AU2005206163B2 - Lipid-based dispersions useful for drug delivery - Google Patents
Lipid-based dispersions useful for drug delivery Download PDFInfo
- Publication number
- AU2005206163B2 AU2005206163B2 AU2005206163A AU2005206163A AU2005206163B2 AU 2005206163 B2 AU2005206163 B2 AU 2005206163B2 AU 2005206163 A AU2005206163 A AU 2005206163A AU 2005206163 A AU2005206163 A AU 2005206163A AU 2005206163 B2 AU2005206163 B2 AU 2005206163B2
- Authority
- AU
- Australia
- Prior art keywords
- lipid
- based dispersion
- phosphatidyl choline
- therapeutic agent
- anionic phospholipid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P23/00—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
- A61P29/02—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- Rheumatology (AREA)
- Epidemiology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Pain & Pain Management (AREA)
- Immunology (AREA)
- Physical Education & Sports Medicine (AREA)
- Communicable Diseases (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dispersion Chemistry (AREA)
- Oncology (AREA)
- Psychology (AREA)
- Ophthalmology & Optometry (AREA)
- Transplantation (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Diabetes (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The invention provides lipid-based dispersion comprising comprising, a) phosphatidyl choline; b) an anionic phospholipid; optionally c) up to 1% cholesterol by weight of total lipids; and optionally d) a therapeutic agent; wherein the mean particle size measured by dynamic light scattering is less than 100 nm. The invention also provides pharmaceutical compositions comprising such a dispersion as well as methods of producing a therapeutic effect in a mammal comprising administering an effective amount of such a dispersion.
Description
WO 2005/070465 PCT/US2005/001149 LIPID-BASED DISPERSIONS USEFUL FOR DRUG DELIVERY Background of the Invention 5 Liposomes are microscopic vesicles made, in part, from phospholipids which form closed, fluid filled spheres when mixed with water. Phospholipid molecules are polar, having a hydrophilic ionizable head, and a hydrophobic tail consisting of long fatty acid chains. When sufficient phospholipid molecules are present in water, the tails spontaneously associate to exclude water. The result is 10 a bilayer membrane in which fatty acid tails converge in the membrane's interior and polar heads point outward toward the aqueous medium. As the liposomes form, water soluble molecules can be incorporated into the aqueous interior, while lipophilic molecules tend to be incorporated into the lipid bilayer. Liposomes may be either multilamellar, onion-like structures, with liquid 15 separating multiple lipid bilayers, or unilamellar, with a single bilayer surrounding an entirely liquid center. Certain liposomes have been investigated for a variety of purposes in the pharmaceutical field. For example, they have been used to provide targeted delivery, controlled delivery, and sustained release of pharmaceutical agents. 20 See H. T. Balwin and H. R. Six "Liposomes and Immunobiology" (1980) Elsevier North Holland, Inc.; P. T. Kefalides "New Methods of Drug Delivery" (15 June 1998) Annals of Internal Medicine; and D. D. Lasic and D. Papahadjopoulos Eds. "Medical Applications of Liposomes" (1998) Elsevier Science B.V. They have also been utilized to modify the solubility properties of 25 a variety of therapeutic agents, as well as to modify the toxicity profile of certain agents. In a majority of applications, the emphasis has been on developing liposome/drug combinations that are relatively stable under physiological conditions. Currently, there are a number of therapeutic agents on the market or in 30 clinical trials that are not used to their full potential because of drug insolubility or carrier vehicle toxicity. These problems are especially true for many lipophilic agents, and for many agents that are administered by injection. Thus, there is currently a need for formulations that can improve the solubility of such therapeutic agents so that they can be utilized to their full potential. Throughout the description and claims of this specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other 5 additives, components, integers or steps. Summary of the Invention A lipid-based dispersion has been discovered that is useful for formulating therapeutic agents. Accordingly, the invention provides a lipid-based dispersion comprising, a) 10 phosphatidyl choline; b) an anionic phospholipid; optionally c) up to 1% cholesterol by weight of total lipids; and optionally d) a therapeutic agent; wherein the mean particle size measured by dynamic light scattering is less than 100 nm. The invention also provides a lipid-based dispersion comprising, a) phosphatidyl choline; b) an anionic phospholipid; optionally c) up to 1% cholesterol by weight of total 15 lipids; and d) an anesthetic or a sedative; wherein the mean particle size measured by dynamic light scattering is less than 100 nm. The invention also provides a method for increasing the solubility of a therapeutic agent in vivo, (e-g. increasing the bio-available amount of the therapeutic agent compared to the amount that is bio-available when the agent is administered in the absence of a lipid-based 20 dispersion of the invention) comprising administering the agent in combination with a lipid based dispersion of the invention. The invention also provides a pharmaceutical composition comprising a lipid-based dispersion of the invention. The invention also provides a unit dosage form comprising a lipid-based dispersion of 25 the invention. The invention also provides a method for producing a therapeutic effect in an animal comprising administering to the animal an effective amount of a lipid based dispersion of the invention that comprises a therapeutic agent. The invention also provides a method for modulating the solubility of a therapeutic 30 agent comprising incorporating the agent in a lipid-based dispersion of the invention. 2 The invention also provides a method for producing an anesthetic or sedative effect in an animal comprising administering to the animal an effective amount of a lipid based dispersion of the invention wherein the therapeutic agent is an anesthetic or a sedative (e-g. propofol). 