AU2007201748B2 - Local regional chemotherapy and radiotherapy using in situ hydrogel - Google Patents
Local regional chemotherapy and radiotherapy using in situ hydrogel Download PDFInfo
- Publication number
- AU2007201748B2 AU2007201748B2 AU2007201748A AU2007201748A AU2007201748B2 AU 2007201748 B2 AU2007201748 B2 AU 2007201748B2 AU 2007201748 A AU2007201748 A AU 2007201748A AU 2007201748 A AU2007201748 A AU 2007201748A AU 2007201748 B2 AU2007201748 B2 AU 2007201748B2
- Authority
- AU
- Australia
- Prior art keywords
- polymer
- cross
- tumor
- therapeutic agent
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000011065 in-situ storage Methods 0.000 title claims description 29
- 239000000017 hydrogel Substances 0.000 title claims description 24
- 238000002512 chemotherapy Methods 0.000 title description 9
- 238000001959 radiotherapy Methods 0.000 title description 9
- 239000000203 mixture Substances 0.000 claims description 180
- 239000003814 drug Substances 0.000 claims description 161
- 229920000642 polymer Polymers 0.000 claims description 141
- 206010028980 Neoplasm Diseases 0.000 claims description 137
- 229940124597 therapeutic agent Drugs 0.000 claims description 104
- 239000003795 chemical substances by application Substances 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 62
- 238000004132 cross linking Methods 0.000 claims description 61
- 229940079593 drug Drugs 0.000 claims description 56
- -1 hydroxycellulose Polymers 0.000 claims description 41
- 150000004676 glycans Chemical class 0.000 claims description 40
- 229920001282 polysaccharide Polymers 0.000 claims description 40
- 239000005017 polysaccharide Substances 0.000 claims description 40
- 239000002253 acid Substances 0.000 claims description 36
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 33
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 28
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 28
- 229960004528 vincristine Drugs 0.000 claims description 28
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 28
- 150000001768 cations Chemical class 0.000 claims description 26
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 claims description 23
- 239000003431 cross linking reagent Substances 0.000 claims description 23
- 229960003048 vinblastine Drugs 0.000 claims description 23
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 22
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 claims description 22
- 108010006654 Bleomycin Proteins 0.000 claims description 21
- 229960001561 bleomycin Drugs 0.000 claims description 20
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 20
- 229960004316 cisplatin Drugs 0.000 claims description 20
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 19
- 229920000249 biocompatible polymer Polymers 0.000 claims description 19
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 19
- 150000003839 salts Chemical group 0.000 claims description 19
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 claims description 18
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 18
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 claims description 18
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 claims description 17
- 229960005243 carmustine Drugs 0.000 claims description 17
- 229960001924 melphalan Drugs 0.000 claims description 17
- 229960004857 mitomycin Drugs 0.000 claims description 17
- 229920001661 Chitosan Polymers 0.000 claims description 16
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims description 16
- 229960002247 lomustine Drugs 0.000 claims description 16
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical group O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 15
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 15
- 229930192392 Mitomycin Natural products 0.000 claims description 15
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 15
- 229940072056 alginate Drugs 0.000 claims description 15
- 235000010443 alginic acid Nutrition 0.000 claims description 15
- 229920000615 alginic acid Polymers 0.000 claims description 15
- 229960004630 chlorambucil Drugs 0.000 claims description 15
- 229920006037 cross link polymer Polymers 0.000 claims description 15
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 14
- 108010092160 Dactinomycin Proteins 0.000 claims description 14
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 14
- LWBPNIJBHRISSS-UHFFFAOYSA-L beryllium dichloride Chemical compound Cl[Be]Cl LWBPNIJBHRISSS-UHFFFAOYSA-L 0.000 claims description 14
- KQHXBDOEECKORE-UHFFFAOYSA-L beryllium sulfate Chemical compound [Be+2].[O-]S([O-])(=O)=O KQHXBDOEECKORE-UHFFFAOYSA-L 0.000 claims description 14
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 14
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 claims description 14
- 229960000640 dactinomycin Drugs 0.000 claims description 14
- 229960004679 doxorubicin Drugs 0.000 claims description 14
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims description 14
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 14
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 13
- 229960004397 cyclophosphamide Drugs 0.000 claims description 13
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 239000001110 calcium chloride Substances 0.000 claims description 12
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 12
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 12
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 claims description 12
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 11
- 239000004971 Cross linker Substances 0.000 claims description 11
- 229930012538 Paclitaxel Natural products 0.000 claims description 11
- 229960000975 daunorubicin Drugs 0.000 claims description 11
- 229960001592 paclitaxel Drugs 0.000 claims description 11
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 11
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 10
- 229920002567 Chondroitin Polymers 0.000 claims description 9
- 108010068250 Herpes Simplex Virus Protein Vmw65 Proteins 0.000 claims description 9
- DLGJWSVWTWEWBJ-HGGSSLSASA-N chondroitin Chemical compound CC(O)=N[C@@H]1[C@H](O)O[C@H](CO)[C@H](O)[C@@H]1OC1[C@H](O)[C@H](O)C=C(C(O)=O)O1 DLGJWSVWTWEWBJ-HGGSSLSASA-N 0.000 claims description 9
- 229960003276 erythromycin Drugs 0.000 claims description 9
- 108010064470 polyaspartate Proteins 0.000 claims description 9
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 claims description 8
- 108010020346 Polyglutamic Acid Proteins 0.000 claims description 8
- 210000001367 artery Anatomy 0.000 claims description 8
- WZPBZJONDBGPKJ-VEHQQRBSSA-N aztreonam Chemical compound O=C1N(S([O-])(=O)=O)[C@@H](C)[C@@H]1NC(=O)C(=N/OC(C)(C)C(O)=O)\C1=CSC([NH3+])=N1 WZPBZJONDBGPKJ-VEHQQRBSSA-N 0.000 claims description 8
- 229910052790 beryllium Inorganic materials 0.000 claims description 8
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 8
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 claims description 8
- 229940014041 hyaluronate Drugs 0.000 claims description 8
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 claims description 7
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 claims description 7
- WZPBZJONDBGPKJ-UHFFFAOYSA-N Antibiotic SQ 26917 Natural products O=C1N(S(O)(=O)=O)C(C)C1NC(=O)C(=NOC(C)(C)C(O)=O)C1=CSC(N)=N1 WZPBZJONDBGPKJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910021555 Chromium Chloride Inorganic materials 0.000 claims description 7
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 claims description 7
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 claims description 7
- 229930182566 Gentamicin Natural products 0.000 claims description 7
- 229910021380 Manganese Chloride Inorganic materials 0.000 claims description 7
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 claims description 7
- 229910021569 Manganese fluoride Inorganic materials 0.000 claims description 7
- 108010059993 Vancomycin Proteins 0.000 claims description 7
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 7
- QEIJLYPFVMNNQJ-UHFFFAOYSA-K [Cr+3].[O-][Cl](=O)=O.[O-][Cl](=O)=O.[O-][Cl](=O)=O Chemical compound [Cr+3].[O-][Cl](=O)=O.[O-][Cl](=O)=O.[O-][Cl](=O)=O QEIJLYPFVMNNQJ-UHFFFAOYSA-K 0.000 claims description 7
- RAOSIAYCXKBGFE-UHFFFAOYSA-K [Cu+3].[O-]P([O-])([O-])=O Chemical compound [Cu+3].[O-]P([O-])([O-])=O RAOSIAYCXKBGFE-UHFFFAOYSA-K 0.000 claims description 7
- FSYYCDYDQQAUCW-UHFFFAOYSA-L [F-].[F-].[Ra+2] Chemical compound [F-].[F-].[Ra+2] FSYYCDYDQQAUCW-UHFFFAOYSA-L 0.000 claims description 7
- VTNHQTZHOLOTIS-UHFFFAOYSA-L [Ra+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O Chemical compound [Ra+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O VTNHQTZHOLOTIS-UHFFFAOYSA-L 0.000 claims description 7
- MXQFUMUIEZBICJ-UHFFFAOYSA-L [Ra+2].[O-]S([O-])(=O)=O Chemical compound [Ra+2].[O-]S([O-])(=O)=O MXQFUMUIEZBICJ-UHFFFAOYSA-L 0.000 claims description 7
- RKWOONGCWHYIFR-UHFFFAOYSA-H [Ra+2].[Ra+2].[Ra+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O Chemical compound [Ra+2].[Ra+2].[Ra+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O RKWOONGCWHYIFR-UHFFFAOYSA-H 0.000 claims description 7
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 claims description 7
- 229960003942 amphotericin b Drugs 0.000 claims description 7
- 229960003644 aztreonam Drugs 0.000 claims description 7
- PBKYCFJFZMEFRS-UHFFFAOYSA-L beryllium bromide Chemical compound [Be+2].[Br-].[Br-] PBKYCFJFZMEFRS-UHFFFAOYSA-L 0.000 claims description 7
- 229910001621 beryllium bromide Inorganic materials 0.000 claims description 7
- ZBUQRSWEONVBES-UHFFFAOYSA-L beryllium carbonate Chemical compound [Be+2].[O-]C([O-])=O ZBUQRSWEONVBES-UHFFFAOYSA-L 0.000 claims description 7
- 229910000023 beryllium carbonate Inorganic materials 0.000 claims description 7
- 229910001627 beryllium chloride Inorganic materials 0.000 claims description 7
- JZKFIPKXQBZXMW-UHFFFAOYSA-L beryllium difluoride Chemical compound F[Be]F JZKFIPKXQBZXMW-UHFFFAOYSA-L 0.000 claims description 7
- 229910001633 beryllium fluoride Inorganic materials 0.000 claims description 7
- XUYHBCPJXPJTCK-UHFFFAOYSA-L beryllium;hydron;phosphate Chemical compound [Be+2].OP([O-])([O-])=O XUYHBCPJXPJTCK-UHFFFAOYSA-L 0.000 claims description 7
- 229910001622 calcium bromide Inorganic materials 0.000 claims description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 7
- YALMXYPQBUJUME-UHFFFAOYSA-L calcium chlorate Chemical compound [Ca+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O YALMXYPQBUJUME-UHFFFAOYSA-L 0.000 claims description 7
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 claims description 7
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 7
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 7
- 239000001506 calcium phosphate Substances 0.000 claims description 7
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 7
- 235000011010 calcium phosphates Nutrition 0.000 claims description 7
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 claims description 7
- 229960001139 cefazolin Drugs 0.000 claims description 7
- 229910021563 chromium fluoride Inorganic materials 0.000 claims description 7
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 claims description 7
- XHFVDZNDZCNTLT-UHFFFAOYSA-H chromium(3+);tricarbonate Chemical compound [Cr+3].[Cr+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O XHFVDZNDZCNTLT-UHFFFAOYSA-H 0.000 claims description 7
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 claims description 7
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 claims description 7
- XZQOHYZUWTWZBL-UHFFFAOYSA-L chromium(ii) bromide Chemical compound [Cr+2].[Br-].[Br-] XZQOHYZUWTWZBL-UHFFFAOYSA-L 0.000 claims description 7
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 claims description 7
- 229960003405 ciprofloxacin Drugs 0.000 claims description 7
- 229960002227 clindamycin Drugs 0.000 claims description 7
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 claims description 7
- 229940116318 copper carbonate Drugs 0.000 claims description 7
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 7
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 7
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 7
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 claims description 7
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 claims description 7
- IJCCOEGCVILSMZ-UHFFFAOYSA-L copper;dichlorate Chemical compound [Cu+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O IJCCOEGCVILSMZ-UHFFFAOYSA-L 0.000 claims description 7
- CTNMMTCXUUFYAP-UHFFFAOYSA-L difluoromanganese Chemical compound F[Mn]F CTNMMTCXUUFYAP-UHFFFAOYSA-L 0.000 claims description 7
- 229960002518 gentamicin Drugs 0.000 claims description 7
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 claims description 7
- 229960003907 linezolid Drugs 0.000 claims description 7
- TYZROVQLWOKYKF-ZDUSSCGKSA-N linezolid Chemical compound O=C1O[C@@H](CNC(=O)C)CN1C(C=C1F)=CC=C1N1CCOCC1 TYZROVQLWOKYKF-ZDUSSCGKSA-N 0.000 claims description 7
- 239000011777 magnesium Substances 0.000 claims description 7
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 claims description 7
- 229910001623 magnesium bromide Inorganic materials 0.000 claims description 7
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 7
- 239000001095 magnesium carbonate Substances 0.000 claims description 7
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 7
- 235000014380 magnesium carbonate Nutrition 0.000 claims description 7
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 7
- 235000011147 magnesium chloride Nutrition 0.000 claims description 7
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 7
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 7
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 7
- 239000004137 magnesium phosphate Substances 0.000 claims description 7
- 229910000157 magnesium phosphate Inorganic materials 0.000 claims description 7
- 229960002261 magnesium phosphate Drugs 0.000 claims description 7
- 235000010994 magnesium phosphates Nutrition 0.000 claims description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 7
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 7
- NNNSKJSUQWKSAM-UHFFFAOYSA-L magnesium;dichlorate Chemical compound [Mg+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O NNNSKJSUQWKSAM-UHFFFAOYSA-L 0.000 claims description 7
- 239000011656 manganese carbonate Substances 0.000 claims description 7
- 235000006748 manganese carbonate Nutrition 0.000 claims description 7
- 229940093474 manganese carbonate Drugs 0.000 claims description 7
- 239000011565 manganese chloride Substances 0.000 claims description 7
- 235000002867 manganese chloride Nutrition 0.000 claims description 7
- 229940099607 manganese chloride Drugs 0.000 claims description 7
- 229940099596 manganese sulfate Drugs 0.000 claims description 7
- 239000011702 manganese sulphate Substances 0.000 claims description 7
- 235000007079 manganese sulphate Nutrition 0.000 claims description 7
- CRPBAQAXWCOQOC-UHFFFAOYSA-L manganese(2+);dichlorate Chemical compound [Mn+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O CRPBAQAXWCOQOC-UHFFFAOYSA-L 0.000 claims description 7
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 7
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 7
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 7
- 229960000282 metronidazole Drugs 0.000 claims description 7
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 7
- 229960003128 mupirocin Drugs 0.000 claims description 7
- 229930187697 mupirocin Natural products 0.000 claims description 7
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 claims description 7
- GIKWXTHTIQCTIH-UHFFFAOYSA-L radium bromide Chemical compound [Br-].[Br-].[Ra+2] GIKWXTHTIQCTIH-UHFFFAOYSA-L 0.000 claims description 7
- 229910001624 radium bromide Inorganic materials 0.000 claims description 7
- 229940075451 radium bromide Drugs 0.000 claims description 7
- RWRDJVNMSZYMDV-UHFFFAOYSA-L radium chloride Chemical compound [Cl-].[Cl-].[Ra+2] RWRDJVNMSZYMDV-UHFFFAOYSA-L 0.000 claims description 7
- 229910001630 radium chloride Inorganic materials 0.000 claims description 7
- 229910001636 radium fluoride Inorganic materials 0.000 claims description 7
- 229960001225 rifampicin Drugs 0.000 claims description 7
- YJPVTCSBVRMESK-UHFFFAOYSA-L strontium bromide Chemical compound [Br-].[Br-].[Sr+2] YJPVTCSBVRMESK-UHFFFAOYSA-L 0.000 claims description 7
- 229910001625 strontium bromide Inorganic materials 0.000 claims description 7
- 229940074155 strontium bromide Drugs 0.000 claims description 7
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 7
- 229910001631 strontium chloride Inorganic materials 0.000 claims description 7
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 claims description 7
- FVRNDBHWWSPNOM-UHFFFAOYSA-L strontium fluoride Chemical compound [F-].[F-].[Sr+2] FVRNDBHWWSPNOM-UHFFFAOYSA-L 0.000 claims description 7
- 229910001637 strontium fluoride Inorganic materials 0.000 claims description 7
- 229960005256 sulbactam Drugs 0.000 claims description 7
- FKENQMMABCRJMK-RITPCOANSA-N sulbactam Chemical compound O=S1(=O)C(C)(C)[C@H](C(O)=O)N2C(=O)C[C@H]21 FKENQMMABCRJMK-RITPCOANSA-N 0.000 claims description 7
- 229960005404 sulfamethoxazole Drugs 0.000 claims description 7
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 claims description 7
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 7
- FTBATIJJKIIOTP-UHFFFAOYSA-K trifluorochromium Chemical compound F[Cr](F)F FTBATIJJKIIOTP-UHFFFAOYSA-K 0.000 claims description 7
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 claims description 7
- 229960001082 trimethoprim Drugs 0.000 claims description 7
- JOPDZQBPOWAEHC-UHFFFAOYSA-H tristrontium;diphosphate Chemical compound [Sr+2].[Sr+2].[Sr+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JOPDZQBPOWAEHC-UHFFFAOYSA-H 0.000 claims description 7
- 229960003165 vancomycin Drugs 0.000 claims description 7
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 claims description 7
- 229940102001 zinc bromide Drugs 0.000 claims description 7
- 239000011667 zinc carbonate Substances 0.000 claims description 7
- 235000004416 zinc carbonate Nutrition 0.000 claims description 7
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 7
- GTQFPPIXGLYKCZ-UHFFFAOYSA-L zinc chlorate Chemical compound [Zn+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O GTQFPPIXGLYKCZ-UHFFFAOYSA-L 0.000 claims description 7
- 239000011592 zinc chloride Substances 0.000 claims description 7
- 235000005074 zinc chloride Nutrition 0.000 claims description 7
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 7
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 7
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 7
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 7
- 229960001763 zinc sulfate Drugs 0.000 claims description 7
- 229920002307 Dextran Polymers 0.000 claims description 6
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 claims description 6
- 229930182555 Penicillin Natural products 0.000 claims description 6
- 229920002472 Starch Polymers 0.000 claims description 6
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- RJYMRRJVDRJMJW-UHFFFAOYSA-L dibromomanganese Chemical compound Br[Mn]Br RJYMRRJVDRJMJW-UHFFFAOYSA-L 0.000 claims description 6
- 229960004675 fusidic acid Drugs 0.000 claims description 6
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 claims description 6
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 claims description 6
- 229960002182 imipenem Drugs 0.000 claims description 6
- 229940077478 manganese phosphate Drugs 0.000 claims description 6
- 239000008107 starch Substances 0.000 claims description 6
- 235000019698 starch Nutrition 0.000 claims description 6
- FRTABACCYANHFP-UHFFFAOYSA-L strontium chlorate Chemical compound [Sr+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O FRTABACCYANHFP-UHFFFAOYSA-L 0.000 claims description 6
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 claims description 5
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 claims description 5
- 229960003022 amoxicillin Drugs 0.000 claims description 5
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 claims description 5
- 229940049954 penicillin Drugs 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052705 radium Inorganic materials 0.000 claims description 3
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims description 3
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 claims 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 claims 1
- 102000003390 tumor necrosis factor Human genes 0.000 claims 1
- MYPYJXKWCTUITO-LYRMYLQWSA-O vancomycin(1+) Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C([O-])=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)[NH2+]C)[C@H]1C[C@](C)([NH3+])[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-O 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 46
- 210000004027 cell Anatomy 0.000 description 34
- 239000002246 antineoplastic agent Substances 0.000 description 33
- 238000001415 gene therapy Methods 0.000 description 31
- 238000002347 injection Methods 0.000 description 30
- 239000007924 injection Substances 0.000 description 30
- 239000013598 vector Substances 0.000 description 29
- 229940088597 hormone Drugs 0.000 description 26
- 239000005556 hormone Substances 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 26
- 239000002417 nutraceutical Substances 0.000 description 24
- 229940041181 antineoplastic drug Drugs 0.000 description 23
- 239000000843 powder Substances 0.000 description 18
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 17
- 108090000623 proteins and genes Proteins 0.000 description 17
- 235000010413 sodium alginate Nutrition 0.000 description 17
- 239000000661 sodium alginate Substances 0.000 description 17
- 229940005550 sodium alginate Drugs 0.000 description 17
- 230000002401 inhibitory effect Effects 0.000 description 16
- 238000002560 therapeutic procedure Methods 0.000 description 16
- 102000053602 DNA Human genes 0.000 description 15
- 108020004414 DNA Proteins 0.000 description 15
- 108010051696 Growth Hormone Proteins 0.000 description 15
- 102100038803 Somatotropin Human genes 0.000 description 15
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 15
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 14
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 14
- 102000055006 Calcitonin Human genes 0.000 description 14
- 108060001064 Calcitonin Proteins 0.000 description 14
- 102400001368 Epidermal growth factor Human genes 0.000 description 14
- 101800003838 Epidermal growth factor Proteins 0.000 description 14
- 102400000921 Gastrin Human genes 0.000 description 14
- 108010052343 Gastrins Proteins 0.000 description 14
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 14
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 14
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 14
- 108010057464 Prolactin Proteins 0.000 description 14
- 102000003946 Prolactin Human genes 0.000 description 14
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 14
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 14
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 14
- 102000006601 Thymidine Kinase Human genes 0.000 description 14
- 108020004440 Thymidine kinase Proteins 0.000 description 14
- 229960002478 aldosterone Drugs 0.000 description 14
- 229960004015 calcitonin Drugs 0.000 description 14
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 14
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 14
- 201000010099 disease Diseases 0.000 description 14
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 14
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 14
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 229940097325 prolactin Drugs 0.000 description 14
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 14
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 14
- 102000038461 Growth Hormone-Releasing Hormone Human genes 0.000 description 13
- 239000000095 Growth Hormone-Releasing Hormone Substances 0.000 description 13
- 239000000284 extract Substances 0.000 description 13
- 238000001990 intravenous administration Methods 0.000 description 13
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 12
- 102100040247 Tumor necrosis factor Human genes 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 102000016914 ras Proteins Human genes 0.000 description 12
- 108010014186 ras Proteins Proteins 0.000 description 12
- 208000017604 Hodgkin disease Diseases 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 102000006771 Gonadotropins Human genes 0.000 description 10
- 108010086677 Gonadotropins Proteins 0.000 description 10
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 10
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 10
- 229960002092 busulfan Drugs 0.000 description 10
- 238000002591 computed tomography Methods 0.000 description 10
- 239000002622 gonadotropin Substances 0.000 description 10
- 150000002632 lipids Chemical class 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- 230000002496 gastric effect Effects 0.000 description 9
- 230000012010 growth Effects 0.000 description 9
- 210000004185 liver Anatomy 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 8
- 229930182837 (R)-adrenaline Natural products 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 241000207199 Citrus Species 0.000 description 8
- 235000010205 Cola acuminata Nutrition 0.000 description 8
- 244000228088 Cola acuminata Species 0.000 description 8
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 235000020971 citrus fruits Nutrition 0.000 description 8
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229960005139 epinephrine Drugs 0.000 description 8
- 239000000122 growth hormone Substances 0.000 description 8
- 239000002502 liposome Substances 0.000 description 8
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 7
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 7
- SILDPWPVKZETMP-AMUMSSSMSA-N (2S)-1-[(4R,7S,10S,13S,16S,19R)-19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-13-[(2S)-butan-2-yl]-16-[(4-hydroxyphenyl)methyl]-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carbonyl]-N-[(2S,3S)-1-[(2-amino-2-oxoethyl)amino]-3-methyl-1-oxopentan-2-yl]pyrrolidine-2-carboxamide Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N1)C(=O)NCC(N)=O SILDPWPVKZETMP-AMUMSSSMSA-N 0.000 description 7
- BJFIDCADFRDPIO-DZCXQCEKSA-N (2S)-N-[(2S)-6-amino-1-[(2-amino-2-oxoethyl)amino]-1-oxohexan-2-yl]-1-[[(4R,7S,10S,13S,16S,19R)-19-amino-7-(2-amino-2-oxoethyl)-10-(3-amino-3-oxopropyl)-16-[(4-hydroxyphenyl)methyl]-6,9,12,15,18-pentaoxo-13-(phenylmethyl)-1,2-dithia-5,8,11,14,17-pentazacycloeicos-4-yl]-oxomethyl]-2-pyrrolidinecarboxamide Chemical compound NCCCC[C@@H](C(=O)NCC(N)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](N)CSSC1 BJFIDCADFRDPIO-DZCXQCEKSA-N 0.000 description 7
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 7
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 7
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 7
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 7
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 7
- WVXRAFOPTSTNLL-NKWVEPMBSA-N 2',3'-dideoxyadenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO)O1 WVXRAFOPTSTNLL-NKWVEPMBSA-N 0.000 description 7
- MUKYLHIZBOASDM-UHFFFAOYSA-N 2-[carbamimidoyl(methyl)amino]acetic acid 2,3,4,5,6-pentahydroxyhexanoic acid Chemical compound NC(=N)N(C)CC(O)=O.OCC(O)C(O)C(O)C(O)C(O)=O MUKYLHIZBOASDM-UHFFFAOYSA-N 0.000 description 7
- MEJYXFHCRXAUIL-UHFFFAOYSA-N 2-[carbamimidoyl(methyl)amino]acetic acid;hydrate Chemical compound O.NC(=N)N(C)CC(O)=O MEJYXFHCRXAUIL-UHFFFAOYSA-N 0.000 description 7
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 7
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 7
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 7
- LVRVABPNVHYXRT-BQWXUCBYSA-N 52906-92-0 Chemical compound C([C@H](N)C(=O)N[C@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)C1=CC=CC=C1 LVRVABPNVHYXRT-BQWXUCBYSA-N 0.000 description 7
- HFDKKNHCYWNNNQ-YOGANYHLSA-N 75976-10-2 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)C(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 HFDKKNHCYWNNNQ-YOGANYHLSA-N 0.000 description 7
- 241000251468 Actinopterygii Species 0.000 description 7
- 241000157282 Aesculus Species 0.000 description 7
- 240000002234 Allium sativum Species 0.000 description 7
- 241000746375 Andrographis Species 0.000 description 7
- 241000382455 Angelica sinensis Species 0.000 description 7
- 108010005853 Anti-Mullerian Hormone Proteins 0.000 description 7
- 239000001904 Arabinogalactan Substances 0.000 description 7
- 229920000189 Arabinogalactan Polymers 0.000 description 7
- 235000012871 Arctostaphylos uva ursi Nutrition 0.000 description 7
- 244000139693 Arctostaphylos uva ursi Species 0.000 description 7
- 102400000059 Arg-vasopressin Human genes 0.000 description 7
- 101800001144 Arg-vasopressin Proteins 0.000 description 7
- OXDZADMCOWPSOC-UHFFFAOYSA-N Argiprestocin Chemical compound N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 OXDZADMCOWPSOC-UHFFFAOYSA-N 0.000 description 7
- 235000016425 Arthrospira platensis Nutrition 0.000 description 7
- 240000002900 Arthrospira platensis Species 0.000 description 7
- 239000009405 Ashwagandha Substances 0.000 description 7
- 241001061264 Astragalus Species 0.000 description 7
- 240000002999 Bacopa monnieri Species 0.000 description 7
- 235000015418 Bacopa monnieria Nutrition 0.000 description 7
- 229920002498 Beta-glucan Polymers 0.000 description 7
- 102100023995 Beta-nerve growth factor Human genes 0.000 description 7
- 108010051479 Bombesin Proteins 0.000 description 7
- 102000013585 Bombesin Human genes 0.000 description 7
- 235000018062 Boswellia Nutrition 0.000 description 7
- 240000007551 Boswellia serrata Species 0.000 description 7
- 241000167854 Bourreria succulenta Species 0.000 description 7
- 102400000967 Bradykinin Human genes 0.000 description 7
- 101800004538 Bradykinin Proteins 0.000 description 7
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 7
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 7
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 7
- 108010004032 Bromelains Proteins 0.000 description 7
- 235000014161 Caesalpinia gilliesii Nutrition 0.000 description 7
- 244000003240 Caesalpinia gilliesii Species 0.000 description 7
- 239000010369 Cascara Substances 0.000 description 7
- 108010010737 Ceruletide Proteins 0.000 description 7
- 240000003538 Chamaemelum nobile Species 0.000 description 7
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 7
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 7
- 102100025841 Cholecystokinin Human genes 0.000 description 7
- 101800001982 Cholecystokinin Proteins 0.000 description 7
- 241000251730 Chondrichthyes Species 0.000 description 7
- 229920001287 Chondroitin sulfate Polymers 0.000 description 7
- 235000008495 Chrysanthemum leucanthemum Nutrition 0.000 description 7
- 235000000604 Chrysanthemum parthenium Nutrition 0.000 description 7
- 241000190633 Cordyceps Species 0.000 description 7
- OMFXVFTZEKFJBZ-UHFFFAOYSA-N Corticosterone Natural products O=C1CCC2(C)C3C(O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 OMFXVFTZEKFJBZ-UHFFFAOYSA-N 0.000 description 7
- 102400000739 Corticotropin Human genes 0.000 description 7
- 101800000414 Corticotropin Proteins 0.000 description 7
- 108010022152 Corticotropin-Releasing Hormone Proteins 0.000 description 7
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 7
- 102000012289 Corticotropin-Releasing Hormone Human genes 0.000 description 7
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 7
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 7
- 244000019459 Cynara cardunculus Species 0.000 description 7
- 235000019106 Cynara scolymus Nutrition 0.000 description 7
- 102000000311 Cytosine Deaminase Human genes 0.000 description 7
- 108010080611 Cytosine Deaminase Proteins 0.000 description 7
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 7
- 108010033174 Deoxycytidine kinase Proteins 0.000 description 7
- 244000133098 Echinacea angustifolia Species 0.000 description 7
- 235000015489 Emblica officinalis Nutrition 0.000 description 7
- 241000218671 Ephedra Species 0.000 description 7
- 241000195955 Equisetum hyemale Species 0.000 description 7
- 102000003951 Erythropoietin Human genes 0.000 description 7
- 108090000394 Erythropoietin Proteins 0.000 description 7
- 102100029951 Estrogen receptor beta Human genes 0.000 description 7
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 7
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 7
- 108010028690 Fish Proteins Proteins 0.000 description 7
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 7
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 7
- 241000556215 Frangula purshiana Species 0.000 description 7
- 108700012941 GNRH1 Proteins 0.000 description 7
- 240000008397 Ganoderma lucidum Species 0.000 description 7
- 235000001637 Ganoderma lucidum Nutrition 0.000 description 7
- 244000119461 Garcinia xanthochymus Species 0.000 description 7
- 235000000885 Garcinia xanthochymus Nutrition 0.000 description 7
- 235000011201 Ginkgo Nutrition 0.000 description 7
- 235000008100 Ginkgo biloba Nutrition 0.000 description 7
- 244000194101 Ginkgo biloba Species 0.000 description 7
- 102000051325 Glucagon Human genes 0.000 description 7
- 108060003199 Glucagon Proteins 0.000 description 7
- 240000004670 Glycyrrhiza echinata Species 0.000 description 7
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 7
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 7
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 7
- 101800000736 Growth hormone-releasing factor Proteins 0.000 description 7
- 241000208251 Gymnema Species 0.000 description 7
- QXZGBUJJYSLZLT-UHFFFAOYSA-N H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH Natural products NC(N)=NCCCC(N)C(=O)N1CCCC1C(=O)N1C(C(=O)NCC(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CO)C(=O)N2C(CCC2)C(=O)NC(CC=2C=CC=CC=2)C(=O)NC(CCCN=C(N)N)C(O)=O)CCC1 QXZGBUJJYSLZLT-UHFFFAOYSA-N 0.000 description 7
- 235000008694 Humulus lupulus Nutrition 0.000 description 7
- 244000025221 Humulus lupulus Species 0.000 description 7
- 241000735432 Hydrastis canadensis Species 0.000 description 7
- 235000017309 Hypericum perforatum Nutrition 0.000 description 7
- 244000141009 Hypericum perforatum Species 0.000 description 7
- 102000002746 Inhibins Human genes 0.000 description 7
- 108010004250 Inhibins Proteins 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 7
- FYSKZKQBTVLYEQ-FSLKYBNLSA-N Kallidin Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)CCC1 FYSKZKQBTVLYEQ-FSLKYBNLSA-N 0.000 description 7
- 108010003195 Kallidin Proteins 0.000 description 7
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 7
- 101710163560 Lamina-associated polypeptide 2, isoform alpha Proteins 0.000 description 7
- 101710189385 Lamina-associated polypeptide 2, isoforms beta/gamma Proteins 0.000 description 7
- 240000000599 Lentinula edodes Species 0.000 description 7
- 235000001715 Lentinula edodes Nutrition 0.000 description 7
- 108010022337 Leucine Enkephalin Proteins 0.000 description 7
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 7
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 7
- 206010025323 Lymphomas Diseases 0.000 description 7
- 108010048179 Lypressin Proteins 0.000 description 7
- 102400000966 Lysyl-bradykinin Human genes 0.000 description 7
- 108010064699 MSH Release-Inhibiting Hormone Proteins 0.000 description 7
- 235000014837 Malpighia glabra Nutrition 0.000 description 7
- 240000003394 Malpighia glabra Species 0.000 description 7
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 7
- 102400001132 Melanin-concentrating hormone Human genes 0.000 description 7
- 101800002739 Melanin-concentrating hormone Proteins 0.000 description 7
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 7
- YJPIGAIKUZMOQA-UHFFFAOYSA-N Melatonin Natural products COC1=CC=C2N(C(C)=O)C=C(CCN)C2=C1 YJPIGAIKUZMOQA-UHFFFAOYSA-N 0.000 description 7
- 101800004705 Mesotocin Proteins 0.000 description 7
- 244000131360 Morinda citrifolia Species 0.000 description 7
- 102400001357 Motilin Human genes 0.000 description 7
- 101800002372 Motilin Proteins 0.000 description 7
- XUYPXLNMDZIRQH-LURJTMIESA-N N-acetyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC(C)=O XUYPXLNMDZIRQH-LURJTMIESA-N 0.000 description 7
- 241001483116 Neopicrorhiza scrophulariiflora Species 0.000 description 7
- 108010025020 Nerve Growth Factor Proteins 0.000 description 7
- 102400001103 Neurotensin Human genes 0.000 description 7
- 101800001814 Neurotensin Proteins 0.000 description 7
- 235000004072 Ocimum sanctum Nutrition 0.000 description 7
- 240000002837 Ocimum tenuiflorum Species 0.000 description 7
- 108090000854 Oxidoreductases Proteins 0.000 description 7
- 102000004316 Oxidoreductases Human genes 0.000 description 7
- 102400000050 Oxytocin Human genes 0.000 description 7
- 101800000989 Oxytocin Proteins 0.000 description 7
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 7
- DYIOQMKBBPSAFY-BENRWUELSA-N Palmityl myristoleate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCC DYIOQMKBBPSAFY-BENRWUELSA-N 0.000 description 7
- 102000018886 Pancreatic Polypeptide Human genes 0.000 description 7
- 102000003982 Parathyroid hormone Human genes 0.000 description 7
- 108090000445 Parathyroid hormone Proteins 0.000 description 7
- 235000011925 Passiflora alata Nutrition 0.000 description 7
- 235000000370 Passiflora edulis Nutrition 0.000 description 7
- 235000011922 Passiflora incarnata Nutrition 0.000 description 7
- 240000002690 Passiflora mixta Species 0.000 description 7
- 235000013750 Passiflora mixta Nutrition 0.000 description 7
- 235000013731 Passiflora van volxemii Nutrition 0.000 description 7
