[go: up one dir, main page]

AU2014280947B2 - Millimetre wave bandpass filter on CMOS - Google Patents

Millimetre wave bandpass filter on CMOS Download PDF

Info

Publication number
AU2014280947B2
AU2014280947B2 AU2014280947A AU2014280947A AU2014280947B2 AU 2014280947 B2 AU2014280947 B2 AU 2014280947B2 AU 2014280947 A AU2014280947 A AU 2014280947A AU 2014280947 A AU2014280947 A AU 2014280947A AU 2014280947 B2 AU2014280947 B2 AU 2014280947B2
Authority
AU
Australia
Prior art keywords
hairpin
resonator
portions
strip portion
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2014280947A
Other versions
AU2014280947A1 (en
Inventor
Robin Evans
Efstratios Skafidas
Wave Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Micro Devices Inc
Original Assignee
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008362015A external-priority patent/AU2008362015B2/en
Application filed by Advanced Micro Devices Inc filed Critical Advanced Micro Devices Inc
Priority to AU2014280947A priority Critical patent/AU2014280947B2/en
Publication of AU2014280947A1 publication Critical patent/AU2014280947A1/en
Application granted granted Critical
Publication of AU2014280947B2 publication Critical patent/AU2014280947B2/en
Assigned to ADVANCED MICRO DEVICES, INC. reassignment ADVANCED MICRO DEVICES, INC. Request for Assignment Assignors: NITERO PTY LIMITED
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Q of resonant elements formed over lossy substrates such as in a CMOS process is improved by forming the ground plane of the resonant element immediately over a high impedance layer to reduce cross coupling and eddy currents. A new type of meandering hairpin resonator configuration is also introduced providing, for example, for 4"' order cross coupled filters of high selectivity and compact layout. WO 2010/034049 PCT/AU2008/001410 1=A Fitiure 13

Description

2014280947 15 Sep 2016 1 "Millimetre Wave Bandpass Filter on CMOS"
Technical Field
The present invention relates to fabrication of monolithic resonant components on conductive substrates, and in particular relates to improving the Q of resonant 5 components by providing a layer or layers of high impedance shielding over the substrate and beneath the resonant components. The present invention also provides a new compact meandering hairpin resonator design suitable particularly for filter construction. 10 Background of the Invention
There exists a large allocated bandwidth around the 60 GHz region of the electromagnetic spectrum, offering the appeal of high-speed short distance wireless personal area networks (WPANs), radar applications such as automotive radar, along with other potential industrial, scientific and medical applications. This has raised 15 interest in low cost, high efficiency and small form factor integrated millimetre-wave devices in order to facilitate their use in consumer electronic applications. Wireless systems operating at such millimetre-wave frequencies require appropriate antennas and RF components. 20 Bandpass RF filters are critical for modem wireless communication systems. The filter ensures that the communication system does not transmit power in frequencies that are used by other users or prohibited by regulatory authorities. In order to achieve increasingly higher data rates modem high speed wireless communication systems use complex modulation schemes such as orthogonal frequency division multiplexing 25 (OFDM). Out of band emissions are particularly problematic for OFDM systems where the high peak to average ratio occasionally pushes the transmit power amplifier into compression that generates, if unfiltered, outputs harmonics of the input signal and consequently high out-of-band spectral content. At lower frequencies, system designers and RF engineers include external bandpass filters to ensure the transmit 30 power spectral density mask meets regulatory requirements. Unfortunately external 2014280947 15 Sep 2016 2 bandpass filters are expensive and the transition from chip to the printed circuit board mounted filter usually degrades the signal.
As communication systems move to millimeter wave frequencies the physical 5 dimensions of RF components becomes smaller than the usual size of a CMOS die, making it theoretically possible to have most of the wireless transceiver implemented on a single CMOS die, which motivates the development of system on chip or system in a package. CMOS is a standard and low cost process for building digital circuits, but CMOS active filters are unidirectional, suffer from distortion at high power and 10 increase noise figure. To date, designs have mostly avoided fabricating passive on-chip filters on standard CMOS technology, because of the lossy conductive nature of the silicon substrate, poor performance, low quality factor (Q) of the resonators in filters, unstable performance due to relatively large fabrication variation, and stringent foundry fabrication design rules. Most integrated passive filters are thus built on high-15 resistivity substrate materials, however these raise costs.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of 20 these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
Throughout this specification the word "comprise", or variations such as "comprises" or 25 "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. 30 2014280947 15 Sep 2016 3
Summary
There may be provided a method of fabricating a monolithic millimetre wave resonant device upon a conductive substrate, the method comprising: forming upon the substrate high impedance elements; and 5 forming resonant elements of the resonant device over the high impedance elements.
There may be provided a monolithic millimetre wave resonant device, comprising: a conductive substrate; 10 high impedance elements formed upon the substrate; and resonant elements formed over the high impedance elements.
The conductive substrate for example may be silicon based, and the monolithic fabrication process may be CMOS based. Each high impedance element preferably 15 comprises alternating layers of metal and a dielectric such as silicon dioxide.
According to a first aspect there is provided a meandering hairpin resonator for a monolithic millimetre wave resonant device, the resonator formed of a longitudinal conducting strip comprising: 20 a substantially straight primary strip portion; two secondary strip portions extending from respective ends of the primary strip portion and at substantially 90 degrees to the primary strip portion, each secondary strip portion comprising a resonating portion for resonating with a proximal resonator, the two resonating portions being spaced apart by a distance less than a length of the 25 primary strip portion; wherein each secondary strip portion comprises a dogleg bend causing a longitudinal outer edge and a longitudinal inner edge of a distal portion of the secondary strip portion to be positioned closer to the other secondary strip portion such that an average spacing between the longitudinal outer edges of the two distal portions 30 is less than the length of the primary strip portion and an average spacing between the 2014280947 15 Sep 2016 4 longitudinal inner edges of the two distal portions is less than the length of the primary strip portion; and wherein a spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions is sufficient to accommodate substantially all of a step 5 impedance miniature hairpin resonator between the longitudinal inner edges of the distal portions of the two secondary strip portions.
According to a second aspect there is provided a method of fabricating a meandering hairpin resonator formed of a longitudinal conducting strip, the method comprising: 10 forming a substantially straight primary strip portion; forming two secondary strip portions extending from respective ends of the primary strip portion and at substantially 90 degrees to the primary strip portion, each secondary strip portion comprising a resonating portion for resonating with a proximal resonator, the two resonating portions being spaced apart by a distance less than a 15 length of the primary strip portion; wherein each secondary strip portion comprises a dogleg bend causing a longitudinal outer edge and a longitudinal inner edge of a distal portion of the secondary strip portion to be positioned closer to the other secondary strip portion such that an average spacing between the longitudinal outer edges of the two distal portions 20 is less than the length of the primary strip portion and an average spacing between the longitudinal inner edges of the two distal portions is less than the length of the primary strip portion; and wherein a spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions is sufficient to accommodate substantially all of a step 25 impedance miniature hairpin resonator between the longitudinal inner edges of the distal portions of the two secondary strip portions.
Preferably corners formed by the conducting strip are mitered and chamfered to minimise losses. 30 2014280947 15 Sep 2016 5 A 4th order cross coupled filter comprising two meandering hairpin resonators each fabricated in accordance with the method above and further comprising two step impedance miniature hairpin resonators. 5 Brief Description of the Drawings
An example of the invention will now be described with reference to the accompanying drawings, in which:
Figure 1 is a circuit schematic of the primary coupling components between adjacent resonators; 10 Figure 2 illustrates the layout of a microstrip band pass filter formed over high impedance elements in accordance with the present disclosure;
Figure 3 is a microphotograph of the fabricated filter of Figure 2;
Figure 4 is a plot of the transfer function of the filter of Figure 3;
Figure 5 is a circuit schematic of a lowpass fourth order quasi-elliptic filter; 15 Figure 6 illustrates the layout of a step impedance miniaturised hairpin resonator;
Figure 7 illustrates the layout of a meandering hairpin resonator in accordance with a second embodiment of the first and second aspects;
Figure 8 illustrates the layout of a fourth order cross coupled bandpass filter 20 formed from the resonators of Figures 6 and 7;
Figure 9 is a microphotograph of the fabricated filter of the design shown in Figure 8;
Figure 10 illustrates measurement and simulation results of the filter of Figure 9; 25 Figure 11 illustrates the passband group delay of the filter simulation and the passband group delay measured from the fabricated filter of Figure 9;
Figure 12 is a perspective view of the fabricated die; and Figure 13 is a ghosted top view of the design shown in Figure 12. 30 2014280947 15 Sep 2016 6
Description of the Preferred Embodiments
The present disclosure recognises that designing high quality filters on CMOS is particularly challenging because of the conductive silicon substrate. Unlike other substrates which are isolating, the conductive silicon bulk reduces the quality factor of 5 the resonators, and introduces non linear effects and distortion due to both induced eddy currents in the substrate as well as the coupling of signals through the substrate between non adjacent resonators.
Figure 1 illustrates the major coupling components between adjacent resonators. In this 10 figure Cox, CSi and RSi are the capacitance of the oxide, the capacitance of the silicon and the resistance of the silicon, respectively. Cres and Lres are the effective capacitance and inductance of the resonators. Rres accounts for the metal conductive loss in strips due to metal’s intrinsic resistive characteristics and the skin effect that cannot be neglected under high frequencies. Coupling denotes proximity coupling that one tries to 15 control to design the desired transfer function of the interdigital filter. Note that Rcoupiing and Reddy are the extra loss of couplings between resonators that are presented on CMOS substrates due to the low resistivity substrate and the eddy currents that are induced in the substrate. 20 In order to minimize the coupling between non-adjacent resonators and to reduce induced eddy currents, the substrate was segmented into regions of high impedance directly under each resonator. This is accomplished by implementing a high impedance ground (BFMOAT) between resonators. A high impedance bounding box is also built around the whole structure. This method reduces the coupling through the substrate. 25
The following steps were taken to build an integrated interdigital filter operating at millimeter wave frequencies on CMOS.
Step 1. An ideal filter prototype with certain number of orders is determined. From 30 ideal values of the prototype circuit, the coupling coefficient matrix and the required external quality factor of the filter are calculated. 2014280947 15 Sep 2016 7
Step 2. The substrate eddy current and coupling suppression structures are designed. With the aid of a 3D Full-Wave EM simulator the implemented structures to minimize loss due to substrate coupling between resonators as well as coupling between the 5 resonator and the substrate are simulated. In this example the conductive substrate was segmented using high impedance regions as set out in the preceding.
Step 3. An appropriate CMOS metal layer for the resonators is chosen noting that metal layer thickness and spacing are fixed by the process technology. 3D Full-Wave 10 Simulator was used to ensure minimum loss for the designed single resonator.
Step 4. The approximate dimensions (width, length) of a single resonator to meet the performance of Step 1 are determined. 15 Step 5. The spacing between adjacent resonators, and the positions of the feeds of the input/output lines are estimated using appropriate formulae. These design parameters were refined using a 3D Full-Wave EM simulator to determine spacing between adjacent resonators, and the positions of the feeds of the input/output lines that produce best performance. 20
Step 6. 3D Full-Wave simulations for the complete design were compared to specifications. If the specifications meet the design requirements the design is complete. If not return to Step 3 and iterate. 25 A filter design example is now discussed. A 5-order symmetric interdigital bandpass filter with tapped-line input/output (IO), as indicated in Fig. 2, was designed with a pass-band of 2GHz and a mid-band frequency of 55 GHz. As shown in Figure 2, the resonators all have the same width Wand characteristic impedance denoted by Y\. The resonators have varying line lengths denoted by h, h ---/5. The coupling between 30 resonators is due to the fringe fields in adjacent resonators and can be varied by 2014280947 15 Sep 2016 8 changing the spacing between resonators. Due to the symmetric structure of this system only spacings s\ and s2 need to be considered.
Input/Output (I/O) to the filter is achieved by combining a tapped-line with a 5 characteristic impedance Tt, which is identical to source/load characteristic impedance To of 50 Ω. The electrical length (){ indicates the tapping position of I/O and is measured from the short-circuited end of the I/O resonator.
Using appropriate design equations and procedures for the design of interdigital 10 bandpass filters with coupled-line I/O and with tapped-line I/O, the circuit design parameters are evaluated and are listed in Table I.
Table I - Circuits design parameters of the 5-pole, interdigital bandpass filter with symmetric coupled lines 1 5l.13.Kti 50. KJitti 48.8614 40.1217 ¢.0228 0.0174 A Λ V· V / ti l; (Mil 4 51,13.% 48.8614 0.0228
Y\ = 1/49.974 mhos Yt = 1/50 mhos θκ = 0.1614 radians Ct = 0.2313 fF 20
As a consequence of the fact that the widths of line resonators for symmetric interdigital filters are the same it is in most practical cases extremely difficult to obtain the desired Zoeu+i and Z0o;,;+/ by adjusting the spacing s; (/ = 1 or 2) alone. 25 A high impedance substrate is created using the techniques described in the preceding. In the design process instead of matching to the desired Zoeu+] and Z0o;,;+/, the spacing Sj (/ = 1 or 2) are adjusted to match the coupling coefficient ku+/ which can be extracted by using the following relation: 2014280947 15 Sep 2016 9 ....... M'f'i γ , o.
In the present design a full-wave three-dimensional (3D) electromagnetic (EM) simulator (Ansoft-HFSS) was used to determine the physical dimensions. The width W for line resonators with the characteristic impedance of Y\, and Wt for the tapped-line 5 with the single characteristic impedance of Yt were determined by simulating a single resonator.
By simulating two coupled-lines, the spacing s, (/ = 1 or 2) was determined to achieve the desired coupling coefficient ku+i as well as corresponding even- and odd-mode 10 relative dielectric constants Ά·ί and
Initial estimates for the physical lengths /, of line resonators and the physical distance /, measured from tapped point to the I/O resonator short-circuited end were evaluated by using appropriate equations. These estimates were refined using the full wave 3D EM 15 simulator. The physical dimensions of the filter are listed in Table II.
Table II Physical Dimensions Of The 5-Pole, Interdigital Bandpass Filter With
Symmetric Coupled Lines IMrotiisitms ittm) W, 2,UH> hi % 22.78 LdJ* 576.05 *1 Λ2.40 4 125.00 $2 37.70 20
In order to mitigate the performance degradation due to the discontinuity of the tee-junction formed when the tapped-line connects to the I/O line resonator, a 45-degree miter is applied for compensation. 25 The design was fabricated on the IBM 0.13 pm standard CMOS. The stack-up comprises of a 737 pm bulk silicon (er = 11.9) substrate. Immediately above the silicon substrate and below the first metal layer, there is 0.5 pm thick nitride (er = 7.0) layer. In this fabrication technology there are a total of eight metal layers: three thin 2014280947 15 Sep 2016 10 copper layers closest to the substrate, two thick copper layers, and three RF layers (one copper layer and two aluminium layers). Between the metal layers is silicon dioxide (<?,. = 4.1 or 3.6 depending on metal/via interlevel dielectric). On top of the final RF metal layer there is the “Final Passivation” layer comprising a 1.35 pm thick silicon 5 oxide followed by a 0.45 pm thick nitride and a 2.5 pm thick polyimide.
The design presented in this paper was built on the top RF aluminium metal layer with the ground plane fabricated on metal layer 1 the bottom thin copper metal layer. Figure 3 shows a photograph of the fabricated filter. From Figure 3, it can be noticed that 10 several lateral metal lines cross beneath the line resonators. These were built on other RF metal layers in order to meet foundry minimum density metal fill rules for the integration with active circuits on a standard CMOS process. A Suss-Microtech Probe Station with 110 GHz probes and a 110 GHz Anritsu Vector 15 Network Analyser were used to measure the filter shown in Figure 3. The measured results of Sn and S21 are shown in Figure 4. From Figure 4, it can be seen that the fabricated filter has a midband frequency of 55.3 GHz with a fractional bandwidth of 3.25% (from 54.4 to 56.2 GHz). The insertion loss over passband is around -4.5 dB, while its return loss is better than -13 dB over pass band. 20
The lossy nature of the CMOS substrate and the lateral lines added for minimum density metal fills in the CMOS fabrication process have caused a higher insertion loss. The small decrease in bandwidth (from 2 to 1.8 GHz) and the small shift of the midband frequency (from 55 to 55.3 GHz) are attributed to process and fabrication 25 variations. This design and fabrication thus illustrates the feasibility of building an on-chip filter for the RF front-end of the wireless system.
Notably, the high impedance layer is not treated as the normal ground plane but is placed immediately under the metal ground plane. It provides the highest resistance 30 region possible underneath the structure where the signal is particularly sensitive to capacitive coupling effects. By dividing the large substrate into small uncoupled 2014280947 15 Sep 2016 11 regions and inserting a high resistive element between different regions of the substrate, this method minimizes the unwanted coupling between non-adjacent resonators through the lossy silicon substrate and reduces induced unwanted eddy currents. 5 This discussion now turns to a 57-66GHz 4th-order cross-coupled SIR-ΜΗ (Stepped-Impedance-Resonator-Meandering-Hairpin) microstrip bandpass filter with a pair of transmission zeros at finite frequencies. One of the biggest challenges that hinder designers from integrating millimetre-wave bandpass filters on CMOS processes is the high insertion loss and low selectivity that these integrated filters exhibit. There are 10 three major issues that need to be considered. 1. Loss is induced in the substrate due to electrical coupling that deteriorates the quality factor of the resonators. This issue is addressed in the preceding example in relation to Figures 1 to 4. 2. Standard assumptions of thin film metal and thick dielectric substrate, used in the 15 derivation of physical dimensions of single and coupled resonators in previous distributed filter design theories are not valid for on-chip filters as the physical thicknesses of on chip dielectrics and metal layers are not in the thin film regime. The silicon oxide layer between the signal layer and the ground plane is thin and the metal signal layer is thick. In this regime, edge and fringe capacitances are 20 significant. In the thick metal slab the current distribution and the voltage potential (or E- and H-field distributions) over the top edge of the microstrip line cannot be treated as being the same as those on its bottom edge. 3. A CMOS die comprises of multiple dielectric and metal layers and thicknesses. Most conventional coplanar RF filter designs assume a single material substrate, 25 where only a pure TEM (in stripline designs) or a Quasi-TEM (in microstrip designs) mode is propagated along the conductor. The multi-layer structure of CMOS die makes the determination of the electromagnetic field distribution of a transmission line or a filter design structure very difficult without 3D-EM simulation. 30 2014280947 15 Sep 2016 12
When high out-of-band signal rejection and low in-band signal transmission loss are required, the transfer function response having ripples on both passband and stopband gives the optimum solution to the filter design. This response can be realized by the cross-coupling topology providing a quasi-elliptic response. This cross-coupled 5 bandpass filter has marginal increase in complexity when compared to the widely used Chebyshev response filter.
The design in this example is a 4th-order cross-coupled bandpass filter. The lowpass prototype filter for the 4-order cross-coupled filter is indicated in Fig.5. As can be seen 10 between the filter’s input and output there are two signal paths, namely Ji and J2. In our designs Ji and J2 are set to be out-of-phase, providing a pair of transmission zeros at finite frequencies.
Based on the design specification, the design’s theoretical parameters are calculated 15 using appropriate design equations. The next step is to design the physical structure of the filter which requires the choice of proper resonator types and the determination of the physical dimensions of resonators and the filter. In order to reach the best performance, it is critical to have the resonator designed with the highest quality factor (Q) as well as compact size. Since this filter was built on standard CMOS, some 20 special considerations were made during the derivation of the resonator and the filter itself.
When the filter is built on standard CMOS, loss is induced in the lossy silicon substrate due to electrical coupling that deteriorates the quality factor of the resonators. In order 25 to minimize the coupling between non-adjacent resonators and to reduce induced eddy currents, the substrate was segmented into regions of high impedance directly under each resonator. This is accomplished by implementing a high impedance shielding block beneath the normal metal ground plane between resonators. A high impedance bounding box is also built around the whole structure. The high impedance shielding 30 block consists of a region underneath the structure that has the conductive P-well removed, leaving the bulk substrate material. This provides the highest resistance 2014280947 15 Sep 2016 Q„=Qe, =-ê
Vi kêk+l (4) 13 region possible underneath the structure where the signal is particularly sensitive to capacitive coupling effects. By dividing the large substrate into small uncoupled regions and inserting a high resistive element between different regions of the substrate, this method reduces the coupling through the substrate.
The theoretical parameters of the «-order bandpass filter can be transformed from those of its «-order lowpass prototype filter by
FBW
MkMi = Mn_kn_kkl = fBW ÏOïk=\tom-\, m = n!2 FBW -Jm
Sm FBW -Jm Sm-l where and ~e2 are the external quality factors of the input and output resonators, 10 andare the coupling coefficients between adjacent resonators. £o>£i>->£"+iare the element parameters of the lowpass prototype filter, and FBW is the fractional bandwidth.
Having obtained the theoretical parameters of the design, the physical parameters can 15 be identified by characterizing the coupling coefficient^4·441 and the external quality factors öei and - 2 in terms of its physical dimensions. No matter what type of coupling between the pair of resonators, two resonant frequencies fR\ and /R2 in association with the mode splitting can be easily observed in a full-wave EM simulation. The coupling coefficientM'·2 is related to the two resonant frequencies ,/ri and /r2, and can be 20 calculated by f - f _ JR2 JRl JVI>J ~ f 2 > f 2 JR2 ~T~JR1 (5)
The external quality factor is related to the coupling between the tapped feed line and the input/output resonator. When only the input/output resonator is placed in the full- 2014280947 15 Sep 2016 5 14 wave EM simulator and excited through the tapped feed line, the external quality factor can be calculated by a = fo BW„ (6) where and are the resonant frequency and the 3-dB bandwidth of the input/output resonator.
The 57-66GHz 4th-order cross-coupled SIR-ΜΗ bandpass filter was designed using the above techniques. This filter has a passband from fi = 57 to /2 = 66GHz with the bandwidth BW = 9GHz. By optimizing the transfer function of the ideal normalized 10 4th-order quasi-elliptic response with a single pair of transmission zeros, a 4-order type filter with a pair of transmission zeros at a normalized frequency Ω = ±Ω" =±1 80 was implemented. The prototype element values of this filter are equal to: gl = 0.95974, g2 = 1.42192, Jx = -0.21083, J2 = 1.11769 15 The design parameters for this filter are equal to: 0,1=0,2 =6.5422 M12 =M34 = 0.1256 M23 =0.1153 Mj 4 = -0.0322
After the design’s theoretical parameters are determined, the next step requires the choice of proper resonator types and the determination of the physical dimensions of 20 resonators and the filter. Parameters of the physical dimension of single SIR (Step-Impedance-Resonator) miniaturized hairpin resonator, single MH (Meandering-Hairpin) resonator, and the SIR-ΜΗ bandpass filter are denoted in Fig.6, Fig.7, and Fig.8 respectively. 25 In order to reach the best performance in the design, great efforts have been put on the choice of proper resonator types. In this design two different types of resonators were utilized. They are the SIR (Step-Impedance-Resonator) miniaturized hairpin resonator 2014280947 15 Sep 2016 15 and the MH (Meandering-Hairpin) resonator. Parameters of the physical dimension of single SIR miniaturized hairpin resonator, single MH resonator, and the SIR-MH bandpass filter are denoted in Fig.6, Fig.7, and Fig.8 respectively. 5 The resonator in Fig.6 is a miniaturized hairpin with SIR configuration. Basically a SIR is a resonator alternatively cascading the high- and low-impedance transmission lines. In this design the SIR miniaturized hairpin resonator was chosen. The present embodiment recognises that by using SIR configuration the size of the resonator can be minimized. However due to the lossy nature of the silicon substrate in standard CMOS 10 technology, low impedance values in coupled line sections may induce large capacitive coupling through the substrate. This will increase the loss. Therefore optimization of those physical dimension parameters is needed in order to reach the highest quality factor whilst keeping the size compact. With the aid of a 3D full-wave EM simulator, the physical dimensions of this SIR miniaturized hairpin resonator indicated in Fig.6 15 can be determined as shown in Table III. TABLE III - Physical Dimensions of the SIR Miniaturized Hairpin Resonator wt = 22.8 μιη, wc = 22.8 μιη, /j = 250 μιη, /2 = 210 μιη, l3 = 111.1 μιη, lc = 140 μιη, g = 5 μιη
Another type of resonator used in this design is the MH resonator, as indicated in Fig.7. 20 While derived from a conventional hairpin resonator, in order to make it compact a meandering configuration is used. Recognising that a meandering line may induce additional loss due to the effects of discontinuities at bends, chamfering or mitering of the conductor is used for loss compensation, and the number of bends is minimized. With the consideration of minimizing unwanted coupling between adjacent metal traces 25 in a MH resonator as well as being able to provide sufficient coupling between adjacent resonators, the parameters of the physical dimensions need to be optimized. Based on 3D full-wave EM simulations the physical dimensions of this MH resonator indicated in Fig.7 can be determined as set out in Table IV. 2014280947 15 Sep 2016 16 TABLE IV - Physical Dimensions of the MH Resonator w = 22.8 μτη, D1 =461.2 μτη, D2 =335.2 μιη, D3 =60 μιη, D4 =221.4 μιη
After the physical dimensions of a single resonator are obtained, the next step involves determination of the physical parameters of the filter as shown in Fig.8, namely sc, sm, 5 and sx for controlling coupling coefficients Λ/14, M2;3, and M\2/ ΛΑ.4 respectively, and t for controlling external quality factor Oc\IQa· Using a 3D full-wave EM simulator, these physical parameters indicated in Fig.8 for this 4th-order cross-coupled SIR-MH bandpass filter are determined. Fine tuning and process variation checks are then carried out for final refinements before the design is finalised as given in Table ΙΠ. 10 TABLE III - Physical Dimensions of the 4th-Order Cross-Coupled SIR-MH BPF se = 21.70 μιη, sm = 5.57 μιη, sz = 5.87 μιη, t = 222 μιη
The above filter design was fabricated on the IBM 0.13 pm standard CMOS process and was built on the top aluminium metal layer with the ground plane on the bottom copper 15 metal layer. Fig.9 shows the die graph of the filter design. The size of the filter is 714.9pm x 484pm (0.346mm2). Measurement and simulation results are shown in Fig. 10. In Fig. 10 it is clearly seen that the filter has 8.5GHz passband from 58 to 66.5GHz, -5.9dB insertion loss, and better than -lOdB return loss over the whole passband. Four transmission zeros had been introduced. Two of them that are closer to 20 the passband are introduced by the cross-coupling topology, and are placed at 53.5GHz and 72GHz in the measurement. The other two zeros are introduced by a 0° Tapped Feed Structure, and are placed at about 45GHz and around 94.5GHz in the measurement. This designed filter achieves a steep rolling-off in the vicinity of the passband. The sidelobe in the lower stopband is better than -36dB providing good out-25 of-band rejections at low frequencies. The passband group delays of both simulation and measurement of the filter design are shown in Fig. 11. In Fig. 11 it is noted that measured group delay is relatively flat and less than 650ps over the whole passband. Simulation and measurement results match well. From the graphs in Fig. 11 it can be seen there is some noise in the measurement data. 2014280947 15 Sep 2016 17
Figure 12 is a perspective view of the fabricated die as designed. The resonant filter components shown in Figures 8 and 9 are formed in a top layer 1210. A slotted ground plane 1220 is formed beneath the filter components 1210, and a high impedance 5 shielding layer 1230 is formed beneath the ground plane 1220. The inner portion of high impedance shielding 1230a is designed to reduce filter coupling to the substrate and to reduce induced eddy currents. The outer ring of the high impedance shielding 1230b is designed to reduce the inter-component coupling through the substrate. Figure 13 is a ghosted top view of the three discussed layers of the design shown in 10 Figure 12.
The fabricated filter exhibits 1GHz bandwidth shrink in the passband when compared to simulation. This is believed to be a result of process variations. There is also 2.8dB more insertion loss at the mid-band frequency. This is attributed to the larger than 15 predicted loss induced by the signal leakage to the Silicon substrate through the grid ground plane and the unwanted signal coupling between non-adjacent resonators through the silicon substrate.
This example thus provides for the design of a bandpass filter operating at 60GHz on 20 CMOS. Implementation of a 57-66GHz 4th-order cross-coupled SIR-ΜΗ bandpass filter on 0.13pm bulk CMOS is presented, demonstrating the applicability of the methods presented in building 60GHz high-selectivity passive bandpass filters on CMOS. This filter is of higher order and has sharper selectivity whilst being of compact size. By applying the ground isolation technique, the loss due to the unwanted 25 signal leakage to the silicon substrate through grid ground plane can be further diminished.
The resonator and the filter presented in this example can be used on different substrate materials or in different process technologies. The layout may have variations 30 depending on the specific design, such as the coupling section in the SIR miniaturized hairpin resonator may become wider or longer, and the length of different sections in 2014280947 15 Sep 2016 18 the ΜΗ resonator may vary. The method of implementing the high impedance shield block can also be used for other passive device designs on standard CMOS. The filter could be used in the design of the RF front-end in wireless transceivers or radars. This example also provides for a fully-integrated system on a die which greatly reduces the 5 complexity and the cost of the design, and makes the system on chip or system in a package possible.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments 10 without departing from the scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (8)

CLAIMS:
1. A meandering hairpin resonator for a monolithic millimetre wave resonant device, the resonator formed of a longitudinal conducting strip comprising: a substantially straight primary strip portion; two secondary strip portions extending from respective ends of the primary strip portion and at substantially 90 degrees to the primary strip portion, each secondary strip portion comprising a resonating portion for resonating with a proximal resonator, the two resonating portions being spaced apart by a distance less than a length of the primary strip portion; wherein each secondary strip portion comprises a dogleg bend causing a longitudinal outer edge and a longitudinal inner edge of a distal portion of the secondary strip portion to be positioned closer to the other secondary strip portion such that an average spacing between the longitudinal outer edges of the two distal portions is less than the length of the primary strip portion and an average spacing between the longitudinal inner edges of the two distal portions is less than the length of the primary strip portion; and wherein a spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions is sufficient to accommodate substantially all of a step impedance miniature hairpin resonator between the longitudinal inner edges of the distal portions of the two secondary strip portions.
2. The meandering hairpin resonator of claim 1 wherein comers formed by the conducting strip are mitered and chamfered to minimise losses.
3. The meandering hairpin resonator of claim 1 or 2 wherein: the length of the primary strip portion is substantially 461.2 pm, a length of each secondary strip portion is substantially 335.2 pm, the spacing between the distal portions of the two secondary strip portions is substantially 341.2 pm, and a length of the distal portion of each secondary strip portion is substantially 221.4 pm.
4. A 4th order cross coupled filter comprising two meandering hairpin resonators in accordance with claim 1, 2 or 3, and further comprising two step impedance miniature hairpin resonators; wherein the two meandering hairpin resonators comprise a first meandering hairpin resonator and a second meandering hairpin resonator; wherein the two step impedance miniature hairpin resonators comprise a first step impedance miniature hairpin resonator and a second step impedance miniature hairpin resonator; wherein substantially all of the first step impedance miniature hairpin resonator is positioned in the spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions of the first meandering hairpin resonator; and wherein substantially all of the second step impedance miniature hairpin resonator is positioned in the spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions of the second meandering hairpin resonator.
5. A method of fabricating a meandering hairpin resonator formed of a longitudinal conducting strip, the method comprising: forming a substantially straight primary strip portion; forming two secondary strip portions extending from respective ends of the primary strip portion and at substantially 90 degrees to the primary strip portion, each secondary strip portion comprising a resonating portion for resonating with a proximal resonator, the two resonating portions being spaced apart by a distance less than a length of the primary strip portion; wherein each secondary strip portion comprises a dogleg bend causing a longitudinal outer edge and a longitudinal inner edge of a distal portion of the secondary strip portion to be positioned closer to the other secondary strip portion such that an average spacing between the longitudinal outer edges of the two distal portions is less than the length of the primary strip portion and an average spacing between the longitudinal inner edges of the two distal portions is less than the length of the primary strip portion; and wherein a spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions is sufficient to accommodate substantially all of a step impedance miniature hairpin resonator between the longitudinal inner edges of the distal portions of the two secondary strip portions.
6. The method of claim 5, further comprising mitering and chamfering corners of the conducting strip to minimise losses.
7. The method of claim 5 or 6, wherein: the length of the primary strip portion is substantially 461.2 pm; a length of each secondary strip portion is substantially 335.2 pm; the spacing between the distal portions of the two secondary strip portions is substantially 341.2 pm; and a length of the distal portion of each secondary strip portion is substantially 221.4 pm.
8. A 4th order cross coupled filter comprising two meandering hairpin resonators each fabricated in accordance with the method of claim 5, 6 or 7, and further comprising two step impedance miniature hairpin resonators; wherein the two meandering hairpin resonators comprise a first meandering hairpin resonator and a second meandering hairpin resonator; wherein the two step impedance miniature hairpin resonators comprise a first step impedance miniature hairpin resonator and a second step impedance miniature hairpin resonator; wherein substantially all of the first step impedance miniature hairpin resonator is positioned in the spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions of the first meandering hairpin resonator; and wherein substantially all of the second step impedance miniature hairpin resonator is positioned in the spacing between the longitudinal inner edges of the distal portions of the two secondary strip portions of the second meandering hairpin resonator.
AU2014280947A 2008-09-23 2014-12-24 Millimetre wave bandpass filter on CMOS Active AU2014280947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2014280947A AU2014280947B2 (en) 2008-09-23 2014-12-24 Millimetre wave bandpass filter on CMOS

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2008362015 2008-09-23
AU2008362015A AU2008362015B2 (en) 2008-09-23 2008-09-23 Millimetre wave bandpass filter on CMOS
AU2014280947A AU2014280947B2 (en) 2008-09-23 2014-12-24 Millimetre wave bandpass filter on CMOS

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008362015A Division AU2008362015B2 (en) 2008-09-23 2008-09-23 Millimetre wave bandpass filter on CMOS

Publications (2)

Publication Number Publication Date
AU2014280947A1 AU2014280947A1 (en) 2015-01-22
AU2014280947B2 true AU2014280947B2 (en) 2016-11-03

Family

ID=52392440

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014280947A Active AU2014280947B2 (en) 2008-09-23 2014-12-24 Millimetre wave bandpass filter on CMOS

Country Status (1)

Country Link
AU (1) AU2014280947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10659118B2 (en) * 2016-04-19 2020-05-19 Samsung Electronics Co., Ltd. Method and apparatus for explicit CSI reporting in advanced wireless communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187460A (en) * 1990-03-09 1993-02-16 Tekelec Airtronic Microstrip line resonator with a feedback circuit
US20040233022A1 (en) * 2001-06-13 2004-11-25 Genichi Tsuzuki Resonator and filter comprising the same
US20050088258A1 (en) * 2003-10-27 2005-04-28 Xytrans, Inc. Millimeter wave surface mount filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187460A (en) * 1990-03-09 1993-02-16 Tekelec Airtronic Microstrip line resonator with a feedback circuit
US20040233022A1 (en) * 2001-06-13 2004-11-25 Genichi Tsuzuki Resonator and filter comprising the same
US20050088258A1 (en) * 2003-10-27 2005-04-28 Xytrans, Inc. Millimeter wave surface mount filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sheng-Yuan Lee; Chih-Ming Tsai, "A new network model for miniaturized hairpin resonators and its applications", Microwave Symposium Digest" 2000 IEEE MTT-S Intemational, Volume 2, Pages 1161 - 1164 *

Also Published As

Publication number Publication date
AU2014280947A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
AU2008362015B2 (en) Millimetre wave bandpass filter on CMOS
Khani et al. Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth
Su et al. Miniaturized common-mode filter using coupled synthesized lines and mushroom resonators for high-speed differential signals
Hamidon Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias
Ji et al. Design of a novel multi-layer wideband bandpass filter with a notched band
Oshima et al. Multilayer dual-band bandpass filter in low-temperature co-fired ceramic substrate for ultra-wideband applications
Palanisamy et al. Miniaturized Stepped-Impedance Resonator Band Pass Filter Using Folded SIR for Suppression of Harmonics.
Rehman et al. Design of a miniaturized multi resonance resonator based highly selective dual wideband bandpass filter
Ramanuajam et al. Miniaturized low‐pass filter design with wide stopband using complementary split‐ring resonator
AU2014280947B2 (en) Millimetre wave bandpass filter on CMOS
Yang et al. Design of integrated millimetre wave microstrip interdigital bandpass filters on CMOS technology
Maassen et al. Design and comparison of various coupled line Tx-filters for a Ku-band block upconverter
Wu et al. New compact ultra wideband bandpass filter using modified multi-mode resonator
CN106299581A (en) A kind of method for designing of ridge substrate integration wave-guide
Sun et al. Miniaturised millimetre‐wave BPF with broad stopband suppression in silicon–germanium technology
Hettak et al. A novel compact three-dimensional CMOS branch-line coupler using the meandering ECPW, TFMS, and buried micro coaxial technologies at 60 GHz
Yu Design of length-saving multiway Wilkinson power dividers
Yang et al. Design of 60GHz millimetre-wave integrated SIR-MH microstrip bandpass filters on bulk CMOS
CN101752350A (en) Multi-layer complementary metal transmission line structure
Singhal et al. Wide band stop response using interdigital capacitor/CSRR DGS in elliptical microstrip low-pass filter
Yang et al. 60 GHz compact integrated cross-coupled SIR-MH bandpass filter on bulk CMOS
Bautista et al. Compact on-chip 60 GHz resonator with ring defected ground structure for millimetre-wave applications
Liu et al. Miniaturized quarter-wavelength resonator for common-mode filter based on pattern ground structure
Taslimi et al. Wideband filters using via-less end-connected broadside coupled asymmetric coplanar striplines
Almalkawi et al. Compact realization of combline bandpass filter integrated with defected microstrip structure bandstop filter

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: ADVANCED MICRO DEVICES, INC.

Free format text: FORMER OWNER(S): NITERO PTY LIMITED