5 The invention also provides a method for producing an antineoplastic effect in an animal comprising administering to the animal an effective amount 2a WO 2005/070465 PCT/US2005/001149 of a lipid based dispersion of the invention wherein the therapeutic agent an antineoplastic agent (e.g. etoposide or paclitaxel). The invention also provides a method for producing an immunosuppressive effect in an animal comprising administering to the animal 5 an effective amount of a lipid based dispersion of the invention wherein the therapeutic agent is an immunosuppressive agent (e.g. cyclosporine). The invention also provides a method for treating atherosclerosis, atherosclerotic vulnerable plaque or restenosis, or a combination thereof, in an animal, comprising administering to the animal an effective amount of a lipid 10 based dispersion of the invention wherein the therapeutic agent is an photoreactive agent. The invention also provides a lipid-based dispersion of the invention for use in medical therapy. The invention also provides the use of a lipid based dispersion of the 15 invention wherein the therapeutic agent is an anesthetic or a sedative (e.g. propofol) to prepare a medicament useful for producing an anesthetic or sedative effect in a mammal. The invention also provides the use of a lipid based dispersion of the invention wherein the therapeutic agent an antineoplastic agent (e.g. etoposide or 20 paclitaxel), to prepare a medicament useful for producing an antineoplastic effect in a mammal. The invention also provides the use of a lipid based dispersion of the invention wherein the therapeutic agent is an immunosuppressant (e.g. cyclosporine) to prepare a medicament useful for producing an 25 immunosuppressant effect in a mammal. The invention also provides the use of a lipid based dispersion of the invention wherein the therapeutic agent is a photoreactive agent (e.g. a porphyrin such as gallium deuteroporphyrin dimethyl ester) to prepare a medicament useful for treating atherosclerosis, atherosclerotic vulnerable plaque or restenosis, or a 30 combination thereof, in an animal. 3 WO 2005/070465 PCT/US2005/001149 Brief Description of the Figures Figure 1: shows representative data for cyclosporin from Test A hereinbelow. Figure 2: shows representative data for propofol from Test A 5 hereinbelow Figure 3: shows representative data for etoposide from Test A hereinbelow. Figure 4: depicts the structure of photoreactive agent gallium deuteroporphyrin dimethyl ester. 10 Detailed Description Phosphatidyl Choline Typically, the phosphatidyl choline provides the primary packing/entrapment/structural element of the liposome. It provides structurally 15 for the liposome, gives the therapeutic agent a place to go, (both in terms of hydropathy and in terms of flexibility), and establishes a scaffold for the other lipid components. Typically, the phosphatidyl choline comprises mainly C 16 or longer fatty-acid chains. Chain length provides for both liposomal structure and membrane width. Additionally, the fatty-acid chains typically have at least one 20 double bond, although this is not a requirement. As used herein, the term "phosphatidyl choline" includes Soy-PC, Egg PC, DEPC (dielaidoyl PC), and DOPC (dioleoyl PC), and mixtures thereof, and mixtures of these PC's with other PC's (e.g. mixtures with DSPC, HSPC, or DMPC); the term excludes pure DSPC, HSPC and DMPC. 25 As used herein, the term "Soy-PC" refers to phosphatidyl choline compositions including a variety of mono-, di-, tri-unsaturated, and saturated fatty acids. Typically, Soy-PC includes palmitic acid present in an amount of about 12% to about 33% by weight; stearic acid present in an amount of about 3% to about 8% by weight; oleic acid present in an amount of about 4% to about 30 22% by weight; linoleic acid present in an amount of about 55% to about 80% by weight; and linolenic acid present in an amount of about 5% to about 10% by weight. 4 WO 2005/070465 PCT/US2005/001149 As used herein, the term "Egg-PC" typically refers to a phosphatidyl choline that comprises palmitic acid in an amount of about 34% byweight; stearic acid in an amount of about 10 % by weight; oleic acid in an amount of about 31% by weight; and linoleic acid in an amount of about 18% by weight. 5 As used herein, the terms "DEPC" and "DOPC, refer to phosphatidyl choline compositions including C 18 fatty acids with one unsaturation and wherein the fatty acid is present in an amount from about 90% to about 100%, preferably, about 100%. In one embodiment at least about 40% of the fatty-acid chains of the 10 phosphatidyl choline comprise 16 or more carbon atoms. In another embodiment at least about 50% of the fatty-acid chains of the phosphatidyl choline comprise 16 or more carbon atoms. In another embodiment at least about 60% of the fatty-acid chains of the phosphatidyl choline comprise 16 or more carbon atoms. 15 In another embodiment at least about 70% of the fatty-acid chains of the phosphatidyl choline comprise 16 or more carbon atoms. In another embodiment at least about 80% of the fatty-acid chains of the phosphatidyl choline comprise 16 or more carbon atoms. In another embodiment at least about 90% of the fatty-acid chains of the 20 phosphatidyl choline comprise 16 or more carbon atoms. In another embodiment at least about 50% of the fatty-acid chains of the phosphatidyl choline comprise 18 or more carbon atoms. In another embodiment at least about 60% of the fatty-acid chains of the phosphatidyl choline comprise 18 or more carbon atoms. 25 In another embodiment at least about 70% of the fatty-acid chains of the phosphatidyl choline comprise 18 or more carbon atoms. In another embodiment at least about 80% of the fatty-acid chains of the phosphatidyl choline comprise 18 or more carbon atoms. In another embodiment at least about 90% of the fatty-acid chains of the 30 phosphatidyl choline comprise 18 or more carbon atoms. In another embodiment at least 50% of the fatty-acid chains of the phosphatidyl choline comprise at least one double bond per chain. 5 WO 2005/070465 PCT/US2005/001149 In another embodiment at least 60% of the fatty-acid chains of the phosphatidyl choline comprise at least one double bond per chain. In another embodiment at least 75% of the fatty-acid chains of the phosphatidyl choline comprise at least one double bond per chain. 5 In another embodiment at least 50% of the fatty-acid chains of the phosphatidyl choline comprise at least two double bonds per chain. In another embodiment at least 60% of the fatty-acid chains of the phosphatidyl choline comprise at least two double bonds per chain. In another embodiment at least 75% of the fatty-acid chains of the 10 phosphatidyl choline comprise at least two double bonds per chain. In another embodiment the phosphatidyl choline is selected from Soy PC, Egg-PC, DEPC, and DOPC, and mixtures thereof. In another embodiment the phosphatidyl choline is Soy-PC. In another embodiment the phosphatidyl choline is Egg-PC. 15 Cholesterol Cholesterol typically provides a combination of stability and flexibility to liposomal therapeutics. The lipid-based dispersion of the invention typically comprises zero to about 1% cholesterol by weight relative to the total amount of 20 lipids in the dispersion. In one embodiment, the lipid-based dispersion comprises less than 0.7% cholesterol by weight relative to the amount of total lipid in the dispersion. In another embodiment the lipid-based dispersion comprises less than 0.5% cholesterol by weight relative to the amount of total lipid in the dispersion. 25 In another embodiment the lipid-based dispersion comprises less than 0.2% cholesterol by weight relative to the amount of total lipid in the dispersion. In another embodiment the lipid-based dispersion comprises less than 0.05% cholesterol by weight relative to the amount of total lipid in the dispersion. 30 In another embodiment the lipid-based dispersion comprises at least about 0.01% cholesterol by weight relative to the amount of total lipid in the dispersion. 6 WO 2005/070465 PCT/US2005/001149 In another embodiment the lipid-based dispersion comprises no cholesterol. Anionic Phospholipid The anionic phospholipid typically provides a Coulombic character to the 5 liposomes. This can help stabilize the system upon storage and preventing fusion or aggregation or flocculation; it can also facilitate or enable freeze drying. An anionic surface coating also can contribute to quick biological clearance. Phospholipids in the phosphatidic acid, phosphatidylglycerol, and 10 phosphatidylserine classes (PA, PG, and PS) are particularly useful in the dispersions of the invention. As with the phosphatidyl choline, the anionic phospholipids typically comprise mainly C 16 or larger fatty-acid chains. As used herein, the term "an anionic phospholipid" includes a single anionic phospholipid as well as mixtures of one or more anionic phospholipids. 15 In one embodiment at least about 60% of the fatty-acid chains of the anionic phospholipid comprise 16 or more carbon atoms. In another embodiment at least about 70% of the fatty-acid chains of the anionic phospholipid comprise 16 or more carbon atoms. In another embodiment at least about 80% of the fatty-acid chains of the 20 anionic phospholipid comprise 16 or more carbon atoms. In another embodiment at least about 90% of the fatty-acid chains of the anionic phospholipid comprise 16 or more carbon atoms. In another embodiment at least about 60% of the fatty-acid chains of the anionic phospholipid comprise 18 or more carbon atoms. 25 In another embodiment at least about 70% of the fatty-acid chains of the anionic phospholipid comprise 18 or more carbon atoms. In another embodiment at least about 80% of the fatty-acid chains of the anionic phospholipid comprise 18 or more carbon atoms. In another embodiment at least about 90% of the fatty-acid chains of the 30 anionic phospholipid comprise 18 or more carbon atoms. In another embodiment the anionic phospholipid is selected from Egg PG (Egg-Phosphatidyglycerol), Soy-PG (Soy-Phosphatidylglycerol), DSPG (Distearoyl Phosphatidyglycerol), DPPG (Dipalmitoyl Phosphatidyglycerol), 7 WO 2005/070465 PCT/US2005/001149 DEPG (Dielaidoyl Phosphatidyglycerol), DOPG (Dioleoyl Phosphatidyglycerol), DSPA (Distearoyl Phosphatidic Acid), DPPA (Dipalmitoyl Phosphatidic Acid), DEPA (Dielaidoy Phosphatidic Acid), DOPA (Dioleoyl Phosphatidic Acid), DSPS (Distearoyl Phosphatidylseriie), DPPS 5 (Dipalmitoyl Phosphatidylserine), DEPS (Dielaidoy Phosphatidylserine), and DOPS (Dioleoyl Phosphatidylserine), and mixtures thereof. In another embodiment the anionic phospholipid is DSPG. Liposomes In certain embodiments of the invention, the lipid-based dispersion 10 comprises liposomes, for example, liposomes having a melting temperature below 35 *C, below 25 *C, or below 15 *C. Therapeutic agents Many highly'active and useful pharmaceutical agents suffer from poor 15 solubility. Consequently, the therapeutic use of these pharmaceutical agents is limited. Additionally, some carrier vehicles can be toxic, thereby further limiting the therapeutic agent's use. The lipid-based dispersions of the invention can be used to modify the solubility properties of a therapeutic agent so that the agent can be administered more easily, in a higher dose, or with fewer side 20 effects. The lipid-based dispersions of the invention are particularly useful for modifying (e.g. improving) the solubility properties of lipophilic therapeutic agents. As used herein, the term therapeutic agent includes diagnostic agents. The term therapeutic agent excludes the compound tacrolimus (FK506). The lipid-based dispersions of the invention can comprise at least one 25 therapeutic agent including, but not limited to, an analgesic, an anesthetic, an antiacne agent, an antibiotic, an antibacterial, an anticancer, an anticholinergic, an anticoagulant, an antidyskinetic, an antiemetic, an antifibrotic, an antifungal, an antiglaucoma agent, an anti-inflammatory, an antineoplastic, an antiosteoporotic, an antipagetic, an anti-Parkinson's agent, an antipsoriatic, an 30 antipyretic, an antiseptic, an antithrombotic, an antiviral, a calcium regulator, a keratolytic, an immunosuppressant or a sclerosing agent. Representative therapeutic agents that can be incorporated into a dispersion of the invention include the following agents: 8 WO 2005/070465 PCT/US2005/001149 Anesthetics (benzocaine, bupivacaine, chloroprocaine, epinephrine, etidocaine, levobupivacaine, lidocaine, midazolam, oxycondone, phencyclidine, propofol, and ropivacaine); Antineoplastics (6-diazo-5-oxo-L-norleucine, allopurinol sodium, 5 azaserine, carzinophillin A, denopterin, dolasetron mesylate, edatrexate, eflornithine, erythropoietin, etoposide, fluconazole, melphalan, methotrexate, mycophenolic acid, pamidronate disodium, podophyllinic acid 2-ethylhydrazide, paclitaxel, pteropterin, streptonigrin, Tomudex@ (N-((5-(((1,4-Dihydro-2 methyl-4-oxo-6-quinazolinyl)methyl)methylamino)-2-thienyl)carbonyl)-L 10 glutamic acid), and.ubenimex); Imunosuppressants (azathioprine, basiliximab, bucillamine, cyclosporine, daclizumab, muromonab-CD3, mycophenolic acid, mycophenolate mofetil and other mycophenolate esters, procodazole, Rho(D) immune globulin (human), romurtide, sirolimus, and ubenimex; 15 Analaesics (acetaminophen, aspirin, hydrocodone, pentosan polysulfate sodium, and phenyl salicylate); Antiacne Agents (erythromycin, isotretinoin, and tretinoin); Antibiotics (amikin sulfate, azithromycin, cefazolin, cilastatin, imipenem, minocycline, and penicillin); 20 Antibacterial Agents (4-sulfanilamidosalicylic