- 235000000556 Paullinia cupana Nutrition 0.000 description 7
- 240000003444 Paullinia cupana Species 0.000 description 7
- 240000009120 Phyllanthus emblica Species 0.000 description 7
- 235000016787 Piper methysticum Nutrition 0.000 description 7
- 240000005546 Piper methysticum Species 0.000 description 7
- 108010003044 Placental Lactogen Proteins 0.000 description 7
- 102000004576 Placental Lactogen Human genes 0.000 description 7
- 239000000381 Placental Lactogen Substances 0.000 description 7
- 108010069820 Pro-Opiomelanocortin Proteins 0.000 description 7
- 239000000683 Pro-Opiomelanocortin Substances 0.000 description 7
- 102100027467 Pro-opiomelanocortin Human genes 0.000 description 7
- 244000082490 Proboscidea louisianica Species 0.000 description 7
- 235000015926 Proboscidea louisianica ssp. fragrans Nutrition 0.000 description 7
- 235000015925 Proboscidea louisianica subsp. louisianica Nutrition 0.000 description 7
- 235000019096 Proboscidea parviflora Nutrition 0.000 description 7
- 108010087786 Prolactin-Releasing Hormone Proteins 0.000 description 7
- 102100028850 Prolactin-releasing peptide Human genes 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 235000000719 Prunus africana Nutrition 0.000 description 7
- 241000200478 Prunus africana Species 0.000 description 7
- 241000340987 Ptychopetalum olacoides Species 0.000 description 7
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 7
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 7
- 235000003500 Ruscus aculeatus Nutrition 0.000 description 7
- 240000000353 Ruscus aculeatus Species 0.000 description 7
- 241000124033 Salix Species 0.000 description 7
- 241000208829 Sambucus Species 0.000 description 7
- 235000018735 Sambucus canadensis Nutrition 0.000 description 7
- 240000006079 Schisandra chinensis Species 0.000 description 7
- 235000008422 Schisandra chinensis Nutrition 0.000 description 7
- 108010086019 Secretin Proteins 0.000 description 7
- 102100037505 Secretin Human genes 0.000 description 7
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 7
- 240000006661 Serenoa repens Species 0.000 description 7
- 235000005318 Serenoa repens Nutrition 0.000 description 7
- 241000320380 Silybum Species 0.000 description 7
- 235000010841 Silybum marianum Nutrition 0.000 description 7
- 108010056088 Somatostatin Proteins 0.000 description 7
- 102000005157 Somatostatin Human genes 0.000 description 7
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 7
- 244000228451 Stevia rebaudiana Species 0.000 description 7
- 101000983124 Sus scrofa Pancreatic prohormone precursor Proteins 0.000 description 7
- 240000004460 Tanacetum coccineum Species 0.000 description 7
- 208000024313 Testicular Neoplasms Diseases 0.000 description 7
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 7
- 102400000159 Thymopoietin Human genes 0.000 description 7
- 239000000898 Thymopoietin Substances 0.000 description 7
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical compound IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 description 7
- 108010061174 Thyrotropin Proteins 0.000 description 7
- 102000011923 Thyrotropin Human genes 0.000 description 7
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 7
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 7
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 7
- 241000819233 Tribulus <sea snail> Species 0.000 description 7
- 235000009108 Urtica dioica Nutrition 0.000 description 7
- 241000218215 Urticaceae Species 0.000 description 7
- 240000001717 Vaccinium macrocarpon Species 0.000 description 7
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 7
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 7
- 244000078534 Vaccinium myrtillus Species 0.000 description 7
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 7
- 235000013832 Valeriana officinalis Nutrition 0.000 description 7
- 244000126014 Valeriana officinalis Species 0.000 description 7
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 7
- 102400000015 Vasoactive intestinal peptide Human genes 0.000 description 7
- 101800003024 Vasotocin Proteins 0.000 description 7
- 240000000059 Vitex cofassus Species 0.000 description 7
- 235000001978 Withania somnifera Nutrition 0.000 description 7
- 240000004482 Withania somnifera Species 0.000 description 7
- 235000006886 Zingiber officinale Nutrition 0.000 description 7
- 244000273928 Zingiber officinale Species 0.000 description 7
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 7
- 229960004373 acetylcholine Drugs 0.000 description 7
- 239000003098 androgen Substances 0.000 description 7
- 229960003473 androstanolone Drugs 0.000 description 7
- 239000003242 anti bacterial agent Substances 0.000 description 7
- 230000001093 anti-cancer Effects 0.000 description 7
- 239000000868 anti-mullerian hormone Substances 0.000 description 7
- 235000019312 arabinogalactan Nutrition 0.000 description 7
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 7
- 235000016520 artichoke thistle Nutrition 0.000 description 7
- 235000006533 astragalus Nutrition 0.000 description 7
- 229940076810 beta sitosterol Drugs 0.000 description 7
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 7
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 7
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 7
- 235000007123 blue elder Nutrition 0.000 description 7
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 7
- 235000021324 borage oil Nutrition 0.000 description 7
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical compound NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 7
- 235000019835 bromelain Nutrition 0.000 description 7
- 229930190815 caerulein Natural products 0.000 description 7
- 210000000845 cartilage Anatomy 0.000 description 7
- 229940071704 cascara sagrada Drugs 0.000 description 7
- 235000011472 cat’s claw Nutrition 0.000 description 7
- YRALAIOMGQZKOW-HYAOXDFASA-N ceruletide Chemical compound C([C@@H](C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)[C@@H](C)O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(OS(O)(=O)=O)C=C1 YRALAIOMGQZKOW-HYAOXDFASA-N 0.000 description 7
- 229960001706 ceruletide Drugs 0.000 description 7
- 229940093532 cetyl myristoleate Drugs 0.000 description 7
- 235000009347 chasteberry Nutrition 0.000 description 7
- 230000000973 chemotherapeutic effect Effects 0.000 description 7
- 235000019693 cherries Nutrition 0.000 description 7
- 229940107137 cholecystokinin Drugs 0.000 description 7
- 229940059329 chondroitin sulfate Drugs 0.000 description 7
- 108010051263 chymodenin Proteins 0.000 description 7
- 210000003022 colostrum Anatomy 0.000 description 7
- 235000021277 colostrum Nutrition 0.000 description 7
- 238000002648 combination therapy Methods 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- HWDGVJUIHRPKFR-UHFFFAOYSA-I copper;trisodium;18-(2-carboxylatoethyl)-20-(carboxylatomethyl)-12-ethenyl-7-ethyl-3,8,13,17-tetramethyl-17,18-dihydroporphyrin-21,23-diide-2-carboxylate Chemical compound [Na+].[Na+].[Na+].[Cu+2].N1=C(C(CC([O-])=O)=C2C(C(C)C(C=C3C(=C(C=C)C(=C4)[N-]3)C)=N2)CCC([O-])=O)C(=C([O-])[O-])C(C)=C1C=C1C(CC)=C(C)C4=N1 HWDGVJUIHRPKFR-UHFFFAOYSA-I 0.000 description 7
- OMFXVFTZEKFJBZ-HJTSIMOOSA-N corticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OMFXVFTZEKFJBZ-HJTSIMOOSA-N 0.000 description 7
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 7
- 229960000258 corticotropin Drugs 0.000 description 7
- 229940041967 corticotropin-releasing hormone Drugs 0.000 description 7
- KLVRDXBAMSPYKH-RKYZNNDCSA-N corticotropin-releasing hormone (human) Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(N)=O)[C@@H](C)CC)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO)[C@@H](C)CC)C(C)C)C(C)C)C1=CNC=N1 KLVRDXBAMSPYKH-RKYZNNDCSA-N 0.000 description 7
- 229960004544 cortisone Drugs 0.000 description 7
- 235000004634 cranberry Nutrition 0.000 description 7
- 229960004826 creatine monohydrate Drugs 0.000 description 7
- FMGSKLZLMKYGDP-USOAJAOKSA-N dehydroepiandrosterone Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC=C21 FMGSKLZLMKYGDP-USOAJAOKSA-N 0.000 description 7
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 7
- 229960002986 dinoprostone Drugs 0.000 description 7
- CHFUHGDBYUITQJ-UHFFFAOYSA-L dipotassium;2,3-dihydroxypropyl phosphate Chemical compound [K+].[K+].OCC(O)COP([O-])([O-])=O CHFUHGDBYUITQJ-UHFFFAOYSA-L 0.000 description 7
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 7
- 239000009588 dong quai Substances 0.000 description 7
- 229960003638 dopamine Drugs 0.000 description 7
- 235000014134 echinacea Nutrition 0.000 description 7
- 235000007124 elderberry Nutrition 0.000 description 7
- 229940116977 epidermal growth factor Drugs 0.000 description 7
- 229940105423 erythropoietin Drugs 0.000 description 7
- 229960005309 estradiol Drugs 0.000 description 7
- 229930182833 estradiol Natural products 0.000 description 7
- 229940011871 estrogen Drugs 0.000 description 7
- 239000000262 estrogen Substances 0.000 description 7
- 235000008995 european elder Nutrition 0.000 description 7
- 235000008524 evening primrose extract Nutrition 0.000 description 7
- 239000010475 evening primrose oil Substances 0.000 description 7
- 229940089020 evening primrose oil Drugs 0.000 description 7
- 235000008384 feverfew Nutrition 0.000 description 7
- 229940126864 fibroblast growth factor Drugs 0.000 description 7
- 235000021323 fish oil Nutrition 0.000 description 7
- 229940028334 follicle stimulating hormone Drugs 0.000 description 7
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 7
- 235000004611 garlic Nutrition 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- 235000008397 ginger Nutrition 0.000 description 7
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 7
- 229960004666 glucagon Drugs 0.000 description 7
- 229960002442 glucosamine Drugs 0.000 description 7
- 235000005679 goldenseal Nutrition 0.000 description 7
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 7
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 7
- 235000002532 grape seed extract Nutrition 0.000 description 7
- 229940087603 grape seed extract Drugs 0.000 description 7
- 235000020688 green tea extract Nutrition 0.000 description 7
- 229940094952 green tea extract Drugs 0.000 description 7
- 229960001340 histamine Drugs 0.000 description 7
- 235000010181 horse chestnut Nutrition 0.000 description 7
- 229960000890 hydrocortisone Drugs 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 239000000893 inhibin Substances 0.000 description 7
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- VBUWHHLIZKOSMS-RIWXPGAOSA-N invicorp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)C(C)C)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 VBUWHHLIZKOSMS-RIWXPGAOSA-N 0.000 description 7
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 7
- 229940067606 lecithin Drugs 0.000 description 7
- 235000010445 lecithin Nutrition 0.000 description 7
- 239000000787 lecithin Substances 0.000 description 7
- URLZCHNOLZSCCA-UHFFFAOYSA-N leu-enkephalin Chemical compound C=1C=C(O)C=CC=1CC(N)C(=O)NCC(=O)NCC(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=CC=C1 URLZCHNOLZSCCA-UHFFFAOYSA-N 0.000 description 7
- 150000002617 leukotrienes Chemical class 0.000 description 7
- 229940010454 licorice Drugs 0.000 description 7
- 235000021388 linseed oil Nutrition 0.000 description 7
- 239000000944 linseed oil Substances 0.000 description 7
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 7
- 235000019136 lipoic acid Nutrition 0.000 description 7
- 235000012661 lycopene Nutrition 0.000 description 7
- 239000001751 lycopene Substances 0.000 description 7
- 229960004999 lycopene Drugs 0.000 description 7
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 7
- 229960003837 lypressin Drugs 0.000 description 7
- ORRDHOMWDPJSNL-UHFFFAOYSA-N melanin concentrating hormone Chemical compound N1C(=O)C(C(C)C)NC(=O)C(CCCNC(N)=N)NC(=O)CNC(=O)C(C(C)C)NC(=O)C(CCSC)NC(=O)C(NC(=O)C(CCCNC(N)=N)NC(=O)C(NC(=O)C(NC(=O)C(N)CC(O)=O)C(C)O)CCSC)CSSCC(C(=O)NC(CC=2C3=CC=CC=C3NC=2)C(=O)NC(CCC(O)=O)C(=O)NC(C(C)C)C(O)=O)NC(=O)C2CCCN2C(=O)C(CCCNC(N)=N)NC(=O)C1CC1=CC=C(O)C=C1 ORRDHOMWDPJSNL-UHFFFAOYSA-N 0.000 description 7
- 229960003987 melatonin Drugs 0.000 description 7
- DRLFMBDRBRZALE-UHFFFAOYSA-N melatonin Chemical compound COC1=CC=C2NC=C(CCNC(C)=O)C2=C1 DRLFMBDRBRZALE-UHFFFAOYSA-N 0.000 description 7
- 206010061289 metastatic neoplasm Diseases 0.000 description 7
- 229930182817 methionine Natural products 0.000 description 7
- CWWARWOPSKGELM-SARDKLJWSA-N methyl (2s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-2-[[(2s)-5-amino-2-[[(2s)-5-amino-2-[[(2s)-1-[(2s)-6-amino-2-[[(2s)-1-[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]hexanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-5 Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)OC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CCCN=C(N)N)C1=CC=CC=C1 CWWARWOPSKGELM-SARDKLJWSA-N 0.000 description 7
- 229940053128 nerve growth factor Drugs 0.000 description 7
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 7
- 235000017524 noni Nutrition 0.000 description 7
- 229960002748 norepinephrine Drugs 0.000 description 7
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 description 7
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 7
- 229960001723 oxytocin Drugs 0.000 description 7
- DYIOQMKBBPSAFY-UHFFFAOYSA-N palmityl myristoleate Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCC=CCCCC DYIOQMKBBPSAFY-UHFFFAOYSA-N 0.000 description 7
- 239000000199 parathyroid hormone Substances 0.000 description 7
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 7
- 239000011600 potassium glycerophosphate Substances 0.000 description 7
- 235000000491 potassium glycerophosphate Nutrition 0.000 description 7
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000186 progesterone Substances 0.000 description 7
- 229960003387 progesterone Drugs 0.000 description 7
- 239000002877 prolactin releasing hormone Substances 0.000 description 7
- XEYBRNLFEZDVAW-UHFFFAOYSA-N prostaglandin E2 Natural products CCCCCC(O)C=CC1C(O)CC(=O)C1CC=CCCCC(O)=O XEYBRNLFEZDVAW-UHFFFAOYSA-N 0.000 description 7
- KAQKFAOMNZTLHT-OZUDYXHBSA-N prostaglandin I2 Chemical compound O1\C(=C/CCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-OZUDYXHBSA-N 0.000 description 7
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 7
- 235000005875 quercetin Nutrition 0.000 description 7
- 229960001285 quercetin Drugs 0.000 description 7
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000001177 retroviral effect Effects 0.000 description 7
- 239000010018 saw palmetto extract Substances 0.000 description 7
- 229960002101 secretin Drugs 0.000 description 7
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 7
- 239000011669 selenium Substances 0.000 description 7
- 229910052711 selenium Inorganic materials 0.000 description 7
- 229940076279 serotonin Drugs 0.000 description 7
- 239000010686 shark liver oil Substances 0.000 description 7
- 229940069764 shark liver oil Drugs 0.000 description 7
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 7
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 7
- 229950005143 sitosterol Drugs 0.000 description 7
- 235000013758 sodium copper chlorophyllin Nutrition 0.000 description 7
- 229940079841 sodium copper chlorophyllin Drugs 0.000 description 7
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 7
- 229960000553 somatostatin Drugs 0.000 description 7
- 229940082787 spirulina Drugs 0.000 description 7
- 229940031439 squalene Drugs 0.000 description 7
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 7
- YRALAIOMGQZKOW-UHFFFAOYSA-N sulfated caerulein Natural products C=1C=CC=CC=1CC(C(N)=O)NC(=O)C(CC(O)=O)NC(=O)C(CCSC)NC(=O)C(CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)C(C(C)O)NC(=O)C(NC(=O)C(CC(O)=O)NC(=O)C(CCC(N)=O)NC(=O)C1NC(=O)CC1)CC1=CC=C(OS(O)(=O)=O)C=C1 YRALAIOMGQZKOW-UHFFFAOYSA-N 0.000 description 7
- 238000013268 sustained release Methods 0.000 description 7
- 239000012730 sustained-release form Substances 0.000 description 7
- 210000004233 talus Anatomy 0.000 description 7
- 229960003604 testosterone Drugs 0.000 description 7
- 229960002663 thioctic acid Drugs 0.000 description 7
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 7
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 7
- 229940034208 thyroxine Drugs 0.000 description 7
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 7
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 7
- 229940047183 tribulus Drugs 0.000 description 7
- 229940035722 triiodothyronine Drugs 0.000 description 7
- 239000008977 triphala Substances 0.000 description 7
- 210000004881 tumor cell Anatomy 0.000 description 7
- 235000016788 valerian Nutrition 0.000 description 7
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 7
- 239000001717 vitis vinifera seed extract Substances 0.000 description 7
- 229940087126 wild yam extract Drugs 0.000 description 7
- DBRXOUCRJQVYJQ-CKNDUULBSA-N withaferin A Chemical compound C([C@@H]1[C@H]([C@@H]2[C@]3(CC[C@@H]4[C@@]5(C)C(=O)C=C[C@H](O)[C@@]65O[C@@H]6C[C@H]4[C@@H]3CC2)C)C)C(C)=C(CO)C(=O)O1 DBRXOUCRJQVYJQ-CKNDUULBSA-N 0.000 description 7
- BLGXFZZNTVWLAY-SCYLSFHTSA-N yohimbine Chemical compound C1=CC=C2C(CCN3C[C@@H]4CC[C@H](O)[C@@H]([C@H]4C[C@H]33)C(=O)OC)=C3NC2=C1 BLGXFZZNTVWLAY-SCYLSFHTSA-N 0.000 description 7
- SFVVQRJOGUKCEG-OPQSFPLASA-N β-MSH Chemical compound C1C[C@@H](O)[C@H]2C(COC(=O)[C@@](O)([C@@H](C)O)C(C)C)=CCN21 SFVVQRJOGUKCEG-OPQSFPLASA-N 0.000 description 7
- PXGPLTODNUVGFL-BRIYLRKRSA-N (E,Z)-(1R,2R,3R,5S)-7-(3,5-Dihydroxy-2-((3S)-(3-hydroxy-1-octenyl))cyclopentyl)-5-heptenoic acid Chemical compound CCCCC[C@H](O)C=C[C@H]1[C@H](O)C[C@H](O)[C@@H]1CC=CCCCC(O)=O PXGPLTODNUVGFL-BRIYLRKRSA-N 0.000 description 6
- 108700020462 BRCA2 Proteins 0.000 description 6
- 102000052609 BRCA2 Human genes 0.000 description 6
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 6
- 208000003174 Brain Neoplasms Diseases 0.000 description 6
- 101150008921 Brca2 gene Proteins 0.000 description 6
- 101150110592 CTS1 gene Proteins 0.000 description 6
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 6
- 235000004032 Centella asiatica Nutrition 0.000 description 6
- 244000146462 Centella asiatica Species 0.000 description 6
- 235000007716 Citrus aurantium Nutrition 0.000 description 6
- 235000000228 Citrus myrtifolia Nutrition 0.000 description 6
- 240000003791 Citrus myrtifolia Species 0.000 description 6
- 235000016646 Citrus taiwanica Nutrition 0.000 description 6
- 235000013175 Crataegus laevigata Nutrition 0.000 description 6
- 102100029588 Deoxycytidine kinase Human genes 0.000 description 6
- 108010092674 Enkephalins Proteins 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 6
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 6
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 6
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 6
- 241000251511 Holothuroidea Species 0.000 description 6
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 description 6
- 108010002352 Interleukin-1 Proteins 0.000 description 6
- 102000013462 Interleukin-12 Human genes 0.000 description 6
- 108010065805 Interleukin-12 Proteins 0.000 description 6
- 108010002350 Interleukin-2 Proteins 0.000 description 6
- 108090000978 Interleukin-4 Proteins 0.000 description 6
- 108010002616 Interleukin-5 Proteins 0.000 description 6
- 108090001005 Interleukin-6 Proteins 0.000 description 6
- 108010002586 Interleukin-7 Proteins 0.000 description 6
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 6
- 102000003743 Relaxin Human genes 0.000 description 6
- 108090000103 Relaxin Proteins 0.000 description 6
- 101710142969 Somatoliberin Proteins 0.000 description 6
- 108010091356 Tumor Protein p73 Proteins 0.000 description 6
- 102000018252 Tumor Protein p73 Human genes 0.000 description 6
- 101150037250 Zhx2 gene Proteins 0.000 description 6
- 239000002168 alkylating agent Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 238000002725 brachytherapy Methods 0.000 description 6
- JQXXHWHPUNPDRT-BQVAUQFYSA-N chembl1523493 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2C=NN1CCN(C)CC1 JQXXHWHPUNPDRT-BQVAUQFYSA-N 0.000 description 6
- 229960001123 epoprostenol Drugs 0.000 description 6
- 235000019688 fish Nutrition 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 6
- 239000011572 manganese Substances 0.000 description 6
- 229940057917 medium chain triglycerides Drugs 0.000 description 6
- 230000001394 metastastic effect Effects 0.000 description 6
- 230000001613 neoplastic effect Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000011362 radionuclide therapy Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 6
- 239000013603 viral vector Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- XAXNKAGAUFXFDO-JVJDXIHNSA-N (e)-n-[(4r,4as,7ar,12br)-3-(cyclopropylmethyl)-9-hydroxy-7-oxo-2,4,5,6,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-4a-yl]-3-(4-chlorophenyl)prop-2-enamide;methanesulfonic acid Chemical compound CS(O)(=O)=O.N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)NC(=O)\C=C\C=2C=CC(Cl)=CC=2)CC1)O)CC1CC1 XAXNKAGAUFXFDO-JVJDXIHNSA-N 0.000 description 5
- 108010062802 CD66 antigens Proteins 0.000 description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 5
- 108010003422 Circulating Thymic Factor Proteins 0.000 description 5
- 102100024458 Cyclin-dependent kinase inhibitor 2A Human genes 0.000 description 5
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 5
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 5
- 102400000022 Insulin-like growth factor II Human genes 0.000 description 5
- 108010002386 Interleukin-3 Proteins 0.000 description 5
- 108090001007 Interleukin-8 Proteins 0.000 description 5
- 108010002335 Interleukin-9 Proteins 0.000 description 5
- 206010027476 Metastases Diseases 0.000 description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- YPWICUOZSQYGTD-UHFFFAOYSA-L [Ra+2].[O-]C([O-])=O Chemical compound [Ra+2].[O-]C([O-])=O YPWICUOZSQYGTD-UHFFFAOYSA-L 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 5
- 229910001424 calcium ion Inorganic materials 0.000 description 5
- 230000010109 chemoembolization Effects 0.000 description 5
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 5
- 230000010102 embolization Effects 0.000 description 5
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- GSOSVVULSKVSLQ-JJVRHELESA-N imipenem hydrate Chemical compound O.C1C(SCCNC=N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 GSOSVVULSKVSLQ-JJVRHELESA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 108060006633 protein kinase Proteins 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 102000015427 Angiotensins Human genes 0.000 description 4
- 108010064733 Angiotensins Proteins 0.000 description 4
- 102000036365 BRCA1 Human genes 0.000 description 4
- 108700020463 BRCA1 Proteins 0.000 description 4
- 101150072950 BRCA1 gene Proteins 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 4
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 4
- 108090000174 Interleukin-10 Proteins 0.000 description 4
- 108090000177 Interleukin-11 Proteins 0.000 description 4
- 102000003815 Interleukin-11 Human genes 0.000 description 4
- 102000029749 Microtubule Human genes 0.000 description 4
- 108091022875 Microtubule Proteins 0.000 description 4
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 4
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 4
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 230000000118 anti-neoplastic effect Effects 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 230000036770 blood supply Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229940044683 chemotherapy drug Drugs 0.000 description 4
- 229940109239 creatinine Drugs 0.000 description 4
- 229940127089 cytotoxic agent Drugs 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 229960005420 etoposide Drugs 0.000 description 4
- 238000009093 first-line therapy Methods 0.000 description 4
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229960004961 mechlorethamine Drugs 0.000 description 4
- 210000004688 microtubule Anatomy 0.000 description 4
- 230000011278 mitosis Effects 0.000 description 4
- 238000001668 nucleic acid synthesis Methods 0.000 description 4
- 238000011275 oncology therapy Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229960005205 prednisolone Drugs 0.000 description 4
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000002381 testicular Effects 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- 102400000345 Angiotensin-2 Human genes 0.000 description 3
- 101800000733 Angiotensin-2 Proteins 0.000 description 3
- 206010008342 Cervix carcinoma Diseases 0.000 description 3
- 208000006332 Choriocarcinoma Diseases 0.000 description 3
- 235000003392 Curcuma domestica Nutrition 0.000 description 3
- 244000008991 Curcuma longa Species 0.000 description 3
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 description 3
- 208000034578 Multiple myelomas Diseases 0.000 description 3
- 206010028851 Necrosis Diseases 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 3
- 208000008383 Wilms tumor Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229940009456 adriamycin Drugs 0.000 description 3
- 229940100198 alkylating agent Drugs 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229950006323 angiotensin ii Drugs 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- 210000000941 bile Anatomy 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 201000010881 cervical cancer Diseases 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000011284 combination treatment Methods 0.000 description 3
- 235000003373 curcuma longa Nutrition 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 208000014829 head and neck neoplasm Diseases 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000002601 intratumoral effect Effects 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 208000032839 leukemia Diseases 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 230000003039 myelosuppressive effect Effects 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- 238000002638 palliative care Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 229920001308 poly(aminoacid) Polymers 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 238000001243 protein synthesis Methods 0.000 description 3
- 230000002285 radioactive effect Effects 0.000 description 3
- 230000003439 radiotherapeutic effect Effects 0.000 description 3
- 208000000587 small cell lung carcinoma Diseases 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 201000003120 testicular cancer Diseases 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 235000013976 turmeric Nutrition 0.000 description 3
- 230000003442 weekly effect Effects 0.000 description 3
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 2
- 208000030507 AIDS Diseases 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 2
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 206010065553 Bone marrow failure Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VWDXGKUTGQJJHJ-UHFFFAOYSA-N Catenarin Natural products C1=C(O)C=C2C(=O)C3=C(O)C(C)=CC(O)=C3C(=O)C2=C1O VWDXGKUTGQJJHJ-UHFFFAOYSA-N 0.000 description 2
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 239000010282 Emodin Substances 0.000 description 2
- RBLJKYCRSCQLRP-UHFFFAOYSA-N Emodin-dianthron Natural products O=C1C2=CC(C)=CC(O)=C2C(=O)C2=C1CC(=O)C=C2O RBLJKYCRSCQLRP-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102100038595 Estrogen receptor Human genes 0.000 description 2
- 208000006168 Ewing Sarcoma Diseases 0.000 description 2
- 206010015866 Extravasation Diseases 0.000 description 2
- 108010073385 Fibrin Proteins 0.000 description 2
- 102000009123 Fibrin Human genes 0.000 description 2
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 2
- YOOXNSPYGCZLAX-UHFFFAOYSA-N Helminthosporin Natural products C1=CC(O)=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O YOOXNSPYGCZLAX-UHFFFAOYSA-N 0.000 description 2
- 208000009889 Herpes Simplex Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- 201000005099 Langerhans cell histiocytosis Diseases 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- SGDBTWWWUNNDEQ-UHFFFAOYSA-N Merphalan Chemical compound OC(=O)C(N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-UHFFFAOYSA-N 0.000 description 2
- 206010073148 Multiple endocrine neoplasia type 2A Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- NTGIIKCGBNGQAR-UHFFFAOYSA-N Rheoemodin Natural products C1=C(O)C=C2C(=O)C3=CC(O)=CC(O)=C3C(=O)C2=C1O NTGIIKCGBNGQAR-UHFFFAOYSA-N 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- 108090000704 Tubulin Proteins 0.000 description 2
- 102000004243 Tubulin Human genes 0.000 description 2
- 206010053648 Vascular occlusion Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 230000021235 carbamoylation Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000000254 damaging effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003413 degradative effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- RHMXXJGYXNZAPX-UHFFFAOYSA-N emodin Chemical compound C1=C(O)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O RHMXXJGYXNZAPX-UHFFFAOYSA-N 0.000 description 2
- VASFLQKDXBAWEL-UHFFFAOYSA-N emodin Natural products OC1=C(OC2=C(C=CC(=C2C1=O)O)O)C1=CC=C(C=C1)O VASFLQKDXBAWEL-UHFFFAOYSA-N 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 210000004696 endometrium Anatomy 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 108010038795 estrogen receptors Proteins 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 230000036251 extravasation Effects 0.000 description 2
- 229950003499 fibrin Drugs 0.000 description 2
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 2
- 229960004884 fluconazole Drugs 0.000 description 2
- 229960002963 ganciclovir Drugs 0.000 description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000002489 hematologic effect Effects 0.000 description 2
- 210000002767 hepatic artery Anatomy 0.000 description 2
- 208000027700 hepatic dysfunction Diseases 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 2
- 230000003463 hyperproliferative effect Effects 0.000 description 2
- 239000012642 immune effector Substances 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 230000001024 immunotherapeutic effect Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 239000005414 inactive ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000005228 liver tissue Anatomy 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 235000002908 manganese Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000031864 metaphase Effects 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 229960004023 minocycline Drugs 0.000 description 2
- 150000002772 monosaccharides Chemical group 0.000 description 2
- YYVYQPURTWSOJG-SNSGICDFSA-N mopp protocol Chemical compound ClCCN(C)CCCl.CNNCC1=CC=C(C(=O)NC(C)C)C=C1.O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1.C([C@H](C[C@]1(C(=O)OC)C=2C(=C3C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)=CC=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 YYVYQPURTWSOJG-SNSGICDFSA-N 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- PKUBGLYEOAJPEG-UHFFFAOYSA-N physcion Natural products C1=C(C)C=C2C(=O)C3=CC(C)=CC(O)=C3C(=O)C2=C1O PKUBGLYEOAJPEG-UHFFFAOYSA-N 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- 229960000624 procarbazine Drugs 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 2
- 238000011477 surgical intervention Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- LZPBKINTWROMEA-UHFFFAOYSA-N tetracene-5,12-dione Chemical compound C1=CC=C2C=C3C(=O)C4=CC=CC=C4C(=O)C3=CC2=C1 LZPBKINTWROMEA-UHFFFAOYSA-N 0.000 description 2
- 230000002992 thymic effect Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HJEZFVLKJYFNQW-PRFXOSGESA-N (13S)-13-dihydrodaunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)[C@H](C)O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 HJEZFVLKJYFNQW-PRFXOSGESA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- SGDBTWWWUNNDEQ-GFCCVEGCSA-N (2r)-2-amino-3-[4-[bis(2-chloroethyl)amino]phenyl]propanoic acid Chemical compound OC(=O)[C@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-GFCCVEGCSA-N 0.000 description 1
- NAALWFYYHHJEFQ-ZASNTINBSA-N (2s,5r,6r)-6-[[(2r)-2-[[6-[4-[bis(2-hydroxyethyl)sulfamoyl]phenyl]-2-oxo-1h-pyridine-3-carbonyl]amino]-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC(O)=CC=1)C(=O)C(C(N1)=O)=CC=C1C1=CC=C(S(=O)(=O)N(CCO)CCO)C=C1 NAALWFYYHHJEFQ-ZASNTINBSA-N 0.000 description 1
- QKDHBVNJCZBTMR-LLVKDONJSA-N (R)-temafloxacin Chemical compound C1CN[C@H](C)CN1C(C(=C1)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F QKDHBVNJCZBTMR-LLVKDONJSA-N 0.000 description 1
- COWQXDQZWMXVBH-UHFFFAOYSA-N 1,3,2-oxazaphosphinin-2-amine Chemical group NP1OC=CC=N1 COWQXDQZWMXVBH-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IPVFGAYTKQKGBM-BYPJNBLXSA-N 1-[(2r,3s,4r,5r)-3-fluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound F[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 IPVFGAYTKQKGBM-BYPJNBLXSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- MXZROAOUCUVNHX-UHFFFAOYSA-N 2-Aminopropanol Chemical compound CCC(N)O MXZROAOUCUVNHX-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- JLERWRRRDFUKIT-UHFFFAOYSA-N 4-[2-[bis(2-chloroethyl)amino]phenyl]butanoic acid Chemical compound OC(=O)CCCC1=CC=CC=C1N(CCCl)CCCl JLERWRRRDFUKIT-UHFFFAOYSA-N 0.000 description 1
- JVYNJRBSXBYXQB-UHFFFAOYSA-N 4-[3-(4-carboxyphenoxy)propoxy]benzoic acid;decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.C1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(C(O)=O)C=C1 JVYNJRBSXBYXQB-UHFFFAOYSA-N 0.000 description 1
- WUWFMDMBOJLQIV-UHFFFAOYSA-N 7-(3-aminopyrrolidin-1-yl)-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid Chemical compound C1C(N)CCN1C(C(=C1)F)=NC2=C1C(=O)C(C(O)=O)=CN2C1=CC=C(F)C=C1F WUWFMDMBOJLQIV-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 241000321096 Adenoides Species 0.000 description 1
- 208000006468 Adrenal Cortex Neoplasms Diseases 0.000 description 1
- 241000427202 Adria Species 0.000 description 1
- RUXPNBWPIRDVTH-UHFFFAOYSA-N Amifloxacin Chemical compound C1=C2N(NC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 RUXPNBWPIRDVTH-UHFFFAOYSA-N 0.000 description 1
- 206010002216 Anaphylactoid reaction Diseases 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 208000009079 Bronchial Spasm Diseases 0.000 description 1
- 208000014181 Bronchial disease Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 235000015438 Cola nitida Nutrition 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000012624 DNA alkylating agent Substances 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- HJEZFVLKJYFNQW-UHFFFAOYSA-N Daunorubicinol Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)O)CC1OC1CC(N)C(O)C(C)O1 HJEZFVLKJYFNQW-UHFFFAOYSA-N 0.000 description 1
- OWCHPBVMSHIYCQ-UHFFFAOYSA-N Dihydro-dauno-mycinon Natural products C1C(O)(C(C)O)CC(O)C2=C1C(O)=C1C(=O)C(C=CC=C3OC)=C3C(=O)C1=C2O OWCHPBVMSHIYCQ-UHFFFAOYSA-N 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- NKZRZOVSJNSBFR-UHFFFAOYSA-N Doxorubicinol Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(O)CO)CC1OC1CC(N)C(O)C(C)O1 NKZRZOVSJNSBFR-UHFFFAOYSA-N 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 208000000857 Hepatic Insufficiency Diseases 0.000 description 1
- 101001010910 Homo sapiens Estrogen receptor beta Proteins 0.000 description 1
- 101001034314 Homo sapiens Lactadherin Proteins 0.000 description 1
- 208000001953 Hypotension Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 102100039648 Lactadherin Human genes 0.000 description 1
- 108010000851 Laminin Receptors Proteins 0.000 description 1
- 102000002297 Laminin Receptors Human genes 0.000 description 1
- 206010069698 Langerhans' cell histiocytosis Diseases 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 102100020872 Leucyl-cystinyl aminopeptidase Human genes 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101150003655 Mprip gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100037183 Myosin phosphatase Rho-interacting protein Human genes 0.000 description 1
- 102100028418 Nuclear transport factor 2 Human genes 0.000 description 1
- 101710159639 Nuclear transport factor 2 Proteins 0.000 description 1
- 208000008558 Osteophyte Diseases 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 101710114878 Phospholipase A-2-activating protein Proteins 0.000 description 1
- 102100022427 Plasmalemma vesicle-associated protein Human genes 0.000 description 1
- 101710193105 Plasmalemma vesicle-associated protein Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 1
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 201000000582 Retinoblastoma Diseases 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 229930189077 Rifamycin Natural products 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 206010041660 Splenomegaly Diseases 0.000 description 1
- 241001147844 Streptomyces verticillus Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 241000202349 Taxus brevifolia Species 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 101710145727 Viral Fc-gamma receptor-like protein UL119 Proteins 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 229940098174 alkeran Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229950009484 amifloxacin Drugs 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000005178 buccal mucosa Anatomy 0.000 description 1
- 235000010410 calcium alginate Nutrition 0.000 description 1
- 239000000648 calcium alginate Substances 0.000 description 1
- 229960002681 calcium alginate Drugs 0.000 description 1
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 1
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 1
- 229940127093 camptothecin Drugs 0.000 description 1
- 208000035269 cancer or benign tumor Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 201000002797 childhood leukemia Diseases 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 231100000005 chromosome aberration Toxicity 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 229960002626 clarithromycin Drugs 0.000 description 1
- AGOYDEPGAOXOCK-KCBOHYOISA-N clarithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@](C)([C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)OC)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 AGOYDEPGAOXOCK-KCBOHYOISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- QGPKADBNRMWEQR-UHFFFAOYSA-N clinafloxacin Chemical compound C1C(N)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1Cl QGPKADBNRMWEQR-UHFFFAOYSA-N 0.000 description 1
- 229950001320 clinafloxacin Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000009096 combination chemotherapy Methods 0.000 description 1
- 229940046044 combinations of antineoplastic agent Drugs 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 229960003109 daunorubicin hydrochloride Drugs 0.000 description 1
- 229950000950 daunorubicinol Drugs 0.000 description 1
- NDMPLJNOPCLANR-PETVRERISA-N deacetylvinblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 NDMPLJNOPCLANR-PETVRERISA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- WDPNDMPWBDGXDB-UHFFFAOYSA-N dichloro-hydroxy-imino-$l^{5}-phosphane Chemical compound NP(Cl)(Cl)=O WDPNDMPWBDGXDB-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 1
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 1
- NKZRZOVSJNSBFR-FEMMEMONSA-N doxorubicinol Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)[C@@H](O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 NKZRZOVSJNSBFR-FEMMEMONSA-N 0.000 description 1
- 238000009513 drug distribution Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000001094 effect on targets Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000003073 embolic effect Effects 0.000 description 1
- 201000009409 embryonal rhabdomyosarcoma Diseases 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 208000023965 endometrium neoplasm Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- IDYZIJYBMGIQMJ-UHFFFAOYSA-N enoxacin Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 IDYZIJYBMGIQMJ-UHFFFAOYSA-N 0.000 description 1
- 229960002549 enoxacin Drugs 0.000 description 1
- 210000002409 epiglottis Anatomy 0.000 description 1
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 1
- 201000010934 exostosis Diseases 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 210000004996 female reproductive system Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- XBJBPGROQZJDOJ-UHFFFAOYSA-N fleroxacin Chemical compound C1CN(C)CCN1C1=C(F)C=C2C(=O)C(C(O)=O)=CN(CCF)C2=C1F XBJBPGROQZJDOJ-UHFFFAOYSA-N 0.000 description 1
- 229960003306 fleroxacin Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 229940044627 gamma-interferon Drugs 0.000 description 1
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 210000004195 gingiva Anatomy 0.000 description 1
- 229940084910 gliadel Drugs 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006842 hematologic response Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000036543 hypotension Effects 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000002608 insulinlike Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 210000004153 islets of langerhan Anatomy 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 208000027884 letterer-Siwe disease Diseases 0.000 description 1
- 229940063725 leukeran Drugs 0.000 description 1
- 201000002364 leukopenia Diseases 0.000 description 1
- 231100001022 leukopenia Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- ZEKZLJVOYLTDKK-UHFFFAOYSA-N lomefloxacin Chemical compound FC1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNC(C)C1 ZEKZLJVOYLTDKK-UHFFFAOYSA-N 0.000 description 1
- 229960002422 lomefloxacin Drugs 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 208000025036 lymphosarcoma Diseases 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 210000004995 male reproductive system Anatomy 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000019988 mead Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002609 medium Chemical group 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- BFBPISPWJZMWJN-UHFFFAOYSA-N methyl 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1N=CCC(C)CCCC(C)(C)O BFBPISPWJZMWJN-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 210000000479 mitotic spindle apparatus Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 201000005962 mycosis fungoides Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000003525 myelopoietic effect Effects 0.000 description 1
- 229940090009 myleran Drugs 0.000 description 1
- GPXLMGHLHQJAGZ-JTDSTZFVSA-N nafcillin Chemical compound C1=CC=CC2=C(C(=O)N[C@@H]3C(N4[C@H](C(C)(C)S[C@@H]43)C(O)=O)=O)C(OCC)=CC=C21 GPXLMGHLHQJAGZ-JTDSTZFVSA-N 0.000 description 1
- 229960000515 nafcillin Drugs 0.000 description 1
- 229960000210 nalidixic acid Drugs 0.000 description 1
- MHWLWQUZZRMNGJ-UHFFFAOYSA-N nalidixic acid Chemical compound C1=C(C)N=C2N(CC)C=C(C(O)=O)C(=O)C2=C1 MHWLWQUZZRMNGJ-UHFFFAOYSA-N 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000003300 oropharynx Anatomy 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 229940124583 pain medication Drugs 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 238000009116 palliative therapy Methods 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- FHFYDNQZQSQIAI-UHFFFAOYSA-N pefloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCN(C)CC1 FHFYDNQZQSQIAI-UHFFFAOYSA-N 0.000 description 1
- 229960004236 pefloxacin Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 150000002960 penicillins Chemical class 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000010106 peripheral embolization Effects 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 150000002993 phenylalanine derivatives Chemical class 0.000 description 1
- 208000001297 phlebitis Diseases 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 230000004260 plant-type cell wall biogenesis Effects 0.000 description 1
- BLFWHYXWBKKRHI-JYBILGDPSA-N plap Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(=O)[C@@H]1CCCN1C(=O)[C@H](CO)NC(=O)[C@@H](N)CCC(O)=O BLFWHYXWBKKRHI-JYBILGDPSA-N 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229960001237 podophyllotoxin Drugs 0.000 description 1
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 description 1
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 description 1
- 229940098901 polifeprosan 20 Drugs 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000000861 pro-apoptotic effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- BTVYFIMKUHNOBZ-QXMMDKDBSA-N rifamycin s Chemical class O=C1C(C(O)=C2C)=C3C(=O)C=C1NC(=O)\C(C)=C/C=C\C(C)C(O)C(C)C(O)C(C)C(OC(C)=O)C(C)C(OC)\C=C/OC1(C)OC2=C3C1=O BTVYFIMKUHNOBZ-QXMMDKDBSA-N 0.000 description 1
- 229940081192 rifamycins Drugs 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 229950004157 sarcolysin Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229960004954 sparfloxacin Drugs 0.000 description 1
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 101150047061 tag-72 gene Proteins 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- 229960004576 temafloxacin Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 229940040944 tetracyclines Drugs 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000009424 thromboembolic effect Effects 0.000 description 1
- 206010043688 thyroid adenoma Diseases 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 210000002105 tongue Anatomy 0.000 description 1
- 229950008187 tosufloxacin Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 230000006433 tumor necrosis factor production Effects 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000021331 vascular occlusion disease Diseases 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 230000035901 vesication Effects 0.000 description 1
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 1
- KDQAABAKXDWYSZ-PNYVAJAMSA-N vinblastine sulfate Chemical compound OS(O)(=O)=O.C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 KDQAABAKXDWYSZ-PNYVAJAMSA-N 0.000 description 1
- 229960004982 vinblastine sulfate Drugs 0.000 description 1
- AQTQHPDCURKLKT-JKDPCDLQSA-N vincristine sulfate Chemical compound OS(O)(=O)=O.C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C=O)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 AQTQHPDCURKLKT-JKDPCDLQSA-N 0.000 description 1
- 229960002110 vincristine sulfate Drugs 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229960001939 zinc chloride Drugs 0.000 description 1
- 229940077935 zinc phosphate Drugs 0.000 description 1
- 239000002132 β-lactam antibiotic Substances 0.000 description 1
- 229940124586 β-lactam antibiotics Drugs 0.000 description 1
- 150000003952 β-lactams Chemical class 0.000 description 1
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
LOCAL REGIONAL CHEMOTHERAPY AND RADIOTIHERAPY USING [N SITU HYDROGEL 5 This application claims priority to United States Provisional Patent Application 60/256,514 filed December 18, 2000. BACKGROUND OF THE INVENTION 10 1. Field of the Invention The present invention is directed to the fields of disease therapy, cancer biology, and cancer therapy. More specifically, the present invention is directed to providing local regional treatment in an individual in situ by administering a polymer and a crosslinking agent. More preferably, the local regional treatment in situ is of a 15 tumor in the individual. 1. Description of Related Art The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the referenced prior art 20 forms part of the common general knowledge in Australia. Systemic administration of anticancer agents often results in severe dose limiting toxic effects. Therefore, site-specific delivery of anticancer drugs, such as in local regional therapy, is extremely beneficial for solid tumors. During local regional therapy for treatments of tumors, current methods include transcatheter 25 arterial chemoembolization (TACE), brachytherapy, and peritumor/intralesional injection. Patients with malignancies which are inoperable or unsuitable for surgery often have a poor prognosis, and current palliative treatments have an associated morbidity and mortality. Primary and metastatic tumors may receive their blood supply 30 predominantly or entirely from the arteries. TACE with various kinds of anticancer drugs has been considered an effective method of treating unresectable primary tumors and metastases. The potential therapeutic effect results from the combination of embolic occlusion of the blood supply to the neoplasms and local retention of the infused chemotherapeutic drugs. Agents currently used to achieve vascular occlusion include, for example, lipiodol (iodized oil). However, conventional TACE has some disadvantages. Specifically, materials currently used forchemoembiolization, i. e. particles and lipid, occlude tumor vessels incompletely. Intraorgan collateral vessels rapidly develop around the occlusions, and effective dearterialization of the organ 5 may be difficult to achieve even after repeated embolization. For example, it is known that shortly after hepatic vessels were embolized with Gelfoam powder, portions of the intrahepatic arteries in various parts of the liver were reconstituted via microcollaterals. Although lipiodal chemoembolization has been considered the most effective of these methods, on the basis of reports of a decrease in tumor size in a nonrandomized trial, the embolization effect is questionable. One study suggested that lipiodal has no thromboembolic effect. There was no statistically significant difference in 5 tissue necrosis in lipiodol-injected hepatocellular carcinoma versus noninjected controls. Repeated peripheral embolization of the hepatic artery with very small particles can cause occlusion of the collateral vessels as well as the primary hepatic artery, but this might well result in necrosis of normal tissue as well as tumor in patients whose metastases are being embolized. In addition, complications are frequent and side effects have been reported. 0 Tumor vascularity has been identified as a prominent prognostic factor for patients receiving regional chemotherapy of tumors given that multiple prognostic factors for survival are related both to growth of the tumor. Presumably, particles and lipid drops-cause discontinuous embolization of tumor vessels, since unoccluded microcirculation of collateral vessels may continue to supply the tumor cells. Therefore, to overcome the problem of 5 conventional TACE, a better strategy to improve cancer therapy by TACE should include complete occlusion of tumor vessels, damaging normal tissue as little as possible, and preventing the formation of collaterals. Tumor therapy also includes utilization of irradiation of a tumor for eradication purposes. Brachytherapy methods utilize small particles or seeds of radioactivity 0 implanted into a tumor and are used often in cervical, breast, endometrial, prostate, and head and neck cancers. However, current brachytherapy seed-dispensing methods dictate less than desirable loading yields, are more expensive, are cumbersome to administer, and render a less than ideal treatment response. In another technology requiring surgical intervention, patients with operable 25 brain tumors, such as glioblastoma multiforme, are subjected to tumor removal through surgical means, and GLIADEL* (Nova Pharmaceutical Corporation; Baltimore, MD) biodegradable wafers made of a polyanhydride, such as polifeprosan 20, containing a chemotherapeutic are inserted into the remaining cavity. However, this method requires surgical removal of the tumor, which is not always feasible. 30 Peritumor/intralesional injection is another method in the art for administering a chemotherapeutic drug to a tumor. Numerous examples exist in the art wherein a chemotherapeutic is administered intratumorally in a gel as a sustained-release delivery system, such as an epinephrine (epi) gel (Miller et'al., 1997; Burris et al., 1998; Kraus et al., 1998; Harbord et al., 1999; Ning et al., 1999; Smith et al., 1999; Monga et al., 2000). 2 Alternatively, polymers are utilized as slow-release matrices including, for instance, a blend of copolymers (Jackson et al., 2000). However, these sustained release delivery systems administered by direct injection are subject to leakage into surrounding tissues in the absence of an agent, such as a cross-linking agent, or other means to retain the chemotherapeutic 5 within the tumor itself. Chinese Patent No. 1252310 is directed to a preparation having a medicine powder with a gel and cross-linked by, for example, calcium for local injection treatment and artery embolism treatment. However, the preparation is generated outside the body and not in situ in the tumor. Similarly, although Japanese Patent No. 10236984 regards a fibrin 10 containing composition for sustained release of a medical component and Japanese Patent No. 7097401 is directed to a bridged hyaluronic acid as a sustained-release preparation or an embolizing agent, neither patent concerns generation of the medicinal component/preparations within a tumor. Furthermore, none of the methods or polymer compositions in these patents utilize radionuclides as therapeutic agents. 15 U.S. Patent No. 5,257,970 regards encapsulation of a drug in a liposome, injection of a photosensitizer into a host, injection of the liposome-encapsulated preparation systemically, and heating of a tumor to melt the liposome to allow mixing of the activation components. Downs et al. (1992) use calcium alginate beads as a slow-release system of 20 administering growth factors. However, the growth factor/sodium alginate compositions were created and uniform beads. were obtained ex vivo by passing the mixture of beads through a syringe. This process is cumbersome and generates significant loss of therapeutic material, which can be costly. Kitazawa et al. (1997) utilize a fibrin glue as a drug carrier for the 25 chemotherapeutic doxorubicin and determine there is an improvement in sustained release in the presence of sodium alginate. Again, the fibrin (fibrinogen) sodium alginate powder was generated outside of the body of the tumor-bearing rats. PCT Application WO 00/00222 is directed to sustained release of pharmaceutical compositions with a thermosensitive, biodegradable hydrogel consisting of a 30 block copolymer of poly(d,1-1-lactic acid) or poly(lactide-co-glycolide) and polyethylene glycol. The polymerix matrix containing the pharmaceutical concentration is injected into the tumor to create a gel in vivo. However, the gel formation is temperature-activated and generates only after sufficient time to reach the required temperature, thereby permitting 3 leakage into surrounding tissues in the meantime. PCT Application WO 00/38651 concerns a similar technology further comprising pH-responsive gelation/degelation properties. U.S. Patent Nos. 6,004,573; 6,117,949; and 5,702,717 are directed to a injectable biodegradable polymeric liquid matrix containing a drug which becomes a 5 gelatinous composition after it reaches body temperature. Thus, the absence in the art of a method to administer in situ an anticancer drug with high loading yields for a drug carrier, absence of leakage into surrounding tissues, lower cost, ease of process and better treatment response is fulfilled with the methods of the present invention. SUMMARY OF THE INVENTION In an embodiment of the present invention, there is a method of dispensing a therapeutic agent in situ to a localized region in an individual comprising administering to said region a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a cross-linker, and the therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of a cross-linked polymer in situ at the localized region, which cross-linked polymer comprises the therapeutic agent. In a specific embodiment, the polymer composition comprises the therapeutic agent. In another specific embodiment, the polymer composition and the cross linking composition are separately administered to the localized region. In an additional specific embodiment, the polymer composition and the cross-linking composition are administered to the localized region from separate containers, wherein a first container contains the polymer composition and a second container comprises the cross-linking composition. In another specific embodiment, the first and second containers are syringes. In an additional specific embodiment, the polymer composition and the cross-linking composition are administered to said region by means of a single container having at least two compartments, wherein one compartment comprises the polymer composition and another compartment comprises the cross-linking composition. In an additional specific embodiment, the polymer composition and the cross-linking composition are administered to the region by means of a single container having a hollow cylindrical compartment, wherein the polymer composition and cross-linking composition are administered separately through said compartment. In another specific embodiment, the separate administrations of said polymer composition and said cross-linking composition are by syringe. In an additional 4 specific embodiment, the polymer composition and cross-linking compositions are administered separately from a syringe having at least two compartments. In an additional specific embodiment, the polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof. In an additional specific embodiment, the 5 polymer is a polysaccharide, and the polysaccharide polymer is an alginate, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran, or starch. In another specific embodiment, the polymer is a polyamino acid, and the polyamino acid is a polyglutamate or a polyaspartate. In another specific embodiment, the cross-linking agent is a salt of a divalent cation. In another specific embodiment, divalent cation is Ca2+, Mg 2 +, Mn 2 +, Cu 2 +, Cr 2 +, Sr 2 +, Zn+, Ra2+ 10 or Be2+. In another specific embodiment, the salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese phosphate, manganese carbonate, 15 manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium chlorate, strontium fluoride, 20 strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide. 25 In an additional specific embodiment, the therapeutic agent is a drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof. In another specific embodiment, the therapeutic agent is a drug, and the drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, cyclophosphamide, 30 chlorambucil, bisulfan, lomustine, penicillin, erythromycin, amoxicillin, cefazolin, imipenem, aztreonam, sulbactam, linezolid, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, amphotericin B, rifampin, fluconazoleor, or a combination thereof. In. an additional specific embodiment, the therapeutic agent is a hormone, and the hormone is luteinizing hormone releasing hormone, 5 growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro-opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin II, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, p-endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor II, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, a melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F2a, relaxin, serotonin, serum thymic factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. In another specific embodiment, the therapeutic agent is a gene therapy composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine kinase, ras ; myc, raf erb, src, fins, jun, trk, ret, gsp, hst, bcl abl, Rb, CFTR, p16, p21, p 2 7, p57, p73, C-CAM, APC, CTS-1, zac1, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-II, 5 BRCAl, VEL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-1O, IL-11 IL-12, GM-CSF, G-CSF, or a combination thereof. In an additional specific embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a liposome, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is 1Re, 213 Bi, 0 1 66 Ho, 21 At, or a combination thereof. In another specific embodiment, the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, 6 butcher's broom, calcium hydroxyl apatite, cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, citrus aurantium, citrus seed extract, co-enzyme Q10, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, 5 feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri-glycerides, melatonin, 10 milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) triphala, tumeric, uva ursi, 15 valerian, wild yam extract, willow bark, or yohimbe bark extract. In another specific embodiment, the therapeutic agent further comprises a detectable identifier, wherein the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, an MRI contrasting agent, a fluorophore, or a luminophore. In another embodiment of the present invention, there is a method of treating a 20 tumor in situ in an individual comprising the steps of administering to the tumor a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a cross-linker, and the therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of a cross-linked polymer in situ at the tumor, which cross-linked polymer comprises the therapeutic agent. In a specific 25 embodiment, the polymer composition comprises the therapeutic agent. In another specific embodiment, the polymer composition and the cross-linking composition are separately administered to the localized region. In an additional specific embodiment, the polymer composition and the cross-linking composition are administered to the localized region from separate containers, wherein a first container contains the polymer composition and a second 30 container comprises the cross-linking composition. In an additional specific embodiment, the first and second containers are syringes. In another specific embodiment, the polymer composition and the cross-linking composition are administered to the region by means of a single container having at least two compartments, wherein one compartment comprises the polymer composition and another compartment comprises the cross-linking composition. In 7 another specific embodiment, the polymer composition and the cross-linking composition are administered to the region by means of a single container having a hollow cylindrical compartment, wherein the polymer composition and cross-linking composition are administered separately through the compartment. In another specific embodiment, the 5 separate administrations of the polymer composition and the cross-linking composition are by syringe. In an additional specific embodiment, the polymer composition and cross-linking compositions are administered separately from a syringe having at least two compartments. In another specific embodiment, the polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof In an additional specific embodiment, the polymer is .0 a polysaccharide, and the polysaccharide polymer is an alginate, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran or starch. In an additional specific embodiment, the polymer is a polyamino acid, and the polyamino acid is a polyglutamate or a polyaspartate. In an additional specific embodiment, the cross-linking agent is a salt of a divalent cation. In an additional specific embodiment, the divalent cation is Ca2+, Mg 2 +, 5 n2+, Cu 2 +, Cr 2 +, Sr2+, Zn 2 +, Ra 2 +, or Be2+. In another specific embodiment, the salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese m0 phosphate, manganese carbonate, manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium 25 chlorate, strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide. In an additional specific embodiment, the 30 therapeutic agent is a drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a drug, and the drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, cyclophosphamide, chlorambucil, bisulfan, lomustine, penicillin, 8 erythromycin, amoxicillin, cefazolin, imipenem, aztreonam, sulbactam, linezolid, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, amphotericin B, rifampin, fluconazoleor, or a combination thereof. In another specific embodiment, the therapeutic agent is a hormone, and the hormone is 5 luteinizing hormone releasing hormone, growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, 10 norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin R, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, -endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic 15 gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor II, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, a-melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth 20 factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F 2 a, relaxin, serotonin, serum thymic factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. In another specific embodiment, the therapeutic agent is a gene therapy 25 composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine idnase, ras ; nyc, raf erb, src, fins, jun, trk, ret, gsp, hst, bcl abl, Rb, CFTR, p16, p21, p27, p 5 7 , p73, C-CAM, APC, CTS-1, zac1, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MIEN-il, BRCAl, VHL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, 30 1L-9, IL-10, IL-11 IL-12, GM-CSF, G-CSF, or a combination thereof. In an additional specific embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a liposome, or a combination thereof. In another specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is '"Re, 21 Bi, 9 IHo, mAt, or a combination thereof In another specific embodiment, the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, 5 butcher's broom, calcium hydroxyl apatite, cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, citrus aurantium, citrus seed extract, co-enzyme Q1O, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, 10 garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri-glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, [5 passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) triphala, tumeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. In an additional specific .0 embodiment, the therapeutic agent further comprises a detectable identifier, wherein the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, an MRU contrasting agent, a fluorophore, or a luminophore. In another embodiment of the present invention there is a method of occluding an artery associated with a tumor in an individual comprising the step of administering to said 25 tumor a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a cross-linker, wherein the polymer composition and the cross linking composition are administered to allow formation of the cross-linked polymer in situ at the tumor. In a specific embodiment, the polymer composition further comprises a therapeutic agent. In an additional specific embodiment, the polymer composition and the 0 cross-linking composition are separately administered to the tumor. In another specific embodiment, the polymer composition and the cross-linking composition are administered to the tumor from separate containers, wherein a first container contains the polymer composition and a second container comprises the cross-linking composition. In an additional specific embodiment, the first and second containers are syringes. In another 10 specific embodiment, the polymer composition and the cross-linking composition are administered to the tumor by means of a single container having at least two compartments, wherein one compartment comprises the polymer composition and another compartment comprises the cross-linking composition. In another specific embodiment, the polymer 5 composition and the cross-linking composition are administered to the region by means of a single container having a hollow cylindrical compartment, wherein the polymer composition and cross-linking composition are administered separately through the compartment. In an additional specific embodiment, the separate administrations of the polymer composition and the cross-linking composition are by syringe. In an additional specific embodiment, the 10 polymer composition and cross-linking compositions are administered separately from a syringe having at least two compartments. In an additional specific embodiment, the polymer is a polysaccharide, a polyanino acid polymer, or a combination thereof In another specific embodiment, the polymer is a polysaccharide, and the polysaccharide polymer is an alginate,, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran or starch. In another specific 15 embodiment, the polymer is a polyamino acid, and the polyamino acid is a polyglutamate or a polyaspartate. In another specific embodiment, the cross-linking agent is a salt of a divalent cation. In another specific embodiment, the divalent cation is Ca 2 +, Mg 2 +, Mn 2 +, Cu 2 +, Cr 2 +, Sr 2 +, Zn 2 +, Ra 2 +, or Be 2 +. In another specific embodiment, the salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, 20 calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese phosphate, manganese carbonate, manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper 25 bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium chlorate, strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium 30 carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide. In another specific embodiment, the therapeutic agent is a drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof In an 11 additional specific embodiment, the therapeutic agent is a drug, and the drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, cyclophosphamide, chlorambucil, bisulfan, lomustine, penicillin, erythromycin, amoxicillin, erythromycin, 5 cefazolin, imipenem, aztreonam, sulbactam, linezolid, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, amphotericin B, rifampin, fluconazoleor, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a hormone, and the hormone is luteinizing hormone releasing hormone, growth hormone, growth hormone releasing 10 hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin 15 II, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, p-endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike !0 growth fact-r II, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, a-melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F 2 a, relaxin, 25 serotonin, serum thymic factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. In an additional specific embodiment, the therapeutic agent is a gene therapy composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine kinase, ras ; myc, raf; erb, src, fims, jun, trk ret, gsp, hst, bcl abl, Rb, CFTR, p1 6 , p21, p27, p57, p73, C-CAM, APC, CTS-1, zac1, scFV ras, DCC, NF-1, NTF-2, WT-1, MEN-I, MEN-H, BRCA1, VHL, MMACl, FCC, MCC, BRCA2, IL-1, IL-2, I-3, IL-4, IL-5, 12 IL-6, IL-7, IL-8, IL-9, IL-10, IL-ll IL-12, GM-CSF, G-CSF, or a combination thereof. In a specific embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a liposome, and a combination thereof In an additional specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is 1 mRe, 2 13 Bi, 5 1 6 6Ho, 21 At, or a combination thereof. In another specific embodiment, the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, butcher's broom, calcium hydroxyl apatite, cascara sagrada, cat's claw, cetyl myristoleate, 10 chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, citrus aurantium, citrus seed extract, co-enzyme Q10, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, ginseng-American, 15 ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri-glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, 20 pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) triphala, turmeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. In a specific embodiment, the therapeutic agent further comprises a detectable identifier, wherein the detectable 2S identifier is an X-ray contrasting agent, a CT contrasting agent, an MiRI contrasting agent, a fluorophore, or a luminophore. In an additional specific embodiment, the administration step occurs through a catheter. In an embodiment of the present invention there is a method of providing a slow-release hydrogel composition in situ to a tumor in an individual comprising 3D administering to said tumor a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a cross-linker, and the therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of the cross-linked polymer in situ at the tumor, which cross-linked polymer comprises the therapeutic agent. In a specific embodiment, the polymer composition 13 comprises the therapeutic agent. In an additional specific embodiment, the polymer composition and the cross-linking composition are separately administered to the tumor. In an additional specific embodiment, the polymer composition and the cross-linking composition are administered to the tumor from separate containers, wherein a first container 5 contains the polymer composition and a second container comprises the cross-linking composition. In an additional specific embodiment, the first and second containers are syringes. In another specific embodiment, the polymer composition and the cross-linking composition are administered to said region by means of a single container having at least two compartments, wherein one compartment comprises the polymer composition and 0 another compartment comprises the cross-linking composition. In an additional specific embodiment, the polymer composition and cross-linking compositions are administered separately from a syringe having at least two compartments. In another specific embodiment, the polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof. In an additional specific embodiment, the polymer is [5 a polysaccharide, and the polysaccharide polymer is an alginate, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran, or starch. In an additional specific embodiment, the polymer is a polyamino acid, and the polyamino acid is a polyglutanate or a polyaspartate. In an additional specific embodiment, the cross-linking agent is a salt of a divalent cation. In another specific embodiment, the divalent cation is Ca 2 +, Mg 2 +, Mn 2 +, lO Cu2+, Cr2+, Sr 2 +, Zn 2 +, Ra 2 +, or Be 2 +. In another specific embodiment, the salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese phosphate, 25 manganese carbonate, manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium chlorate, 30 strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide. In another specific embodiment, therapeutic agent 14 is a drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a drug, and the drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, 5 cyclophosphamide, chlorambucil, bisulfan, lomustine, penicillin, erythromycin, amoxicillin, erythromycin, cefazolin, imipenem, aztreonam, sulbactam, linezolid, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, amphotericin B, rifampin, fluconazoleor, or a combination thereof. In another specific embodiment, the therapeutic agent is a hormone, and the 10 hormone is luteinizing hormone releasing hormone, growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, 15 norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin U, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, p-endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic 20 gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor H, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, a-melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth 25 factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F 2 a, relaxin, serotonin, serum thymic factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. 3( In an additional specific embodiment, the therapeutic agent is a gene therapy composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine kinase, ras ; myc, raf erb, src, fms, jun, trk, ret, gsp, hst, bcl abl, Rb, CFTR, p16, p21, p2 7 , 15 p57, p73, C-CAM, APC, CTS-1, zacl, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-II, BRCA1, VHL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11 IL-12, GM-CSF, G-CSF, or a combination thereof - In an additional specific embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a liposome, or a combination thereof. In another specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is 188 Re, 213 Bi, 1 66 Ho, 21 At, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, butcher's broom, calcium hydroxyl apatite, cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella; chondroitin sulfate, chromium yeast, citrus aurantium, citrus seed extract, co-enzyme Q10, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain ) tri-glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) 25 triphala, turmeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. In another specific embodiment, the therapeutic agent further comprises a detectable identifier, wherein the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, an MRI contrasting agent, a fluorophore, or a luminophore. ~ In an additional embodiment of the present invention, there is a kit for treating 30 a tumor in situ in an individual comprising, in a suitable containing means a first container having a polymer composition; and a second container having a cross-linking composition. In a specific embodiment, the polymer composition further comprises a therapeutic agent. In another specific embodiment, the polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof. In an additional specific embodiment, the polymer is a 16 polysaccharide, and the polysaccharide polymer is alginate, hydroxycellulose, chondroitin, chitosan, or hyaluronate. In an additional specific embodiment, the polymer is a polyamino acid polymer, and the polyamino acid polymer is polyglutamate or polyaspartate. In an additional specific embodiment, the cross-linking agent is a salt of a divalent cation. In a 5 specific embodiment, the divalent cation is Ca2+, Mg2+, Mn2+, Cu2+, Cr2+, Sr2+, Zn2+, Ra2+, or Be2+. In another specific embodiment the salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, 10 manganese chloride, manganese sulfate, manganese phosphate, manganese carbonate, manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium 15 sulfate, strontium phosphate, strontium carbonate, strontium chlorate, strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or 20 beryllium bromide. In an additional specific embodiment, the therapeutic agent is an anticancer drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof. In an additional specific embodiment, the therapeutic agent is an anticancer drug, and the anticancer drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, 25 carmustine, melphalan, cyclophosphamide, chlorambucil, bisulfan, lomustine, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is 18 Re, 66 Ho, 213 Bi, 21 'At, or a combination thereof. In another specific embodiment, the therapeutic agent is a gene therapy composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, 30 oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine kinase, ras ; myc, raf erb, src, frns, jun, trk, ret, gsp, hst, bcl abl, Rb, CFTR, p16, p21, p27, p57, p73, C-CAM, APC, CTS-1, zac1, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-I, BRCA1, VHL, MMAC1, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, I-8, IL-9, IL-10, IL 11 IL-12, GM-CSF, G-CSF, and a combination thereof In an additional specific 17 embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a liposome, or a combination thereof. In another specific embodiment, the therapeutic agent is a hormone, and the hormone is luteinizing hormone releasing hormone, growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, 5 androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro-opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin II, arginine vasopressin, bombesin, bradykinin, 10 caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, p-endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor II, leucine enkephalin, 15 leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, c melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F2a, relaxin, serotonin, serum thymic 20 factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. In another specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is ISSRe, 2 13 Bi, 6 6 Ho, 21 1 At, or a combination thereof. In an additional specific embodiment, 25 the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, butcher's broom, calcium hydroxyl apatite; cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, citrus 30 aurantium, citrus seed extract, co-enzyme Q10, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, 18 ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, 5 octacosonol, olivir, passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) triphala, turmeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. In 10 another specific embodiment, the therapeutic agent further comprises a detectable identifier, and the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, an MIRI contrasting agent, a fluorophore, or a luminophore. - In an additional embodiment of the present invention there is a kit for occluding an artery associated with a tumor in an individual comprising, in a suitable 15 containing means a first container having a polymer composition; and a second container having a cross-linking composition. In a specific embodiment, the polymer composition further comprises a therapeutic agent. In another specific embodiment, the polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof. In an additional specific embodiment, the polymer is a polysaccharide, and the polysaccharide polymer is 20 alginate, hydroxycellulose, chondroitin, chitosan, or hyaluronate. In another specific embodiment, the polymer is a polyamino acid polymer, and the polyamino acid polymer is polyglutamate or polyaspartate. In a specific embodiment, the cross-linking agent is a salt of a divalent cation. In an additional specific embodiment, the divalent cation is Ca 2 +, Mg 2 +, Mn 2 +, Cu2+, Cr 2 +, Sr 2 +, Zn 2 +, Ra 2 +, or Be2+. In another specific embodiment, the salt of a 25 divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese phosphate, manganese carbonate, manganese chlorate, manganese fluoride, manganese 30 bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium chlorate, strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, 19 zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide. In another specific embodiment, the 5 therapeutic agent is an anticancer drug, a hormone, a gene therapy composition, a radionuclide, a nutriceutical, or a combination thereof. In an additional specific embodiment, the therapeutic agent is an anticancer drug, and the anticancer drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, cyclophosphamide, chlorambucil, bisulfan, 10 lomustine, or a combination thereof. In an additional specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is 1 88 Re, ' 6 6 Ho, Bi, m'At, or a combination thereof. In another specific embodiment, the therapeutic agent is a gene therapy composition, and the gene therapy composition is a vector containing p53, thymidine kinase, cytosine deaminase, oxidoreductase, thymidine kinase thymidilate kinase, deoxycytidine kinase, ras ; 15 myc, raf erb, src, fMs, jun, trk, ret, gsp, hst, bcl abl, Rb, CFTR, p16, p21, p 2 7 , p57, p73, C CAM, APC, CTS-1, zac1, scFV ras, DCC, NF-1, NF-2, WT-1, MEN-I, MIEN-II, BRCA1, VHL, MMACl, FCC, MCC, BRCA2, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL 10, IL-11 IL-12, GM-CSF, G-CSF, and a combination thereof. In an additional specific embodiment, the vector is a plasmid, an adenoviral vector, an adeno-associated viral vector, a 20 retroviral vector, a liposome, or a combination thereof. In another specific embodiment, the therapeutic agent is a hormone, and the hormone is luteinizing hormone releasing hormone, growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, 25 prolactin releasing hormone, pro-opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin II, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, P-endorphin, epidermal growth factor, erythropoietin, 30 estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor II, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, cc 20 melanocyte stimulating hormone, mesotocin, methionin enkephali, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth factor, prolactin inhibiting factor, prostacyclin 12, prostaglandin E 2 , prostaglandin F22, relaxing, serotonin, serum thymic 5 factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, vitamin D 3 , or a combination thereof. In an additional specific embodiment, the therapeutic agent is a radionuclide, and the radionuclide is "8Re, 2Bi, 166o, 2 1 1 At, or a combination thereof. In an additional specific 10 embodiment, the therapeutic agent is a nutriceutical, and the nutriceutical is arabinogalactan, acerola cherry, agnus casts (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, butcher's broom, calcium hydroxyl apatite, cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, 15 citrus aurantium, citrus seed extract, co-enzyme Q10, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., germanium Ge-132, ginger, ginkgo, ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu 20 kola, grapeseed extract, green tea extract, guarana, gymnema, hawthome, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri-glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, passion flower, pau d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea 25 cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, stevia, suma, tribulus (Bulgarian) triphala, tumeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. In another specific embodiment, the therapeutic agent further comprises a detectable identifier, and the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, 30 an MRIP contrasting agent, a fluorophore, or a luminophore. BRIEF DESCRIPTION OF THE FIGURES The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better 21 understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. FIG. 1 illustrates in vitro slow release of cisplatin from alginate beads. FIG. 2 demonstrates anticancer effect of intratumoral injection of sodium 5 alginate/cisplatin (SA-CDDP) (3mg/kg) in rats. FIG. 3 illustrates changes in blood urea nitrogen (BUN) and creatinine in rats after intratumoral injection of SA-CDDP (3mg/kg). FIG. 4 illustrates one embodiment for preparation of 1 88 Rhenium-hydrogel. FIG. 5 illustrates accumulated 1 88 Rhenium release by hydrogel. FIG. 6 demonstrates % of 1 88 Rhenium dose released by hydrogel. FIG. 7 illustrates one embodiment of a device for radionuclide therapy. FIG. 8 illustrates another view of one embodiment of a device for radionuclide therapy. FIG. 9 shows tumor growth in mammary tumor-bearing rats in response to isRe treatment. DESCRIPTION OF THE INVENTION I. Definitions - The term "anticancer drug" as- used herein is defined as a drug for the treatment of cancer, such as for a solid tumor. The anticancer drug preferably reduces the size of the tumor, inhibits or prevents growth or metastases of the tumor, and/or eliminates the tumor. The term "brachytherapy" as used herein is defined as insertion of a radioactive source into a patient in the form of tiny pellets, or seeds, which are implanted directly into a tumor-containing organ. The term "cross-linking agent" as used herein is defined as an entity which creates chemical bonds, called cross links, between two separate molecules. In a specific embodiment, the cross-linking agent is a salt of a divalent cation. In a preferred embodiment, the cross-linking agent is calcium chloride. A cross-linking composition is a composition containing a cross-linking agent. - The term "drug" as used herein is defined as a compound which aids in the treatment of disease or medical condition or which controls or improves any physiological or 22 pathological condition associated with the disease or medical condition. In a specific embodiment, the drug is an anticancer drug. The term "hydrogel" as used herein is defined as a composition generated in situ in a body from a water-soluble biodegradable and biocompatible polymer and a cross 5 linking agent. The term "in situ" as used herein is defined as restricted to a specific site within a body without substantial invasion of surrounding tissues. The term "local regional treatment" as used herein is defined as providing therapy to a specific and defined area of a body. In a preferred embodiment, the therapy is 10 restricted primarily to this area and does not extend to nearby areas or tissues. In another preferred embodiment, the region is a solid tumor. The term "nutriceutical" as used herein is a herb, medicinal plant, or diet originated compound such as those used traditionally used in treatment of disease or a medical condition. 15 The term "polyamino acid" as used herein is defined as a polymer having multiple repeating units of the same amino acid. In specific embodiments, the polyamino acid is polyglutamate or polyaspartate. The term "polymer" as used herein is defined as a compound comprising a linear arrangement of simpler repeating molecules. In a specific embodiment, the polymer is 20 a polysaccharide or a polyamino acid. In a preferred embodiment, the polymer is a biodegradable and biocompatible polymer. The term "polysaccharide" as used herein is defined as a carbohydrate comprising multiple monosaccharide units. A monosaccharide is a simple sugar unable to be decomposed by hydrolysis and generally has the formula CH 2 0. 25 - The term "radionuclide" as used herein is defined as a radioactive nuclide (a species of atom able to exist for a measurable lifetime and distinguished by its charge, mass, number, and quantum state of the nucleus) which, in specific embodiments, disintegrates with emission of corpuscular or electromagnetic radiations. The term may be used interchangeably with the term "radioisotope". 30 The term "therapeutic agent" as used herein is defined as an agent which provides treatment for a disease or medical condition. The agent in a specific embodiment improves at least one symptom or parameter of the disease or medical condition. For instance, in tumor therapy, the therapeutic agent reduces the size of the tumor, inhibits or prevents growth or metastases of the tumor, or eliminates the tumor. Examples include a 23 drug, such as an anticancer drug, a gene therapy composition, a radionuclide, a hormone, a nutriceutical, or a combination thereof. The term "tumor" as used herein is defined as an uncontrolled and progressive growth of cells in a tissue. A skilled artisan is aware other synonymous 5 terms exist, such as neoplasm or malignancy. In a specific embodiment, the tumor is a solid tumor. In other specific embodiments, the tumor derives, either primarily or as a metastatic form, from cancers such as of the liver, prostate, pancreas, head and neck, breast, brain, colon, adenoid, oral, skin, lung, testes, ovaries, cervix, endometrium, bladder, stomach, and epithelium (such as a wart). 10 As used herein the specification, "a" or "an" may mean one or more. As used herein in the claim(s), when used in conjunction with the word "comprising", the words "a" or "an" may men one or more than one. As used herein "another" may mean at least a second or more. In the specification and claims the term "comprising" shall be understood to 15 have a broad meaning similar to the term "including" and will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. This definition also applies to variations on the term "comprising" such as "comprise" and "comprises". 20 I. The Present Invention The present invention is directed to a cost-effective and efficient local regional treatment technique that can be used for gene therapy, brachytherapy, transcatheter arterial chmoembolization (TACE) and/or intralesional injection. The 25 methods of the present invention generally regard utilizing a polymer, such as a polysaccharide or a polyamino acid, to carry and dispense a therapeutic agent, such as anticancer drugs, radionuclides, and/or gene therapy compositions intralesionally into tumor tissue or tumor vessels. A cross linker is administered therein to generate hydrogel in situ. In a specific embodiment, this occurs subsequent to administration 30 of the polymer composition- In another specific embodiment, the therapeutic compositions and the cross linker are administered by injection, such as with two separate syringes, or with one syringe having two needles. Preferably , the procedure is monitored by, for instance, ultrasound, computer tomography (CT) scan, X-ray, or magnetic resonance imaging. Thus, non-surgical methods are employed for tumor treatment because the bydrogel is generated within the tumor itself. The current methods in the art for administering an agent are unwieldy and utilize generation of relatively large amounts of therapeutic polymer compositions ex vivo, followed by post-processing procedures to obtain beads of the appropriate size for injection that 5 wastes significant amounts of polymer and therapeutic agents, which are costly. Thus, the in situ methods of the present invention allow correct dosing, are relatively easy to perform, and are cost-effective, generating little waste of expensive chemotherapeutics.
A. Transcatheter Arterial Chemoembolization In a TACE-related specific embodiment of the present invention, the hydrogel, which may also contain a therapeutic agent, is generated within the tumor by injection of the composition and cross linker into an artery which nourishes the tumor. This allows the 5 hydrogel to occlude tumor vessels and preferably provides complete occlusion of tumor vessels. Preferably, the vessel remains blocked for at least about six hours. A. Peritumor/Intralesional Injection In a peritumor/intralesional injection specific embodiment of the present invention, the methods are useful to directly contact and treat tumor tissue by directly 10 injecting the composition(s) into the tumor wherein the subsequently-formed hydrogel comprises a therapeutic agent subject to sustained release from the hydrogel. In specific embodiments directed to radionuclide therapy, either polysaccharide or polyamino acid is labeled with a radionuclide, although in a preferred embodiment polyamino acids are labeled with a radionuclide. The radionuclide therapy of 15 the present invention provides greater loading, ease of process, and reduced cost compared to brachytherapy methods used presently in the art. In a specific embodiment, combinations of radionuclides (alpha and/or beta or gamma emitters) are utilized as cocktail radiotherapy with methods of the present invention. In another specific embodiment, the radionuclide therapy of the present invention, in contrast to the anticancer drug therapy embodiment of the present 20 invention, does not allow leakage of the isotope from the matrix due to ionic bonds formed between the radionuclide and the polymer. In a specific embodiment, the methods of the present invention are particularly useful for tumors where removal by surgery is not a viable option. A. Specific Embodiments 25 1. Polymers Polymers of the present invention, in a specific embodiment, act as carriers for dispensing the therapeutic agent in situ. Polymers are well known in the art and are preferably water soluble, biocompatible, and biodegradable. In a specific embodiment, the 30 polymer degrades in no less than about 1 day and no more than about 30 days. However, it is unnecessary to be biodegradable in the embodiment wherein a radionuclide is the therapeutic agent given that ionic bonds formed between the radionuclide and hydroxy groups of the polymer retain the radionuclide within the polymer composition. 25 A skilled artisan is knowledgeable about polymers suitable for utilization in the methods of the present invention. Particularly, in the specific embodiment wherein a polymer/therapeutic agent is administered into a solid tumor or localized region of an individual and is followed by an administration of a cross-linking agent, polymers, polymer 5 concentrations, cross-linking agents, and cross-linking agent concentrations are selected which facilitate quick polymerization. "Quick polymerization" as used herein is defined as polymerization which is rapid enough to retain all compositions within the solid tumor or localized region of interest without significant leakage to surrounding tissues. In the specific embodiment wherein a polymer/therapeutic agent and cross 0 linking agent are administered into a solid tumor or localized region of an individual substantially simultaneously, such as from a single injection from a syringe having at least one compartment, the polymers, polymer concentrations, cross-linking agents, and cross linking agent concentrations are selected which facilitate relatively slow polymerization. "Slow polymerization" as used herein is defined as polymerization which is rapid enough to 5 retain all compositions within the solid tumor or localized region of interest without significant leakage to surrounding tissues but is slow enough to permit efficient administration of the compositions into the tumor or region. That is, polymerization must occur slowly enough that polymerization does not occur within the administration apparatus, such as the syringe. (a) Polysaccharides Many polysaccharides are known in the art and are useful in the present invention as long as they are capable of retaining a therapeutic agent, are compatible with the tissue and body of an individual to be treated, are suitable for injection via a syringe, and are able to be cross-linked with an appropriate cross-linking agent, such as a salt of a divalent 5 cation. The polysaccharide preferably breaks down over time, causing release of the therapeutic agent directly into the tumor tissue. However, if the therapeutic agent is a radionuclide, the ionic bonds formed between the radionuclide and the polysaccharide preferably prevent leakage of the radionuclide from the polysaccharide hydrogel composition. The polysaccharides are preferably water-soluble, biocompatible and 0 biodegradable. Specific examples -of polysaccharides include sodium alginate, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran and starch. A specific embodiment regarding use of sodium alginate in methods of the present invention follows. 26 Sodium alginate (SA) is a hydrophilic gelling polysaccharide extracted from giant brown seaweed that has previously been described as having satisfactory hernocompatibility. Alginate beads or microspheres are instantly formed by cross-linking with calcium chloride. The reaction is simple and fast. Due to slow blood flow through the 5 tortuous and irregular neoplastic vessels, which often lack both a muscular layer and elastic lamellae, the injected SA solution is easier to fill tumor vessels. Upon injection of calcium chloride locally into the tumor, the calcium ion is diffused in the interstitial space and reacts with SA. Alginate hydrogel is generated instantly in the tumor vasculature and sinusoids. This causes: 1) "concrete" occlusion of the vasculature in the tumor by alginate hydrogel 10 loaded with anticancer drugs; 2) because no calcium ion is injected in the normal liver tissue around the tumor, embolization is unlikely to occur in there, and SA is eventually washed out. In a preferred embodiment of the present invention, there is highly selective complete TACE for cancer therapy by using SA. When SA is used in TACE, an increased anticancer effect, decreased liver tissue damage, and decreased side effects are demonstrated. In 15 summary, the advantages of using SA in TACE include: 1) Concrete chemoembolization in tumor: in a specific embodiment, alginate hydrogel completely fills tumor vessels to cause occlusion, which also reduces the chance of formation of new collateral vessels from tumor; 2) Homogenous drug distribution in the tumor: in another specific embodiment, SA solution fully occupies tumor vascular space, including capillaries and sinusoids, thus providing a 20 better drug-to-tumor cell interaction; 3) Increased anticancer drug level and retention time in the tumor: there is almost no blood flow in the tumor after concrete occlusion, and washing the drugs out of the tumor would be slow because of the sustained-release property of alginate hydrogel; 4) Selective chemoembolization: alginate cross-linking is restricted in the tumor following the intratumoral injection of calcium chloride, and less embolization occurs 25 in normal tissue. These results can be achieved by ultrasound-guided target injection; 5) Low toxicity and low cost: SA and calcium chloride are low in toxicity, with no toxic material produced in the cross-linking reaction, and SA is an inexpensive (approximately $20/100g); 6) SA and other polysaccharides (e.g. hydroxycellulose, chondroitin, chitosan) are also good carriers for delivering radionuclides or other agents. 30 (a) Polyamino acids In a specific embodiment of the present invention, polyamino acids are utilized as the polymer component of the hydrogel composition. In a further specific embodiment, the polyamino acid is polyaspartate or polyglutamate. In a preferred 27 embodiment a radionuclide of the present invention is combined with a polyamino acid in the hydrogel. Many polyarnino acids are known in the art and are useful in the present invention a long as they are capable of retaining a therapeutic agent, are compatible with the tissue and 5 body of an individual to be treated, are suitable for injection via a syringe, and are able to be cross-linked with an appropriate cross-linking agent, such as a salt of a divalent cation. The polyamino acid preferably breaks down over time, causing release of the therapeutic agent directly into the tinner tissue. However, if the therapeutic agent is a radionuclide, the ionic bonds formed between the radionuclide and the polyamino acid preferably prevent leakage of 10 the radionuclide from the polysaccharide hydrogel composition. 1. Cross-Linking Agents In a specific embodiment of the present invention, a cross-linking agent is utilized to cross link the polymer to the therapeutic agent and is injected into a tumor following injection of the polymer/therapeutic agent composition. In a preferred embodiment, the cross-linking 15 agent is a salt of a divalent cation. Divalent cations include calcium, magnesium, copper, manganese, chromium, zinc, radium, barium, beryllium, and strontium. Salts include those of chloride, sulfate, phosphate, carbonate, chlorate, fluoride, and bromide. In a preferred embodiment, the cross-linking agent is at about 3% in solution and is soluble in aqueous solutions such as water. 20 1. Therapeutic Agents In a preferred embodiment, a therapeutic agent such as a drug, including an anticancer drug, a radionuclide, a gene therapy composition, a hormone, a nutriceutical, and a combination thereof are administered by methods of the present invention for local regional treatment in an individual. For Example a drug and a radionuclide may be administered in 25 combination. In a specific embodiment, they are administered with a polymer. Given the heterogeneous nature of a tumor, it is beneficial and preferred to employ more than one type of therapeutic agent, or multiple species within a type of therapeutic agent, to provide therapy to the tumor in its entirety. In one embodiment, the therapeutic agent further comprises a detectable identifier, 30 such as an X-ray contrasting agent, a computer tomography (CT) contrasting agent, a magnetic resonance imaging (MIRI) contrasting agent, a fluorophore, or a luminophore. Such a detectable identifier permits monitoring of the therapeutic agent, such as with unintentional leakage into surrounding tissue and/or to mark a tumor which has been injected (a) Drugs In a specific embodiment of the present invention, the polymer is associated with a drug for local regional treatment in an individual. (1) Chemotherapeutic Drug 5 In a preferred embodiment, the drug is an anticancer drug, also kown in the art as a chemotherapeutic agent. These can be, for example, agents that directly cross-link DNA, agents that intercalate into DNA, and agents that lead to chromosomal and mitotic aberrations by affecting nucleic acid synthesis. Agents that directly cross-link nucleic acids, 10 specifically DNA, are envisaged to eventuate DNA damage leading to a synergistic antineoplastic combination. Agents such as cisplatin, and other DNA alkylating agents may be used. Agents that damage DNA also include compounds that interfere with DNA replication, mitosis, and chromosomal segregation. Examples of these compounds include 15 adriamycin (also known as doxorubicin), VP-16 (also known as etoposide), verapamil, podophyllotoxin, and the like. Widely used in clinical setting for the treatment of neoplasms these compounds are administered through bolus injections intravenously at doses ranging from 25-75 mg/m 2 at 21 day intervals for adriamycin, to 35-100 mg/m 2 for etoposide intravenously or orally. 20 Doxorubicin Doxorubicin hydrochloride, 5,12-Naphthacenedione, (8s-cis)-10-[(3-amino 2,3,6-trideoxy-a-L-lyxo-hexopyranosyl)oxy)-7,8,9,10-tetrahydro-6,8,11-trihydroxy-8 (hydroxyacetyl)-1-methoxy-hydrochloride (hydroxydaunorubicin hydrochloride, 25 Adriamycin) is used in a wide antineoplastic spectrum. It binds to DNA and inhibits nucleic acid synthesis, inhibits mitosis and promotes chromosomal aberrations. Administered alone, it is the drug of first choice for the treatment of thyroid adenoma and primary hepatocellular carcinoma. It is a component of 31 first-choice combinations for the treatment of ovarian, endometrial and breast tumors, bronchogenic oat 30 cell carcinoma, non-small cell lung carcinoma, gastric adenocarcinoma, retinoblastoma, neuroblastoma, mycosis fungoides, pancreatic carcinoma, prostatic carcinoma, bladder carcinoma, myeloma, diffuse histiocytic lymphoma, Wilms' tumor, Hodgkin's disease, adrenal tumors, osteogenic sarcoma soft tissue sarcoma, Ewing's sarcoma, rhabdomyosarcoma and acute lymphocytic leukemia. It is an alternative drug for the 29 treatment of islet cell, cervical, testicular and adrenocortical cancers. It is also an immunosuppressant. Doxorubicin is absorbed poorly and must be administered intravenously. The pharmacokinetics are multicompartmental. Distribution phases have half-lives of 12 minutes 5 and 3.3 hr. The elimination half-life is about 30 hr. Forty to 50% is secreted into the bile. Most of the remainder is metabolized in the liver, partly to an active metabolite (doxorubicinol), but a few percent is excreted into the urine. In the presence of liver impairment, the dose should be reduced. Appropriate doses are, intravenous, adult, 60 to 75 mg/m 2 at 21-day intervals 10 or 25 to 30 mg/m2 on each of 2 or 3 successive days repeated at 3- or 4-wk intervals or 20 mg/m2 once a week. The lowest dose should be used in elderly patients, when there is prior bone-marrow depression caused by prior chemotherapy or neoplastic marrow invasion, or when the drug is combined with other myelopoietic suppressant drugs. The dose should be reduced by 50% if the serum bilirubin lies between 1.2 and 3 mg/dL and by 75% if above 3 15 mg/dL. The lifetime total dose should not exceed 550 mg/m 2 in patients with normal heart function and 400 mg/m 2 in persons having received mediastinal irradiation. Alternatively, 30 mg/m 2 on each of 3 consecutive days, repeated every 4 wk. Exemplary doses may be 10 mg/m 2 , 20 mg/m 2 , 30 mg/m 2 , 50 mg/m 2 , 100 mg/m 2 , 150 mg/m 2 , 175 mg/m 2 , 200 mg/m 2 , 225 mg/m 2 , 250 mg/m 2 , 275 mg/m 2 , 300 mg/m 2 , 350 mg/m 2 , 400 mg/m2, 425 mg/m 2 , 450 mg/m2 Z0 475 mg/m2, 500 mg/m2. Of course, all of these dosages are exemplary, and any dosage in between these points is also expected to be of use in the invention. Daunorubicin Daunorubicin hydrochloride, 5,12-Naphthacenedione, (8S-cis)-8-acetyl-10 25 [(3-amino-2,3,6-trideoxy-a-L-Iyxo-hexanopyranosyl)oxy]-7,8,9,1 0-tetrahydro-6,8,11 trihydroxy-10-methoxy-, hydrochloride; also termed cerubidine and available from Wyeth. Daunorubicin intercalates into DNA, blocks DAN-directed RNA polymerase and inhibits DNA synthesis. It can prevent cell division in doses that do not interfere with nucleic acid synthesis. 30 In combination with other drugs it is included in the first-choice chemotherapy of acute myelocytic leukemia in adults (for induction of remission), acute lymphocytic leukemia and the acute phase of chronic myelocytic leukemia. Oral absorption is poor, and it must be given intravenously. The half-life of distribution is 45 minutes and of elimination, 30 about 19 hr. The half-life of its active metabolite, daunorubicinol, is about 27 hr. Daunorubicin is metabolized mostly in the liver and also secreted into the bile (ca 40%). Dosage must be reduced in liver or renal insufficiencies. Suitable doses are (base equivalent), intravenous adult, younger than 60 yr. 45 5 mg/m2/day (30 mg/m 2 for patients older than 60 yr.) for 1, 2 or 3 days every 3 or 4 wk or 0.8 mg/kg/day for 3 to 6 days every 3 or 4 wk; no more than 550 mg/rn should be given in a lifetime, except only 450 mg/m 2 if there has been chest irradiation; children, 25 mg/m 2 once a week unless the age is less than 2 yr. or the body surface less than 0.5 m, in which case the weight-based adult schedule is used. It is available in injectable dosage forms (base 10 equivalent) 20 mg (as the base equivalent to 21.4 mg of the hydrochloride). Exemplary doses may be 10 mg/m 2 , 20 mg/m 2 , 30 mg/m 2 , 50 mg/n 2 , 100 mg/M 2 , 150 mg/m 2 , 175 mg/M 2 , 200 mg/m 2 , 225 mg/m 2 , 250 mg/m 2 , 275 mg/m 2 , 300 mg/m 2 , 350 mg/m 2 , 400 mg/m 2 , 425 mg/m2, 450 mg/m2, 475 mg/m 2 , 500 mg/m 2 . Of course, all of these dosages are exemplary, and any dosage in-between these points is also expected to be of use in the invention. 15 Mitomycin Mitomycin (also known as mutamycin and/or mitomycin-C) is an antibiotic isolated from the broth of Streptonyces caespitosus which has been shown to have antitumor activity. The compound is heat stable, has a- high melting point, and is freely soluble in 20 organic solvents. Mitomycin selectively inhibits the synthesis of deoxyribonucleic acid (DNA). The guanine and cytosine content correlates with the degree of mitomycin-induced cross linking. At high concentrations of the drug, cellular RNA and protein synthesis are also suppressed. 25 In humans, mitomycin is rapidly cleared from the serum after intravenous administration. Time required to reduce the serum concentration by 50% after a 30 mg. bolus injection is 17 minutes. After injection of 30 mg., 20 mg., or 10 mg. I.V., the maximal serum concentrations were 2.4 mg./mL, 1.7 mgJmL, and 0.52 mg./mL, respectively. Clearance is effected primarily by metabolism in the liver, but metabolism occurs in other tissues as well. 30 The rate of clearance is inversely proportional to the maximal serum concentration because, it is thought, of saturation of the degradative pathways. Approximately 10% of a dose of mitomycin is excreted unchanged in the urine. Since metabolic pathways are saturated at relatively low doses, the percent of a dose 31 excreted in urine increases with increasing dose. In children, excretion of intravenously administered mitomycin is similar. Actinomycin D 5 - Actinomycin D (Dactinomycin) [50-76-0]; C 62
H
86
N
1 2 0 16 (1255.43) is an antineoplastic drug that inhibits DNA-dependent RNA polymerase. It is a component of first-choice combinations for treatment of choriocarcinoma, embryonal rhabdomyosarcoma, testicular tumor and Wilms' tumor. Tumors which fail to respond to systemic treatment sometimes respond to local perfusion. Dactinomycin potentiates radiotherapy. It is a 10 secondary (efferent) immunosuppressive. Actinomycin D is used in combination with primary surgery, radiotherapy, and other drugs, particularly vincristine and cyclophosphamide. Antineoplastic activity has also been noted in Ewing's tumor, Kaposi's sarcoma, and soft-tissue sarcomas. Dactinomycin can be effective in women with advanced cases of choriocarcinoma. It also produces 5 consistent responses in combination with chlorambucil and methotrexate in patients with metastatic testicular carcinomas. A response may sometimes be observed in patients with Hodgkin's disease and non-Hodgkin's lymphomas. Dactinomycin has also been used to inhibit immunological responses, particularly the rejection of renal transplants. Half of the dose is excreted intact into the bile and 10% into the urine; the 0 half-life is about 36 hr. The drug does not pass the blood-brain barrier. Actinomycin D is supplied as a lyophilized powder (0/5 mg in each vial). The usual daily dose is 10 to 15 mg/kg; this is given intravenously for 5 days; if no manifestations of toxicity are encountered, additional courses may be given at intervals of 3 to 4 weeks. Daily injections of 100 to 400 mg have been given to children for 10 to 14 days; in other regimens, 3 to 6 mg/kg, for a total 25 of 125 mg/kg, and weekly maintenance doses of 7.5 mg/kg have been used. Although it is safer to administer the drug into the tubing of an intravenous infusion, direct intravenous injections have been given, with the precaution of discarding the needle used to withdraw the drug from the vial in order to avoid subcutaneous reaction. Exemplary doses may be 100 mg/m 2 , 150 mg/m 2 , 175 mg/m 2 , 200 mg/m 2 , 225 mg/m 2 , 250 mg/m 2 , 275 mg/m 2 , 300 mg/m 2 , 0 350 mg/m 2 , 400 mg/m 2 , 425 mg/m 2 , 450 mg/m 2 , 475 mg/m2, 500 mg/m 2 . Of course, all of these dosages are exemplary, and any dosage 'in-between these points is also expected to be of use in the invention.
Bleomycin Bleomycin is a mixture of cytotoxic glycopeptide antibiotics isolated from a strain of Streptomyces verticillus. It is freely soluble in water. Although the exact mechanism of action of bleomycin is unknown, available 5 evidence would seem to indicate that the main mode of action is the inhibition of DNA synthesis with some evidence of lesser inhibition of RNA and protein synthesis. In mice, high concentrations of bleomycin are found in the skin, lungs, kidneys, peritoneum, and lymphatics. Tumor cells of the skin and lungs have been found to have high concentrations of bleomycin in contrast to the low concentrations found in 10 hematopoietic tissue. The low concentrations of bleomycin found in bone marrow may be related to high levels of bleomycin degradative enzymes found in that tissue. In patients with a creatinine clearance of >35 mL per minute, the serum or plasma terminal elimination half-life of bleomycin is approximately 115 minutes. In patients with a creatinine clearance of <35 mL per minute, the plasma or serum terminal elimination 15 half-life increases exponentially as the creatinine clearance decreases. In humans, 60% to 70% of an administered dose is recovered in the urine as active bleomycin. Bleomycin should be considered a palliative treatment. It has been shown to be useful in the management of the following neoplasms either as a single agent or in proven combinations with other approved chemotherapeutic agents in squamous cell carcinoma such 20 as head and neck (including mouth, tongue, tonsil, nasopharynx, oropharynx, sinus, palate,. lip, buccal mucosa, gingiva, epiglottis, larynx), skin, penis, cervix, and vulva. It has also been used in the treatment of lymphomas and testicular carcinoma. - Because of the possibility of an anaphylactoid reaction, lymphoma patients should be treated with two units or less for the first two doses. If no acute reaction occurs, 25 then the regular dosage schedule may be followed. Improvement of Hodgkin's Disease and testicular tumors is prompt and noted within 2 weeks. If no improvement is seen by this time, improvement is unlikely. Squamous cell cancers respond more slowly, sometimes requiring as long as 3 weeks before any improvement is noted. 30 Bleomycin may be given by the intramuscular, intravenous, or subcutaneous routes. Cisplatin - Cisplatin has been widely used to treat cancers such as metastatic testicular or ovarian carcinoma, advanced bladder cancer, head or neck cancer, cervical cancer, lung cancer or other tumors. Cisplatin can be used alone or in combination with other agents, with efficacious doses used in clinical applications of 15-20 mg/m 2 for 5 days every three weeks 5 for a total of three courses. Exemplary doses may be 0.50 mg/m 2 , 1.0mg/m2, 1.50 mg/m 2 , 1.75 mg/m 2 , 2.0 mg/m 2 , 3.0 mg/m 2 , 4.0 mg/m 2 , 5.0 mg/m 2 , 10mg//m 2 . Of course, all of these dosages are exemplary, and any dosage in-between these points is also expected to be of use in the invention. Cisplatin is not absorbed orally and must therefore be delivered via injection ) intravenously, subcutaneously, intratumorally or intraperitoneally. In certain aspects of the current invention cisplatin is used in combination with emodin or emodin-like compounds in the treatment of non-small cell lung carcinoma. It is clear, however, that the combination of cisplatin and emodin and or emodin-like compounds could be used for the treatment of any other neu-mediated cancer. 5 VP16 VP16 is also know as etoposide and is used primarily for treatment of testicular tumors, in combination with bleomycin and cisplatin, and in combination with cisplatin for small-cell carcinoma of the lung. It is also active against non-Hodgkin's 0 lymphomas, acute nonlymphocytic leukemia, carcinoma of the breast, and Kaposi's sarcoma associated with acquired immunodeficiency syndrome (AIDS). VP16 is available as a solution (20 mg/ml) for intravenous administration and as 50-mg, liquid-filled capsules for oral use. For small-cell carcinoma of the lung, the intravenous dose (in combination therapy) is can be as much as 100 mg/m 2 or as little as 2 25 mg/ m 2 , routinely 35 mg/m 2 , daily for 4 days, to 50 mg/m2, daily for 5 days have also been used. When given orally, the dose should be doubled. Hence the doses for small cell lung carcinoma may be as high as 200-250mg/m 2 . The intravenous dose for testicular cancer (in combination therapy) is 50 to 100 mg/m 2 daily for 5 days, or 100 mg/m 2 on alternate days, for three doses. Cycles of therapy are usually repeated every 3 to 4 weeks. The drug should 30 be administered slowly during a 30- to 60-minute infusion in order to avoid hypotension and bronchospasm, which are probably due to the solvents used in the formulation. Tumor Necrosis Factor 34 Tumor Necrosis Factor [TNF; Cachectin] is a glycoprotein that kills some kinds of cancer cells, activates cytokine production, activates macrophages and endothelial cells, promotes the production of collagen and collagenases, is an inflammatory mediator and also a mediator of septic shock, and promotes catabolism, fever and sleep. Some infectious 5 agents cause tumor regression through the stimulation of TNF production. TNF can be quite toxic when used alone in effective doses, so that the optimal regimens probably will use it in lower doses in combination with other drugs. Its immunosuppressive actions are potentiated by gamma-interferon, so that the combination potentially is dangerous. A hybrid of TNF and interferon-c also has been found to possess anti-cancer activity. 10 Taxol Taxol is an experimental antimitotic agent, isolated from the bark of the ash tree, Taxus brevifolia. It binds to tubulin (at a site distinct from that used by the vinca alkaloids) and promotes the assembly of microtubules. Taxol is currently being evaluated 15 clinically; it has activity against malignant melanoma and carcinoma of the ovary. Maximal doses are 30 mg/m 2 per day for 5 days or 210 to 250 mg/m 2 given once every 3 weeks. Of course, all of these dosages are exemplary, and any dosage in-between these points is also expected to be of use in the invention. 20 Vincristine Vincristine blocks mitosis and produces metaphase arrest. It seems likely that most of the biological activities of this drug can be explained by its ability to bind specifically to tubulin and to block the ability of protein to polymerize into microtubules. Through disruption of the microtubules of the mitotic apparatus, cell division is arrested in metaphase. 25 The inability to segregate chromosomes correctly during mitosis presumably leads to cell death. The relatively low toxicity of vincristine for normal marrow cells and epithelial cells make this agent unusual among anti-neoplastic drugs, and it is often included in combination with other myelosuppressive agents. 30 Unpredictable absorption has been reported after oral administration of vinblastine or vincristine. At the usual clinical doses the peak concentration of each drug in plasma is approximately 0.4 mM. 35 Vinblastine and vincristine bind to plasma proteins. They are extensively concentrated in platelets and to a lesser extent in leukocytes and erythrocytes. Vincristine has a multiphasic pattern of clearance from the plasma; the terminal half-life is about 24 hours. The drug is metabolized in the liver, but no biologically 5 active derivatives have been identified. Doses should be reduced in patients with hepatic dysfunction. At least a 50% reduction in dosage is indicated if the concentration of bilirubin in plasma is greater than 3 ng/dI (about 50 mM). Vincristine sulfate is available as a solution (1 mg/ml) for intravenous injection. Vincristine used together with corticosteroids is presently the treatment of choice 0 to induce remissions in childhood leukemia; the optimal dosages for these drugs appear to be vincristine, intravenously, 2 mg/m 2 of body-surface area, weekly, and prednisolone, orally, 40 mg/m 2 , daily. Adult patients with Hodgkin's disease or non-Hodgkin's lymphomas usually receive vincristine as a part of a complex protocol. When used in the MOPP regimen, the recommended dose of vincristine is 1.4 mg/m 2 . High doses of vincristine seem to be 5 tolerated better by children with leukemia than by adults, who may experience sever neurological toxicity. Administration of the drug more frequently than every 7 days or at higher doses seems to increase the toxic manifestations without proportional improvement in the response rate. Precautions should also be used to avoid extravasation during intravenous administration of vincristine. Vincristine (and vinblastine) can be infused into the arterial 0 blood supply of tumors in doses several times larger than those that can be administered intravenously with comparable toxicity. Vincristine has been effective in Hodgkin's disease and other lymphomas. Although it appears to be somewhat less beneficial than vinblastine when used alone in Hodgkin's disease, when used with mechlorethamine, prednisolone, and procarbazine (the so 25 called MOPP regimen), it is the preferred treatment for the advanced stages (III and IV) of this disease. In non-Hodgkin's lymphomas, vincristine is an important agent, particularly when used with cyclophosphamide, bleomycin, doxorubicin, and prednisolone. Vincristine is more useful than vinblastine in lymphocytic leukemia. Beneficial response have been reported in patients with a variety of other neoplasms, particularly Wilms' tumor, 30 neuroblastoma, brain tumors, rhabdomyosarcoma, and carcinomas of the breast, bladder, and the male and female reproductive systems. Doses of vincristine for use will be determined by the clinician according to the individual patients need. 0.01 to 0.03mg/kg or 0.4 to 1.4mg/m2 can be administered or 1.5 to 2mg/m 2 can alos be administered. Alternatively 0.02 mg/m 2 , 0.05 mg/m 2 , 0.06 mg/m 2 , 0.07 36 mg/m 2 , 0.08 mg/rn 2 , 0.1 mg/M 2 , 0.12 mg/m 2 , 0.14 mg/m 2 , 0.15 mg/m 2 , 0.2 mg/m 2 , 0.25mg/m 2 can be given as a constant intravenous infusion. Of course, all of these dosages are exemplary, and any dosage in-between these points is also expected to be of use in the invention. 5 Vinblastine When cells are incubated with vinblastine, dissolution of the microtubules occurs. Unpredictable absorption has been reported after oral administration of vinblastine or vincristine. At the usual clinical doses the peak concentration of each drug in plasma is 10 approximately 0.4 mM. Vinblastine and vincristine bind to plasma proteins. They are extensively concentrated in platelets and to a lesser extent in leukocytes and erythrocytes. After intravenous injection, vinblastine has a multiphasic pattern of clearance from the plasma; after distribution, drug disappears from plasma with half-lives of approximately 1 and 20 hours. 15 Vinblastine is metabolized in the liver to biologically activate derivative desacetylvinblastine. Approximately 15% of an administered dose is detected intact in the urine, and about 10% is recovered in the feces after biliary excretion. Doses should be reduced in patients with hepatic dysfunction. At least a 50% reduction in dosage is indicated if the concentration of bilirubin in plasma is greater than 3 mg/dl (about 50 mMi). 20 . Vinblastine sulfate is available in preparations for injection. The drug is given intravenously; special precautions must be taken against subcutaneous extravasation, since this may cause painful irritation and ulceration. The drug should not be injected into an extremity with impaired circulation. After a single dose of 0.3 mg/kg of body weight, myelosuppression reaches its maximum in 7 to 10 days. If a moderate level of leukopenia 25 (approximately 3000 cells/mm 3 ) is not attained, the weekly dose may be increased gradually by increments of 0.05 mg/kg of body weight. In regimens designed to cure testicular cancer, vinblastine is used in doses of 0.3 mg/kg every 3 weeks irrespective of blood cell counts or toxicity. The most important clinical use of vinblastine is with bleomycin and cisplatin 30 in the curative therapy of metastatic testicular tumors. Beneficial responses have been reported in various lymphomas, particularly Hodgkin's disease, where significant improvement may be noted in 50 to 90% of cases. The effectiveness of vinblastine in a high proportion of lymphomas is not diminished when the disease is refractory to alkylating 37 agents. It is also active in Kaposi's sarcoma, neuroblastoma, and Letterer-Siwe disease (histiocytosis X), as well as in carcinoma of the breast and choriocarcinoma in women. Doses of vinblastine for use will be determined by the clinician according to the individual patients need. 0.1 to 0.3mg/kg can be administered or 1.5 to 2mg/m 2 can also 5 be administered. Alternatively, 0.1 mg/m 2 , 0.12 mg/m 2 , 0.14 mg/m 2 , 0.15 mg/m 2 , 0.2 mg/m 2 0.25 mg/m 2 , 0.5 mg/m 2 , 1.0 mg/m 2 , 1.2 mg/m 2 , 1.4 mg/m 2 , 1.5 mg/m 2 , 2.0 mg/m 2 , 2.5 mg/m 2 , 5.0 mg/m 2 , 6 mg/m 2 , 8 mg/m 2 , 9 mg/m 2 , 10 mg/m 2 , 20 mg/m 2 , can be given. Of course, all of these dosages are exemplary, and any dosage in-between these points is also expected to be of use in the invention. 0 Carmustine - - Carmustine (sterile carmustine) is one of the nitrosoureas used in the treatment of certain neoplastic diseases. It is 1,3bis (2-chloroethyl)-1-nitrosourea. It is lyophilized pale yellow flakes or congealed mass with a molecular weight of 214.06. It is highly soluble in 5 alcohol and lipids, and poorly soluble in water. Carmustine is administered by intravenous infusion after reconstitution as recommended. Sterile carmustine is commonly available in 100 mg single dose vials of lyophilized material. Although it is generally agreed that carmustine alkylates DNA and RNA, it is not cross resistant with other alkylators. As with other nitrosoureas, it may also inhibit !0 several key enzymatic processes by carbamoylation of amino acids in proteins. Carmustine is indicated as palliative therapy as a single agent or in established combination therapy with other approved chemotherapeutic agents in brain tumors such as glioblastoma, brainstem glioma, medullobladyoma, astrocytoma, ependymoma, and metastatic brain tumors. Also it has been used in combination with prednisolone to treat 25 multiple myeloma. Carmustine has proved useful, in the treatment of Hodgkin's Disease and in non-Hodgkin's lymphomas, as secondary therapy in combination with other approved drugs in patients who relapse while being treated with primary therapy, or who fail to respond to primary therapy. ' The recommended dose of carmustine as a single agent in previously untreated 30 patients is 150 to 200 mg/m 2 intravenously every 6 weeks. This may be given as a single dose or divided into daily injections such as 75 to 100 mg/m 2 on 2 successive days. When carmustine is used in combination with other myelosuppressive drugs or in patients in whom bone marrow reserve is depleted, the doses should be adjusted accordingly. Doses subsequent to the initial dose should be adjusted according to the hematologic response of the 38 patient to the preceding dose. It is of course understood that other doses may be used in the present invention for example 10mg/m2, 20mg/M 2 , 30mg/m2 40mg/m2 50mg/M2 60mg/M2 70mg/M 2 80mg/m 2 90mg/m 2 100mg/m 2 . The skilled artisan is directed to, "Remington's Pharmaceutical Sciences" 15th Edition, chapter 61. Some variation in dosage will necessarily 5 occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Melphalan Melphalan also known as alkeran, L-phenylalanine mustard, phenylalanine 10 mustard, L-PAM, or L-sarcolysin, is a phenylalanine derivative of nitrogen mustard. Melphalan is a bifunctional alkylating agent which is active against selective human neoplastic diseases. It is known chemically as 4-[bis(2-chloroethyl)amino]-L-phenylalanine. Melphalan is the active L-isomer of the compound and was first synthesized in 1953 by Bergel and Stock; the D-isomer, known as medphalan, is less active against certain 15 animal tumors, and the dose needed to produce effects on chromosomes is larger than that required with the L-isomer. The racemic (DL-) form is known as merphalan or sarcolysin. Melphalan is insoluble in water and has a pKai of -2.1. Melphalan is available in tablet form for oral administration and has been used to treat multiple myeloma. Available evidence suggests that about one third to one half of the patients 20 with multiple myeloma show a favorable response to oral administration of the drug. Melphalan has been used in the treatment of epithelial ovarian carcinoma. One commonly employed regimen for the treatment of ovarian carcinoma has been to administer melphalan at a dose of 0.2 mg/kg daily for five days as a single course. Courses are repeated every four to five weeks depending upon hematologic tolerance (Smith and 25 Rutledge, 1975; Young et al., 1978). Alternatively the dose of melphalan used could be as low as 0.05mg/kg/day or as high as 3mg/kg/day or any dose in between these doses or above these doses. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. 30 Cyclophosphamide Cyclophosphamide is 2H-1,3 ,2-Oxazaphosphorin-2-amine, NN-bis(2 chloroethyl)tetrahydro-, 2-oxide, monohydrate; termed Cytoxan available from Mead 39 Johnson; and Neosar available from Adria. Cyclophosphamide is prepared by condensing 3 amino-i -propanol with NN-bis(2-chlorethyl) phosphoramidic dichloride [(CICH 2
CH
2
)
2
N-
POCl 2 ] in dioxane solution under the catalytic influence of triethylamine. The condensation is double, involving both the hydroxyl and the amino groups, thus effecting the cyclization. 5 Unlike other B-chloroethylamino alkylators, it does not cycize readily to the active ethyleneimonium form until activated by hepatic enzymes. Thus, the substance is stable in the gastrointestinal tract, tolerated well and effective by the oral and parental routes and does not cause local vesication, necrosis, phlebitis or even pain. Suitable doses for adults include, orally, I to 5 mg/kg/day (usually in .0 combination), depending upon gastrointestinal tolerance; or 1 to 2 mg/kg/day; intravenously, initially 40 to 50 mg/kg in divided doses over a period of 2 to 5 days or 10 to 15 mg/kg every 7 to 10 days or 3 to 5 mg/kg twice a week or 1.5 to 3 mg/kg/day. A dose 250mg/kg/day may be administered as an antineoplastic. Because of gastrointestinal adverse effects, the intravenous route is preferred for loading. During maintenance, a leukocyte count of 3000 to .5 4000/mm 3 usually is desired. The drug also sometimes is administered intramuscularly, by infiltration or into body cavities. It is available in dosage forms for injection of 100, 200 and 500 mg, and tablets of 25 and 50 mg the skilled artisan is referred to "Remington's Pharmaceutical Sciences" 15th Edition, chapter 61, incorporate herein as a reference, for details on doses for administration. !0 Chlorambucil Chlorambucil (also known as leukeran) was first synthesized by Everett et al. (1953). It is a bifunctional alkylating agent of the nitrogen mustard type that has been found active against selected human neoplastic diseases. Chlorambucil is known chemically as 4 25 [bis(2-chlorethyl)amino] benzenebutanoic acid. Chlorambucil is available in tablet form for oral administration. It is rapidly and completely absorbed from the gastrointestinal tract. After single oral doses of 0.6-1.2 mg/kg, peak plasma chlorambucil levels are reached within one hour and the terminal half life of the parent drug is estimated at 1.5 hours. 0.1 to 0.2mg/kg/day or 3 to 6mg/m 2 /day or 30 alternatively 0.4mg/kg may be used for antineoplastic treatment. Treatment regimes are well know to those of skill in the art and can be found in the "Physicians Desk Reference" and in "Remingtons Pharmaceutical Sciences" referenced herein.
Chlorambucil is indicated in the treatment of chronic lymphatic (lymphocytic) leukemia, malignant lymphomas including lymphosarcoma, giant follicular lymphoma and Hodgkin's disease. It is not curative in any of these disorders but may produce clinically 5 useful palliation. Busulfan Busulfan (also known as myleran) is a bifunctional alkylating agent. Busulfan is known chemically as 1,4-butanediol dimethanesulfonate. 10 Busulfan is not a structural analog of the nitrogen mustards. Busulfan is available in tablet form for oral administration. Each scored tablet contains 2 mg busulfan and the inactive ingredients magnesium stearate and sodium chloride. Busulfan is indicated for the palliative treatment of chronic myelogenous (myeloid, myelocytic, granulocytic) leukemia. Although not curative, busulfan reduces the 15 total granulocyte mass, relieves symptoms of the disease, and improves the clinical state of the patient. Approximately 90% of adults with previously untreated chronic myelogenous leukemia will obtain hematologic remission with regression or stabilization of organomegaly following the use of busulfan. It has been shown to be superior to splenic irradiation with respect to survival times and maintenance of hemoglobin levels, and to be equivalent to 20 irradiation at controlling splenomegaly. Lomustine Lomustine is one of the nitrosoureas used in the treatment of certain neoplastic diseases. It is 1-(2-chloro-ethyl)-3-cyclohexyl-1 nitrosourea. It is a yellow powder with the 25 empirical formula of C 9
H
16 C1N 3 0 2 and a molecular weight of 233.71. Lomustine is soluble in 10% ethanol (0.05 mg per mL) and in absolute alcohol (70 mg per mL). Lomustine is relatively insoluble in water (<0.05 mg per mL). It is relatively unionized at a physiological pH. Inactive ingredients in lomustine capsules are: magnesium stearate and mannitol. Although it is generally agreed that lomustine alkylates DNA and RNA, it is 30 not cross resistant with other alkylators. As with other nitrosoureas, it may also inhibit several key enzymatic processes by carbamoylation of amino acids in proteins. Lomustine may be given orally. Following oral administration of radioactive lornustine at doses ranging from 30 mg/m 2 to 100 mg/m 2 , about half of the radioactivity given was excreted in the form of degradation products within 24 hours.
The serum half-life of the metabolites ranges from 16 hours to 2 days. Tissue levels are comparable to plasma levels at 15 minutes after intravenous administration. Lomustine has been shown to be useful as a single agent in addition to other treatment modalities, or in established combination therapy with other approved 5 chemotherapeutic agents in both primary and metastatic brain tumors, in patients who have already received appropriate surgical and/or radiotherapeutic procedures. It has also proved effective in secondary therapy against Hodgkin's Disease in combination with other approved drugs in patients who relapse while being treated with primary therapy, or who fail to respond to primary therapy. 10 The recommended dose of lomustine in adults and children as a single agent in previously untreated patients is 130 mg/m 2 as a single oral dose every 6 weeks. In individuals with compromised bone marrow function, the dose should be reduced to 100 mg/m 2 every 6 weeks. When lonustine is used in combination with other myelosuppressive drugs, the doses should be adjusted accordingly. It is understood that other doses may be l5 used for example, 20mg/M2 30mg/M2, 40 mg/m 2 , 50mg/M 2 , 60mg/M 2 , 70mg/m 2 , 80mg/m2, 90mg/m 2 , 100mg/m 2 , 120mg/M 2 or any doses between these figures as determined by the clinician to be necessary for the individual being treated. (1) Non-Chemotherapeutic Drugs In an alternative embodiment, the local regional treatment provided by the !0 methods of the present invention employ another type of drug to provide therapy to a specific region of an individual. For instance, in a localized region comprising, for example, an abscess or boil, an antibiotic may be utilized. Another example would include administration of an antibiotic or pain medication, such as in an opening remaining from extraction of a tooth. An additional example would be administration of bone morphogenetic factors, such 25 as into a degenerative bone site. In an alternative embodiment, a compound to decrease bone content, dissolve bone, or the like is administered to a bone spur. In another specific embodiment, a compound is administered to a corn, such as on a foot, for reducing its size or completely eliminating it. The term "antibiotics" as used herein is defined as a substance that inhibits the 30 growth of microorganisms without damage to the host. For example, the antibiotic may inhibit cell wall synthesis, protein synthesis, nucleic acid synthesis, or alter cell membrane function. 42 Classes of antibiotics that can possibly be used include, but are not limited to, macrolides (i.e., erythromycin), penicillins (i.e., nafeillin), cephalosporins (i.e., cefazolin), carbepenems (i.e., inipenem, aztreonam), other beta-lactam antibiotics, beta-lactam inhibitors (i.e., sulbactam), oxalines (i.e. linezolid), aminoglycosides (i.e., gentamicin), 5 chloramphenicol, sulfonamides (i.e., sulfamethoxazole), glycopeptides (i.e., vancomycin), quinolones (i.e., ciprofloxacin), tetracyclines (i.e., minocycline), fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, polyenes (i.e., amphotericin B), rifamycins (i.e., rifampin), and azoles (i.e., fluconazole). Examples of specific antibiotics that can be used include, but are not limited 10 to, erythromycin, nafcillin, cefazolin, imipenem, aztreonam, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, trimethoprim, rifampin, metronidazole, clindamycin, teicoplanin, mupirocin, azithromycin, clarithromycin, ofloxacin, lomefloxacin, norfloxacin, nalidixic acid, sparfloxacin, pefloxacin, amifloxacin, enoxacin, fleroxacin, minocycline, linezolid, temafloxacin, tosufloxacin, clinafloxacin, sulbactam, clavulanic acid, amphotericin B, 15 fluconazole, itraconazole, ketoconazole, and nystatin. Other examples of antibiotics, such as those listed in Sakamoto et al., U.S. Pat. No. 4,642,104 herein incorporated by reference will readily suggest themselves to those of ordinary skill in the art. (a) Radionuclides In a specific embodiment of the present invention, the polymer is associated 20 with a radionuclide for local regional treatment in an individual. In a preferred embodiment, the radionuclide is an inorganic metal. Examples include mRe, mBi, 166Ho, and 2At. The radionuclide preferably has a half-life which does not exceed the time it takes for the eventual breakdown of the hydrogel so that other tissues in the patient are not adversely affected by the radionuclide. Half-lives of different radionuclides are known in the art and are also 25 available in standard texts or on the world wide web (http://physics.nist.gov/PhysRefData/Halflife/halfife.html). In a specific embodiment, a radionuclide cocktail is administered having more than one radionuclide. In a further specific embodiment, alpha, beta and/or gamma, or any combination thereof, emitters are included in the cocktail. A skilled artisan is aware that gamma emitters may be used to facilitate 30 visualization of an agent, but that care must be taken to prevent utilizing quantities which would destroy surrounding healthy tissue. In a specific embodiment, the terms "radionuclide therapy" or "radiopharmaceutical" or "internal radiation therapy" are used interchangeably. 43 The polymer of the methods of the present invention contains many hydroxy groups which permit ionic bond formation and retain the radionuclide within the hydrogel composition. A skilled artisan is aware that there are multiple modes of generating a 5 radionuclide, and the methods of the present invention are not limited by the mode of generation of the radionuclide itself. (a) Gene Therapy Compositions It is possible that cells containing the therapeutic gene may also contain a suicide gene (i.e., a gene which encodes a product that can be used to destroy the cell, such as 10 herpes simplex virus thymidine kinase). In many gene therapy situations, it is desirable to be able to express a gene for therapeutic purposes in a host cell but also to have the capacity to destroy the host cell once the therapy is completed, becomes uncontrollable, or does not lead to a predictable or desirable result. Thus, expression of the therapeutic gene in a host cell can be driven by a promoter although the product of said suicide gene remains harmless in the 15 absence of a prodrug. Once the therapy is complete or no longer desired or needed, administration of a prodrug causes the suicide gene product to become lethal to the cell. Examples of suicide gene/prodrug combinations which may be used are Herpes Simplex Virus-thymidine kinase (HSV-tk) and ganciclovir, acyclovir or FIAU; oxidoreductase and cycloheximide; cytosine deaminase and 5-fluorocytosine; thymidine kinase thymidilate 20 kinase (Tdk::Tmk) and AZT; and deoxycytidine kinase and cytosine arabinoside. (a) Hormones In an embodiment of the present invention, wherein the local regional treatment provided by the methods of the present invention is for an application other than for a solid tumor, hormones may be employed. As an example, luteinzing hormone releasing 25 hormone (LHRH) is administered to the endometrium of an individual affected with endometriosis. Examples of hormones which may be used in the present invention include luteinizing hormone releasing hormone, growth hormone, growth hormone releasing hormone, estrogen, progesterone, testosterone, androgen, corticotropin, prolactin, 30 gonadotropin, somatotropin, somatostatin, somatotropin releasing hormone, gonadotropin releasing hormone, corticotropin releasing hormone, prolactin releasing hormone, pro opiomelanocortin, melanotropin, calcitonin, gastrin, secretin, aldosterone, epinephrine, norepinephrine, follicle stimulating hormone, insulin, acetylcholine, aldosterone, angiotensin 44 II, arginine vasopressin, bombesin, bradykinin, caerulein, calcitonin, cholecystokinin, chymodenin, corticosterone, cortisol, cortisone, dihydrotestosterone, dopamine, P-endorphin, epidermal growth factor, erythropoietin, estradiol, fibroblast growth factor, gamma aminobutyric acid, gastric inhibitory peptide, gastrin, glucagon, histamine, human chorionic 5 gonadotropin, human placental lactogen, inhibin, insulinlike growth factor I, insulinlike growth factor II, leucine enkephalin, leukotrienes, lysine vasopressin, lysylbradykinin, melanin concentrating hormone, cx-melanocyte stimulating hormone, mesotocin, methionin enkephalin, motilin, MSH release inhibiting factor, Mullerian regression factor, nerve growth factor, neurotensin, oxytocin, pancreatic polypeptide, parathormone, platelet-derived growth 10 factor, prolactin inhibiting factor, prostacyclin I2, prostaglandin E 2 , prostaglandin F2a, relaxin, serotonin, serum thymic factor, substance P, thromboxane A 2 , thymopoietin, thymosina, thyrotopin (thyroid stimulating hormone; TSH), thyrotropin releasing hormone, thyroxine, triiodothyronine, urogastrone, vasoactive intestinal peptide, vasotocin, or vitamin D 3 . (a) Nutriceuticals 15 In another embodiment of the present invention, a nutriceutical is administered in situ to a localized region of an individual. Examples of nutriceuticals include arabinogalactan, acerola cherry, agnus castus (vitex), amla, andrographis, artichoke (globe), ashwagandha, astragalus, bacopa, beta 1,3 glucans, beta sitosterol, bilberry, borage oil, boswellia, broccoli cruciferous, bromelain, butcher's broom, calcium hydroxyl apatite, 20 cascara sagrada, cat's claw, cetyl myristoleate, chamomile, chitosan, chlorella, chondroitin sulfate, chromium yeast, citrus aurantium, citrus seed exTrant, co-enzyme Ql0, colostrum, cordyceps, cranberry, creatine monohydrate, devil's claw, DHEA, DMG, dong quai, Echinacea, elderberry, ephedra, evening primrose oil, feverfew, fish marine lipids, fish oil concentrate powder, fish protein powder, flaxseed oil, garcinia HCA, garlic T.A.P., 25 germanium Ge-132, ginger, ginkgo, ginseng-American, ginseng-Siberian, ginseng-Asian, glucosamine, goldenseal, gotu kola, grapeseed extract, green tea extract, guarana, gymnema, hawthorne, hops, horse chestnut, horsetail, kava kava, kola nut, lecithin, licorice, lipoic acid, lycopene, medium chain tri-glycerides, melatonin, milk thistle, MSM, muira puama, nag, nettles, noni, ocimum sanctum, octacosonol, olivir, passion flower, pau 30 d'arcophosphatidylserine, picrorhiza, potassium glycero phosphate, pygeum, quercetin, reishi, saw palmetto, schisandra, sea cucumber, selenium yeast bound, shark cartilage, shark liver oil, shiitake, shilajit, sodium copper chlorophyllin, spirulina, squalene, St. John's Wort, 45 stevia, suma, tribulus (Bulgarian) triphala, tumeric, uva ursi, valerian, wild yam extract, willow bark, or yohimbe bark extract. I. Combination Treatments In order to increase the effectiveness of the methods of the present invention, 5 it may be desirable to combine the anticancer compositions with other agents also effective in the treatment of hyperproliferative disease. Such combination treatments may occur within administration of the therapeutic methods of the present invention, for instance combining gene therapy and an anticancer drug within the same in situ injection protocol. Alternatively, combination treatments may be utilized within the scope of the present invention by 0 administering one or more therapeutic agents in situ by the methods of the present invention in addition to, for example, administering a therapeutic agent systemically. An "anti-cancer" agent is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, 5 inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the life span of a subject with cancer. More generally, these compositions and methods would be provided in a combined amount effective to kill or inhibit proliferation of the cell. This process may involve contacting the cells with an 0 anticancer agent and multiple factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes, for instance, an expression construct and the other includes the second agent(s), such as a radionuclide or anticancer drug. 25 .Tumor cell resistance to chemotherapy and radiotherapy agents represents a major problem in clinical oncology. One goal of current cancer research is to find ways to improve the efficacy of chemo- and radiotherapy by combining it with gene therapy. For example, the herpes simplex-thymidine kinase (HS-tK) gene, when delivered to brain tumors by a retroviral vector system, successfully induced susceptibility to the antiviral agent 0 ganciclovir (Culver, et al., 1992). In the context of the present invention, it is contemplated that gene therapy could be used similarly in conjunction with chemotherapeutic, radiotherapeutic, or immunotherapeutic intervention, in addition to other pro-apoptotic or cell cycle regulating agents. 46 - Alternatively, the gene therapy may precede or follow the other agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agent and expression construct are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the 5 agent and expression construct would still be able to exert an advantageously combined effect on the cell. In such instances, it is contemplated that one may contact the cell with both modalities within about 12-24 h of each other and, more preferably, within about 6-12 h of each other. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several d (2, 3, 4, 5, 6 or 7) to several wk (1, 2, 3, 4, 5, 6, 7 or 10 8) lapse between the respective administrations. Various combinations may be employed, gene therapy is "A" and the secondary agent, such as radio- or chemotherapy, is "B": A/B/A B/A/B B/B/A A/A/B A/B/B B/A/A A/B/B/B B/A/B/B B/B/B/A B/B/A/B A/A/B/B A/B/A/B A/B/B/A B/B/A/A 15 B/A/B/A B/A/A/B A/A/AB B/A/A/A A/B/A/A A/A/B/A Administration of the therapeutic expression constructs of the present invention to a patient will follow general protocols for the administration of chemotherapeutics, taking into account the toxicity, if any, of the vector. It is expected that the treatment cycles would be repeated as necessary. It also is contemplated that various 20 standard therapies, as well as surgical intervention, may be applied in combination with the described hyperproliferative cell therapy. A. Chemotherapy Cancer therapies also include a variety of combination therapies with both chemical- and radiation-based treatments. Combination chemotherapies include, for 25 example, cisplatin (CDDP), carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, busulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP 16), tamoxifen, raloxifene, estrogen receptor binding agents, taxol, gemcitabien, navelbine, farnesyl-protein tansferase inhibitors,transplatinum, 5-fluorouracil, vincristin, vinblastin and methotrexate, or 30 any analog or derivative variant of the foregoing. A. Radiotherapy - - Other factors that cause DNA damage and have been used extensively include what are commonly known as y-rays, X-rays, and/or the directed delivery of radioisotopes to 47 tumor cells. Other forms of DNA damaging factors are also contemplated such as microwaves and UV-irradiation. It is most likely that all of these factors effect a broad range of damage on DNA, on the precursors of DNA, on the replication and repair of DNA, and on the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 wk), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells. The terms "contacted" and "exposed," when applied to a cell, are used herein to describe the process by which a therapeutic construct and a chemotherapeutic or radiotherapeutic agent are delivered to a target cell or are placed in direct juxtaposition with the target cell. In a preferred embodiment, the agent(s) is delivered into the solid tumor by the methods of the present invention to directly contact the cells of the solid tumor. To achieve cell killing or stasis, agents are delivered to a cell in a combined amount effective to ill the cell or prevent it from dividing. A. Immunotherapy Immunotherapeutics, generally, rely on the use of immune effector cells and molecules to target and destroy cancer cells. The immune effector may be, for example, an antibody specific for some marker on the surface of a tumor cell. The antibody alone may serve as an effector of therapy or it may recruit other cells to actually effect cell killing. The antibody also may be conjugated to a drug or toxin (chemotherapeutic, radionuclide, ricin A chain, cholera toxin, pertussis toxin, etc.) and serve merely as a targeting agent. Alternatively, the effector may be a lymphocyte carrying a surface molecule that interacts, either directly or indirectly, with a tumor cell target. Various effector cells include cytotoxic 5 T cells and NK cells. Immunotherapy, thus, could be used as part of a combined therapy, in conjunction with gene therapy. The general approach for combined therapy is discussed below. Generally, the tumor cell must bear some marker that is amenable to targeting, i.e., is not present on the majority of other cells. Many tumor markers exist and any of these may be 0 suitable for targeting in the context of the present invention. Common tumor markers include carcinoembryonic antigen, prostate specific antigen, urinary tumor associated antigen, fetal antigen, tyrosinase (p97), gp68, TAG-72, HMFG, Sialyl Lewis Antigen, MucA, MucB, PLAP, estrogen receptor, laminin receptor, erb B and p 15 5 . 48 A. Genes In yet another embodiment, the secondary treatment is a secondary gene therapy in which a second therapeutic polynucleotide is administered before, after, or at the same time a first therapeutic polynucleotide encoding all of part of an anticancer polypeptide. 5 Delivery of a vector encoding either a full length or truncated anticancer polypeptide in conjunction with a second vector encoding one of the following gene products will have a combined anti-hyperproliferative effect on target tissues. Alternatively, a single vector encoding both genes may be used. A variety of proteins are encompassed within the invention, some of which are described below. 10 1. Inducers of Cellular Proliferation The proteins that induce cellular proliferation further fall into various categories dependent on function. The commonality of all of these proteins is their ability to regulate cellular proliferation. For example, a form of PDGF, the sis oncogene, is a secreted growth factor. Oncogenes rarely arise from genes encoding growth factors, and at the 15 present, sis is the only known naturally-occurring oncogenic growth factor. In one embodiment of the present invention, it is contemplated that anti-sense mRNA directed to a particular inducer of cellular proliferation is used to prevent expression of the inducer of cellular proliferation. The proteins FMS, ErbA, ErbB and neu are growth factor receptors. 20 Mutations to these receptors result in loss of regulatable function. For example, a point mutation affecting the transmembrane domain of the Neu receptor protein results in the neu oncogene. The erbA oncogene is derived from the intracellular receptor for thyroid hormone. The modified oncogenic ErbA receptor is believed to compete with the endogenous thyroid hormone receptor, causing uncontrolled growth. 25 The largest class of oncogenes includes the signal transducing proteins (e.g., Src, Abi and Ras). The protein Src is a cytoplasmic protein-tyrosine kinase, and its transformation from proto-oncogene to oncogene in some cases, results via mutations at tyrosine residue 527. In contrast, transformation of GTPase protein ras from proto-oncogene to oncogene, in one example, results from a valine to glycine mutation at amino acid 12 in the 30 sequence, reducing ras GTPase activity. The proteins Jun, Fos and Myc are proteins that directly exert their effects on nuclear functions as transcription factors. 1. Inhibitors of Cellular Proliferation 49 The tumor suppressor oncogenes function to inhibit excessive cellular proliferation. The inactivation of these genes destroys their inhibitory activity, resulting in unregulated proliferation. The tumor suppressors p53, p1 6 and C-CAM are described below. High levels of mutant p53 have been found in many cells transformed by 5 chemical carcinogenesis, ultraviolet radiation, and several viruses. The p53 gene is a frequent target of mutational inactivation in a wide variety of human tumors and is already documented to be the most frequently mutated gene in common human cancers. It is mutated in over 50% of human NSCLC (Hollstein et al., 1991) and in a wide spectrum of other tumors. I) . The p53 gene encodes a 393-amino acid phosphoprotein that can form complexes with host proteins such as large-T antigen and ElB. The protein is found in normal tissues and cells, but at concentrations which are minute by comparison with transformed cells or tumor tissue. Wild-type p53 is recognized as an important growth regulator in many cell 5 types. Missense mutations are common for the p53 gene and are essential for the transforming ability of the oncogene. A single genetic change prompted by point mutations can create carcinogenic p53. Unlike other oncogenes, however, p53 point mutations are known to occur in at least 30 distinct codons, often creating dominant alleles that produce shifts in cell phenotype without a reduction to homozygosity. Additionally, many of these 0 dominant negative alleles appear to be tolerated in the organism and passed on in the germ line. Various mutant alleles appear to range from minimally dysfunctional to strongly penetrant, dominant negative alleles (Weinberg, 1991). Another inhibitor of cellular proliferation is p16. The major transitions of the eukaryotic cell cycle are triggered by cyclin-dependent kinases, or CDK's. One CDK, 25 cyclin-dependent kinase 4 (CDK4), regulates progression through the G]. The activity of this enzyme may be to phosphorylate Rb at late G 1 . The activity of CDK4 is controlled by an activating subunit, D-type cyclin, and by an inhibitory subunit, the p 16 "4 has been biochemically characterized as a protein that specifically binds to and inhibits CDK4, and thus may regulate Rb phosphorylation (Serrano et al., 1993; Serrano et al., 1995). Since the 30 p 16 INK4 protein is a CDK4 inhibitor (Serrano, 1993), deletion of this gene may increase the activity of CDK4, resulting in hyperphosphorylation of the Rb protein. p1 6 also is known to regulate the function of CDK6. p161 4 belongs to a newly described class of CDK-inhibitory proteins that also includes p 16 B, p9, p 2 1 WAFI, and p27K' 1 . The p16'N 4 gene maps to 9p21, a chromosome region frequently deleted in many tumor types. Homozygous deletions and mutations of the p 1 6 1K4 gene are frequent in human tumor cell lines. This evidence suggests that the p 1 6 K4 gene is a tumor suppressor gene. This interpretation has been challenged, however, by the observation that the frequency of the p16'N 4 gene alterations is much lower 5 in primary uncultured tumors than in cultured cell lines (Caldas et al., 1994; Cheng et al., 1994; Hussussian et al., 1994; Kamb et al., 1994; Kamb et al., 1994; Mori et al., 1994; Okamoto et al., 1994; Nobori et al., 1995; Orlow et al., 1994; Arap et al., 1995). Restoration of wild-type p 1 6 rK4 function by transfection with a plasmid expression vector reduced colony formation by some human cancer cell lines (Okamoto, 1994; Arap, 1995). 10 Other genes that may be employed according to the present invention include Rb, APC, DCC, NF-1, NF-2, WT-1, MEN-I, MEN-II, zac1, p73, VEL, MMAC1 / PTEN, DBCCR-1, FCC, rsk-3, p27, p27/p16 fusions, p21/p27 fusions, anti-thrombotic genes (e.g., COX-1, TFPI), PGS, Dp, E2F, ras, nyc, neu, raf erb, fins, trk ret, gsp, hst, abl, E1A, p300, genes involved in angiogenesis (e.g., VEGF, FGF, thrombospondin, BAI-1, GDAIF, or their 15 receptors) and MCC. 1. Regulators of Programmed Cell Death Apoptosis, or programmed cell death, is an essential process for normal embryonic development, maintaining homeostasis in adult tissues, and suppressing carcinogenesis (Kerr et al., 1972). The Bcl-2 family of proteins and ICE-like proteases have 20 been demonstrated to be important regulators and effectors of apoptosis in other systems. The Bcl-2 protein, discovered in association with follicular lymphoma, plays a prominent role in controlling apoptosis and enhancing cell survival in response to diverse apoptotic stimuli (Bakhshi et al., 1985; Cleary and Sklar, 1985; Cleary et al., 1986; Tsujimoto et al., 1985; Tsujimoto and Croce, 1986). The evolutionarily conserved Bcl-2 protein now is recognized 25 to be a member of a family of related proteins, which can be categorized as death agonists or death antagonists. Subsequent to its discovery, it was shown that Bcl-2 acts to suppress cell death triggered by a variety of stimuli. Also, it now is apparent that there is a family of Bcl-2 cell death regulatory proteins which share in common structural and sequence homologies. These 30 different family members have been shown to either possess similar functions to Bcl-2 (e.g., Bclxi, Bclw, Bcls, Mcl-1, Al, Bfl-l) or counteract Bcl-2 function and promote cell death (e.g., Bax, Bak, Bik, Bim, Bid, Bad, Harakiri). 1. Surgery 51 Approximately 60% of persons with cancer will undergo surgery of some type, which includes preventative, diagnostic or staging, curative and palliative surgery. Curative surgery is a cancer treatment that may be used in conjunction with other therapies, such as the treatment of the present invention, chemotherapy, radiotherapy, hormonal 5 therapy, gene therapy, immunotherapy and/or alternative therapies. Curative surgery includes resection in which all or part of cancerous tissue is physically removed, excised, and/or destroyed. Tumor resection refers to physical removal of at least part of a tumor. In addition to tumor resection, treatment by surgery includes laser surgery, cryosurgery, electrosurgery, and miscopically controlled surgery (Molis' surgery). It 10 is further contemplated that the present invention may be used in conjunction with removal of superficial cancers, precancers, or incidental amounts of normal tissue. Upon excision of part of all of cancerous cells, tissue, or tumor, a cavity may be formed in the body. Treatment may be accomplished by perfusion, direct injection or local application of the area with an additional anti-cancer therapy. Such treatment may be [5 repeated, for example, every 1, 2, 3, 4, 5, 6, or 7 days, or every 1, 2, 3, 4, and 5 weeks or every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months. These treatments may be of varying dosages as well. 1. Other agents It is contemplated that other agents may be used in combination with the 0 present invention to improve the therapeutic efficacy of treatment. These additional agents include immunomodulatory agents, agents that affect the upregulation of cell surface receptors and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adehesion, or agents that increase the sensitivity of the hyperproliferative cells to apoptotic inducers. Immunomodulatory agents include tumor necrosis factor; interferon alpha, beta, 25 and gamma; IL-2 and other cytokines; F42K and other cytosine analogs; or MIP-1, MIP 1beta, MCP-1, RANTES, and other chemokines. It is further contemplated that the upregulation of cell surface receptors or their ligands such as Fas / Fas ligand, DR4 or DR5 / TRAIL would potentiate the apoptotic inducing abilities of the present invention by establishment of an autocrine or paracrine effect on hyperproliferative cells. Increases 30 intercellular signaling by elevating the number of GAP junctions would increase the anti hyperproliferative effects on the neighboring hyperproliferative cell population. In other embodiments, cytostatic or differentiation agents can be used in combination with the present invention to improve the anti-hyerproliferative efficacy of the treatments. Inhibitors of cell 52 adhesion are contemplated to improve the efficacy of the present invention. Examples of cell adhesion inhibitors are focal adhesion kinase (FAKs) inhibitors and Lovastatin. It is further contemplated that other agents that increase the sensitivity of a hyperproliferative cell to apoptosis, such as the antibody c225, could be used in combination with the present invention 5 to improve the treatment efficacy. Hormonal therapy may also be used in conjunction with the present invention or in combination with any other cancer therapy previously described. The use of hormones may be employed in the treatment of certain cancers such as breast, prostate, ovarian, or cervical cancer to lower the level or block the effects of certain hormones such as 10 testosterone or estrogen. This treatment is often used in combination with at least one other cancer therapy as a treatment option or to reduce the risk of metastases. 53 TABLE 1: Oncogenes Gene Source Human Disease Function Growth Factors' FGF family member HST/KS Transfection INT-2 MM4TV promoter FGF family member Insertion lITI/WNTI IlMMTV promoter Factor-like Insertion SIS Simian sarcoma virus PDGF B Receptor Tyrosine Kinases' 2 ERBB/HER Avian erythroblastosis Amplified, deleted EGF/TGF-a/ virus; ALV promoter squamous cell amphiregulin/ insertion; amplified cancer; glioblastoma hetacellulin receptor human tumors ERBB-2/NEU/HER-2 Transfected from rat Amplified breast, Regulated by NDF/ Glioblatoms ovarian, gastric cancers heregulin and EGF related factors FMS SM feline sarcoma virus CSF- 1 receptor KIT HZ feline sarcoma virus MGF/Steel receptor hematopoieis TRK Transfection from NGF (nerve growth human colon cancer factor) receptor MET Transfection from Scatter factor/HGF human osteosarcoma receptor RET Translocations and point Sporadic thyroid cancer; Orphan receptor Tyr mutations familial medullary kinase thyroid cancer, multiple endocrine neoplasias 2A and 2B ROS URII avian sarcoma Orphan receptor Tyr Virus kinase PDGF receptor Translocation Chronic TEL(ETS-like myclomonocytic transcription factor)/ leukemia PDGF receptor gene fusion TGF-p3 receptor Colon carcinoma mismatch mutation target 5 NONRECEPTOR TYROSINE KINASES ABI. Abelson Mul.V Chronic myelogenous Interact with RB, RNA leukemia translocation polymerase, CRK, with BCR CBL FPS/FES Avian Fujinami SV;GA FeSV LCK Mul.V (murine leukemia Src family; T cell virus) promoter signaling; interacts ) insertion CD4/CD8 T cells SRC Avian Rous sarcoma Membrane-associated virus Tyr kinase with signaling function; activated by receptor kinases YES Avian Y73 virus Src family; signaling Gene Source Human Disease Function SER/THR PROTEIN KINASES AKT A.KT8 murine retrovirus Regulated by PI(3)K?; regulate 70-kd S6 V? MOS Maloney murine SV GVBD; cystostatic factor; MAP kinase kinase 5 PIM- Promoter insertion Mouse RAF/MTL 3611 murine SV; MH2 Signaling in RAS avian SV pathway MISCELLANEOUS CELL SURFACE' APC Tumor suppressor Colon cancer nteracts with catenins DCC Tumor suppressor Colon cancer CAM domains E-cadherin Candidate tumor Breast cancer Extracellular homotypic Suppressor binding; intracellular interacts with catenins PTC/NBCCS Tumor suppressor and Nevoid basal cell cancer 12 transmembrane Drosophilia homology syndrome (Gorline domain; signals syndrome) through Gli homogue CI to antagonize hedgehog pathway TAN-1 Notch Translocation T-ALI. Signaling? 5 homologue MISCELLANEOUS SIGNALING" BCL-2 Translocation B-cell lymphoma Apoptosis CBL Mu Cas NS-1 V Tyrosine phosphorylated RING finger interact Abl CRK CT1010 ASV Adapted SH2/SH3 interact Ab1 !0 DPC4 Tumor suppressor Pancreatic cancer TGF-s-related signaling pathway MAS Transfection and Possible angiotensin Tumorigenicity receptor NCK Adaptor SH2ISH3 GUANINE NUCLEOTIDE EXCHANGERS AND BINDING PROTEINS3 Translocated with ABL Exchanger; protein 25 BCR in CML kinase DBL Transfection Exchanger GSP NF- I Hereditary tumor Tumor suppressor RAS GAP Suppressor neurofibromatosis OST Transfection Exchanger Harvey-Kirsten, N-RAS HaRat SV; Ki RaSV; Point mutations in many Signal cascade Balb-MoMuSV; human tumors Transfection 3 VA V Transfection S112/S113; exchanger NUCLEAR PROTEINS AND TRANSCRIPTION FACTORS"" BRCA1 Heritable suppressor Mammary Localization unsettled cancer/ovarian cancer BRCA2 Heritable suppressor Mammary cancer Function unknown ERBA Avian erythroblastosis thyroid hormone 55 Gene Source Human Disease Function Virus receptor (transcription) ETS Avian E26 virus DNA binding E VII1 MuLV promotor AML Transcription factor Insertion FOS FBI/FBR murine 1 transcription factor osteosarcoma viruses with c-JUN GLI Amplified glioma Glioma Zinc finger; cubitus interruptus homologue is in hedgehog signaling pathway; inhibitory link PTC and hedgehog HMGG/LIM Translocation t(3:12) Lipoma Gene fusions high t(12:15) mobility group HMGI-C (XT-hook) and transcription factor LIM or acidic domain JUN ASV-17 Transcription factor AP-1 with FOS MLL/VHRX+ ELI/MEN Translocation/fusion Acute myeloid leukemia Gene fusion of DNA ELL with MLL binding and methyl Trithorax-like gene transferase MLL with ELI RNA pol H elongation factor MYB Avian myeloblastosis DNA binding Virus MYC Avian MC29; Burkitts lymphoma DNA binding with Translocation B-cell MAX partner; cyclin Lymphomas; promoter regulation; interact Insertion avian RB?; regulate leukosis apoptosis? Virus N-MYC Amplified Neuroblastoma L-MYC Lung cancer REL Avian NF-KB family Retriculoendotheliosis transcription factor Virus SKI Avian SKV770 Transcription factor Retrovirus VHL Heritable suppressor Von Hippel-Landau Negative regulator or syndrome elongin; transcriptional 5 elongation complex WT-1 Wilm's tumor Transcription factor CELL CYCLE/DNA DAMAGE RESPONSE"' A TM Hereditary disorder Ataxia-telangiectasia Protein/lipid kinase homology; DNA damage response upstream in P53 - pathway BCL-2 Translocation Follicular lymphoma Apoptosis FA CC Point mutation Fanconi's anemia group C (predisposition leukemia FHIT Fragile site 3p14.2 Lung carcinoma Histidine triad-related diadenosine 5',3"" Pl.p 4 tetraphosphate asymmetric hydrolase Gene Source Human Disease Function hMLI/MutL HNPCC Mismatch repair; MutL homologue hMSH2/MutS HNPCC Mismatch repair; MutS homologue hPMS1 HNPCC Mismatch repair; MutL homologue 5 hPMS2 HNPCC Mismatch repair; MutL homologue fNK4/MTS1 Adjacent INK-4B at Candidate MTS 1 p 16 CDK inhibitor 9p21; CDK complexes suppressor and MLM melanoma gene INK4B/MTS2 Candidate suppressor p15 CDK inhibitor MDM-2 Amplified Sarcoma Negative regulator p5 3 p53 Association with SV40 Mutated >50% human Transcription factor; T antigen tumors, including checkpoint control; 0 hereditary Li-Fraumeni apoptosis syndrome PRADIBCLI Translocation with Parathyroid adenoma; Cyclin D Parathyroid hormone B-CLL or IgG RB Hereditary Retinoblastoma; Interact cycinlcdk; Retinoblastoma; osteosarcoma; breast regulate E2F Association with many cancer; other sporadic transcription factor DNA virus tumor cancers 5 Antigens XPA xeroderma Excision repair; photo pimentosum; skin product recognition; cancer predisposition zinc finger 11. Nucleic Acid-Based Expression Systems In specific embodiments of the present invention, a gene therapy composition 0O comprising a vector containing a nucleic acid expressing a therapeutic gene product is utilized. Specific embodiments of these vectors are hereafter discussed. A. Vectors The term "vector" is used to refer to a carrier nucleic acid molecule into which 25 a nucleic acid sequence can be inserted for introduction into a cell where it can be replicated. A nucleic acid sequence can be "exogenous," which means that it is foreign to the cell into which the vector is being introduced or that the sequence is homologous to a sequence in the cell but in a position within the host cell nucleic acid in which the sequence is ordinarily not found. Vectors include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant 30 viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques, which are described in Maniatis et at., 1988 and Ausubel et a., 1994, both incorporated herein by reference. [01031 The term "expression vector" refers to a vector containing a nucleic acid sequence coding for at least part of a gene product capable of being transcribed. In some 57 cases, RNA molecules are then translated into a protein, polypeptide, or peptide. In other cases, these sequences are not translated, for example, in the production of antisense molecules or ribozymes. Expression vectors can contain a variety of "control sequences," which refer to nucleic acid sequences necessary for the transcription and possibly translation of an operably linked coding sequence in a particular host organism. In addition to control sequences that govern transcription and translation, vectors and expression vectors may contain nucleic acid sequences that serve other functions as well and are described infra. 1. Promoters and Enhancers A "promoter" is a control sequence that is a region of a nucleic acid sequence at which initiation and rate of transcription are controlled. It may contain genetic elements at which regulatory proteins and molecules may bind such as RNA polymerase and other transcription factors. The phrases "operatively positioned," "operatively linked," "under control," and "under transcriptional control" mean that a promoter is in a correct functional location and/or orientation in relation to a nucleic acid sequence to control transcriptional initiation and/or expression of that sequence. A promoter may or may not be used in conjunction with an "enhancer," which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence. - A promoter may be one naturally associated with a gene or sequence, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as "endogenous." Similarly, an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence. Alternatively, certain advantages will be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment. A recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural environment. Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other prokaryotic, viral, or eukaryotic cell, and promoters or enhancers not "naturally occurring," i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression. In addition to producing nucleic acid sequences of promoters and enhancers synthetically, sequences may be produced using recombinant cloning and/or nucleic acid amplification technology, including PCRTm, in connection with the compositions disclosed herein (see U.S. Patent 4,683,202, U.S. Patent 58 5,928,906, each incorporated herein by reference). Furthermore, it is contemplated the control sequences that direct transcription and/or expression of sequences within non-nuclear organelles such as mitochondria, chloroplasts, and the like, can be employed as well. Naturally, it will be important to employ a promoter and/or enhancer that 5 effectively directs the expression of the DNA segment in the cell type, organelle, and organism chosen for expression. Those of skill in the art of molecular biology generally know the use of promoters, enhancers, and cell type combinations for protein expression, for example, see Sambrook et al. (1989), incorporated herein by reference. The promoters employed may be constitutive, tissue-specific, inducible, and/or useful under the appropriate 10 conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins and/or peptides. The promoter may be heterologous or endogenous. Tables 2 lists several elements/promoters that may be employed, in the context of the present invention, to regulate the expression of a gene. This list is not intended to be 15 exhaustive of all the possible elements involved in the promotion of expression but, merely, to be exemplary thereof Table 3 provides examples of inducible elements, which are regions of a nucleic acid sequence that can be activated in response to a specific stimulus. TABLE 2 Promoter and/or Enhancer 20 Promoter/Enhancer References Immunoglobulin Heavy Chain Baneri et al., 1983; Gilles et al., 1983; Grosschedl et al, 1985; Atchinson et ali., 1986, 1987; Iier et al., 1987; Weinberger et ali., 1984; Kiledjian et ali., 1988; Porton et al.; 1990 Inmunoglobulin Light Chain Queen et al., 1983; Picard et al., 1984 25 T-Cell Receptor Luria et al., 1987; Winoto et al., 1989; Redondo HLA DQ a and/or DQ P Sullivan et al., 1987 -nterferonn et a., 1988 anterleulAn-2 Greene et al., 1989 30 Interleuk1n-2 Receptor Greene et et., 1989; Lin et ail., 1990 MHC Class P 5 Koch et al., 1989 M4HC Class 1:1 ELA-DRa Sherman et aL., 1989 G-Actin Kawamoto et al., 1988; Ng et a ea.; 1989 59 TABLE 2 Promoter and/or Enhancer Promoter/Enhancer References Muscle Creatine Kinase (MCK) Jaynes et al., 1988; Horlick et al., 1989; Johnson et al., 1989 Prealbumin (Transthyretin) Costa et al., 1988 Elastase I Omitz et al., 1987 Metallothionein (MTII) Karin et al., 1987; Culotta et al., 1989 Collagenase Pinkert et al., 1987; Angel et al., 1987 0 Albumin Pinkert et al., 1987; Tronche et al., 1989, 1990 c-Fetoprotein Godbout et al., 1988; Campere et al., 1989 t-Globin Bodine et al., 1987; Perez-Stable et al., 1990 p-Globin Trudel et al., 1987 c-fos Cohen et al., 1987 5 c-HA-ras Triesman, 1986; Deschamps et al., 1985 Insulin Edlund et al., 1985 Neural Cell Adhesion Molecule Hirsh et al., 1990 (NCAM) al-Antitrypain Latimer et al., 1990 0 H2B (TH2B) Histone Hwang et al., 1990 Mouse and/or Type I Collagen Ripe et al., 1989 Glucose-Regulated Proteins Chang et al., 1989 (GRP94 and GRP78) Rat Growth Hormone Larsen et al., 1986 Human Serum Amyloid A (SAA) Edbrooke et al., 1989 25 Troponin I (TN I) Yutzey et al., 1989 Platelet-Derived Growth Factor Pech et al., 1989 (PDGF) Duchenne Muscular Dystrophy Klamut et al., 1990 SV40 Banerji et al., 1981; Moreau et al., 1981; Sleigh et al., 30 1985; Firak et al., 1986; Herr et al., 1986; Imbra et al., 1986; Kadesch et al., 1986; Wang et al., 1986; Ondek et al., 1987; Kuhl et al., 1987; Schaffner et al., 1988 TABLE 2 Promoter and/or Enhancer Promoter/Enhancer References Polyoma Swartzendrubet et al., 1975; Vasseur et al., 1980; 5 Katinka eta?., 1980, 1981; Tyndell eta?., 1981; Dandolo et al., 1983; de Villiers et a?., 1984; Hen et al., 1986; Satake et a?., 1988; Campbell and/or Villarreal, 1988 Retroviruses Kriegler et ., 1982, 1983; Levinson et al., 82; Kriegler et al., 1983, 1984a, b, 1988; Bosze et al., 1986; Miksicek et al., 1986; Celander et al., 1987; 10 Thiesen et al., 1988; Celander et al., 1988; Chol 10 et al., 1988; Reismnan et a?., 1989 Papilloma Virus Campo etal., 1983; Lusky etal., 1983; Spandidos and/or Wilkie, 1983; Spalholz et a?., 1985; Lusky et al., 1986; Cripe et al., 1987; Gloss et a?., 1987; Hirochika et al., 1987; Stephens et a?., 1987; Glue et al., 1988 Hepatitis B Virus Bulla et a?., 1986; Jameel et a?., 1986; Shaul et a?., 15 1987; Spandau et a?., 1988; Vannice et al., 1988 Human Immunodeficiency Virus Muesing et al., 1987; Hauber et al., 1988; Jakobovits et al., 1988; Feng et a?., 1988; Takebe et a?., 1988; Rosen et a?., 1988; Berkhout et al., 1989; Laspia et al., 1989; Sharp et al., 1989; Braddock et al., 1989 Cytomegaloirus (CMV) Weber et a., 1984; Boshart eta., 1985; Foecking eta?.,1986 20 Gibon pe euemia Virus Holbrook et a?., 1987; Quinn et a?., 1989 TABLE 3 25 Inducible Elements Element Inducer References MT II Phorbol Ester (TeA) P a sster et al., 1982; Heavy metals Haslinger et al., 1985; Searle eta?., 1985; Stuart eta ?., 1985; Imagawa etal., 1987, Karin eta., 1987; Angel 30i et al., 198 ; McNeall eta., TV (mouse mammary Glucocorticoids Huang et al., 19 81; Lee et al., 198o6; Mkc et 198; C adrs et al., 198; Thieen t al,188;Clander et al., 198; Chol et al., 1988; Reisma et al., 8 18;Skiet al., 1988 Bul 6t l,198;Jme ta. 96 hu ta.
TABLE 3 Inducible Elements Element Inducer References p-Interferon poly(rI)x Tavernier et al., 1983 5poly(re) Adenovirus 5 E2 ElA Imperiale et al., 1984 Collagenase Phorbol Ester (TPA) Angel et al., 1987a Stromelysin Phorbol Ester (TPA) Angel et al., 1987b SV40 Phorbol Ester (TPA) Angel et al., 1987b 0 Marine MX Gene Interferon, Newcastle Hug et al., 1988 Disease Virus GRP78 Gene A23187 Resendez et al., 1988 a-2-Macroglobulin IL-6 Kunz et al., 1989 Vimaentin Serum Rittling et al., 1989 5 MHC Class I Gene H-2cb Interferon Blanar et al., 1989 HSP70 ElA, SV40 Large T Taylor et al., 1989, 1990a, Antigen 1990b Proliferin Phorbol Ester-TPA Mordacq et al., 1989 Tumor Necrosis Factor PMA Hensel et al., 1989 !0 Thyroid Stimulating Thyroid Hormone Chatterjee et al., 1989 Hormone cc Gene The identity of tissue-specific promoters or elements, as well as assays to characterize their activity, is well known to those of skill in the art. Examples of such regions include the human LIMIK2 gene (Nomoto et al. 1999), the somatostatin receptor 2 gene 25 (Kraus et al., 1998), murine epididymal retinoic acid-binding gene (Lareyre et al., 1999), human CD4 (Zhao-Emonet et al., 1998), mouse alpha2 (XI) collagen (Tsumaki, et al., 1998), DIA dopamine receptor gene (Lee, et al., 1997), insulin-like growth factor II (Wu et al., 1997), human platelet endothelial cell adhesion molecule-1 (Almendro et al., 1996). 2. Initiation Signals and Internal Ribosome Binding Sites 30 -A specific initiation signal also may be required for efficient translation of coding sequences. These signals include the ATG initiation codon or adjacent sequences. Exogenous translational control signals, including the ATG initiation codon, may need to be provided. One of ordinary skill in the art would readily be capable of determining this and 62 providing the necessary signals. It is well known that the initiation codon must be "in-frame" with the reading frame of the desired coding sequence to ensure translation of the entire insert. The exogenous translational control signals and initiation codons can be either natural or synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements. In certain embodiments of the invention, the use of internal ribosome entry sites (IRES) elements are used to create multigene, or polycistronic, messages. IRES elements are able to bypass the ribosome scanning model of 5' methylated Cap dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES 10 elements from two members of the picornavirus family (polio and encephalomyocarditis) have been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian message (Macejak and Sarnow, 1991). IRES elements can be linked to heterologous open reading frames. Multiple open reading frames can be transcribed together, each separated by an IRES, creating polycistronic, messages. By virtue of the IRES element, each open reading 15 frame is accessible to ribosomes for efficient translation. Multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single message (see U.S. Patent 5,925,565 and 5,935,819, herein incorporated by reference). 3. Multiple Cloning Sites Vectors can include a multiple cloning site (MCS), which is a nucleic acid 20 region that contains multiple restriction enzyme sites, any of which can be used in conjunction with standard recombinant technology to digest the vector. (See Carbonelli et al., 1999, Levenson et al., 1998, and Cocea, 1997, incorporated herein by reference.) "Restriction enzyme digestion" refers to catalytic cleavage of a nucleic acid molecule with an enzyme that functions only at specific locations in a nucleic acid molecule. Many of these restriction enzymes are commercially available. Use of such enzymes is widely understood by those of skill in the art. Frequently, a vector is linearized or fragmented using a restriction enzyme that cuts within the MCS to enable exogenous sequences to be ligated to the vector. "Ligation" refers to the process of forming phosphodiester bonds between two nucleic acid 30 fragments, which may or may not be contiguous with each other. Techniques involving restriction enzymes and ligation reactions are well known to those of skill in the art of recombinant technology. 4. Splicing Sites 63 Most transcribed eukaryotic RNA molecules will undergo RNA splicing to remove introns from the primary transcripts. Vectors containing genomic eukaryotic sequences may require donor and/or acceptor splicing sites to ensure proper processing of the transcript for protein expression. (See Chandler et al., 1997, herein incorporated by 5 reference.) 5. Polyadenylation Signals In expression, one will typically include a polyadenylation signal to effect proper polyadenylation of the transcript. The nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and/or any such sequence 0 may be employed. Preferred embodiments include the SV40 polyadenylation signal and/or the bovine growth hormone polyadenylation signal, convenient and/or known to function well in various target cells. Also contemplated as an element of the expression cassette is a transcriptional termination site. These elements can serve to enhance message levels and/or to minimize read through from the cassette into other sequences. 5 6. Origins of Replication In order to propagate a vector in a host cell, it may contain one or more origins of replication sites (often termed "ori"), which is a specific nucleic acid sequence at which replication is initiated. Alternatively an autonomously replicating sequence (ARS) can be employed if the host cell is yeast. 0 7. Selectable and Screenable Markers In certain embodiments of the invention, the cells contain nucleic acid construct of the present invention, a cell may be identified in vitro or in vivo by including a marker in the expression vector. Such markers would confer an identifiable change to the 25 cell permitting easy identification of cells containing the expression vector. Generally, a selectable marker is one that confers a property that allows for selection. A positive selectable marker is one in which the presence of the marker allows for its selection, while a negative selectable marker is one in which its presence prevents its selection. An example of a positive selectable marker is a drug resistance marker. 30 ~ Usually the inclusion of a drug selection marker aids in the cloning and identification of transformants, for example, genes that confer resistance to neomycin, puromycin, hygromycin, DEFR, GPT, zeocin and histidinol are useful selectable markers. In addition to markers conferring a phenotype that allows for the discrimination of transformants based on the implementation of conditions, other types of markers including 64 screenable markers such as GFP, whose basis is colorimetric analysis, are also contemplated. Alternatively, screenable enzymes such as herpes simplex virus thymidine kinase (tic) or chloramphenicol acetyltransferase (CAT) may be utilized. One of skill in the art would also know how to employ immunologic markers, possibly in conjunction with FACS analysis. 5 The marker used is not believed to be important, so long as it is capable of being expressed simultaneously with the nucleic acid encoding a gene product. Further examples of selectable and screenable markers are well known to one of skill in the art. B. Host Cells As used herein, the terms "cell," "cell line," and "cell culture" may be used 10 interchangeably. All of these term also include their progeny, which is any and all subsequent generations. It is understood that all progeny may not be identical due to deliberate or inadvertent mutations. In the context of expressing a heterologous nucleic acid sequence, "host cell" refers to a prokaryotic or eukaryotic cell, and it includes any transformable organisms that is capable of replicating a vector and/or expressing a 15 heterologous gene encoded by a vector. A host cell can, and has been, used as a recipient for vectors. A host cell may be "transfected" or "transformed," which refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell. A transformed cell includes the primary subject cell and its progeny. Host cells may be derived from prokaryotes or eukaryotes, depending upon 20 whether the desired result is replication of the vector or expression of part or all of the vector encoded nucleic acid sequences. Numerous cell lines and cultures are available for use as a host cell, and they can be obtained through the American Type Culture Collection (ATCC), which is an organization that serves as an archive for living cultures and genetic materials (www.atcc.org). An appropriate host can be determined by one of skill in the art based on the 25 vector backbone and the desired result. A plasmid or cosmid, for example, can be introduced into a prokaryote host cell for replication of many vectors. Bacterial cells used as host cells for vector replication and/or expression include DH5ci, JM109, and KC8, as well as a number of commercially available bacterial hosts such as SURE* Competent Cells and SOLOPACKTm Gold Cells (STRATAGENE*, La Jolla). Alternatively, bacterial cells such as E. coli LE392 30 could be used as host cells for phage viruses. Examples of eukaryotic host cells for replication and/or expression of a vector include HeLa, NTH3T3, Jurkat, 293, Cos, CHO, Saos, and PC12. Many host cells from various cell types and organisms are available and would be known to one of skill in the art. 65 Similarly, a viral vector may be used in conjunction with either a eukaryotic or prokaryotic host cell, particularly one that is permissive for replication or expression of the vector. Some vectors may employ control sequences that allow it to be replicated and/or expressed in both prokaryotic and eukaryotic cells. One of skill in the art would further understand the conditions under which to incubate all of the above described host cells to maintain them and to permit replication of a vector. Also understood and known are techniques and conditions that would allow large-scale production of vectors, as well as production of the nucleic acids encoded by vectors and their cognate polypeptides, proteins, or peptides. C. Expression Systems Numerous expression systems exist that comprise at least a part or all of the compositions discussed above. Prokaryote- and/or eukaryote-based systems can be employed for use with the present invention to produce nucleic acid sequences, or their cognate polypeptides, proteins and peptides. Many such systems are commercially and widely available. The insect cenl/aculovirus system can produce a high level of protein expression of a heterologous nucleic acid segment, such as described in U.S. Patent No. 5,871,986, 4,879,236, both herein incorporated by reference, and which can be bought, for example, under the name MAXBAC* 2.0 from INVriROGEN* and BACPACKTM BACULOVIRUS EXPRESSION SYSTEM FROM CLONTECHe. Other examples of expression systems include STRATAGENE's COMPLETE CONTROLTm Inducible Mammalian Expression System, which involves a synthetic ecdysone inducible receptor, or its pET Expression System, an E. coli expression system. Another example of an inducible expression system is available from INVITROGEN*, which carries the 5 T-RExTm (tetracycline-regulated expression) System, an inducible mammalian expression system that uses the full-length CMV promoter. INVITROGENI also provides a yeast expression system called the Pichia methanolica Expression System, which is designed for high-level production of recombinant proteins in the methylotrophic yeast Pichia methanolica. One of skill in the art would know how to express a vector, such as an 0 expression construct, to produce a nucleic acid sequence or its cognate polypeptide, protein, or peptide. M. Pharmaceutical Compositions A. Pharmaceutically Acceptable Carriers 66 7 Aqueous compositions may be used in the present invention and comprise an effective amount of a therapeutic chemical compound or pharmaceutically acceptable salts thereof or a therapeutic protein, polypeptide, peptide, epitopic core region, inhibitor, and/or such like, dissolved and/or dispersed in a pharmaceutically acceptable carrier and/or aqueous 5 medium. Aqueous compositions of gene therapy vectors expressing any therapeutic gene product are also contemplated. The phrases "pharmaceutically and/or pharmacologically acceptable" refer to molecular entities and/or compositions that do not produce an adverse, allergic and/or other untoward reaction when administered to an animal as appropriate. 10 As used herein, "pharmaceutically acceptable carrier" includes any and/or all solvents, dispersion media, coatings, antibacterial and/or antifungal agents, isotonic and/or absorption delaying agents and/or the like. The use of such media and/or agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media and/or agent is incompatible with the active ingredient, its use in the 15 therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. For administration, preparations should meet sterility, pyrogenicity, general safety and/or purity standards as required by FDA Office of Biologics standards. The biological material should be extensively dialyzed to remove undesired 20 small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle, where appropriate. The active compounds may generally be formulated for injection into a solid tumor or into an artery. The preparation of an aqueous compositions that contain an effective amount of a therapeutic agent as an active component and/or ingredient will be known to those of skill in the art in light of the present disclosure. 25 Typically, such compositions can be prepared as injectables, either as liquid solutions and/or suspensions; solid forms suitable for using to prepare solutions and/or suspensions upon the addition of a liquid prior to injection can also be prepared; and/or the preparations can also be emulsified. The pharmaceutical forms suitable for injectable use include sterile aqueous 30 solutions and/or dispersions; formulations including sesame oil, peanut oil and/or aqueous propylene glycol; and/or sterile powders for the extemporaneous preparation of sterile injectable solutions and/or dispersions. In all cases the form must be sterile and/or must be fluid to the extent that easy syringability exists. It must be stable under the conditions of 67 manufacture and/or storage and/or must be preserved against the contaminating action of microorganisms, such as bacteria and/or fungi. Solutions of the active compounds as free base and/or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as 5 hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and/or mixtures thereof and/or in oils. Under ordinary conditions of storage and/or use, these preparations contain a preservative to prevent the growth of microorganisms. In a preferred embodiment, the dispersions are then mixed with a polymer for injection in situ into a solid tumor or localized region of an individual. [0 Therapeutic agents of the present invention can be formulated into a composition in a neutral and/or salt form. Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and/or which are formed with inorganic acids such as, for example, hydrochloric and/or phosphoric acids, and/or such organic acids as acetic, oxalic, tartaric, mandelic, and/or the like. Salts formed with the free 15 carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, and/or ferric hydroxides, and/or such organic bases as isopropylamine, trimethylamine, histidine, procaine and/or the like. In terms of using peptide therapeutics as active ingredients, the technology of U.S. Patents 4,608,251; 4,601,903; 4,599,231; 4,599,230; 4,596,792; and/or 4,578,770, each incorporated herein by reference, 20 may be used. The carrier can also be a solvent and/or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and/or liquid polyethylene glycol, and/or the like), suitable mixtures thereof, and/or vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by 25 the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and/or antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and/or the like. In many cases, it will be preferable to include isotonic agents, for example, sugars and/or sodium chloride. Prolonged absorption of the injectable 30 compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and/or gelatin. Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, 68 dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and/or the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and/or 5 freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof. The preparation of more, and/or highly, concentrated solutions for direct injection is also contemplated, where the use of DMSO as solvent is envisioned to result in extremely rapid penetration, delivering high concentrations of the active agents to a small tumor area. 10 Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and/or in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above. For parenteral administration in an aqueous solution, for example, the solution 15 should be suitably buffered if necessary and/or the liquid diluent first rendered isotonic with sufficient saline and/or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and/or intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 ml 20 of isotonic NaCl solution and/or either added to 1000 ml of hypodermoclysis fluid and/or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and/or 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the 25 individual subject. The therapeutic agent may be formulated within a therapeutic mixture to comprise about 0.0001 to 1.0 milligrams, and/or about 0.001 to 0.1 milligrams, and/or about 0.1 to 1.0 and/or even about 10 milligrams per dose and/or so. Multiple doses can also be administered. 30 IV. Lipid Formulations and/or Nanocapsules In certain embodiments, the use of lipid formulations and/or nanocapsules is contemplated for the introduction of a therapeutic agent into a solid tumor or localized region of an individual. 69 Nanocapsules can generally entrap compounds in a stable and/or reproducible way. To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 pLm) should be designed using polymers able to be degraded in vivo. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are 5 contemplated for use in the present invention, and/or such particles may be easily made. - In a preferred embodiment of the invention, the therapeutic agent may be associated with a lipid. The therapeutic agent associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and .0 the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid. The lipid or lipid/therapeutic agent-associated compositions of the present invention are not limited to any particular structure in solution. For example, they may be present in a ,5 bilayer structure, as micelles, or with a "collapsed" structure. They may also simply be interspersed in a solution, possibly forming aggregates which are not uniform in either size or shape. Lipids are fatty substances which may be naturally occurring or synthetic lipids. For example, lipids include the fatty droplets that naturally occur in the cytoplasm as .0 well as the class of compounds which are well known to those of skill in the art which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes. Phospholipids may be used for preparing the liposomes according to the present invention and may carry a net positive, negative, or neutral charge. Diacetyl 25 phosphate can be employed to confer a negative charge on the liposomes, and stearylamine can be used to confer a positive charge on the liposomes. The liposomes can be made of one or more phospholipids. A neutrally charged lipid can comprise a lipid with no charge, a substantially uncharged lipid, or a lipid mixture with equal number of positive and negative charges. 30 Suitable phospholipids include phosphatidyl cholines and others that are well known to those of skill in the art. Lipids suitable for use according to the present invention can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine ("DMPC") can be obtained from Sigma Chemical Co., dicetyl phosphate ("DCP") is obtained from K & K Laboratories (Plainview, NY); cholesterol ("Chol") is obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol ("DMPG") and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, Ala.). Stock solutions of lipids in chloroform or 5 chloroform/methanol can be stored at about -20*C. Preferably, chloroform is used as the only solvent since it is more readily evaporated than methanol. Phospholipids from natural sources, such as egg or soybean phosphatidylcholine, brain phosphatidic acid, brain or plant phosphatidylinositol, heart cardiolipin and plant or bacterial phosphatidylethanolamine are preferably not used as the 10 primary phosphatide, i.e., constituting 50% or more of the total phosphatide composition, because of the instability and leakiness of the resulting liposomes. "Liposome" is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers or aggregates. Liposomes may be characterized as having vesicular structures with a phospholipid bilayer 15 membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). However, the present invention also encompasses 20 compositions that have different structures in solution than the normal vesicular structure. For example, the lipids may assume a micellar structure or merely exist as nonuniform aggregates of lipid molecules. Also contemplated are lipofectamine-nucleic acid complexes. _ Phospholipids can form a variety of structures other than liposomes when dispersed in water, depending on the molar ratio of lipid to water. At low ratios the liposome 25 is the preferred structure. The physical characteristics of liposomes depend on pH, ionic strength and/or the presence of divalent cations. Liposomes can show low permeability to ionic and/or polar substances, but at elevated temperatures undergo a phase transition which markedly alters their permeability. The phase transition involves a change from a closely packed, ordered structure, known as the gel state, to a loosely packed, less-ordered structure, 30 known as the fluid state. This occurs at a characteristic phase-transition temperature and/or results in an increase in permeability to ions, sugars and/or drugs. Liposomes interact with cells via four different mechanisms: Endocytosis by phagocytic cells of the reticuloendothelial system such as macrophages and/or neutrophils; 71 adsorption to the cell surface, either by nonspecific weak hydrophobic and/or electrostatic forces, and/or by specific interactions with cell-surface components; fusion with the plasma cel membrane by insertion of the lipid bilayer of the liposome into the plasma membrane, with simultaneous release of liposomal contents into the cytoplasm; and/or by transfer of 5 liposomal lipids to cellular and/or subcellular membranes, and/or vice versa, without any association of the liposome contents. Varying the liposome formulation can alter which mechanism is operative, although more than one may operate at the same time. Liposome-mediated oligonucleotide delivery and expression of foreign DNA in vitro has been very successful. Wong et al. (1980) demonstrated the feasibility of 10 liposome-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa and hepatoma cells. Nicolau et al. (1987) accomplished successful liposome-mediated gene transfer in rats after intravenous injection. In certain embodiments of the invention, the lipid may be associated with a hemagglutinating virus (.VJ). This has been shown to facilitate fusion with the cell 15 membrane and promote cell entry of liposome-encapsulated DNA (Kaneda et al., 1989). In other embodiments, the lipid may be complexed or employed in conjunction with nuclear non-histone chromosomal proteins (HMG-1) (Kato et al., 1991). In yet further embodiments, the lipid may be complexed or employed in conjunction with both HVJ and HMG-1. In that such expression vectors have been successfully employed in transfer and expression of an !0 oligonucleotide in vitro and in vivo, then they are applicable for the present invention. Where a bacterial promoter is employed in the DNA construct, it also will be desirable to include within the liposome an appropriate bacterial polymerase. Liposomes used according to the present invention can be made by different methods. The size of the liposomes varies depending on the method of synthesis. A 25 liposome suspended in an aqueous solution is generally in the shape of a spherical vesicle, having one or more concentric layers of lipid bilayer molecules. Each layer consists of a parallel array of molecules represented by the formula XY, wherein X is a hydrophilic moiety and Y is a hydrophobic moiety. In aqueous suspension, the concentric layers are arranged such that the hydrophilic moieties tend to remain in contact with an aqueous phase and the 30 hydrophobic regions tend to self-associate. For example, when aqueous phases are present both within and without the liposome, the lipid molecules may form a bilayer, known as a lamella, of the arrangement XY-YX. Aggregates of lipids may form when the hydrophilic and hydrophobic parts of more than one lipid molecule become associated with each other. 71 The size and shape of these aggregates will depend upon many different variables, such as the nature of the solvent and the presence of other compounds in the solution. Liposomes within the scope of the present invention can be prepared in accordance with known laboratory techniques. In one preferred embodiment, liposomes are 5 prepared by mixing liposomal lipids, in a solvent in a container, e.g., a glass, pear-shaped flask. The container should have a volume ten-times greater than the volume of the expected suspension of liposomes. Using a rotary evaporator, the solvent is removed at approximately 40*C under negative pressure. The solvent normally is removed within about 5 min. to 2 hours, depending on the desired volume of the liposomes. The composition can be dried 10 further in a desiccator under vacuum. The dried lipids generally are discarded after about 1 week because of a tendency to deteriorate with time. Dried lipids can be hydrated at approximately 25-50 mM phospholipid in sterile, pyrogen-free water by shaking until all the lipid film is resuspended. The aqueous liposomes can be then separated into aliquots, each placed in a vial, lyophilized and sealed 15 under vacuum. In the alternative, liposomes can be prepared in accordance with other known laboratory procedures: the method of Bangham et al. (1965), the contents of which are incorporated herein by reference; the method of Gregoriadis, as described in DRUG CARRIERS 1N BIOLOGY AND MEDICINE, G. Gregoriadis ed. (1979) pp. 287-341, the 20 contents of which are incorporated herein by reference; the method of Deamer and Uster (1983), the contents of which are incorporated by reference; and the reverse-phase evaporation method as described by Szoka and Papahadjopoulos (1978). The aforementioned methods differ in their respective abilities to entrap aqueous material and their respective aqueous space-to-lipid ratios. 25 The dried lipids or lyophilized liposomes prepared as described above may be dehydrated and reconstituted in a solution of inhibitory peptide and diluted to an appropriate concentration with an suitable solvent, e.g., DPBS. The mixture is then vigorously shaken in a vortex mixer. Unencapsulated nucleic acid is removed by centrifugation at 29,000 x g and the liposomal pellets washed. The washed liposomes are resuspended at an appropriate total 30 phospholipid concentration, e.g., about 50-200 mM. The amount of nucleic acid encapsulated can be determined in accordance with standard methods. After determination of the amount of nucleic acid encapsulated in the liposome preparation, the liposomes may be diluted to appropriate concentrations and stored at 4*C until use. 73 A pharmaceutical composition comprising the liposomes will usually include a sterile, pharmaceutically acceptable carrier or diluent, such as water or saline solution. V. Kits 5 - Therapeutic kits of the present invention are kits comprising a therapeutic agent such as a drug, for example an anticancer drug, or a gene therapy composition. Although a radionuclide is preferably obtained by a skilled artisan from a source such as a nuclear pharmacy, in a specific embodiment the kit comprises a radionuclide. Such kits will generally contain, in suitable container means, a 0 pharmaceutically acceptable formulation of a therapeutic agent. The kit may have a single container means, and/or it may have distinct container means for each compound. The kit also further comprises a polymer, such as a polysaccharide or polyamino acid and a cross linking agent. In a preferred embodiment, the polymer composition and the cross-linking composition are in separate containers. In a specific embodiment, these containers are 5 syringes. In another specific embodiment, a polymer composition and a cross-linking composition are contained in a syringe having at least two compartments. When the components of the kit are provided in one and/or more liquid solutions, the liquid solution is an aqueous solution, with a sterile aqueous solution being particularly preferred. The therapeutic agent compositions may also be formulated into a 0 syringeable composition. In which case, the container means may itself be a syringe, pipette, and/or other such like apparatus, from which the formulation may be applied to an infected area of the body, injected into an animal, and/or even applied to and/or mixed with the other components of the kit. However, the components of the kit may be provided as dried powder(s). 25 When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means. -~ The container means will generally include at least one syringe, vial, test tube, flask, bottle, and/or other container means, into which the therapeutic agent formulation(s) 30 are placed, preferably, suitably allocated. The kits may also comprise a second container means for containing a sterile, pharmaceutically acceptable buffer and/or other diluent. The kits of the present invention will also typically include a means for containing the syringes in close confinement for commercial sale, such as, e.g., injection and/or blow-molded plastic containers into which the desired vials are retained.
Irrespective of the number and/or type of containers, the kits of the invention may also comprise, and/or be packaged with, an instrument for assisting with the injection/administration and/or placement of the ultimate therapeutic agent within the body of an animal. Such an instrument may be a syringe, pipette, forceps, and/or any such medically 5 approved delivery vehicle. VI. Delivery of the Hydrogel In a preferred embodiment, a therapeutic agent and a polymer are administered to a site to be treated, such as a tumor site, followed by administration of a cross-linking agent. In a preferred embodiment, the polymer and therapeutic agent are administered 10 concomitantly. In a specific embodiment, the polymer/therapeutic agent are administered by injection with one syringe, followed by administration of the cross-linking agent in a second injection with a second syringe. The injections are preferably administered under the guidance of, for instance, ultrasound technology. In an alternative embodiment, the polymer/therapeutic agent and cross-linking agent are administered from a single needle of a 15 syringe having two separate compartments, or barrels, with one compartment containing the polymer composition and the other compartment containing the cross-linking agent. In another alternative embodiment, an introducing apparatus, such as a cannula or introducer, having at least one, and preferably one, needle is guided by ultrasound to a tumor site. The introducing apparatus has a hollow cylindrical compartment in which one syringe is inserted 20 for introduction of the polymer/therapeutic agent composition, followed by insertion into the hollow compartment of a second syringe for introduction of the cross-linking agent composition. In this embodiment, there preferably is only one needle injection and accompanying ultrasound guidance. In a specific embodiment, the hydrogel components are administered with a 25 device such as is illustrated in FIGS. 7 and 8. VII. Examples The following examples are offered by way of example and are not intended to limit the scope of the invention in any manner. EXAMPLE 1 30 1N VITRO SLOW RELEASE OF CISPLATIN FROM ALGINATE BEADS To study in vitro slow release of an anticancer drug from a polymer, the anticancer drug cisplatin and the polymer sodium alginate were tested for slow release of the drug. Cisplatin-loaded algmate beads (SA-CDDP) were formed instantly and then incubated 75 in phosphate-buffered saline (PBS) in tubes at 37'C. Cisplatin was completely released from the alginate beads in 15 hours, which is considerably slower than the release time (within 2.5 hours) of cisplatin powder only (control) (FIG. 1). EXAMPLE 2 5 INTRATUMORAL INJECTION OF SODIUM ALGINATE-CISPLATIN (SA-CDDP) Rats with mammary tumor (in the thighs, tumor size is 2.5 x 2.0 cm, n=5) were used in this experiment. SA-CDDP (5.4 mg cisplatin/ml) was made by suspending cisplatin in SA. A skilled artisan is aware of different parameters which affect dosages required to treat a particular tumor, such as size of the tumor, tumor type, and the like. 0 The SA-CDDP (0.1 ml; cisplatin dose was 3 mg/kg body weight) was injected directly into the tumors through 27 G needles. In a preferred embodiment, about ig SA is used per injection. Calcium chloride (8% in water) was then injected into the same place to form cisplatin-loaded alginate beads in the tumors. The tumor size was measured to determine the anticancer effect, and the blood chemical assay (blood urea nitrogen [BUN) 5 and serum creatinine) were performed to detect renal toxicity. After injection, tumor volume decreased as a function of time (FIG. 2). No tumor relapse had occurred in the rats 5 months after treatment. Tests for renal toxicity are demonstrated in FIG. 3. BUN and serum creatinine levels after intratumoral injection of SA-CDDP were in the normal range. On day 40, BUN 3 in five experimental rats and five healthy rats (control) were 18.30 ± 1.51 mg/dl and 17.88 ± 2.24 mg/dl, respectively. There was no statistical significance (p>0.0 5 ) between the two. Serum creatinine levels were the same as in both experimental and control rats (0.6 mg/dl). In rats treated with CDDP intratumorally, a clear nephiotoxicity was observed as evidenced by increased BUN and creatinine levels (Table 4). 76 TABLE 4: EFFECT OF INTRATUMORAL INJECTION OF CDDP (3MG/KD) ON BLOOD UREA NITROGEN AND CREATININE IN BREAST TUMOR-BEARING RATS TIME (days) BUN (mg/dL) 2 56.21 5 246.42 7 152.35 16 41.75 TIME (days) SERUM CREATININE (mgldL) 10 2 1.5 5 7.03 7 2.4 1 0.7 In a preferred embodiment, the polymeric/therapeutic agent composition is 15 injected prior to injection of the cross linker because the cross linker used is a small water soluble molecule which could diffuse through tumor vasculature beds. EXAMPLE 3 PHARMACOKINETIC EVALUATION OF HYDROGEL IN TUMOR-BEARING RABBITS To test for sustained release assay of anticancer drugs, rabbits are xenografted 20 with mammary tumor cells (VX-2). Polysaccharide/anticancer drugs along with a cross linker are administered intralesionally. At various time intervals, blood samples are collected. Analysis of anticancer drug therapy is performed. A stability assay of radionuclide/polyamino acids matrix is performed. Tumor-bearing rabbits are administered polyamino acids chelated with isotopes. At various 25 time intervals, blood samples are collected. Analysis of radionuclide therapy is performed. EXAMPLE 4 ANTICANCER EFFECT OF TACE WITH POLYSACCHARIDE/ANTICANCER AGENTS IN TUMOR-BEARING RABBITS Five groups of rabbits are used for this study. The administration route is intraarterial or intratumoral injection. The rabbits receive polysaccharide/cisplatin with or without a cross linker, such as calcium chloride. 77 Toxicity is assessed by measuring BUN, SGOT/SGPT, electrolyte level, cell counts, platelet and creatinine level after administration of polysaccharide/anticancer agents or polyamino acids/isotope chelation. EXAMPLE 5 5 NON-CANCER EMBODIMENTS OF THE PRESENT INVENTION The methods of the present invention are useful for any application of a therapeutic agent to a specific location in the body of an individual, such as when administration of a therapeutic agent systemically is undesirable. For instance, treatment of endometriosis with the methods of the present invention, preferably under laproscopic 10 guidance, circumvents the undesirable side effects produced by systemic administration of hormone. Alternatively, an abscess, boil, inflammation, or infection may be treated locally with antibiotics without administering elevated levels of the antibiotic orally, with the intention of only treating the site in question. Also, bone degeneration, such as in a disc of the spine, may be treated by applying bone morpogenetic proteins to the site of the bone 15 defect. EXAMPLE 6 HYDROGEL RELEASE TESTING FIG. 4 illustrates one embodiment directed to the preparation of a hydrogel comprising a radionuclide. 20 Table 5 demonstrates that significantly low percentages of radionuclide are released from the hydrogel. Generally, fifty mg of tin chloride (II) was dissolved in 0.2 mL of water and labeled with Re-188 (from W-188). The hydrogel was formed by adding alginate and calcium chloride. 25 TABLE 5: RELEASE OF RADIONUCLIDE STAND- DATE TIME COUNTS/ COUNTS ARD 0.01cc /0.1cc 01-Oct 1730 361611 3616110 VIAL A COUNT DATE TIME TOTAL COUNTS % of DOSE ACCUMULATED 30 # ACT (uCi) /0.1cc RELEASED %RELEASE 0 |01-Oct 0 40.5 1829.37 0.05 0.05 1 02-Oct 16 21.4 23933.10 0.66 0.71 2 02-Oct 24 15.2 24074.00 0.67 1.38 3 03-Oct 40.5 7.8 21640.30 0.60 1.98 4 103-Oct 47.5 5.6 26815.70 0.74 2.72 '7Q 5 04-Oct 63.5 3.3 126796.30 0.74 3.46 6 04-Oct 70.5 2.3 26042.70 0.72 4.18 7 105-Oct 91.5 1.3 20746.70 0.57 4.75 8 05-Oct 95.5 - 23502.20 0.65 5.40 9 06-Oct 115.5 - 11712.40 0.32 5.73 5.73 5 VIAL B COUNT DATE TIME TOTAL COUNTS % of DOSE ACCUMU ACT (uCi) /0.1cc RELEASED LATED %RELEASE 0 01-Oct 0 40.7 3320.88 0.09 0.09 1 02-Oct 16 21 28206.50 0.78 10.87 10 2 02-Oct 24 15.2 22032.70 0.61 1.48 3 03-Oct 40.5 8 23000.00 0.64 2.12 4 03-Oct 47.5 6 30530.30 0.84 2.96 5 04-Oct 63.5 3.2 28015.70 0.77 3.74 6 04-Oct 70.5 2.3 22574.00 0.62 4.36 7 05-Oct 91.5 1.1 18444.70 0.51 4.87 8 05-Oct 95.5 - 20218.00 0.56 5.43 15 9 06-Oct 115.5 - 11807.30 0.33 5.76 5.76 79 VIAL C COUNT DATE TIME TOTAL COUNTS/ % of DOSE ACCUMU # ACT (uCi) 0.1cc RELEASED LATED % RELEASE 0 01-Oct 0 42.4 4955.99 0.14 0.14 1 02-Oct 16 21.9 23585.40 0.65 0.79 2 02-Oct 24 15.7 25570.40 0.71 1.50 3 03-Oct 40.5 8.1 24233.00 0.67 2.17 4 03-Oct 47.5 5.8 31738.00 0.88 3.04 5 04-Oct 63.5 3.1 28961.10 0.80 3.85 6 104-Oct 70.5 2.3 27377.10 0.76 4.60 7 05-Oct 91.5 1.2 19128.10 0.53 5.13 8 05-Oct 95.5 - 25308.90 0.70 5.83 9 06-Oct 115.5 - 13458.60 0.37 6.20 6.20 SUMMARY COUNT DATE TIME COUNTS COUNTS/ COUNTS AVG % of DOSE ACCUMULATED % . /0.1cc A 0.1cc B /0.1cc C CTS RELEASED RELEASE 0 01-Oct 0 1829.37 3320.88 4955.99 3368.75 0.09 0.09 1 02-Oct 16 23933.10 28206.50 23585.40 25241.67 0.70 0.79 2 02-Oct 24 24074.00 22032.70 25570.40 23892.37 0.66 1.45 3 03-Oct 40.5 21640.30 23000.00 24233.00 22957.77 0.63 2.09 4 03-Oct 47.5 26815.70 30530.30 31738.00 29694.67 0.82 2.91 5 04-Oct 63.5 26796.30 28015.70 28961.10 27924.37 0.77 3.68 6 04-Oct 70.5 26042.70 22574.00 27377.10 25331.27 0.70 4.38 7 05-Oct 91.5 20746.70 18444.70 19128.10 19439.83 0.54 4.92 8 05-Oct 95.5 23502.20 20218.00 25308.90 23009.70 0.64 5.55 9 06-Oct 115.5 11712.40 11807.30 13458.60 12326.10 0.34 5.90 5.90 Table 6 shows an experiment wherein similar methods were utilized to generate and test the hydrogel release of radionuclide. The data is illustrated in FIGS. 5 and 6. FIG. 5 shows activity released over time, whereas FIG. 6 shows % release over time.\ TABLE 6: TOTAL AND PERCENTAGE OF DOSE RADIONUCLIDE RELEASE TIME TOTAL RELEASE 0 0.09 16 0.79 24 1.45 40.5 2.09 47.5 2.91 63.5 3.68 70.5 4.38 91.5 4.92 95.5 5.55 115.5 5.90 TIME % of DOSE RELEASED 0 0.09 16 0.70 24 0.66 15 40.5 0.63 47.5 0.82 63.5 0.77 70.5 0.70 91.5 0.54 95.5 0.64 115.5 0.34 20 EXAMPLE 7 1N VIVO ANTITUMOR POTENCY Female Fischer 344 rats (150±25 g) (Harlan Sprague-Dawley; Indianapolis, IN) were inoculated subcutaneously with 0.1 ml of mammary tumor cells from the RBA 25 CRL-1747 rat breast cancer cell line (106 cells/rat) into the hind legs. Studies were performed 14 to 17 days after implantation when tumors reached approximately 1 cm in diameter. Each animal was injected intratumorally with 18 8Re-tin (II) hydrogel or "' 8 Re (perrheneate) (0.5 mCi/rat, n=3 rats/group). In a specific embodiment, a device as shown in FIGS. 7 and 8 is utilized for the injection. 188 Re-tin (II) hydrogel was formulated as described in the in vitro release studies described in Example 6. Tumor volumes and body 30 weight were recorded daily for sixty days. Tumor volumes were measured as [length (1) x width (w) x thickness (h)]/2. Loss of body weight of about 15% is considered a chemical induced toxic effect. As illustrated in FIG. 9, the inventive lSRe-tin (II) hydrogel complex at a single injection is effective in vivo against cancer, such as breast cancer. 81 REFERENCES All patents and publications mentioned in the specification are indicative of the level of those skilled in the art to which the invention pertains. All patents and 5 publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. PATENTS U.S. Patent No. 4,608,251 issued August 26, 1986. U.S. Patent No. 4,601,903 issued July 22, 1986. 0 U.S. Patent No. 4,599,231 issued July 8, 1986. U.S. Patent No. 4,599,230 issued July 8, 1986. U.S. Patent No. 4,596,792 issued June 24, 1986. U.S. Patent No. 4,642,104 issued February 10, 1987. U.S.Patent No. 4,879,236 issued November 7, 1989. U.S. Patent No. 5,257,970 issued November 2, 1993. U.S. Patent No. 5,928,906 issued July 27, 1999. U.S. Patent No. 4,683,202 issued July 28, 1987. U.S. Patent No. 5,871,986 issued Febuary 16, 1999. U.S. Patent 5,925,565 issued July 20, 1999. U.S. Patent 5,935,819 filed August 10, 1999. Chinese Patent No. 1252310 issued May 10, 2000. Japanese Patent No. 10236984 issued September 8, 1998. Japanese Patent No. 7097401 issued April 11, 1995. PCT publication number WO 00/00222 with an international application number PCT/US99/14206 and an international filing date of June 25, 1999. PCT publication number WO 00/38651 with an international application number PCT/US99/29401 and an international filing date of December 10, 1999. PUBLICATIONS Almendro et al., "Cloning of the human platelet endothelial cell adhesion molecule-I promoter and its tissue-specific expression. Structural and functional characterization," J Immniunol., 157(12):5411-5421, 1996. Arap et al., Cancer Res., 55:1351-1354,1995. Ausubel et al., 1994. Bakhshi et al., 1985.
Bangham AD, Standish MM, Miller N. (1965) Cation permeability of phospholipid model membranes: effect of narcotics. Nature. 1965 Dec 25;208(17):1295-7. Burris, H.A., Vogel, C.L., Castro, D., Mishra, L., Schwarz, M., Spencer, S., Oakes, D.D., Korey, A., Orenberg, E.K. (1998) Intratumoral cisplatin/epinephrine-injectable gel as a palliative treatment for accessible solid tumors: a multicenter pilot study. Otolaryngology Head and Neck Surgery 118(4): 496-503. Caldas et al., Nat. Genet., 8:27-32,1994. Carbonelli et al. "A plasmid vector for isolation of strong promoters in E. coli," FEMS Microbiol Lett. 177(1):75-82, 1999. Chandler et al., "RNA splicing specificity determined by the coordinated action of RNA recognition motifs in SR proteins," Proc Natl Acad Sci US A. 94(8):3596-3601, 1997. 10 Cheng et al, Cancer Res., 54:5547-5551,1994. Cleary and Sklar, 1985. Cleary et al., 1986. Cocea, "Duplication of a region in the multiple cloning site of a plasmid vector to enhance cloning-mediated addition of restriction sites to a DNA fragment," Biotechniques, 23:814 816, 1997. 15 Deamer and Uster, "Liposome Preparation: Methods and Mechanisms," LIPOSOMES, M. Ostro ed. (1983). Downs, E.C., Robertson, N.E., Riss, T.L., Plunkett, M.L. Calcium alginate beads as a slow release system for delivering angiogenic molecules in vivo and in vitro. J. Cellul. Physiol. 152:422-429. Everett et al. (1953). 20 Ghosh and Bachhawat, "Targeting of liposomes to hepatocytes," In: Wu G. Wu C ed., Liver diseases, targeted diagnosis and therapy using specific receptors and ligands, New York: Marel Dekker, pp. 87-104, 1991. Gregoriadis, DRUG CARRERSfNBIOLOGYAND MiEDICIIE, G. Gregoriadis (ed.), 1979, pp. 287-341. Harbord MG, Singh R, Morony S. (1999) SPECT abnormalities in Landau-Kleffner 25 syndrome. J Clin Neurosci. 1999 Jan;6(1):9-16. Holistein et al., Science, 253:49-53, 1991. Hussussian et al., Nature Genetics, 15-21, 1994. Jackson, J.K., Gleave, M.E., Yago, V., Beraldi, E., Hunter, W.L., Burt, H.M. (2000) The suppression of human prostrate tumor growth in mice by the intratumoral injection of a slow release polymeric paste formulation of pacitaxel. Cancer Res. 60:4146-4151. 30 Kamb et al., Nature Genetics, 8:22-26,1994a. Kamb et al., Science, 2674:436-440,1994b. Kaneda et al., "Increased expression of DNA cointroduced with nuclear protein in adult rat liver," Science, 243:375-378, 1989. Kato et al., "Expression of hepatitis B virus surface antigen in adult rat liver," . Biol. Chen., 266:3361-3364, 1991. 83 Kerr et al., 1972. Kitizawa, H., Sato, H., Adachi, I., Masuko, Y., Horikoshi, I. (1997) Microdialysis assessment of fibrin glue containing sodium alginate for local delivery of doxorubicin in tumor-bearing rats. Biol. Pharm. Bull. 20(3): 278-281. Kraus et al., "Alternative promoter usage and tissue specific expression of the mouse somatostatin receptor 2 gene," FEBS Lett., 428(3):165-170, 1998. Lareyre et al., "A 5-kilobase pair promoter fragment of the murine epididymal retinoic acid binding protein gene drives the tissue-specific, cell-specific, and androgen-regulated expression of a foreign gene in the epididymis of transgenic mice," JBiol Chem., 274(12):8282-8290, 1999. Lee et al., "Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes," JAuton Nerv Syst. 74(2-3):86-90, 1997. Levenson et al., "Internal ribosomal entry site-containing retroviral vectors with green fluorescent protein and drug resistance markers," Human Gene Therapy, 9:1233-1236, 1998. Macejak and Sarnow, "Internal initiation of translation mediated by the 5' leader of a cellular mRNA," Nature, 353(6339):90-94, 1990. Maniatis et al., 1988. Miller, B.H:, Shavin, J.S., Cognetta, A., Taylor, J.R., Salasche, S., Korey, A., Orenberg, E.K. (1997) Nonsurgical treatment of basal cell carcinomas with intralesional 5 fluorouracil/epinephrine injectable gel. J. Amer. Acad. Derm. 36(1): 72-77. Monga, S.P.S., Wadleigh, R., Sharma, A., Adib, H., Strader, D., Singh, G., Harmon, J.W., Berlin, M., Monga, D.K., Mishra, L. (2000) Intratumoral therapy of cisplatin/epinephrine injectable gel for palliation in patients with obstructive esophageal cancer. Am.J. Clin. Oncol. 23(4):386-392. Mori et al., 1994. Nicolau et al., "Liposomes as carriers for in vivo gene transfer and expression," Methods Enzymol., 149:157-176, 1987. Ning, S., Yu, N., Brown, D.M., Kanekal, S., Knox, S.J. (1999) Radiosensitization by intratumoral administration of cisplatin in a sustained-release drug delivery system. Radiother. and Oncol. 50:215-223. Nobri et al., Nature, 368:753-756,1995. Okamoto et al., Proc. Natl. Acad. Sci. USA, 91:11045-11049,1994. Orlow et al., 1994. Pelletier and Sonenberg, "Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA," Nature, 334:320-325, 1988. "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038, 1570-1580. Serrano et al., Nature, 366:704-707,1993. Serrano et al., Science, 267:249-252,1995. Smith, J.P., Kanekal, S., Parawaran, M.B., Chen, J.Y., Jones, R.E., Orenberg, E.K., Yu, N.Y. (1999) Drug retention and distribution after intratumoral chemotherapy with fluorouracil/epinephrine injectable gel in human pancreatic cancer xenografts. Cancer Chemother. Pharmacol. 44: 267-274. Smith and Rutledge, "Chemotherapy in advanced ovarian cancer," Natl. Cancer Inst. Monogr., 42:141-143, 1975. Szoka and Papahadjopoulos, Proc. Nat'l Acad. Sci. U.S.A. 75:4194-98 (1978). 5 Tsujimoto et al., 1985. Tsujimoto and Croce, 1986. Tsumaki et al., "Modular arrangement of cartilage- and neural tissue-specific cis-elements in the mouse alpha2(XI) collagen promoter," JBiol Chen. 273(36):22861-22864, 1998. Weinberg, Science, 254:1138-1146, 1991. 10 Wong et al., "Appearance of P-lactamase activity in animal cells upon liposome mediated gene transfer," Gene, 10:87-94, 1980. Wu et al., 1997 Young et al., NEngl JMed. 7;299(23):1261-1266, 1978. Zhao-Emonet et al., 1998. 15 One skilled in the art readily appreciates that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned as well as those inherent therein. Methods, procedures, techniques and kits described herein are presently representative of the preferred embodiments and are intended to be exemplary and are not intended as limitations of the scope. Changes therein and other uses will occur to 20 those skilled in the art which are encompassed within the spirit of the invention or defined by the scope of the pending claims. 85
Claims (20)
1. A method of dispensing a therapeutic agent in situ to a localized region in an individual comprising administering to said region a polymer composition that comprises a 5 biocompatible polymer, a cross-linking composition that comprises a cross-linker, and the therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of a cross-linked polymer in situ at the localized region, which cross-linked polymer comprises the therapeutic agent; wherein the therapeutic agent is a radionuclide; and wherein the biocompatible polymer is a polysaccharide, a polyamino acid 10 polymer, or a combination thereof.
2. The method of claim 1, wherein the polymer composition comprises the therapeutic agent.
3. The method of claim I or claim 2, wherein the polymer composition and the cross 15 linking composition are separately administered to the localized region.
4. The method of claim 3, wherein the polymer composition and the cross-linking composition are administered to the localized region from separate containers, wherein a first container contains the polymer composition and a second container comprises the cross 20 linking composition.
5. The method of claim 4, wherein the first and second containers are syringes.
6. The method of claim 1 or claim 2, wherein the polymer composition and the cross 25 linking composition are administered to said region by means of a single container having at least two compartments, wherein one compartment comprises the polymer composition and another compartment comprises the cross-linking composition.
7. The method of any one of claims 1 to 6, wherein the biocompatible polymer is a 30 polysaccharide, and the polysaccharide polymer is an alginate, hydroxycellulose, chondroitin, chitosan, hyaluronate, dextran, or starch.
8. The method of any one of claims 1 to 6, wherein the biocompatible polymer is a polyamino acid, and the polyamino acid is a polyglutamate or a polyaspartate.
9. The method of any one of claims 1 to 8, wherein said cross-linking agent is a salt of a divalent cation. 5
10. The method of claim 9, wherein said divalent cation is Ca 2 +, Mg 2 +, Mn2+, Cu2+, Cr 2 +, Sr 2 +, Zn2+, Ra2+, or Be2+
11. The method of claim 9, wherein said salt of a divalent cation is calcium chloride, calcium sulfate, calcium phosphate, calcium carbonate, calcium chlorate, calcium fluoride, 10 calcium bromide, magnesium chloride, magnesium sulfate, magnesium phosphate, magnesium carbonate, magnesium chlorate, magnesium fluoride, magnesium bromide, manganese chloride, manganese sulfate, manganese phosphate, manganese carbonate, manganese chlorate, manganese fluoride, manganese bromide, copper chloride, copper sulfate, copper phosphate, copper carbonate, copper chlorate, copper fluoride, copper 15 bromide, chromium chloride, chromium sulfate, chromium phosphate, chromium carbonate, chromium chlorate, chromium fluoride, chromium bromide, strontium chloride, strontium sulfate, strontium phosphate, strontium carbonate, strontium chlorate, strontium fluoride, strontium bromide, zinc chloride, zinc sulfate, zinc phosphate, zinc carbonate, zinc chlorate, zinc fluoride, zinc bromide, radium chloride, radium sulfate, radium phosphate, radium 20 carbonate, radium chlorate, radium fluoride, radium bromide, beryllium chloride, beryllium sulfate, beryllium phosphate, beryllium carbonate, beryllium chlorate, beryllium fluoride, or beryllium bromide.
12. The method of claim any one of claims 1 to 11, wherein the radionuclide is 25 188Re, 2Bi, 1Ho, 2nAt, or a combination thereof.
13. The method of any one of claims 1 to 12, wherein the therapeutic agent further comprises a drug. 30
14. The method of claim 13, wherein the drug is cisplatin, doxorubicin, Taxol, daunorubicin, mitomycin, actinomycin D, bleomycin, VP16, tumor necrosis factor, vincristine, vinblastine, carmustine, melphalan, cyclophosphamide, chlorambucil, bisulfan, lomustine, penicillin, erythromycin, amoxicillin, cefazolin, imipenem, aztreonam, sulbactam, linezolid, gentamicin, sulfamethoxazole, vancomycin, ciprofloxacin, fusidic acid, trimethoprim, metronidazole, clindamycin, mupirocin, amphotericin B, rifampin, fluconazoleor, or a combination thereof.
15. The method of any one of claims 1 to 14, wherein the therapeutic agent further 5 comprises a detectable identifier, wherein the detectable identifier is an X-ray contrasting agent, a CT contrasting agent, an MRI contrasting agent, a fluorophore, a luminophore, or a combination thereof.
16. A method of treating a tumor in situ in an individual comprising the steps of 10 administering to said tumor a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a cross-linker, and a therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of a cross-linked polymer in situ at the tumor, which cross-linked polymer comprises the therapeutic agent; wherein said therapeutic agent is a radionuclide; and wherein the 15 biocompatible polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof.
17. A method of occluding an artery associated with a tumor in an individual comprising the step of administering to said tumor a polymer composition that comprises a 20 biocompatible polymer, a cross-linking composition that comprises a cross-linker, and a therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of the cross-linked polymer in situ at the tumor, which the cross-linked polymer comprises the therapeutic agent; wherein said therapeutic agent is a radionuclide; and wherein the biocompatible polymer is a polysaccharide, a polyamino acid 25 polymer, or a combination thereof.
18. A method of providing a slow-release hydrogel composition in situ to a tumor in an individual comprising administering to said tumor a polymer composition that comprises a biocompatible polymer, a cross-linking composition that comprises a crosslinker, and a 30 therapeutic agent, wherein the polymer composition and the cross-linking composition are administered to allow formation of the cross-linked polymer in situ at the tumor, which cross linked polymer comprises the therapeutic agent; wherein the therapeutic agent is a radionuclide; and wherein the biocompatible polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof. RR
19. A kit when used to treat a tumor in situ in an individual comprising, in a suitable containing means: a first container having a polymer composition that comprises a biocompatible 5 polymer; and a second container having a cross-linking composition; wherein the polymer composition farther comprises a therapeutic agent; wherein the biocompatible polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof; and wherein said therapeutic agent is a radionuclide. 10
20. A kit when used to occlude an artery associated with a tumor in an individual comprising, in a suitable containing means: a first container having a polymer composition that comprises a biocompatible polymer; and 15 a second container having a cross-linking composition; wherein the polymer composition further comprises a therapeutic agent; wherein the biocompatible polymer is a polysaccharide, a polyamino acid polymer, or a combination thereof; and wherein said therapeutic agent is a radionuclide. Ro
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007201748A AU2007201748B2 (en) | 2000-12-18 | 2007-04-19 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25651400P | 2000-12-18 | 2000-12-18 | |
US60/256,514 | 2000-12-18 | ||
US10/024,678 US7008633B2 (en) | 2000-12-18 | 2001-12-18 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
AU2002231041A AU2002231041B2 (en) | 2000-12-18 | 2001-12-18 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
PCT/US2001/049087 WO2002049501A2 (en) | 2000-12-18 | 2001-12-18 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
AU2007201748A AU2007201748B2 (en) | 2000-12-18 | 2007-04-19 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002231041A Division AU2002231041B2 (en) | 2000-12-18 | 2001-12-18 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2007201748A1 AU2007201748A1 (en) | 2007-05-10 |
AU2007201748B2 true AU2007201748B2 (en) | 2009-11-19 |
Family
ID=38051667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007201748A Expired AU2007201748B2 (en) | 2000-12-18 | 2007-04-19 | Local regional chemotherapy and radiotherapy using in situ hydrogel |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2007201748B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031128A1 (en) * | 1993-12-28 | 1996-10-10 | Societe Des Produits Nestle S.A. | Cereal food product high in soluble fiber |
AU2120297A (en) * | 1996-03-11 | 1997-10-01 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
WO1999020326A1 (en) * | 1997-10-17 | 1999-04-29 | Micro Therapeutics, Inc. | Catheter system and method for injection of a liquid embolic composition and a solidification agent |
-
2007
- 2007-04-19 AU AU2007201748A patent/AU2007201748B2/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031128A1 (en) * | 1993-12-28 | 1996-10-10 | Societe Des Produits Nestle S.A. | Cereal food product high in soluble fiber |
AU2120297A (en) * | 1996-03-11 | 1997-10-01 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
WO1999020326A1 (en) * | 1997-10-17 | 1999-04-29 | Micro Therapeutics, Inc. | Catheter system and method for injection of a liquid embolic composition and a solidification agent |
Also Published As
Publication number | Publication date |
---|---|
AU2007201748A1 (en) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2432797C (en) | Local regional chemotherapy and radiotherapy using in situ hydrogel | |
EP1180016B1 (en) | Methods and compositions for non-viral gene therapy for treatment of hyperproliferative diseases | |
RU2376371C2 (en) | Modified recombinant vaccinating viruses and other microorganisms and their application | |
Minko et al. | Molecular targeting of drug delivery systems to cancer | |
KR101364374B1 (en) | Bioactive FUS1 peptides and nanoparticle-polypeptide complexes | |
JP6322413B2 (en) | Combination of local and systemic immunomodulatory therapy for improved cancer treatment | |
KR20180017119A (en) | Use of exosomes for the treatment of diseases | |
JP2005521398A (en) | A powerful oncolytic herpes simplex virus for cancer treatment | |
JP2004505009A (en) | Combinations for treating neoplasms | |
CA2422524A1 (en) | Pei: dna vector formulations for in vitro and in vivo gene delivery | |
CN109069527B (en) | Nanoparticles, controlled release dosage forms, and methods for delivering immunotherapeutic agents | |
CA2442971C (en) | Chemotherapeutic induction of egr-1 promoter activity | |
TW202027796A (en) | The ph-sensitive lipid nanoparticles for encapsulation of anticancer drugs and microrna and use thereof | |
JP2021506795A (en) | Methods and Compositions for Treating Cancer Using Exosome-Related Gene Editing | |
AU2002303247A1 (en) | Chemotherapeutic induction of Egr-1 promoter activity | |
JP2019534268A (en) | Methods and compositions for TUSC2 immunotherapy | |
AU2007201748B2 (en) | Local regional chemotherapy and radiotherapy using in situ hydrogel | |
AU2002231041B2 (en) | Local regional chemotherapy and radiotherapy using in situ hydrogel | |
US20230218771A1 (en) | Self-assembling prodrugs as immune boosters for cancer immunotherapy | |
US10293056B1 (en) | Methods and compositions for non-viral gene therapy for treatment of hyperproliferative diseases | |
WO2004058308A1 (en) | An efficient non-viral gene/drug delivery system | |
Nadella et al. | Macrophages directed approaches are paramount for effective cancer immunotherapies | |
EP1754488A1 (en) | Methods and compositions for non-viral gene therapy for treatment of hyperproliferative diseases | |
US20030113897A1 (en) | Mutant p21Cip1/WAF1 and cell growth control and cell growth control | |
Widmer | Extended Abstracts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |