト・カンパニー・エルエルシー | Preparation of sulfurized molybdenum amide complex and additive compositions having low residual active sulfur |
US10336959B2 (en) | 2015-07-16 | 2019-07-02 | Afton Chemical Corporation | Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition |
US10550349B2 (en) | 2015-07-16 | 2020-02-04 | Afton Chemical Corporation | Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition |
US10214703B2 (en) | 2015-07-16 | 2019-02-26 | Afton Chemical Corporation | Lubricants with zinc dialkyl dithiophosphate and their use in boosted internal combustion engines |
US10280383B2 (en) | 2015-07-16 | 2019-05-07 | Afton Chemical Corporation | Lubricants with molybdenum and their use for improving low speed pre-ignition |
US10421922B2 (en) | 2015-07-16 | 2019-09-24 | Afton Chemical Corporation | Lubricants with magnesium and their use for improving low speed pre-ignition |
CA3015342A1 (en) | 2016-02-25 | 2017-08-31 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10377963B2 (en) | 2016-02-25 | 2019-08-13 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US9701921B1 (en) | 2016-04-08 | 2017-07-11 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US9677026B1 (en) | 2016-04-08 | 2017-06-13 | Afton Chemical Corporation | Lubricant additives and lubricant compositions having improved frictional characteristics |
US10113133B2 (en) | 2016-04-26 | 2018-10-30 | Afton Chemical Corporation | Random copolymers of acrylates as polymeric friction modifiers, and lubricants containing same |
US11155764B2 (en) | 2016-05-05 | 2021-10-26 | Afton Chemical Corporation | Lubricants for use in boosted engines |
US10323205B2 (en) | 2016-05-05 | 2019-06-18 | Afton Chemical Corporation | Lubricant compositions for reducing timing chain stretch |
US10179886B2 (en) | 2016-05-17 | 2019-01-15 | Afton Chemical Corporation | Synergistic dispersants |
EP3263676B1 (en) | 2016-06-30 | 2023-07-19 | Infineum International Limited | Lubricating oil compositions |
US10584297B2 (en) | 2016-12-13 | 2020-03-10 | Afton Chemical Corporation | Polyolefin-derived dispersants |
US20180171258A1 (en) | 2016-12-16 | 2018-06-21 | Afton Chemical Corporation | Multi-Functional Olefin Copolymers and Lubricating Compositions Containing Same |
US10443011B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with overbased calcium and overbased magnesium detergents and method for improving low-speed pre-ignition |
US10443558B2 (en) | 2017-01-18 | 2019-10-15 | Afton Chemical Corporation | Lubricants with calcium and magnesium-containing detergents and their use for improving low-speed pre-ignition and for corrosion resistance |
US10370615B2 (en) | 2017-01-18 | 2019-08-06 | Afton Chemical Corporation | Lubricants with calcium-containing detergents and their use for improving low-speed pre-ignition |
EP3521403A1 (en) | 2017-02-22 | 2019-08-07 | Infineum International Limited | Lubricating oil compositions containing pre-ceramic polymers |
US20180346839A1 (en) | 2017-06-05 | 2018-12-06 | Afton Chemical Corporation | Methods for improving resistance to timing chain wear with a multi-component detergent system |
EP3461877B1 (en) | 2017-09-27 | 2019-09-11 | Infineum International Limited | Improvements in and relating to lubricating compositions08877119.1 |
US10513668B2 (en) | 2017-10-25 | 2019-12-24 | Afton Chemical Corporation | Dispersant viscosity index improvers to enhance wear protection in engine oils |
US10711219B2 (en) | 2017-12-11 | 2020-07-14 | Infineum International Limited | Automotive transmission fluid compositions for improved energy efficiency |
US10479953B2 (en) | 2018-01-12 | 2019-11-19 | Afton Chemical Corporation | Emulsifier for use in lubricating oil |
US10822569B2 (en) | 2018-02-15 | 2020-11-03 | Afton Chemical Corporation | Grafted polymer with soot handling properties |
US10851324B2 (en) | 2018-02-27 | 2020-12-01 | Afton Chemical Corporation | Grafted polymer with soot handling properties |
US11098262B2 (en) | 2018-04-25 | 2021-08-24 | Afton Chemical Corporation | Multifunctional branched polymers with improved low-temperature performance |
US11459521B2 (en) | 2018-06-05 | 2022-10-04 | Afton Chemical Coporation | Lubricant composition and dispersants therefor having a beneficial effect on oxidation stability |
US10836976B2 (en) | 2018-07-18 | 2020-11-17 | Afton Chemical Corporation | Polymeric viscosity modifiers for use in lubricants |
US10781393B2 (en) | 2018-12-27 | 2020-09-22 | Infineum International Limited | Dispersants for lubricating oil compositions |
US11046908B2 (en) | 2019-01-11 | 2021-06-29 | Afton Chemical Corporation | Oxazoline modified dispersants |
US11008527B2 (en) | 2019-01-18 | 2021-05-18 | Afton Chemical Corporation | Engine oils for soot handling and friction reduction |
US20200277541A1 (en) | 2019-02-28 | 2020-09-03 | Afton Chemical Corporation | Lubricating compositions for diesel particulate filter performance |
EP3736318B1 (en) | 2019-05-09 | 2022-03-09 | Infineum International Limited | Transmission fluid composition for improved wear protection |
US11685874B2 (en) | 2019-12-16 | 2023-06-27 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11384311B2 (en) | 2019-12-16 | 2022-07-12 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11365273B2 (en) | 2019-12-16 | 2022-06-21 | Infineum International Limited | High viscosity index comb polymer viscosity modifiers and methods of modifying lubricant viscosity using same |
US11214753B2 (en) | 2020-01-03 | 2022-01-04 | Afton Chemical Corporation | Silicone functionalized viscosity index improver |
CA3106593C (en) | 2020-01-29 | 2023-12-19 | Afton Chemical Corporation | Lubricant formulations with silicon-containing compounds |
US11584898B2 (en) | 2020-08-12 | 2023-02-21 | Afton Chemical Corporation | Polymeric surfactants for improved emulsion and flow properties at low temperatures |
US11905488B2 (en) | 2020-10-16 | 2024-02-20 | Infineum International Limited | Transmission fluid compositions for hybrid and electric vehicle applications |
US11680222B2 (en) | 2020-10-30 | 2023-06-20 | Afton Chemical Corporation | Engine oils with low temperature pumpability |
WO2022112899A1 (en) | 2020-11-25 | 2022-06-02 | Chevron Japan Ltd. | Lubricating oil compositions |
CN116981758A (en) | 2020-12-24 | 2023-10-31 | 英菲诺姆国际有限公司 | Thermally responsive brush polymers having a copolymer backbone and copolymer arms |
US11634655B2 (en) | 2021-03-30 | 2023-04-25 | Afton Chemical Corporation | Engine oils with improved viscometric performance |
US11753599B2 (en) | 2021-06-04 | 2023-09-12 | Afton Chemical Corporation | Lubricating compositions for a hybrid engine |
US11479736B1 (en) | 2021-06-04 | 2022-10-25 | Afton Chemical Corporation | Lubricant composition for reduced engine sludge |
US20230043947A1 (en) | 2021-07-21 | 2023-02-09 | Afton Chemical Corporation | Methods of reducing lead corrosion in an internal combustion engine |
US11608477B1 (en) | 2021-07-31 | 2023-03-21 | Afton Chemical Corporation | Engine oil formulations for low timing chain stretch |
US11773343B2 (en) | 2021-11-17 | 2023-10-03 | Afton Chemical Corporation | Engine oil formulation with improved Sequence VIII performance |
EP4194531A1 (en) | 2021-12-09 | 2023-06-14 | Infineum International Limited | Borated detergents and their lubricating applications |
US11851628B2 (en) | 2021-12-21 | 2023-12-26 | Afton Chemical Corporation | Lubricating oil composition having resistance to engine deposits |
US11578287B1 (en) | 2021-12-21 | 2023-02-14 | Afton Chemical Corporation | Mixed fleet capable lubricating compositions |
US11807827B2 (en) | 2022-01-18 | 2023-11-07 | Afton Chemical Corporation | Lubricating compositions for reduced high temperature deposits |
US11898119B2 (en) | 2022-01-25 | 2024-02-13 | Afton Chemical Corporation | Lubricating oil compositions with resistance to engine deposit and varnish formation |
US11572523B1 (en) | 2022-01-26 | 2023-02-07 | Afton Chemical Corporation | Sulfurized additives with low levels of alkyl phenols |
US11788027B2 (en) | 2022-02-18 | 2023-10-17 | Afton Chemical Corporation | Engine oil formulation with improved sequence VIII performance |
JP2025506649A (en) | 2022-02-21 | 2025-03-13 | アフトン・ケミカル・コーポレーション | Polyalphaolefinphenol with high para-selectivity |
CN119053681A (en) | 2022-04-27 | 2024-11-29 | 雅富顿化学公司 | High-sulfur additives for lubricating oil compositions |
US20230383211A1 (en) | 2022-05-26 | 2023-11-30 | Afton Chemical Corporation | Engine oil formluation for controlling particulate emissions |
US20240026243A1 (en) | 2022-07-14 | 2024-01-25 | Afton Chemical Corporation | Transmission lubricants containing molybdenum |
US11970671B2 (en) | 2022-07-15 | 2024-04-30 | Afton Chemical Corporation | Detergent systems for oxidation resistance in lubricants |
US20240059999A1 (en) | 2022-08-02 | 2024-02-22 | Afton Chemical Corporation | Detergent systems for improved piston cleanliness |
US12098347B2 (en) | 2022-09-21 | 2024-09-24 | Afton Chemical Corporation | Lubricating composition for fuel efficient motorcycle applications |
US12024687B2 (en) | 2022-09-27 | 2024-07-02 | Afton Chemical Corporation | Lubricating composition for motorcycle applications |
US11912955B1 (en) | 2022-10-28 | 2024-02-27 | Afton Chemical Corporation | Lubricating compositions for reduced low temperature valve train wear |
US12157866B2 (en) | 2022-12-09 | 2024-12-03 | Afton Chemical Corporation | Driveline and transmission fluids for low speed wear and scuffing |
US12146115B2 (en) | 2022-12-20 | 2024-11-19 | Afton Chemical Corporation | Low ash lubricating compositions for controlling steel corrosion |
US11926804B1 (en) | 2023-01-31 | 2024-03-12 | Afton Chemical Corporation | Dispersant and detergent systems for improved motor oil performance |
KR20240128568A (en) | 2023-02-17 | 2024-08-26 | 인피늄 인터내셔날 리미티드 | Multipurpose oxypyridinones and their functional use |
JP2024117721A (en) | 2023-02-17 | 2024-08-29 | インフィニューム インターナショナル リミテッド | Multipurpose oxypyridinones and their functional uses |
CN118516151A (en) | 2023-02-17 | 2024-08-20 | 英菲诺姆国际有限公司 | Multi-purpose oxypyridones and their functional uses |
CN118516152A (en) | 2023-02-17 | 2024-08-20 | 英菲诺姆国际有限公司 | Multipurpose oxypyridones and their functional use |
US12110468B1 (en) | 2023-03-22 | 2024-10-08 | Afton Chemical Corporation | Antiwear systems for improved wear in medium and/or heavy duty diesel engines |
US20240336862A1 (en) | 2023-04-06 | 2024-10-10 | Afton Chemical Corporation | Methods of improving the performance of combustion engine after-treatment devices |
EP4446398A1 (en) | 2023-04-13 | 2024-10-16 | Afton Chemical Corporation | Lubricating composition for durability and enhanced fuel economy |
US12195695B2 (en) | 2023-05-10 | 2025-01-14 | Afton Chemical Corporation | Lubricating oil compositions for improving low-speed pre-ignition |
US20250002805A1 (en) | 2023-06-23 | 2025-01-02 | Afton Chemical Corporation | Lubricant additives for performance boosting |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1248643B (en) * | 1959-03-30 | 1967-08-31 | The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) | Process for the preparation of oil-soluble aylated amines |
US3405064A (en) * | 1963-06-06 | 1968-10-08 | Lubrizol Corp | Lubricating oil composition |
US4164473A (en) * | 1977-10-20 | 1979-08-14 | Exxon Research & Engineering Co. | Organo molybdenum friction reducing antiwear additives |
US4263152A (en) * | 1979-06-28 | 1981-04-21 | Chevron Research Company | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same |
US4266945A (en) * | 1979-11-23 | 1981-05-12 | The Lubrizol Corporation | Molybdenum-containing compositions and lubricants and fuels containing them |
-
1993
- 1993-09-09 AU AU48525/93A patent/AU670118B2/en not_active Ceased
- 1993-09-09 EP EP93921434A patent/EP0616635B1/en not_active Expired - Lifetime
- 1993-09-09 WO PCT/US1993/008471 patent/WO1994006897A1/en active IP Right Grant
- 1993-09-09 DE DE69322952T patent/DE69322952T2/en not_active Expired - Fee Related
- 1993-09-09 JP JP50815494A patent/JP3495043B2/en not_active Expired - Fee Related
- 1993-09-09 CA CA002122825A patent/CA2122825C/en not_active Expired - Fee Related
- 1993-09-09 SG SG1996007567A patent/SG71668A1/en unknown
-
1994
- 1994-09-16 US US08/307,535 patent/US20020038525A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CA2122825C (en) | 2003-12-30 |
CA2122825A1 (en) | 1994-03-31 |
JPH07501360A (en) | 1995-02-09 |
WO1994006897A1 (en) | 1994-03-31 |
JP3495043B2 (en) | 2004-02-09 |
AU670118B2 (en) | 1996-07-04 |
US20020038525A1 (en) | 2002-04-04 |
EP0616635A4 (en) | 1995-02-22 |
SG71668A1 (en) | 2000-04-18 |
DE69322952T2 (en) | 1999-05-27 |
EP0616635A1 (en) | 1994-09-28 |
EP0616635B1 (en) | 1999-01-07 |
DE69322952D1 (en) | 1999-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0616635B1 (en) | Fuel composition for two-cycle engines | |
US5330667A (en) | Two-cycle oil additive | |
US4263152A (en) | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same | |
US4370246A (en) | Antioxidant combinations of molybdenum complexes and aromatic amine compounds | |
US4259195A (en) | Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same | |
US4285822A (en) | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition | |
US4283295A (en) | Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition | |
US4272387A (en) | Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same | |
CA1048507A (en) | Additive useful in oleaginous compositions | |
EP1371716A1 (en) | Preparation of a light color molybdenum complex | |
CA2205643A1 (en) | Low chlorine polyalkylene substituted carboxylic acylating agent compositions and compounds derived therefrom | |
JP3421035B2 (en) | Two-cycle engine lubricant and method of using the same | |
JPH0253895A (en) | Synergic combination of additives useful in power transmitting composition | |
US4142980A (en) | Mannich reaction products made with alkyphenol substituted aliphatic unsaturated carboxylic acids | |
GB2078757A (en) | Oxicdation and corrosion inhibiting additive for lubricating oils | |
AU686833B2 (en) | Two-stroke cycle engine lubricant and method of using same | |
CA1174032A (en) | Process of preparing molybdenum complexes, the complexes so produced and lubricants containing same | |
EP0451397A1 (en) | Elastomer-compatible oxalic acidacylated alkenyl succinimides | |
US6391833B1 (en) | Low sulfur lubricant composition for two-stroke engines | |
US3451166A (en) | Mineral lubricating oil containing sulfurized alkylated aryl amine | |
US4443360A (en) | Oil-soluble zinc cyclic hydrocarbyl dithiophosphate-succinimide complex and lubricating oil compositions containing same | |
US4384138A (en) | Process and compositions | |
GB2053268A (en) | Molybdenum-containing Lubricating Oil Additives | |
US4049565A (en) | Substituted maleimide lubricant additives and lubricant compositions made therewith | |
CA1152315A (en) | Molybdenum compounds (vll) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |