AU2013203085A1 - Ambient cure painting method - Google Patents
Ambient cure painting method Download PDFInfo
- Publication number
- AU2013203085A1 AU2013203085A1 AU2013203085A AU2013203085A AU2013203085A1 AU 2013203085 A1 AU2013203085 A1 AU 2013203085A1 AU 2013203085 A AU2013203085 A AU 2013203085A AU 2013203085 A AU2013203085 A AU 2013203085A AU 2013203085 A1 AU2013203085 A1 AU 2013203085A1
- Authority
- AU
- Australia
- Prior art keywords
- layer
- basecoat
- composition
- clearcoat
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 238000010422 painting Methods 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 230000008439 repair process Effects 0.000 claims abstract description 26
- 230000005855 radiation Effects 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 229920005862 polyol Polymers 0.000 claims description 21
- 150000003077 polyols Chemical class 0.000 claims description 18
- 150000001412 amines Chemical class 0.000 claims description 8
- 239000003054 catalyst Substances 0.000 claims description 7
- 239000012948 isocyanate Substances 0.000 claims description 7
- 150000002513 isocyanates Chemical class 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000005056 polyisocyanate Substances 0.000 claims description 6
- 229920001228 polyisocyanate Polymers 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 48
- 239000002987 primer (paints) Substances 0.000 description 35
- -1 norbornylene glycol Chemical compound 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000001723 curing Methods 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 7
- 239000003570 air Substances 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920005906 polyester polyol Polymers 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 3
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000004705 aldimines Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 150000004658 ketimines Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N n-hexanoic acid Natural products CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 150000002917 oxazolidines Chemical class 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- FDYWJVHETVDSRA-UHFFFAOYSA-N 1,1-diisocyanatobutane Chemical class CCCC(N=C=O)N=C=O FDYWJVHETVDSRA-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- YXRKNIZYMIXSAD-UHFFFAOYSA-N 1,6-diisocyanatohexane Chemical compound O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O YXRKNIZYMIXSAD-UHFFFAOYSA-N 0.000 description 1
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 description 1
- JCTXKRPTIMZBJT-UHFFFAOYSA-N 2,2,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(O)C(C)(C)CO JCTXKRPTIMZBJT-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- ZDTDUAYRLVDHEJ-UHFFFAOYSA-N 2-(aziridin-1-yl)-n-[8-[[2-(aziridin-1-yl)acetyl]amino]octyl]acetamide Chemical compound C1CN1CC(=O)NCCCCCCCCNC(=O)CN1CC1 ZDTDUAYRLVDHEJ-UHFFFAOYSA-N 0.000 description 1
- KXZLHMICGMACLR-UHFFFAOYSA-N 2-(hydroxymethyl)-2-pentylpropane-1,3-diol Chemical compound CCCCCC(CO)(CO)CO KXZLHMICGMACLR-UHFFFAOYSA-N 0.000 description 1
- LBTDHCQNAQRHCE-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)cyclohexyl]oxyethanol Chemical compound OCCOC1CCC(OCCO)CC1 LBTDHCQNAQRHCE-UHFFFAOYSA-N 0.000 description 1
- LBZZJNPUANNABV-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)phenyl]ethanol Chemical compound OCCC1=CC=C(CCO)C=C1 LBZZJNPUANNABV-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical group NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- OMRDSWJXRLDPBB-UHFFFAOYSA-N N=C=O.N=C=O.C1CCCCC1 Chemical class N=C=O.N=C=O.C1CCCCC1 OMRDSWJXRLDPBB-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- JLHADLTXDDGZFX-UHFFFAOYSA-L [[acetyloxy(dibutyl)stannyl]oxy-dibutylstannyl] acetate Chemical compound CCCC[Sn](CCCC)(OC(C)=O)O[Sn](CCCC)(CCCC)OC(C)=O JLHADLTXDDGZFX-UHFFFAOYSA-L 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001408 amides Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- GRFFKYTUNTWAGG-UHFFFAOYSA-N chloroethene;prop-2-enenitrile Chemical compound ClC=C.C=CC#N GRFFKYTUNTWAGG-UHFFFAOYSA-N 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 238000013036 cure process Methods 0.000 description 1
- 125000002993 cycloalkylene group Chemical group 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- ZDGGJQMSELMHLK-UHFFFAOYSA-N m-Trifluoromethylhippuric acid Chemical compound OC(=O)CNC(=O)C1=CC=CC(C(F)(F)F)=C1 ZDGGJQMSELMHLK-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical group NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 235000015096 spirit Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
AMBIENT CURE PAINTING METHOD Methods and compositions for coating a substrate with at least a basecoat layer and clearcoat layer allow quick repairs to damaged vehicle panels under ambient temperatures and without requirement of actinic or thermal radiation to cure the layers. At least one basecoat and one clearcoat layer may be applied to a substrate and the clearcoat layer may be buffed with less than 30 minutes allocated to curing the basecoat and clearcoat layers, under ambient conditions, prior to buffing. Methods and compositions are also taught for coating a substrate with at least a primer layer, a basecoat layer, and a clearcoat layer, in which the clearcoat layer may be buffed with less than about 45 minutes allocated to curing the primer, basecoat and clearcoat layers, under ambient conditions, prior to buffing.
Description
WO 2009/120293 PCT/US2009/001783 AMBIENT CURE PAINTING METHOD [00011 This application claims priority to United States Provisional Patent Application 61/038,799 filed on March 24, 2008, the entirety of which is incorporated herein by reference. BACKGROUND OF THE INVENTION 100021 The present invention relates to methods and compositions for repairing damage to painted surfaces, particularly vehicle surfaces like trunk panels, door panels, hoods, roof panels, side panels, and the like, though, some embodiments of the invention may be useful processes for painting a substrate. More specifically, the present invention describes an ambient temperature, refinish painting process or spot repair process comprising the application of at least one layer of a solvent-borne basecoat composition and at least one layer of a solvent-borne clearcoat composition. The methods described provide a total overall cure time for all applied layers of less than about 30 minutes in a process that does not include applying a primer coat layer, but includes applying at least oie layer of a basecoat and at least one layer of a clearcoat; and less than about 45 minutes in a process that involves applying at least one layer of each of a primer coat, basecoat, and clearcoat. These total cure times are at ambient temperatures without the need to bake or otherwise heat the repaired area, thus, ovens, heat guns and lamps are not required according to the methods described herein. [0003] Motor vehicle panels, such as bumpers, doors, quarter panels, hoods, and the like are usually metal or plastic substrates coated by a coating system that comprises at least a basecoat, which is often tinted, and a clearcoat, to protect the basecoat from environmental hazards. In some cases, a primer coat is applied to the substrate before the basecoat to provide enhanced protection of the substrate against environmental conditions and/or to improve adhesion of the basecoat to the substrate. [00041 From time to time, the coating on a vehicle panel can become scratched or otherwise damaged, thereby necessitating a repair either for purely aesthetic reasons, or to preserve the integrity of the panel from further damage, such as from rust. 1 WO 2009/120293 PCT/US2009/001783 [00051 A variety of methods and products have been developed for "spot" repairing damaged coatings, such as the damage caused by surface impacts. However, existing methods for making these types of repairs, particularly spot repairs of damage that extends through the clearcoat and into the basecoat and/or primer coat, are very time consuming to perform effectively, generally owing to the extensive cure times between layers. The large amount of time required to effectively repair scratches in vehicle panels using existing repair methods and products is a significant detriment to undertaking the repair. The more time required to perform the repair, the less number of repairs can be performed, and the greater amount of time that a vehicle owner will be without access to their vehicle. These raise the cost of each repair, making it less likely or desirable that a vehicle owner would make elective paint repairs, such as to relatively minor scratch and dent spot repairs. However, failure to timely make even spot repairs can leave the vehicle susceptible to further damage. [0006] One approach to decrease repair time is to use a heat source to speed the drying or cure of the various applied coating layers or to apply actinic radiation. The latter approach is described in U.S. Patent Publication No. 2007/0116866. However, using heat to decrease cure time requires having access to a heat source, such as an oven or a heat gun or specialized lamps, such as IR lamps. In many environments, such resources are not available to the repair technician. Moreover, these types of conventional heat source can be expensive to acquire and operate. Actinic radiation sources, such as UV lamps, have similar limitations. [00071 It remains desirable, therefore, to develop a system for spot repairing a painted substrate, or otherwise spot painting a substrate, wherein the repair constitutes at least application of one or more layers of a basecoat compositions and at least one or more layers of clearcoat composition, which can be cured (dry to sand and buff) at ambient temperatures, without the requirement of applying thermal or actinic radiation to the substrate or the applied layers to enhance drying or cure, in less than 1 hour of total curing time (i.e., time dedicated to allowing the layers to cure through to the point at which the final clearcoat layer can be buffed). It would further be useful if the repaired coating area substantially equaled the color and physical performance of the surrounding, undamaged coating areas, so that the appearance of the repaired area is substantially indistinguishable from the surrounding undamaged coating. 2 WO 2009/120293 PCT/US2009/001783 DETAILED DESCRIPTION OF THE INVENTION 100081 The present invention describes a method for and basecoat and clearcoat compositions, which are useful for imparting onto a substrate a cured coating comprising at least one layer of basecoat and one layer of clearcoat, that requires a maximum total curing time of less than about 30 minutes under ambient temperatures and without using a heat or other radiation source to speed drying or curing. [0009] In another embodiment, the present invention describes a method for and primer, basecoat, and clearcoat compositions, which are useful for imparting onto a substrate a cured coating comprising at least one layer of primer, at least one layer of basecoat and at least one layer of clearcoat, that requires a maximum total curing time of less than about 45 minutes under ambient temperatures and without using a heat or other radiation source to speed curing. 100101 In one embodiment, the methods and systems described herein provide for rapid repair of vehicles that have suffered paint damage, without requiring a heat or other radiation source. [00111 For purposes of clarity, it will be understood that the methods described herein relate to the application of at least a basecoat layer and a clearcoat layer to a substrate. In some embodiments, the additional application of a primer coat layer is also disclosed. The contexts in which such methods may be usefully practiced may include, but are not limited to, the aftermarket repair of a portion of a previously painted substrate that has been damaged, so as, for example, to correct the appearance of the damaged portion; however, as will be understood, the methods may be used on a new substrate that has not been previously painted. [00121 The method comprises the step of providing a suitable panel (synonymous with substrate) having a damaged or unfinished portion to painted. For purposes herein, the portion of the panel to receive the coating compositions according to the methods described herein will be referred to as the "repair area". The panel may be any material or combination of materials that is conventionally finished with a basecoat/clearcoat finishing system. In a one embodiment, the panel is a vehicle panel, such as a door panel, hood, trunk panel, quarter panel, and the like. 3 WO 2009/120293 PCT/US2009/001783 [0013] The method may comprise one or more optional steps directed to preparing the repair area for subsequent application of the coating compositions according to the methods described herein. These steps may include washing the repair area with one or more solvents and/or cleaning agents; sanding the repair area to remove surface imperfections; and repairing or replacing missing portions of the substrate or surface imperfections (dents, for example). This latter step may involve using suitable, conventional body fillers to fill holes, dents, or other imperfections in the substrate. [0014] If priming is required, the method comprises the step of applying to the repair area an ambient temperature curing, solvent-borne primer coat composition. For purposes of clarity, "ambient temperatures" refers to temperatures of between about 55"F and about 11 5 0 F. More usefully, the primer coat composition will cure at ambient temperatures (dry to sand) in less than about 20 minutes, and more usefully, less than about 15 minutes. [00151 A particularly useful primer coat composition may comprise a solvent-borne blend of components comprising: (i) at least one polyol resin; (ii) at least one blocked amine; (iii) at least one polyisocyanate; (iv) a metal catalyst, such as a tin compound, for accelerating the isocyanate/hydroxyl reaction; and (v) a volatile organic acid. [00161 Polyol resins useful in the primer coat composition may include monomeric compounds and polymeric compositions having two or more hydroxyl groups per molecule, notwithstanding the optional presence of other functional groups such as carboxyl, amino, urea, carbamate, amide and epoxy groups. The primer composition may comprise a single polyol resin or a blend of polyol resins, which may include blends of polymeric polyols, monomeric polyols or both. [00171 Suitable monomeric polyols may include diols such as ethylene glycol, dipropylene glycol, 2,2,4-trimethyl 1,3-pentanediol, neopentyl glycol, 1,2-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,2 4 WO 2009/120293 PCT/US2009/001783 dimethyl-1,3-propanediol, 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 1,3 cyclohexanedimethanol, 1,4-bis(2-hydroxyethoxy)cyclohexane, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, decamethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, norbornylene glycol, 1,4-benzenedimethanol, 1,4-benzenediethanol, 2,4-dimethyl-2-ethylenehexane-1,3-diol, 2-butene-1,4-diol, and higher level polyols such as trimethylolethane, trimethylolpropane, trimethylolhexane, triethylolpropane, 1,2,4-butanetriol, glycerol, pentaerythritol, dipentaerythritol, and the like. [00181 Exemplary polymeric polyols may include polyether polyols, polyester polyols, acrylic polyols, polycaprolactone polyols, polyurethane polyols, and polycarbonate polyols. Acrylic polyols are particularly desirable. [00191 Polyether polyols may be prepared as the reaction products of ethylene or propylene oxide or tetrahydrofuran with diols or polyols. Polyethers derived from natural products such as cellulose and synthetic epoxy resins may also be used in this invention. Polyester polyols may be prepared by the reaction of diols, triols or other polyols with di or polybasic acids. Alkyds with hydroxy functional groups may be prepared in a similar process except that mono functional fatty acids may be included. Acrylic polyols may be prepared as the polymerization products of an ester of acrylic or methacrylic acid with hydroxy containing monomers such as hydroxyethyl, hydroxypropyl or hydroxybutyl ester of acrylic or methacrylic acid. Acrylic polymers can also contain other vinyl monomers such as styrene, acrylonitrile vinyl chloride and others. Polyurethane polyols may be prepared as the reaction products of polyether or polyester polyols with diisocyanates. [00201 Numerous blocked amines well known in the art may be used in the present invention. Blocked amines are herein defined as those amines that will produce primary and secondary amines when exposed to water or water vapor, with or without the release of the respective aldehyde or ketone. Deblocking of the blocked amine may be accelerated by the organic acid (discussed below). Preferred blocked amines include aldimines, ketimines and oxazolidines. Aldimines are commercially produced by the condensation of aldehydes with primary diamines, followed by removal of the water by product. Ketimines are produced in a similar fashion, with ketones being utilized in place 5 WO 2009/120293 PCT/US2009/001783 of the aldehydes. Oxazolidines are produced by condensing either ketones or aldehydes with alkanolamines, with the water by-product again being removed. [0021] The primer composition may include any isocyanate functional molecule conventionally used making polyurethanes or polyureas. Typical isocyanate functional molecules useful in the compositions of this invention will have an average of at least two isocyanates per molecule, and more usefully three isocyanates per molecule. Representative polyisocyanates useful in the present invention include the aliphatic compounds such as ethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, 1,2-propylene, 1,2-butylene, 2,3-butylene, 1,3-butylene, ethylidene and butylidene diisocyanates; the cycloalkylene compounds such as 3-isocyanatomethyl 3,5,5-trimethylcyclohexylisocyanate, and the 1,3-cyclopentane, 1,3-cyclohexane, and 1,2 cyclohexane diisocyanates; the aromatic compounds such as m-phenylene, p-phenylene, 4,4-diphenyl, 1,5-naphthalene and 1,4-naphthalene diisocyanates; the aliphatic-aromatic compounds such as 4,4-diphenylene methane, 2,4- or 2,6-toluene or mixtures thereof, 4,4'-toluidine, and 1,4-xylylene diisocyanates; the nuclear substituted aromatic compounds such as dianisdine diisocyanate, 4,4'-diphenylether diisocyanate and chlorodiphenylene diisocyanate; the triisocyanates such as triphenyl methane-4,4',4" triisocyanate, 1,3,5-triisocyanatebenzene and 2,4,6-triisocyanate toluene; and the tetraisocyanates such as 4,4'-diphenyl-dimethyl methane -2,2',5,5'-tetraisocyanate; the polymerized polyisocyanates such as dimers and trimers, and other various polyisocyanates containing biuret, urethane, and/or allophanate linkages. [0022] Preferred polyisocyanates include dimers and trimers of hexamethylene diisocyanate, isophorone diisocyanate, and mixtures thereof. [00231 The primer composition further includes a suitable catalyst used for the reaction of active hydrogen containing compounds and isocyanates. Suitable catalysts for this reaction include, for example, tertiary amines, and metal catalysts. Typical metal catalysts may include tin, zinc, copper and bismuth materials such as dibutyl tin dilaurate, stannous octanoate, dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin oxide, tetrabutyl-1,3-diacetoxydistannoxane, zinc octoate, copper naphthenate, bismuth octoate and the like. [00241 The primer composition may further include a volatile organic acid, which may be a carboxylic acid. Particularly useful organic acids include volatile carboxylic 6 WO 2009/120293 PCT/US2009/001783 acids, including, for example, formic acid, acetic acid, propionic aid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, heptanoic acid, and octanoic acid, etc, and blends thereof. Acetic and propionic acid are particularly useful, with acetic acid being desirable for its volatility. As indicated above, these acids are particularly useful for accelerating deblocking of the amine. [00251 The primer composition may include one or more inert organic solvents, such as aliphatic and aromatic hydrocarbon solvents, exemplified by toluene, xylene, ethyl benzene, aromatic naphtha, mineral spirits, hexane, aliphatic naphtha, and the like, and oxygenated solvents, such as ketone solvents, ester solvents, ether solvents, alcohols and the like, including butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, methyl amyl ketone and methyl isobutyl ketone, methanol, ethanol, propoanol, and the like. [00261 One particularly useful primer coat composition may be obtained by blending P30 series SpectraPrime primer, available from The Sherwin-Williams Company, with SRI 5 - SpectraPrime Speed Reducer, available from The Sherwin-Williams Company, with UH80 ULTRA System Low VOC Air Dry Hardener, available from The Sherwin Williams Company. In another embodiment of the primer coat composition, the reducer may comprise about 0.5 % by weight of a metal catalyst, about 24.1% by weight of at least one aliphatic polyamine, and about 75.4 % by weight of at least one inert solvent. The primer, reducer and hardener may be blended in a ratio of about 2:2:1. [00271 The primer coat composition may be applied by any conventional means; however, spray application is a particularly useful application means. One or more primer coats may be applied. Where multiple primer coats are applied, it may be useful according to the methods of the present invention to provide a flash time for each intermediate layer, at ambient temperatures, of less than about 5 minutes, in other embodiments, less than 2 minutes, in still further embodiments, less than about 1 minute, in still further embodiments, less than about 45 seconds, and in still further embodiments, about 30 seconds. Flash times of between about 30 seconds and 5 minutes are useful, or alternatively, between about 30 seconds and about 2 minutes. In some embodiments, there may be substantially no flash time associated with the primer coats. The flash time may be no longer than that minimal time between the first application pass and the second application pass in a conventional wet on wet application process. 7 WO 2009/120293 PCT/US2009/001783 [00281 The primer coat compositions described herein will preferably cure to allow sanding of the primer coat layer within about 20 minutes at ambient temperatures and, preferably about 15 minutes at ambient temperatures. Application of thermal radiation, such as infrared radiation, to the primer coat layer may be employed as a curing process, but is not required. However, where thermal radiation is applied as a curing process, the cure time of the primer coat layer may be reduced to about 5 minutes. [0029] Following the optional application of a primer coat layer, one or more layers of a solvent-borne basecoat composition may be applied to the damaged area. Most usefully, the basecoat layer may be a refinish basecoat layer based on urethanes, acrylics, polyesters, polyethers, and the like. The basecoat layer may be tinted with suitable colorants and pigments so that the basecoat layer will match the basecoat color of the surrounding undamaged area. However, in other embodiments, it will be recognized that it may be useful to provide a different basecoat color than the surrounding, undamaged area. 100301 Particularly useful basecoat compositions for use in connection with the methods of the present invention may include Ultra 7000 basecoat compositions commercially available from The Sherwin-Williams Company, which may be blended with a suitable commercially available reducer, such as RHF Reducers available commercially from The Sherwin-Williams Company. [00311 As with the primer coat composition, layers of basecoat composition may be applied by any conventional means; however, spray application is a particularly useful means. [00321 According to the methods of the present invention, at least a first basecoat layer may be applied to the repair area. The method further comprises force flashing the basecoat layer with a venturi dryer or other source or ambient air flow directed to the basecoat layer for a flash time. A useful flash time may be less than about 5 minutes, though in other embodiments, less than about 2 minutes, and in still further embodiments, about 90 seconds. Flash times of between about 1 minute and about 5 minutes are particularly useful. The venturi dryer may be an air dryer gun. The air flow supplied by the air source may be between about 5 to about 20 cfm. [00331 Following the flash time, subsequent basecoat layers may be applied until hiding is achieved. Usefully, each applied layer will be flashed using the venturi dryer 8 WO 2009/120293 PCT/US2009/001783 for a flash time, which may be up to about 5 minutes, preferably from about 1 minute to about 2 minutes. Longer flash times with the venturi dryer may be undertaken, but under the embodiments contemplated herein, a flash time of between about 1 minute and about 2 minutes is desirable. [00341 In some embodiments, it may be useful to apply as the final basecoat layer a droplet coat to help with orientation of metallic pigments, if present in the basecoat composition. This final basecoat layer may be force flashed with the venturi dryer as provided above. 100351 Following application of the final basecoat layer and flash time with the venturi dryer, one or more layers of a clearcoat composition may be applied to the basecoat layer. Clearcoat compositions useful for the present invention may include those described in U.S. patent application serial number 11/753,171, which is incorporated herein by reference and U.S. Patent No 7,279,525, which is also incorporated herein by reference. 100361 A particularly useful clearcoat composition according to the references cited above may be formed according to the following formula: Component Weight Percent Acrylic Resin 38.9 Low molecular weight polyester polyol 1.0 reactive diluent N-Butyl Acetate 15.5 2-butoxyethyl acetate 1.6 Ethyl 3-ethoxypropionate 3.7 Methyl N-Amyl Ketone 6.0 Methyl N-Propyl Ketone 2.0 Acetone 16.0 Light stabilizer 1.1 Modified silicone solution' 0.2 Acetic acid 0.7 Dibutyltin dilaurate 0.1 HDI Trimer 2 13.1 1. Byk 310 available from Byk-Chemie. 2. Tolonate HDT, available from Rhodia. [00371 As previously described, the clearcoat composition can be applied by any application method known in the art, but preferably will be spray applied. The basecoat 9 WO 2009/120293 PCT/US2009/001783 and the clearcoat may each be applied to give a dry film thickness of about 0.2 to about 6, and especially about 0.5 to about 3.0 mils. [00381 In a particularly useful embodiment, two layers of clearcoat composition may be applied to the repaired surface wet on wet to a dry film thickness of between about 1.5 and 2.0 mils. [00391 Following application of the clearcoat layers, sanding and buffing of the repaired area may be completed as necessary to improve appearance. As indicated above, the clearcoat layer may be dry to sand and buff in about 15 minutes at ambient temperatures. Additionally, the clearcoat may be sufficiently dry to prevent ambient dust from sticking to the coating, in less than about 10 minutes. As with the primer coat layer, thermal radiation curing process may be employed in conjunction with the clearcoat layer to significantly reduce the cure time to sand and buff. Using heat may, in some embodiments, facilitate curing the clearcoat to allow sanding and buffing in about 5 minutes or less. [00401 The selection of materials described herein to form a basecoat/clearcoat system, and, in another embodiment, a primer coat/basecoat/clearcoat system, in connection with use of the venturi dryer to flash the basecoat layers, facilitate a process for spot repairing a vehicle that can be completed (dry to buff) under ambient conditions with less than about 30 minutes, and preferably less than about 20 minutes, of total cure time for the basecoat/clearcoat system and less than about 45 minutes, and preferably less than about 35 minutes, of total cure time (dry to buff) for the primer coat/basecoat/clearcoat system. By using heat (thermal radiation) in the cure process of the primer coat and clearcoat, in place of or in addition to a force drying process using ambient air, the total cure time may be reduced to about 10 to 15 minutes in the basecoat/clearcoat system and about 15 to 20 minutes in the primer coat/basecoat/clearcoat system of the present invention. Importantly, however, the system can be applied by methods described herein that do not require use of a thermal or actinic radiation source such as a heat lamp or UV lamp. However, where it may be desirable to apply heat to facilitate cure, heat may be supplied by a heat lamp, oven, or hot air dryer. Other conventional heat sources used in the refinishing arts may also be used. 10 WO 2009/120293 PCT/US2009/001783 [00411 The embodiments have been described, hereinabove. It will be apparent to those skilled in the art that the above methods and apparatuses may incorporate changes and modifications without departing from the general scope of this invention. It is intended to include all such modifications and alterations in so far as they come within the scope of the appended claims or the equivalents thereof. [00421 Having thus described the invention, it is now claimed: 11
Claims (23)
1. A method of coating a substrate, the method comprising the steps of: applying at least a first layer of an ambient cure basecoat composition to a substrate; force flashing the basecoat composition with ambient temperature air; applying at least a first layer of an ambient cure clearcoat composition to the layer of basecoat composition; curing the clearcoat composition; wherein the method is substantially free of the use of applied thermal or actinic radiation to facilitate cure of the basecoat or clearcoat compositions.
2. The method of claim 1, wherein the at least a first basecoat layer is force flashed with a flow of ambient temperature air for less than about 5 minutes.
3. The method of claim 1, wherein the at least a first basecoat layer is force flashed with a flow of ambient temperature air for less than about 2 minutes.
4. The method of claim 3, wherein the first basecoat layer is force flashed with a venturi dryer.
5. The method of claim 1, further comprising the steps of: applying a second layer of an ambient cure basecoat composition on top of the first layer of the basecoat composition; and force flashing the second basecoat layer with a flow of ambient temperature air.
6. The method of claim 5, wherein the first layer of basecoat composition is force flashed with ambient temperature air for between about 1 to about 5 minutes; and wherein the second layer of basecoat composition is force flashed with ambient temperature air for between about I to about 5 minutes.
7. The method of claim 6, wherein the basecoat composition is tinted to substantially match an existing color of the substrate. 12 WO 2009/120293 PCT/US2009/001783
8. The method of claim 7, wherein the substrate is a vehicle panel.
9. The method of claim 6, wherein, the basecoat layers are force flashed with a venturi dryer.
10. The method of claim 1, wherein, at ambient temperatures, the clearcoat composition will substantially cure to allow buffing of the clearcoat within 15 minutes after application.
11. A method of making repairs to a substrate, the method comprising the steps of: applying at least a first layer of an ambient cure primer composition to a substrate, wherein the primer composition sufficiently cures at ambient temperatures to allow sanding of the primer layer within 20 minutes after application; applying at least a first layer of an ambient cure basecoat composition to the primer layer; force flashing the basecoat composition with a flow of ambient temperature air for between about 1 to about 5 minutes; applying at least a first layer of an ambient cure clearcoat composition to the layer of basecoat composition; and curing the clearcoat composition; wherein the steps of curing the primer, basecoat and clearcoat compositions do not require use of applied thermal or actinic radiation.
12. The method of claim 11, wherein the primer composition is a solvent-borne blend comprising: (a) at least one polyol resin; (b) at least one blocked amine; (c) at least one polyisocyanate; (d) a metal catalyst that accelerates an isocyanate/hydroxyl reaction; and 13 WO 2009/120293 PCT/US2009/001783 (e) a volatile organic acid.
13. The method of claim 11, further comprising the step of force flashing the primer composition with a flow of ambient temperature air for between about 30 seconds and 2 minutes.
14. The method of claim 13, comprising using a venturi dryer to provide the flow of ambient temperature air.
15. The method of claim 11, wherein, at ambient temperatures, the clearcoat layer is cured to allow buffing within 20 minutes after application.
16. A method of spot repairing damage to the color coat of a vehicle panel, comprising the steps of: applying to the area of damage at least one layer of a pigmented basecoat composition having a color that substantially matches the color coat of the vehicle panel surrounding the area of damage; force flashing the layer of pigmented basecoat composition with ambient temperature air for between about 1 to about 5 minutes; optionally, applying at least a second layer of the pigmented basecoat composition on top of the first layer of pigmented basecoat composition; applying to the basecoat layer at least one layer of a clearcoat composition wherein the clearcoat composition is curable at ambient temperatures to allow buffing in less than about 20 minutes after application; and buffing the clearcoat layer.
17. The method of claim 16, wherein, prior to buffing the clearcoat layer, the total time allocated to curing the first basecoat layer and the clearcoat layer is less than about 30 minutes at ambient temperatures.
18. The method of claim 16, further comprising the steps of: 14 WO 2009/120293 PCT/US2009/001783 applying at least a first layer of an ambient cure primer composition to the area of damage prior to the step of applying the at least one layer of a pigmented basecoat composition.
19. The method of claim 18, wherein, prior to buffing the clearcoat layer, the total time allocated to curing the first primer layer, the first basecoat layer and the clearcoat layer is less than about 45 minutes at ambient temperatures.
20. The method of claim 18, wherein actinic radiation is not used in curing any of the primer, basecoat or clearcoat compositions.
21. The method of claim 18, wherein thermal radiation above ambient temperatures is not used in curing any of the primer, basecoat or clearcoat compositions.
22. A method of coating a substrate, the method comprising the steps of: applying at least a first layer of a solvent-borne basecoat composition to a substrate; applying a curing process to the first basecoat layer for a period of less than about five minutes, the curing process selected from the group consisting of force flashing with ambient temperature air, thermal radiation, and blends thereof; optionally, applying at least a second layer of the pigmented basecoat composition on top of the first layer of pigmented basecoat composition; applying a curing process to the optional second basecoat layer for a period of less than about five minutes, the curing process selected from the group consisting of force flashing with ambient temperature air, thermal radiation, and blends thereof; and applying at least a first layer of a solvent-borne clearcoat composition to the top layer of basecoat composition; wherein, at ambient temperatures, the clearcoat layer is sufficiently cured to allow buffing within 20 minutes after application. 15 WO 2009/120293 PCT/US2009/001783
23. The method of claim 22, further comprising the step of applying thermal radiation to the clearcoat layer for up to about 5 minutes. 16
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2013203085A AU2013203085A1 (en) | 2008-03-24 | 2013-04-09 | Ambient cure painting method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/038,799 | 2008-03-24 | ||
AU2009229388A AU2009229388B2 (en) | 2008-03-24 | 2009-03-19 | Ambient cure painting method |
AU2013203085A AU2013203085A1 (en) | 2008-03-24 | 2013-04-09 | Ambient cure painting method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2009229388A Division AU2009229388B2 (en) | 2008-03-24 | 2009-03-19 | Ambient cure painting method |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2013203085A1 true AU2013203085A1 (en) | 2013-05-02 |
Family
ID=48428752
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013203099A Abandoned AU2013203099A1 (en) | 2008-03-24 | 2013-04-09 | Ambient cure painting method |
AU2013203085A Abandoned AU2013203085A1 (en) | 2008-03-24 | 2013-04-09 | Ambient cure painting method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2013203099A Abandoned AU2013203099A1 (en) | 2008-03-24 | 2013-04-09 | Ambient cure painting method |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2013203099A1 (en) |
-
2013
- 2013-04-09 AU AU2013203099A patent/AU2013203099A1/en not_active Abandoned
- 2013-04-09 AU AU2013203085A patent/AU2013203085A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU2013203099A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6835759B2 (en) | Dual cure coating composition and processes for using the same | |
JP4090000B2 (en) | Multilayer coating and manufacturing method thereof | |
CA2900623C (en) | Methods for repairing defects in automotive coatings | |
AU2009229388B2 (en) | Ambient cure painting method | |
JP2006526688A (en) | Radiation / heat double curable coating composition | |
JP6718197B2 (en) | Organic solvent-based undercoat coating composition | |
US20030083397A1 (en) | Dual cure coating composition and process for using the same | |
US20070048441A1 (en) | Radiation curable clearcoat repair system and method for obtaining film build in thin film areas using the system | |
US7955655B2 (en) | Coating compositions and method of forming coating film | |
JP5843384B2 (en) | Multi-layer coating formation method | |
US20110014388A1 (en) | Ambient cure painting method with waterborne basecoat | |
US20030078315A1 (en) | Dual cure coating composition and processes for using the same | |
EP1854552B1 (en) | Method for refinishing vehicles | |
WO2021171705A1 (en) | Aqueous coating composition and method for forming multilayer coating film | |
AU2013203099A1 (en) | Ambient cure painting method | |
US20040146638A1 (en) | Process for repairing coatings | |
JP7545561B2 (en) | Coating composition and coated article | |
JP6896198B1 (en) | Water-based coating composition and method for forming a multi-layer coating film | |
CN112442314A (en) | Aqueous sealant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK5 | Application lapsed section 142(2)(e) - patent request and compl. specification not accepted |