acid, acediasulfone, amfenac, amoxicillin, ampicillin, apalcillin, apicycline, aspoxicillin, aztreonam, bambermycin(s), biapenem, carbenicillin, carumonam, cefadroxil, cefamandole, cefatrizine, cefbuperazone, cefclidin, cefdinir, cefditoren, cefepime, cefetamet, cefixime, cefienoxime, cefininox, cefodizime, cefonicid, cefoperazone, 25 ceforanide, cefotaxime, cefotetan, cefotiam, cefozopran, cefpimizole, cefpiramide, cefpirome, cefprozil, cefroxadine, ceftazidime, cefteram, ceftibuten, ceftriaxone, cefuzonam, cephalexin, cephaloglycin, cephalosporin C, cephradine, ciprofloxacin, clinafloxacin, cyclacillin, enoxacin, epicillin, flomoxef, grepafloxacin, hetacillin, imipenem, lomefloxacin, lymecycline, meropenem, 30 moxalactam, mupirocin, nadifloxacin, norfloxacin, panipenem, pazufloxacin, penicillin N, pipemidic acid, quinacillin, ritipenem, salazosulfadimidine, sparfloxacin, succisulfone, sulfachrysoidine, sulfaloxic acid, teicoplanin, 9 WO 2005/070465 PCT/US2005/001149 temafloxacin, temocillin, ticarcillin, tigemonam, tosufloxacin, trovafloxacin, and vancomycin); Anticholinergics (hyoscyamine and oxybutynin); Anticoagulants (dalteparin, heparin, and warfarin); 5 Antidyskinetics (amantidine, haloperidol, and tetrabenazine); Antifibrotics (aprotinin, and desmopressin acetate); Antifungals (amphotericin B, azaserine, candicidin(s), itraconazole, lucensomycin, natamycin, and nystatin); Antiglaucoma Agents (brimonidine tartrate, brinzolamide, demecarium 10 bromide, and levobetaxolol); Anti-inflammatory Agents (glucocorticoids, gold sodium thiomalate, 3 amino-4-hydroxybutyric acid, aceclofenac, alninoprofen, bromfenac, bumadizon, carprofen, diclofenac, diflunisal, enfenamic acid, etodolac, fendosal, flufenamic acid, gentisic acid, meclofenamic acid, mefenamic acid, mesalamine, 15 niflumic acid, olsalazine oxaceprol, S-adenosyhnethionine, salsalate, sulfasalazine, and tolfenamic acid) Antiosteoporotics (raloxifene, sodium fluoride, and teriparatide acetate); Antipagetics (elcatonin, and titudonic acid); Anti-Parkinson's Agents (benztropine mesylate, and biperiden), 20 Antipsoriatics (acitretin, anthralin, lonapalene, tacalcitiol, and tazarotene); Antipyretics (acetaminosalol, bennoprofen, epirizole, morazone, and salacylamide); Antiseptics (chlorhexidine gluconate, metronidazole, and sodium 25 sulfacetamide); Antithrombotics (argatroban, daltroban, iloprost, lamifiban, ozagrel, ridogrel, taprostene, and tirofiban); Calcium Regulators (calcifediol, calcitonin, ipriflavone, and parathyroid hormone); 30 Keratolytics (imiquimod, podofilox, and podophyllin); and Sclerosina Agents (polidocanol, sodium ricinoleate, sodium tetradecyl sulfate, and tribenoside). 10 WO 2005/070465 PCT/US2005/001149 Photoreactive Agents (e.g. a porphyrin such as gallium deuteroporphyrin dimethyl ester). In one embodiment the therapeutic agent is etoposide, propofol, cyclosporin, or paclitaxel. 5 In one embodiment the therapeutic agent is gallium deuteroporphyrin dimethyl ester. Relative Amounts In one embodiment the lipid-based dispersion comprises from 0.05 to 60 10 % anionic phospholipid by molar ratio relative to phosphatidyl choline. In one embodiment the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 1:1. In another embodiment the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 5:1. 15 In another embodiment the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 10:1. In another embodiment the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 20:1. 20 Formulations The lipid-based dispersions of the invention can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration. For example, the lipid-based dispersions of the invention can be 25 formulated to be administered parenterally. Moreover, the lipid-based dispersions can be formulated for subcutaneous, intramuscular, intravenous, or intraperitoneal administration by infusion or injection. These preparations may also contain a preservative to prevent the growth of microorganisms, buffers, or anti-oxidants in suitable amounts. 30 The lipid-based dispersions of the invention can also be administered orally in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier. They may be enclosed in gelatin capsules or may be incorporated directly with the food of the patient's diet. For 11- WO 2005/070465 PCT/US2005/001149 oral therapeutic administration, the lipid-based dispersions may be combined with one or more excipients and used in the form of ingestible capsules, elixirs, suspensions, syrups, and the like. Such compositions and preparations will typically contain at least 0.0 1% of the therapeutic agent. The percentage of the 5 compositions and preparations may, of course, be varied and may conveniently be between about 0.01 to about 60% of the weight of a given unit dosage form. The amount of therapeutic agent in such therapeutically useful compositions is such that an effective dosage level will be obtained. For topical administration, the lipid-based dispersions of the invention 10 can be formulated for administration to the skin in combination with a dermatologically acceptable carrier. Useful dosages of the lipid-based dispersions of the invention can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other 15 animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949. Generally, the concentration of a therapeutic agent in a unit dosage form of the invention will typically be from about 0.0 1-50% by weight of the composition, preferably from about 0.05-30%, and more preferably 0.1-20% by 20 weight of the composition. The amount of therapeutic agent required for use in treatment will vary not only with particular agent but also with the route of administration, the nature of the condition being treated and the age and condition of the patient; the amount required will be ultimately at the discretion of the attendant physician or 25 clinician. The desired amount of a formulation may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations. 30 In one embodiment the lipid based dispersions of the invention have a mean particle size measured by dynamic light scattering of less than about 90 nm, and in another embodiment they have a mean particle size of less than about 80nm. 12 WO 2005/070465 PCT/US2005/001149 The ability of a lipid-based dispersion of the invention to successfully deliver a therapeutic agent can be evaluated using a pharmacokinetic study similar to that described in Test A below. 5 Test A. Male Sprauge-Dawley rats were dosed intravenously with a liposomal formulation of either cyclosporin, propofol, or etoposide. For comparison rats were also dosed with a commercially available formulation of cyclosporine (Sandimmune Injection from Novartis lot # 135), propofol (Diprivan (Propofol) 10 from Astra Zeneca Pharmaceuticals), or etoposide (Etoposide for Injection from GensiaSicor Pharmaceuticals). Animals were dosed at 5 mg/kg for cyclosporin, 8mg/kg for propofol and 10mg/kg for etoposide. Blood samples were drawn prior to dosing and at 5, 30, 60 120, 240, 360, 480, 720 1440 and 2880 minutes after dosing. Samples were then analyzed for drug levels by HIPLC. 15 Representative data for cyclosporine, propofol, and etoposide from Test A is shown in Figures 1-3. This data demonstrates that the liposomal cyclosporin (at 5mg/kg), liposomal-etoposide and liposomal-propofol of the invention appear equivilent to the commercial formulation in Cmax and in AUC as well as clearance of the drug. 20 The invention will now be illustrated by the following non-limiting Examples. EXAMPLES Example 1. Lipid-based Dispersion of Etoposide 25 Soy-PC, DSPG and etoposide were dissolved in a 1:1 (v:v) mixture of methanol and chloroform at a molar ratio of Soy-PC:DSPG of 1:0.2 and a weight ratio of (Soy-PC + DSPG):etoposide of 20:1. Once all components were dissolved, solvents were removed by evaporation under continuous nitrogen flow. Residual solvent was removed by storing the tube containing the material 30 in a desiccator under vacuum for not less than 48 hours. The films were then hydrated in 9% sucrose at desired drug concentrations and sonicated to form liposomes. The resulting solution was filtered through a 0.2-micron filter and evaluated. 13 WO 2005/070465 PCT/US2005/001149 Example 2. Lipid-based Dispersion of Cyclosporin Soy-PC, DSPG and cyclosporin were dissolved in a 1:1 (v:v) mixture of methanol and chloroform at a molar ratio of Soy-PC:DSPG of 2:0.5 and a weight 5 ratio of (Soy-PC + DSPG):cyclosporin of 20:1. Once all components were dissolved, solvents were removed by evaporation under continuous nitrogen flow. Residual solvent was removed by storing the tube containing the material in a desiccator under vacuum for not less than 48 hours. The films were then hydrated in 9% sucrose at desired drug concentrations and sonicated to form 10 liposomes. The resulting solution was filtered through a 0.2-micron filter and evaluated. Example 3. Lipid-based Dispersion of Propofol Soy-PC, DSPG and propofol were dissolved in a 1:1 (v:v) mixture of 15 methanol and chloroform at a molar ratio of Soy-PC:DSPG of 1:0.4 and a weight ratio of (Soy-PC + DSPG):propofol of 10:1. Once all components were dissolved, solvents were removed by evaporation under continuous nitrogen flow. Residual solvent was removed by storing the tube containing the material in a desiccator under vacuum for not less than 48 hours. The films were then 20 hydrated in 9% sucrose at desired drug concentrations and sonicated to form liposomes. The resulting solution was filtered through a 0.2-micron filter and evaluated. 25 Example 4. Lipid-based Dispersion of Gallium Deuteroporphyrin Dimethyl Ester Soy-PC, DSPG and Gallium deuteroporphyrin dimethyl ester were dissolved in chloroform at a molar ratio of Soy-PC: DSPG of 1:0.3 and a weight ratio of (Soy-PC + DSPG): gallium deuteroporphyrin dimethyl ester of 20:1. 30 Once all components were dissolved, solvents were removed by evaporation under continuous nitrogen flow. Residual solvent was removed by storing the tube containing the material in a desiccator under vacuum for not less than 48 hours. The films were then hydrated in 9% sucrose at desired drug 14 WO 2005/070465 PCT/US2005/001149 concentrations and sonicated to form liposomes. The resulting solution was filtered through a 0.2-micron filter and evaluated. Example 5. Lipid-based Dispersion of Gallium Deuteroporphyrin Dimethyl 5 Ester Soy-PC, DSPG and gallium deuteroporphyrin dimethyl ester were dissolved in chloroform at a molar ratio of Soy-PC: DSPG of 1:0.1 and also at 1:0.4 and a weight ratio of (Soy-PC + DSPG): gallium deuteroporphyrin dimethyl ester of 20:1. 10 Once all components were dissolved, solvents were removed by evaporation under continuous nitrogen flow. Residual solvent was removed by storing the tube containing the material in a desiccator under vacuum for not less than 48 hours. The fihns were then hydrated in 9% sucrose at desired drug concentrations and sonicated to form liposomes. The resulting solution was 15 filtered through a 0.2-micron filter and evaluated. Testing for plasma precipitation (rabbit plasma) and for blood stability (rabbit blood with visual analysis for hemolysis) indicated no plasma precipitation and very low to no levels of hemolysis. 20 Example 6. The following illustrate representative pharmaceutical dosage forms, containing a lipid-based dispersion of the invention, for therapeutic or prophylactic use in humans. (i) Injection 1 (1 mg/ml) ma/ml 25 'Therapeutic Agent' 1.0 Phosphatidyl choline 28.3 Anionic Phospholipid 11.7 Sucrose 90 0.1 N Sodium hydroxide solution 30 (pH adjustment to 7.0-7.5) q.s. Water for injection q.s. ad 1 mL (ii) Injection 2 (10 mg/ml) mg/mi 35 'Therapeutic Agent' 10 Phosphatidyl choline 58 Anionic Phospholipid 12 15 WO 2005/070465 PCT/US2005/001149 0.1 N Sodium hydroxide solution (pH adjustment to 7.0-7.5) q.s. sucrose 90 Water for injection q.s. ad 1 mL 5 The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. 10 All publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and 15 scope of the invention. 16
Claims (26)
1. A lipid-based dispersion comprising, a) phosphatidyl choline; b) an anionic phospholipid; optionally c) up to 1% cholesterol by weight of total lipids; and d) an anesthetic or a sedative; wherein the mean particle size measured by dynamic light scattering is less than 100 nm. 5
2. The lipid-based dispersion of any one of claims 1 wherein at least 50% of the fatty-acid chains of the phosphatidyl choline comprise at least one double bond.
3. The lipid-based dispersion of claim 1 wherein the phosphatidyl choline is selected from Soy-PC, Egg-PC, DEPC, and DOPC.
4. The lipid-based dispersion of claim 1 wherein the phosphatidyl choline is Soy-PC. 10
5. The lipid-based dispersion of claim 1 wherein the phosphatidyl choline is Egg-PC.
6. The lipid-based dispersion of any one of claims 1-5 that comprises less than 0.5% cholesterol.
7. The lipid-based dispersion of any one of claims 1-5 that comprises less than 0.05% cholesterol. 15
8. The lipid-based dispersion of any one of claims 1-5 that comprises no cholesterol.
9. The lipid-based dispersion of any one of claims 1-8 wherein the anionic phospholipid is selected from Egg-PG, Soy-PG, DSPG, DPPG, DEPG, DOPG, DSPA, DPPA, DEPA, DOPA, DSPS, DPPS, DEPS, and DOPS, and mixtures thereof.
10. The lipid-based dispersion of any one of claims 1-8 wherein the anionic phospholipid is 20 DSPG.
11. The lipid-based dispersion of claim 1 wherein therapeutic agent is propofol.
12. The lipid-based dispersion of any one of claims 1-11 that comprises liposomes.
13. The lipid-based dispersion of claim 12 wherein the liposomes have a melting temperature below 35 'C. 17
14. The lipid-based dispersion of claim 12 wherein the liposomes have a melting temperature below 25 'C.
15. The lipid-based dispersion of claim 12 wherein the liposomes have a melting temperature below 15 'C. 5
16. The lipid-based dispersion of any one of claims 1-15 which comprises from 0.05% to 60% anionic phospholipid by mole relative to phosphatidyl choline.
17. The lipid-based dispersion of any one of claims 1-16 wherein the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid to therapeutic agent is greater than 1:1.
18. The lipid-based dispersion of any one of claims 1-16 wherein the weight ratio of total lipid 10 (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 5:1.
19. The lipid-based dispersion of any one of claims 1-16 wherein the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid) to therapeutic agent is greater than 10:1.
20. The lipid-based dispersion of any one of claims 1-16 wherein the weight ratio of total lipid (phosphatidyl choline + anionic phospholipid to therapeutic agent is greater than 20:1, 15
21. A unit dosage form comprising a lipid-based dispersion of any one of claims 1-20.
22. The unit dosage form of claim 21, which is formulated for parenteral administration.
23. A lipid-based dispersion as described in any one of claims 1-20 for use in medical therapy.
24. The use of a lipid based dispersion as described in any one of claims 1-20 to prepare a medicament useful for producing an anesthetic or sedative effect in a mammal. 20
25. The use of claim 24 wherein the therapeutic agent is propofol.
26. The lipid-based dispersion of any one of claims 1-25, substantially as hereinbefore described with reference to any of the Examples and/or Figures. 18
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53645904P | 2004-01-14 | 2004-01-14 | |
US60/536,459 | 2004-01-14 | ||
PCT/US2005/001149 WO2005070465A2 (en) | 2004-01-14 | 2005-01-14 | Lipid-based dispersions useful for drug delivery |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2005206163A1 AU2005206163A1 (en) | 2005-08-04 |
AU2005206163B2 true AU2005206163B2 (en) | 2011-06-30 |
Family
ID=34807013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2005206163A Expired AU2005206163B2 (en) | 2004-01-14 | 2005-01-14 | Lipid-based dispersions useful for drug delivery |
Country Status (7)
Country | Link |
---|---|
US (2) | US20050238705A1 (en) |
EP (2) | EP1706148A2 (en) |
JP (2) | JP5032849B2 (en) |
AU (1) | AU2005206163B2 (en) |
CA (1) | CA2551807A1 (en) |
NZ (2) | NZ589967A (en) |
WO (1) | WO2005070465A2 (en) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003018018A2 (en) * | 2001-08-24 | 2003-03-06 | Neopharm, Inc. | Vinorelbine compositions and methods of use |
US9107824B2 (en) | 2005-11-08 | 2015-08-18 | Insmed Incorporated | Methods of treating cancer with high potency lipid-based platinum compound formulations administered intraperitoneally |
EP2371355A3 (en) | 2006-07-19 | 2012-02-08 | The Board of Regents of the University of Texas System | Preparations of phospholipids and pharmaceuticals containing-5-amino salicyclic acid for the treatment of inflammatory bowel disease |
KR101830018B1 (en) * | 2008-05-23 | 2018-02-19 | 더 유니버시티 오브 브리티쉬 콜롬비아 | Modified drugs for use in liposomal nanoparticles |
US8394800B2 (en) * | 2009-11-19 | 2013-03-12 | Galderma Laboratories, L.P. | Method for treating psoriasis |
CN101785758B (en) * | 2010-03-19 | 2012-06-27 | 海南本创医药科技有限公司 | Cefmenoxime hydrochloride/anhydrous sodium carbonate pharmaceutical composition liposome injection |
CN101912363A (en) * | 2010-07-29 | 2010-12-15 | 蔡海德 | Dissolving ultrafiltration-spray drying-molecule dispersion coating-hydration palletizing-freeze drying method for preparing liposome combination medicine |
CN102068413B (en) * | 2010-12-31 | 2013-01-02 | 石药集团中诺药业(石家庄)有限公司 | Biapenem lyophilized preparation and preparation method thereof |
CN102366410B (en) * | 2011-09-14 | 2013-05-29 | 海南灵康制药有限公司 | Argatroban liposome injection |
CN102626388B (en) * | 2012-04-19 | 2013-05-29 | 海南永田药物研究院有限公司 | Liposome solid preparation of ozagrel |
CN102688190A (en) * | 2012-04-28 | 2012-09-26 | 陈建华 | Preparation for oral administration of oleanolic acid solid lipid nanoparticle and transport mechanism thereof |
JP2015530387A (en) | 2012-09-04 | 2015-10-15 | エライゾン ファーマシューティカルズ, エルエルシー | Prevention of recurrence of lung cancer by lipid complexed cisplatin |
CN102871963A (en) * | 2012-10-19 | 2013-01-16 | 浙江大学 | Paclitaxel lipid nanoparticle injection liquid with anti-tumor activity |
CN103860467A (en) * | 2012-11-22 | 2014-06-18 | 苏州太湖美药业有限公司 | Bromfenac sodium lipidosome eye drop |
CN103040746B (en) * | 2012-12-17 | 2014-07-02 | 海南圣欣医药科技有限公司 | Palonosetron hydrochloride lipidosome injection |
WO2015023675A2 (en) | 2013-08-12 | 2015-02-19 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US10172797B2 (en) | 2013-12-17 | 2019-01-08 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
AU2015290098B2 (en) | 2014-07-17 | 2018-11-01 | Pharmaceutical Manufacturing Research Services, Inc. | Immediate release abuse deterrent liquid fill dosage form |
US9687455B2 (en) | 2014-08-14 | 2017-06-27 | John Daniel Dobak | Sodium tetradecyl sulfate formulations for treatment of adipose tissue |
AU2015312134A1 (en) * | 2014-09-02 | 2017-03-23 | Bhupinder Singh | Deuterated or a non-deuterated molecule and pharmaceutical formulations |
JP2017531026A (en) | 2014-10-20 | 2017-10-19 | ファーマシューティカル マニュファクチュアリング リサーチ サービシズ,インコーポレーテッド | Sustained release abuse deterrent liquid filler form |
US9351945B1 (en) | 2015-02-27 | 2016-05-31 | John Daniel Dobak, III | Reduction of adipose tissue |
CN105287406B (en) * | 2015-11-17 | 2018-12-04 | 西安力邦肇新生物科技有限公司 | A kind of Propofol lipidosome freeze-dried preparation and preparation method thereof |
WO2018031967A1 (en) | 2016-08-12 | 2018-02-15 | L.E.A.F. Holdings Group Llc | Polyglutamated antifolates and uses thereof |
EP4052729A1 (en) | 2016-08-12 | 2022-09-07 | L.E.A.F Holdings Group LLC | Alpha and gamma-d polyglutamated antifolates and uses thereof |
WO2018031980A1 (en) | 2016-08-12 | 2018-02-15 | L.E.A.F. Holdings Group Llc | Polyglutamated antifolates and uses thereof |
SG10201913501RA (en) * | 2016-09-14 | 2020-03-30 | Univ Nanyang Tech | Liposomal formulations |
CN107137345A (en) * | 2017-05-25 | 2017-09-08 | 广东药科大学 | A kind of liposome gel formulation and its preparation and use for suppressing scar proliferation |
JP7378401B2 (en) * | 2018-01-02 | 2023-11-13 | サイネクシス,インコーポレーテッド | Injectable composition of triterpenoid antifungal encapsulated in liposomes |
WO2019157140A1 (en) | 2018-02-07 | 2019-08-15 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated raltitrexed and uses thereof |
EP3749312A4 (en) | 2018-02-07 | 2022-02-23 | L.E.A.F Holdings Group LLC | Alpha polyglutamated lometrexol and uses thereof |
CA3090387A1 (en) | 2018-02-07 | 2019-08-15 | L.E.A.F. Holdings Group Llc | Alpha polyglutamated pralatrexate and uses thereof |
EP3749313A4 (en) | 2018-02-07 | 2022-03-16 | L.E.A.F Holdings Group LLC | Alpha polyglutamated antifolates and uses thereof |
WO2019157138A1 (en) | 2018-02-07 | 2019-08-15 | L.E.A.F. Holdings Group Llc | Alpha polyglutamated pemetrexed and uses thereof |
US12220431B2 (en) | 2018-02-07 | 2025-02-11 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated antifolates and uses thereof |
US12336994B2 (en) | 2018-02-07 | 2025-06-24 | L.E.A.F. Holdings Group Llc | Alpha polyglutamated tetrahydrofolates and uses thereof |
WO2019157123A1 (en) | 2018-02-07 | 2019-08-15 | L.E.A.F. Holdings Group Llc | Alpha polyglutamated aminopterin and uses thereof |
US12246015B2 (en) | 2018-02-07 | 2025-03-11 | L.E.A.F. Holdings Group Llc | Alpha polyglutamated raltitrexed and uses thereof |
CN111954530A (en) | 2018-02-07 | 2020-11-17 | L.E.A.F.控股集团公司 | Gamma polyglutamate pemetrexed and uses thereof |
CN111954529A (en) | 2018-02-07 | 2020-11-17 | L.E.A.F.控股集团公司 | Alpha polyglutamated methotrexate and uses thereof |
US12048766B2 (en) | 2018-02-14 | 2024-07-30 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated tetrahydrofolates and uses thereof |
EP3752158A4 (en) | 2018-02-14 | 2022-03-09 | L.E.A.F Holdings Group LLC | Gamma polyglutamated aminopterin and uses thereof |
US11771700B2 (en) | 2018-02-14 | 2023-10-03 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated lometrexol and uses thereof |
WO2019160736A1 (en) | 2018-02-14 | 2019-08-22 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated pralatrexate and uses thereof |
US12290518B2 (en) | 2018-02-14 | 2025-05-06 | L.E.A.F. Holdings Group Llc | Gamma polyglutamated methotrexate and uses thereof |
CN109432009A (en) * | 2018-12-14 | 2019-03-08 | 天津青松华药医药有限公司 | A kind of cefpiramide sodium lipidosome and its preparation method and application |
KR102701064B1 (en) * | 2021-03-04 | 2024-08-30 | 포항공과대학교 산학협력단 | A manufacturing method for liposom drug delivery structure based on liposomal bupivacaine and slow release preparation |
WO2024079750A1 (en) * | 2022-10-12 | 2024-04-18 | Tripathi Vinay Shankar | Ready to use antibiotic solution for veterinary use |
CN116211827B (en) * | 2023-03-17 | 2024-04-05 | 浙江大学 | A kind of teriparatide solid lipid nanoparticles and its preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995013053A1 (en) * | 1993-11-12 | 1995-05-18 | The Research Foundation Of State University Of New York | Taxol formulation |
EP0697214A1 (en) * | 1994-07-19 | 1996-02-21 | Vestar, Inc. | Liposomal cyclosporin pharmaceutical formulations |
US5741517A (en) * | 1990-08-06 | 1998-04-21 | A. Nattermann & Cie Gmbh | Water-containing liposome system |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938949A (en) | 1988-09-12 | 1990-07-03 | University Of New York | Treatment of damaged bone marrow and dosage units therefor |
WO1991014423A1 (en) * | 1990-03-20 | 1991-10-03 | Otsuka Pharmaceutical Co., Ltd. | Liposome preparation |
WO1991017751A1 (en) * | 1990-05-24 | 1991-11-28 | Fujisawa, Inc. | Orally administrable gallium compositions and methods of treatment therewith |
DE4122661C2 (en) * | 1990-08-06 | 1996-07-11 | Nattermann A & Cie | Pharmaceutical product for the treatment of Pneumocystis carinii pneumonia |
DE4122744C2 (en) * | 1990-08-06 | 1994-02-03 | Nattermann A & Cie | Aqueous liposome system and process for its preparation |
JPH0899897A (en) * | 1994-08-05 | 1996-04-16 | Shionogi & Co Ltd | Interleukin-2 adsorption type lipid globule |
US5637625A (en) * | 1996-03-19 | 1997-06-10 | Research Triangle Pharmaceuticals Ltd. | Propofol microdroplet formulations |
ES2252780T3 (en) * | 1996-08-22 | 2006-05-16 | Jagotec Ag | COMPOSITIONS THAT INCLUDE MICROPARTICLES OF INSOLUBLE SUBSTANCES IN WATER AND METHOD FOR THEIR PREPARATION. |
WO1998055104A1 (en) * | 1997-06-06 | 1998-12-10 | Shionogi & Co., Ltd. | Improvement in medicament administration system |
US6120800A (en) * | 1997-09-25 | 2000-09-19 | Nexstar Pharmaceuticals, Inc. | Vinca-alkaloid vesicles with enhanced efficacy and tumor targeting properties |
US6461637B1 (en) * | 2000-09-01 | 2002-10-08 | Neopharm, Inc. | Method of administering liposomal encapsulated taxane |
JP2001026544A (en) * | 1999-05-11 | 2001-01-30 | Sankyo Co Ltd | Liposome formulation of oil-soluble antitumor agent |
US6713454B1 (en) * | 1999-09-13 | 2004-03-30 | Nobex Corporation | Prodrugs of etoposide and etoposide analogs |
US6689381B2 (en) * | 2000-06-09 | 2004-02-10 | Osi Pharmaceuticals, Inc. | Liposomal benzoquinazoline thymidylate synthase inhibitor formulations |
US6984395B2 (en) * | 2001-04-11 | 2006-01-10 | Qlt, Inc. | Drug delivery system for hydrophobic drugs |
US20030026831A1 (en) * | 2001-04-20 | 2003-02-06 | Aparna Lakkaraju | Anionic liposomes for delivery of bioactive agents |
EP1401506A4 (en) * | 2001-05-31 | 2005-02-16 | Miravant Pharm Inc | Metallotetrapyrrolic photosensitizing agents for use in photodynamic therapy |
AU2003295954A1 (en) * | 2002-11-26 | 2004-06-18 | Gilead Sciences, Inc. | Method of drug loading in liposomes by gradient |
ES2685436T3 (en) * | 2002-12-09 | 2018-10-09 | Abraxis Bioscience, Llc | Compositions and procedures for administration of pharmacological agents |
US20040247624A1 (en) * | 2003-06-05 | 2004-12-09 | Unger Evan Charles | Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility |
TWI492759B (en) * | 2008-03-05 | 2015-07-21 | Otsuka Pharma Co Ltd | Cholestanol derivative for combined use |
US20110250259A1 (en) * | 2010-04-12 | 2011-10-13 | Kevin Buckman | Method of treating and preventing breast diseases and breast cancer with medicated formula |
-
2005
- 2005-01-14 US US11/035,755 patent/US20050238705A1/en not_active Abandoned
- 2005-01-14 EP EP05705671A patent/EP1706148A2/en not_active Withdrawn
- 2005-01-14 US US10/585,915 patent/US20090060998A1/en not_active Abandoned
- 2005-01-14 WO PCT/US2005/001149 patent/WO2005070465A2/en active Application Filing
- 2005-01-14 NZ NZ589967A patent/NZ589967A/en not_active IP Right Cessation
- 2005-01-14 EP EP11176711A patent/EP2384744A1/en not_active Withdrawn
- 2005-01-14 CA CA002551807A patent/CA2551807A1/en not_active Abandoned
- 2005-01-14 NZ NZ548195A patent/NZ548195A/en not_active IP Right Cessation
- 2005-01-14 JP JP2006549610A patent/JP5032849B2/en not_active Expired - Lifetime
- 2005-01-14 AU AU2005206163A patent/AU2005206163B2/en not_active Expired
-
2012
- 2012-03-29 JP JP2012077589A patent/JP2012126747A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5741517A (en) * | 1990-08-06 | 1998-04-21 | A. Nattermann & Cie Gmbh | Water-containing liposome system |
WO1995013053A1 (en) * | 1993-11-12 | 1995-05-18 | The Research Foundation Of State University Of New York | Taxol formulation |
EP0697214A1 (en) * | 1994-07-19 | 1996-02-21 | Vestar, Inc. | Liposomal cyclosporin pharmaceutical formulations |
Non-Patent Citations (1)
Title |
---|
DUERR, M. et al: "Investigations on Mixed Micelle and Liposome Preparations for Parenteral Use Based on Soya Phosphatidylcholine" European Journal of Pharmaceutics and Biopharmaceutics, vol. 40(3), pp 147 - 156, June 1994. * |
Also Published As
Publication number | Publication date |
---|---|
CA2551807A1 (en) | 2005-08-04 |
US20090060998A1 (en) | 2009-03-05 |
WO2005070465A3 (en) | 2006-04-13 |
AU2005206163A1 (en) | 2005-08-04 |
EP2384744A1 (en) | 2011-11-09 |
US20050238705A1 (en) | 2005-10-27 |
WO2005070465A2 (en) | 2005-08-04 |
JP2007517909A (en) | 2007-07-05 |
NZ589967A (en) | 2012-07-27 |
JP5032849B2 (en) | 2012-09-26 |
JP2012126747A (en) | 2012-07-05 |
EP1706148A2 (en) | 2006-10-04 |
NZ548195A (en) | 2011-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005206163B2 (en) | Lipid-based dispersions useful for drug delivery | |
US20230027339A1 (en) | Lipid depot formulations | |
US9192575B2 (en) | Sustained-release liposomal anesthetic compositions | |
RU2649810C2 (en) | Lipid preconcentrate of sustained release cationic pharmacologically active substance and pharmaceutical composition containing it | |
ZA200700039B (en) | Liquid depot formulations | |
ES2712072T3 (en) | Pharmaceutical composition of tapentadol | |
ES2782360T3 (en) | Compositions and procedures for tattoo removal | |
KR20220066068A (en) | Solvent Delivery Systems for Local Delivery of Active Agents | |
RU2820649C2 (en) | Sustained release anesthetic compositions and methods for preparation thereof | |
KR100426636B1 (en) | Injectable Gel Type Lipid Composition And Preparation Method Thereof | |
HK1156256A (en) | Sustained-release liposomal anesthetic compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |