AU2003241590B2 - Neutralizing human anti-IGFR antibody - Google Patents
Neutralizing human anti-IGFR antibodyInfo
- Publication number
- AU2003241590B2 AU2003241590B2 AU2003241590A AU2003241590A AU2003241590B2 AU 2003241590 B2 AU2003241590 B2 AU 2003241590B2 AU 2003241590 A AU2003241590 A AU 2003241590A AU 2003241590 A AU2003241590 A AU 2003241590A AU 2003241590 B2 AU2003241590 B2 AU 2003241590B2
- Authority
- AU
- Australia
- Prior art keywords
- seq
- amino acids
- igfr1
- cdr
- variable region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 241000282414 Homo sapiens Species 0.000 title claims description 84
- 230000003472 neutralizing effect Effects 0.000 title description 2
- 210000004027 cell Anatomy 0.000 claims description 219
- 150000001413 amino acids Chemical class 0.000 claims description 187
- 230000027455 binding Effects 0.000 claims description 105
- 238000000034 method Methods 0.000 claims description 73
- 102000039446 nucleic acids Human genes 0.000 claims description 64
- 108020004707 nucleic acids Proteins 0.000 claims description 64
- 150000007523 nucleic acids Chemical class 0.000 claims description 64
- 239000002773 nucleotide Substances 0.000 claims description 49
- 239000000203 mixture Substances 0.000 claims description 48
- 125000003729 nucleotide group Chemical group 0.000 claims description 45
- 230000014509 gene expression Effects 0.000 claims description 37
- 206010028980 Neoplasm Diseases 0.000 claims description 36
- 210000004408 hybridoma Anatomy 0.000 claims description 36
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 35
- 239000013598 vector Substances 0.000 claims description 35
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 33
- 229920001184 polypeptide Polymers 0.000 claims description 32
- 239000008194 pharmaceutical composition Substances 0.000 claims description 27
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 claims description 26
- 201000011510 cancer Diseases 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 17
- 230000003053 immunization Effects 0.000 claims description 16
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 230000001404 mediated effect Effects 0.000 claims description 13
- 230000012010 growth Effects 0.000 claims description 12
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 claims description 11
- 239000003814 drug Substances 0.000 claims description 11
- 102100037852 Insulin-like growth factor I Human genes 0.000 claims description 10
- 102000013275 Somatomedins Human genes 0.000 claims description 10
- 206010006187 Breast cancer Diseases 0.000 claims description 9
- 208000026310 Breast neoplasm Diseases 0.000 claims description 9
- 241001465754 Metazoa Species 0.000 claims description 9
- 108700019146 Transgenes Proteins 0.000 claims description 9
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 9
- 206010009944 Colon cancer Diseases 0.000 claims description 8
- 230000035578 autophosphorylation Effects 0.000 claims description 8
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 201000000050 myeloid neoplasm Diseases 0.000 claims description 7
- 206010000599 Acromegaly Diseases 0.000 claims description 6
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 6
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 6
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 6
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 6
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 6
- 230000000890 antigenic effect Effects 0.000 claims description 6
- 201000010881 cervical cancer Diseases 0.000 claims description 6
- 201000005202 lung cancer Diseases 0.000 claims description 6
- 208000020816 lung neoplasm Diseases 0.000 claims description 6
- 238000002560 therapeutic procedure Methods 0.000 claims description 6
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 claims description 5
- 208000004403 Prostatic Hyperplasia Diseases 0.000 claims description 5
- 208000009311 VIPoma Diseases 0.000 claims description 5
- 210000004204 blood vessel Anatomy 0.000 claims description 5
- 230000035755 proliferation Effects 0.000 claims description 5
- 206010042863 synovial sarcoma Diseases 0.000 claims description 5
- 229940124597 therapeutic agent Drugs 0.000 claims description 5
- 201000001320 Atherosclerosis Diseases 0.000 claims description 4
- 206010005949 Bone cancer Diseases 0.000 claims description 4
- 208000018084 Bone neoplasm Diseases 0.000 claims description 4
- 206010012735 Diarrhoea Diseases 0.000 claims description 4
- 206010018265 Gigantism Diseases 0.000 claims description 4
- 206010033128 Ovarian cancer Diseases 0.000 claims description 4
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 4
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 4
- 201000002528 pancreatic cancer Diseases 0.000 claims description 4
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 4
- 208000037803 restenosis Diseases 0.000 claims description 4
- 210000002460 smooth muscle Anatomy 0.000 claims description 4
- 206010005003 Bladder cancer Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000002458 carcinoid tumor Diseases 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 230000001394 metastastic effect Effects 0.000 claims description 3
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 3
- 230000009261 transgenic effect Effects 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 claims 13
- 101100066427 Homo sapiens FCGR1A gene Proteins 0.000 claims 13
- 125000003275 alpha amino acid group Chemical group 0.000 claims 12
- 230000001093 anti-cancer Effects 0.000 claims 2
- 229940024606 amino acid Drugs 0.000 description 119
- 235000001014 amino acid Nutrition 0.000 description 119
- 239000012634 fragment Substances 0.000 description 70
- 239000000427 antigen Substances 0.000 description 65
- 108091007433 antigens Proteins 0.000 description 65
- 102000036639 antigens Human genes 0.000 description 65
- 108090000623 proteins and genes Proteins 0.000 description 48
- 239000000872 buffer Substances 0.000 description 32
- 241000699666 Mus <mouse, genus> Species 0.000 description 31
- 235000018102 proteins Nutrition 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 241000701022 Cytomegalovirus Species 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 22
- 238000003556 assay Methods 0.000 description 22
- 239000013612 plasmid Substances 0.000 description 21
- 241000699670 Mus sp. Species 0.000 description 20
- 108091028043 Nucleic acid sequence Proteins 0.000 description 20
- -1 phosphate ester Chemical class 0.000 description 20
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 18
- 239000000126 substance Substances 0.000 description 17
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 16
- 239000006228 supernatant Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 14
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 13
- 238000002649 immunization Methods 0.000 description 13
- 229920001223 polyethylene glycol Polymers 0.000 description 13
- 210000002966 serum Anatomy 0.000 description 13
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 12
- 239000002202 Polyethylene glycol Substances 0.000 description 12
- 229960002685 biotin Drugs 0.000 description 12
- 239000011616 biotin Substances 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 12
- 230000004927 fusion Effects 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 11
- 238000002965 ELISA Methods 0.000 description 11
- 108060003951 Immunoglobulin Proteins 0.000 description 11
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 11
- 102000048143 Insulin-Like Growth Factor II Human genes 0.000 description 11
- 201000010099 disease Diseases 0.000 description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 11
- 238000003018 immunoassay Methods 0.000 description 11
- 102000018358 immunoglobulin Human genes 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 241000287828 Gallus gallus Species 0.000 description 10
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 10
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 10
- 235000020958 biotin Nutrition 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 108020003175 receptors Proteins 0.000 description 10
- 102000005962 receptors Human genes 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 9
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 9
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 108091092356 cellular DNA Proteins 0.000 description 9
- 238000009396 hybridization Methods 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 210000000952 spleen Anatomy 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 239000012472 biological sample Substances 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000010790 dilution Methods 0.000 description 8
- 239000012895 dilution Substances 0.000 description 8
- 230000026731 phosphorylation Effects 0.000 description 8
- 238000006366 phosphorylation reaction Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000012091 fetal bovine serum Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000001415 gene therapy Methods 0.000 description 7
- 238000000338 in vitro Methods 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 108091033319 polynucleotide Proteins 0.000 description 7
- 102000040430 polynucleotide Human genes 0.000 description 7
- 239000002157 polynucleotide Substances 0.000 description 7
- 238000001890 transfection Methods 0.000 description 7
- 239000013603 viral vector Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 6
- 241000009328 Perro Species 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- GHCZTIFQWKKGSB-UHFFFAOYSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O GHCZTIFQWKKGSB-UHFFFAOYSA-N 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 5
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 5
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 5
- 241000124008 Mammalia Species 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 5
- 238000001574 biopsy Methods 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000002405 diagnostic procedure Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000002608 insulinlike Effects 0.000 description 5
- 210000004962 mammalian cell Anatomy 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 230000001177 retroviral effect Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- 241000710929 Alphavirus Species 0.000 description 4
- 108010077544 Chromatin Proteins 0.000 description 4
- 241000989913 Gunnera petaloidea Species 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- 241000699660 Mus musculus Species 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 239000000051 antiandrogen Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 210000003483 chromatin Anatomy 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000000328 estrogen antagonist Substances 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006210 lotion Substances 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 3
- 239000013607 AAV vector Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 3
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 3
- 241000702421 Dependoparvovirus Species 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 238000012286 ELISA Assay Methods 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 241000713666 Lentivirus Species 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 241000710960 Sindbis virus Species 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 239000000443 aerosol Substances 0.000 description 3
- 229940100198 alkylating agent Drugs 0.000 description 3
- 239000002168 alkylating agent Substances 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000004037 angiogenesis inhibitor Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000002280 anti-androgenic effect Effects 0.000 description 3
- 229940046836 anti-estrogen Drugs 0.000 description 3
- 230000001833 anti-estrogenic effect Effects 0.000 description 3
- 230000000340 anti-metabolite Effects 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 229940100197 antimetabolite Drugs 0.000 description 3
- 239000002256 antimetabolite Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- WZSDNEJJUSYNSG-UHFFFAOYSA-N azocan-1-yl-(3,4,5-trimethoxyphenyl)methanone Chemical compound COC1=C(OC)C(OC)=CC(C(=O)N2CCCCCCC2)=C1 WZSDNEJJUSYNSG-UHFFFAOYSA-N 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000001268 conjugating effect Effects 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 229960002885 histidine Drugs 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 238000003364 immunohistochemistry Methods 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 229940121354 immunomodulator Drugs 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 3
- 230000011278 mitosis Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000011340 peptidyl-tyrosine autophosphorylation Effects 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- JJGWLCLUQNFDIS-GTSONSFRSA-M sodium;1-[6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoyloxy]-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)CCCCCNC(=O)CCCC[C@H]1[C@H]2NC(=O)N[C@H]2CS1 JJGWLCLUQNFDIS-GTSONSFRSA-M 0.000 description 3
- 210000004989 spleen cell Anatomy 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 108010073969 valyllysine Proteins 0.000 description 3
- UVGHPGOONBRLCX-NJSLBKSFSA-N (2,5-dioxopyrrolidin-1-yl) 6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O UVGHPGOONBRLCX-NJSLBKSFSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 2
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 235000003911 Arachis Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- VKKYFICVTYKFIO-CIUDSAMLSA-N Arg-Ala-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCN=C(N)N VKKYFICVTYKFIO-CIUDSAMLSA-N 0.000 description 2
- COXMUHNBYCVVRG-DCAQKATOSA-N Arg-Leu-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O COXMUHNBYCVVRG-DCAQKATOSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- SLKLLQWZQHXYSV-CIUDSAMLSA-N Asn-Ala-Lys Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(O)=O SLKLLQWZQHXYSV-CIUDSAMLSA-N 0.000 description 2
- MKJBPDLENBUHQU-CIUDSAMLSA-N Asn-Ser-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O MKJBPDLENBUHQU-CIUDSAMLSA-N 0.000 description 2
- JSHWXQIZOCVWIA-ZKWXMUAHSA-N Asp-Ser-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O JSHWXQIZOCVWIA-ZKWXMUAHSA-N 0.000 description 2
- MNQMTYSEKZHIDF-GCJQMDKQSA-N Asp-Thr-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O MNQMTYSEKZHIDF-GCJQMDKQSA-N 0.000 description 2
- MJJIHRWNWSQTOI-VEVYYDQMSA-N Asp-Thr-Arg Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O MJJIHRWNWSQTOI-VEVYYDQMSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 description 2
- 101100217502 Caenorhabditis elegans lgg-3 gene Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- GUTLYIVDDKVIGB-OUBTZVSYSA-N Cobalt-60 Chemical compound [60Co] GUTLYIVDDKVIGB-OUBTZVSYSA-N 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- TVYMKYUSZSVOAG-ZLUOBGJFSA-N Cys-Ala-Ala Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O TVYMKYUSZSVOAG-ZLUOBGJFSA-N 0.000 description 2
- AMRLSQGGERHDHJ-FXQIFTODSA-N Cys-Ala-Arg Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O AMRLSQGGERHDHJ-FXQIFTODSA-N 0.000 description 2
- 230000006820 DNA synthesis Effects 0.000 description 2
- 241000450599 DNA viruses Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- QSDKBRMVXSWAQE-BFHQHQDPSA-N Gly-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN QSDKBRMVXSWAQE-BFHQHQDPSA-N 0.000 description 2
- OJNZVYSGVYLQIN-BQBZGAKWSA-N Gly-Met-Asp Chemical compound [H]NCC(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(O)=O OJNZVYSGVYLQIN-BQBZGAKWSA-N 0.000 description 2
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 description 2
- TVTZEOHWHUVYCG-KYNKHSRBSA-N Gly-Thr-Thr Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O TVTZEOHWHUVYCG-KYNKHSRBSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 2
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- UGTHTQWIQKEDEH-BQBZGAKWSA-N L-alanyl-L-prolylglycine zwitterion Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UGTHTQWIQKEDEH-BQBZGAKWSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- FMEICTQWUKNAGC-YUMQZZPRSA-N Leu-Gly-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O FMEICTQWUKNAGC-YUMQZZPRSA-N 0.000 description 2
- GQZMPWBZQALKJO-UWVGGRQHSA-N Lys-Gly-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O GQZMPWBZQALKJO-UWVGGRQHSA-N 0.000 description 2
- GQFDWEDHOQRNLC-QWRGUYRKSA-N Lys-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN GQFDWEDHOQRNLC-QWRGUYRKSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- CAODKDAPYGUMLK-FXQIFTODSA-N Met-Asn-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O CAODKDAPYGUMLK-FXQIFTODSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 108091061960 Naked DNA Proteins 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- NYQBYASWHVRESG-MIMYLULJSA-N Phe-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 NYQBYASWHVRESG-MIMYLULJSA-N 0.000 description 2
- KIQUCMUULDXTAZ-HJOGWXRNSA-N Phe-Tyr-Tyr Chemical compound N[C@@H](Cc1ccccc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O KIQUCMUULDXTAZ-HJOGWXRNSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 108010004729 Phycoerythrin Proteins 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- QEDMOZUJTGEIBF-FXQIFTODSA-N Ser-Arg-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O QEDMOZUJTGEIBF-FXQIFTODSA-N 0.000 description 2
- JFWDJFULOLKQFY-QWRGUYRKSA-N Ser-Gly-Phe Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O JFWDJFULOLKQFY-QWRGUYRKSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- ABWNZPOIUJMNKT-IXOXFDKPSA-N Thr-Phe-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(O)=O ABWNZPOIUJMNKT-IXOXFDKPSA-N 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- MWUYSCVVPVITMW-IGNZVWTISA-N Tyr-Tyr-Ala Chemical compound C([C@@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 MWUYSCVVPVITMW-IGNZVWTISA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- HTONZBWRYUKUKC-RCWTZXSCSA-N Val-Thr-Val Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O HTONZBWRYUKUKC-RCWTZXSCSA-N 0.000 description 2
- QHSSPPHOHJSTML-HOCLYGCPSA-N Val-Trp-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)NCC(=O)O)N QHSSPPHOHJSTML-HOCLYGCPSA-N 0.000 description 2
- OWFGFHQMSBTKLX-UFYCRDLUSA-N Val-Tyr-Tyr Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC2=CC=C(C=C2)O)C(=O)O)N OWFGFHQMSBTKLX-UFYCRDLUSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 108010008685 alanyl-glutamyl-aspartic acid Proteins 0.000 description 2
- 108010069020 alanyl-prolyl-glycine Proteins 0.000 description 2
- 108010086434 alanyl-seryl-glycine Proteins 0.000 description 2
- 108010050025 alpha-glutamyltryptophan Proteins 0.000 description 2
- 229960003896 aminopterin Drugs 0.000 description 2
- 230000008485 antagonism Effects 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000009175 antibody therapy Methods 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 108010043240 arginyl-leucyl-glycine Proteins 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 239000003899 bactericide agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 239000003145 cytotoxic factor Substances 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- OGPBJKLSAFTDLK-IGMARMGPSA-N europium-152 Chemical compound [152Eu] OGPBJKLSAFTDLK-IGMARMGPSA-N 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 2
- 229960000961 floxuridine Drugs 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 108010012058 leucyltyrosine Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000000865 liniment Substances 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 235000018977 lysine Nutrition 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- 230000000394 mitotic effect Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 229960002340 pentostatin Drugs 0.000 description 2
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 2
- 239000012857 radioactive material Substances 0.000 description 2
- 238000001525 receptor binding assay Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 2
- 229940054269 sodium pyruvate Drugs 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000004565 tumor cell growth Effects 0.000 description 2
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 2
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- DPVHGFAJLZWDOC-PVXXTIHASA-N (2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxane-3,4,5-triol;dihydrate Chemical compound O.O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DPVHGFAJLZWDOC-PVXXTIHASA-N 0.000 description 1
- GTXSRFUZSLTDFX-HRCADAONSA-N (2s)-n-[(2s)-3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl]-4-methyl-2-[[(2s)-2-sulfanyl-4-(3,4,4-trimethyl-2,5-dioxoimidazolidin-1-yl)butanoyl]amino]pentanamide Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](S)CCN1C(=O)N(C)C(C)(C)C1=O GTXSRFUZSLTDFX-HRCADAONSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-M (E,E)-sorbate Chemical compound C\C=C\C=C\C([O-])=O WSWCOQWTEOXDQX-MQQKCMAXSA-M 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N (R)-alpha-Tocopherol Natural products OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 1
- DDMOUSALMHHKOS-UHFFFAOYSA-N 1,2-dichloro-1,1,2,2-tetrafluoroethane Chemical compound FC(F)(Cl)C(F)(F)Cl DDMOUSALMHHKOS-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- KGLPWQKSKUVKMJ-UHFFFAOYSA-N 2,3-dihydrophthalazine-1,4-dione Chemical class C1=CC=C2C(=O)NNC(=O)C2=C1 KGLPWQKSKUVKMJ-UHFFFAOYSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 102000012440 Acetylcholinesterase Human genes 0.000 description 1
- 108010022752 Acetylcholinesterase Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 108010000239 Aequorin Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- MAEQBGQTDWDSJQ-LSJOCFKGSA-N Ala-Met-His Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N MAEQBGQTDWDSJQ-LSJOCFKGSA-N 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 208000002267 Anti-neutrophil cytoplasmic antibody-associated vasculitis Diseases 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 101150076489 B gene Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 101100454808 Caenorhabditis elegans lgg-2 gene Proteins 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108090000323 DNA Topoisomerases Proteins 0.000 description 1
- 102000003915 DNA Topoisomerases Human genes 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- XPDXVDYUQZHFPV-UHFFFAOYSA-N Dansyl Chloride Chemical compound C1=CC=C2C(N(C)C)=CC=CC2=C1S(Cl)(=O)=O XPDXVDYUQZHFPV-UHFFFAOYSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102100024746 Dihydrofolate reductase Human genes 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- ZQZFYGIXNQKOAV-OCEACIFDSA-N Droloxifene Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=C(O)C=CC=1)\C1=CC=C(OCCN(C)C)C=C1 ZQZFYGIXNQKOAV-OCEACIFDSA-N 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- SITLTJHOQZFJGG-XPUUQOCRSA-N Glu-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CCC(O)=O SITLTJHOQZFJGG-XPUUQOCRSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- MIIVFRCYJABHTQ-ONGXEEELSA-N Gly-Leu-Val Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O MIIVFRCYJABHTQ-ONGXEEELSA-N 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 241000175212 Herpesvirales Species 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- 238000012450 HuMAb Mouse Methods 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- PDIDTSZKKFEDMB-UWVGGRQHSA-N Lys-Pro-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O PDIDTSZKKFEDMB-UWVGGRQHSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- ABHVWYPPHDYFNY-WDSOQIARSA-N Met-His-Trp Chemical compound C([C@H](NC(=O)[C@@H](N)CCSC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CN=CN1 ABHVWYPPHDYFNY-WDSOQIARSA-N 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 206010068115 Metastatic carcinoid tumour Diseases 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 101001055320 Myxine glutinosa Insulin-like growth factor Proteins 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 101710149086 Nuclease S1 Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 241000920340 Pion Species 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 1
- 229920002651 Polysorbate 85 Polymers 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101900161471 Pseudomonas aeruginosa Exotoxin A Proteins 0.000 description 1
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 241001068295 Replication defective viruses Species 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 240000003946 Saponaria officinalis Species 0.000 description 1
- 101150017038 Ser gene Proteins 0.000 description 1
- YMTLKLXDFCSCNX-BYPYZUCNSA-N Ser-Gly-Gly Chemical compound OC[C@H](N)C(=O)NCC(=O)NCC(O)=O YMTLKLXDFCSCNX-BYPYZUCNSA-N 0.000 description 1
- NQZFFLBPNDLTPO-DLOVCJGASA-N Ser-Phe-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CO)N NQZFFLBPNDLTPO-DLOVCJGASA-N 0.000 description 1
- ILVGMCVCQBJPSH-WDSKDSINSA-N Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO ILVGMCVCQBJPSH-WDSKDSINSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 102000004584 Somatomedin Receptors Human genes 0.000 description 1
- 108010017622 Somatomedin Receptors Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- UIRKNQLZZXALBI-MSVGPLKSSA-N Squalamine Chemical compound C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 UIRKNQLZZXALBI-MSVGPLKSSA-N 0.000 description 1
- UIRKNQLZZXALBI-UHFFFAOYSA-N Squalamine Natural products OC1CC2CC(NCCCNCCCCN)CCC2(C)C2C1C1CCC(C(C)CCC(C(C)C)OS(O)(=O)=O)C1(C)CC2 UIRKNQLZZXALBI-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- MBLJBGZWLHTJBH-SZMVWBNQSA-N Trp-Val-Arg Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)=CNC2=C1 MBLJBGZWLHTJBH-SZMVWBNQSA-N 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 1
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940022698 acetylcholinesterase Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000007059 acute toxicity Effects 0.000 description 1
- 231100000403 acute toxicity Toxicity 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229960002932 anastrozole Drugs 0.000 description 1
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 238000011319 anticancer therapy Methods 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 229960000997 bicalutamide Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001615 biotins Chemical class 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- ZXFCRFYULUUSDW-OWXODZSWSA-N chembl2104970 Chemical compound C([C@H]1C2)C3=CC=CC(O)=C3C(=O)C1=C(O)[C@@]1(O)[C@@H]2CC(O)=C(C(=O)N)C1=O ZXFCRFYULUUSDW-OWXODZSWSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 229950009003 cilengitide Drugs 0.000 description 1
- AMLYAMJWYAIXIA-VWNVYAMZSA-N cilengitide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](C(C)C)N(C)C(=O)[C@H]1CC1=CC=CC=C1 AMLYAMJWYAIXIA-VWNVYAMZSA-N 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000978 cyproterone acetate Drugs 0.000 description 1
- UWFYSQMTEOIJJG-FDTZYFLXSA-N cyproterone acetate Chemical compound C1=C(Cl)C2=CC(=O)[C@@H]3C[C@@H]3[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 UWFYSQMTEOIJJG-FDTZYFLXSA-N 0.000 description 1
- UFULAYFCSOUIOV-UHFFFAOYSA-N cysteamine Chemical compound NCCS UFULAYFCSOUIOV-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 108010017271 denileukin diftitox Proteins 0.000 description 1
- 229960002923 denileukin diftitox Drugs 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 229950004203 droloxifene Drugs 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 229960000255 exemestane Drugs 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002074 flutamide Drugs 0.000 description 1
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 102000005396 glutamine synthetase Human genes 0.000 description 1
- 108020002326 glutamine synthetase Proteins 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 102000044162 human IGF1 Human genes 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 1
- 229940097277 hygromycin b Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000002621 immunoprecipitating effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 229960003881 letrozole Drugs 0.000 description 1
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- OCSMOTCMPXTDND-OUAUKWLOSA-N marimastat Chemical compound CNC(=O)[C@H](C(C)(C)C)NC(=O)[C@H](CC(C)C)[C@H](O)C(=O)NO OCSMOTCMPXTDND-OUAUKWLOSA-N 0.000 description 1
- 229950008959 marimastat Drugs 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960003151 mercaptamine Drugs 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- ZTLGJPIZUOVDMT-UHFFFAOYSA-N n,n-dichlorotriazin-4-amine Chemical compound ClN(Cl)C1=CC=NN=N1 ZTLGJPIZUOVDMT-UHFFFAOYSA-N 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229960002653 nilutamide Drugs 0.000 description 1
- XWXYUMMDTVBTOU-UHFFFAOYSA-N nilutamide Chemical compound O=C1C(C)(C)NC(=O)N1C1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 XWXYUMMDTVBTOU-UHFFFAOYSA-N 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- RXNXLAHQOVLMIE-UHFFFAOYSA-N phenyl 10-methylacridin-10-ium-9-carboxylate Chemical compound C12=CC=CC=C2[N+](C)=C2C=CC=CC2=C1C(=O)OC1=CC=CC=C1 RXNXLAHQOVLMIE-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940113171 polysorbate 85 Drugs 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 108010020755 prolyl-glycyl-glycine Proteins 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- BMKDZUISNHGIBY-UHFFFAOYSA-N razoxane Chemical compound C1C(=O)NC(=O)CN1C(C)CN1CC(=O)NC(=O)C1 BMKDZUISNHGIBY-UHFFFAOYSA-N 0.000 description 1
- 229960000460 razoxane Drugs 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940100996 sodium bisulfate Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 230000037439 somatic mutation Effects 0.000 description 1
- 229940075554 sorbate Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 229950001248 squalamine Drugs 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000012414 sterilization procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 229960000575 trastuzumab Drugs 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000010415 tropism Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229960001055 uracil mustard Drugs 0.000 description 1
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 229960000653 valrubicin Drugs 0.000 description 1
- ZOCKGBMQLCSHFP-KQRAQHLDSA-N valrubicin Chemical compound O([C@H]1C[C@](CC2=C(O)C=3C(=O)C4=CC=CC(OC)=C4C(=O)C=3C(O)=C21)(O)C(=O)COC(=O)CCCC)[C@H]1C[C@H](NC(=O)C(F)(F)F)[C@H](O)[C@H](C)O1 ZOCKGBMQLCSHFP-KQRAQHLDSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
Description
NEUTRALIZING HUMAN ANTI-IGFR ANTIBODY
This application claims the benefit of U.S. Provisional Patent Application No. 60/383,459, filed May 24, 2002; U.S. Provisional Patent Application No. 60/393,214, filed July 2, 2002 and U.S. Provisional Patent Application No. 60/436,254, filed December 23, 2002 each of which is herein incorporated by reference in its entirety.
FIELD OF THE INVENTION
The present invention relates to fully human, monoclonal anti-lnsulin-like Growth Factor Receptor-I (IGFR1) antibodies as well as methods of using the antibodies and methods of producing the antibodies.
BACKGROUND OF THE INVENTION
The insulin-like growth factors, also known as somatomedins, include insulinlike growth factor-l (IGF-I) and insulin-like growth factor-II (IGF-II) (Klapper, et al., (1983) Endocrinol. 112:2215 and Rinderknecht, et al., (1978) Febs.Lett. 89:283). These growth factors exert mitogenic activity on various cell types, including tumor cells (Macaulay, (1992) Br. J. Cancer 65:311), by binding to a common receptor named the insulin-like growth factor receptor-1 (IGFR1) (Sepp-Lorenzino, (1998) Breast Cancer Research and Treatment 47:235). Interaction of IGFs with IGFR1 activates the receptor by triggering autophosphorylation of the receptor on tyrosine residues (Butler, et al., (1998) Comparative Biochemistry and Physiology 121 :19). Once activated, IGFR1 , in turn, phosphorylates intracellular targets to activate cellular signaling pathways. This receptor activation is critical for stimulation of tumor cell growth and survival. Therefore, inhibition of IGFR1 activity represents a valuable potential method to treat or prevent growth of human cancers and other proliferative diseases. Several lines of evidence indicate that IGF-I, IGF-II and their receptor IGFR1 are important mediators of the malignant phenotype. Plasma levels of IGF-I have been found to be the strongest predictor of prostate cancer risk (Chan, et al, (1998) Science 279:563) and similar epidemiological studies strongly link plasma IGF-I levels with breast, colon and lung cancer risk.
Overexpression of Insulin-like Growth Factor Receptor-l has also been demonstrated in several cancer cell lines and tumor tissues. IGFR1 is overexpressed in 40% of all breast cancer cell lines (Pandini, et al., (1999) Cancer Res. 5:1935) and in 15% of lung cancer cell lines. In breast cancer tumor tissue, IGFR1 is overexpressed 6-14 fold and IGFR1 exhibits 2-4 fold higher kinase activity as compared to normal tissue (Webster, etal., (1996) Cancer Res. 56:2781 and Pekonen, et al., (1998) Cancer Res. 48:1343). Ninety percent of colorectal cancer tissue biopsies exhibit elevated IGFR1 levels wherein the extent of IGFR1 expression is correlated with the severity of the disease. Analysis of primary cervical cancer cell cultures and cervical cancer cell lines revealed 3- and 5-fold overexpression of
IGFR1 , respectively, as compared to normal ectocervical cells (Steller, et al., (1996) Cancer Res. 56:1762). Expression of IGFR1 in synovial sarcoma cells also correlated with an aggressive phenotype (i.e., metastasis and high rate of proliferation; Xie, et al., (1999) Cancer Res. 59:3588). Acromegaly, a slowly developing disease, is caused by hypersecretion of growth hormone and IGF-I (Ben-Schlomo, etal., (2001) Endocrin. Metab.Clin. North. Am. 30:565-583). Antagonism of JGFR1 function may be helpful in treating the disease.
There are several antibodies, which are known in the art, which inhibit the activity of IGFR1. However, these are of relatively low therapeutic value. For example, α-IR3 (Kull, et al., (1983) J. Biol. Chem. 258:6561), 1H7 (Li etal., (1993) Biochem. Biophys. Res. Comm. 196.92-98 and Xiong et al., (1992) Proc. Natl. Acad. Sci., U.S.A. 89:5356-5360; Santa Cruz biotechnology, Inc.; Santa Cruz, CA) and MAB391 (R&D Systems; Minneapolis, MN) are mouse monoclonal antibodies which interact with 1GFR1 and inhibit its activity. Since these are mouse antibodies, their therapeutic utility in humans is limited. When immunocompetent human subjects are administered a dose of mouse antibodies, the subjects produce antibodies against the mouse immunoglobulin sequences. These human anti-mouse antibodies (HAMA) neutralize the therapeutic antibodies and may induce acute toxicity (i.e., a HAMA response).
One method by which to avert a HAMA response is through the use of fully- human antibodies which lack any foreign (e.g., mouse) amino acid sequences. Although the use of fully-human antibodies is an effective method by which to reduce or prevent human host immune rejection of the therapeutic antibody, rejection of the
fully-human antibody can occur. Human rejection of human antibodies may be referred to as a human anti-human antibody response (HAHA response). HAHA response can be mediated by factors such as the presence of rare, low occurrence amino acid sequences in the fully-human antibodies. For this reason, therapeutic antibodies may also be optimized by the inclusion of non-immunogenic or only weakly immunogenic human antibody framework sequences. Preferably, the sequences occur frequently in other human antibodies.
SUMMARY OF THE INVENTION The present invention provides fully human anti-human IGFR1 monoclonal antibodies which, preferably, will not induce a HAMA response or will not induce a HAHA response when administered to human subjects and which are useful for treating or preventing diseases which are mediated by IGFR1 (e.g., malignancy). The present invention provides a binding composition (e.g., an antibody or antigen-binding fragment thereof) comprising a light chain, wherein the chain comprises the amino acid sequence of the light chain CDR-L1 defined by SEQ ID NO: 8 or 31, the amino acid sequence of the light chain CDR-L2 defined by SEQ ID NO: 9 or 32 and the amino acid sequence of the light chain CDR-L3 defined by SEQ ID NO: 10 or 33. Also provided is a binding composition (e.g., an antibody or antigen- binding fragment thereof) including a heavy chain, wherein the chain includes the amino acid sequence of the heavy chain CDR-H1 defined by SEQ ID NO: 14 or 37, the amino acid sequence of the heavy chain CDR-H2 defined by SEQ ID NO: 15 or 38 and the amino acid sequence of the heavy chain CDR-H3 defined by SEQ ID NO: 16 or 39. Preferably, the binding composition (e.g., an antibody or antigen-binding fragment thereof) of the invention comprises a light chain variable region, preferably a mature light chain variable region, which includes amino acids 20-128 of SEQ ID NO: 2, amino acids 21-130 of SEQ ID NO: 25, amino acids 20-128 of SEQ ID NO: 41 or 43 or amino acids 20-128 of SEQ ID NO: 41 , 43, 72, 74, 76 or 78 and/or a heavy chain variable region, preferably a mature heavy chain variable region, which includes amino acids 20-137 of SEQ ID NO: 4, amino acids 20-140 of SEQ ID NO: 27, amino acids 20-137 of SEQ ID NO: 45 or amino acids 20-137 of SEQ ID NO: 112.
Pharmaceutical compositions comprising a binding composition of the present invention and a pharmaceutically acceptable carrier are also provided by the present
invention. The binding composition of the invention may also be conjugated to a substance such as polyethylene glycol.
The present invention also includes a binding composition (e.g., a human antibody or antigen binding fragment thereof) which specifically binds to human IGFR1 comprising a property selected from the group consisting of:
(a) binds to IGFR1 (e.g., human IGFR1) with a Kd of about 86 X 10"11 or less;
(b) Has an off rate ( for IGFR1 (e.g., human IGFR1) of about 6.50 X 10"5 or smaller;
(c) Has an on rate (Kon) for IGFR1 (e.g., human IGFR1) of about 0.7 X 105 or greater; (d) Competes with IGF1 for binding to IGFR1 (e.g., human IGFR1);
(e) Inhibits autophosphorylation (e.g., with an IC50 of 0.10 nM) of IGFR1 (e.g., human IGFR1); and
(f) Inhibits anchorage-independent growth of a cell expressing IGFR1 (e.g., human IGFR1). Preferably, the binding composition comprises all of said properties (a-f). More preferably, the binding composition (e.g., a human antibody or antigen binding fragment thereof) comprises a member selected from:
(a) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 8, CDR-L2 defined by SEQ ID NO: 9 and CDR-L3 defined by SEQ ID NO: 10; (b) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 31 , CDR-L2 defined by SEQ ID NO: 32 and CDR-L3 defined by SEQ ID NO: 33;
(c) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 14 or SEQ ID NO: 17, CDR-H2 defined by SEQ ID NO: 15 and CDR-H3 defined by SEQ ID NO: 16; and
(d) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 37 or SEQ ID NO: 70, CDR-H2 defined by SEQ ID NO: 38 and CDR-H3 defined by SEQ ID NO: 39.
The present invention also includes an isolated nucleic acid encoding a peptide selected from:
(a) amino acids 20-128 of SEQ ID NO: 2;
(b) amino acids 21-130 of SEQ ID NO: 25;
(c) amino acids 20-128 of SEQ ID NO: 72;
(d) amino acids 20-128 of SEQ ID NO: 74;
(a) amino acids 20-137 of SEQ ID NO: 4;
(b) amino acids 20-140 of SEQ ID NO: 27;
(c) amino acids 20-137 of SEQ ID NO: 45;
(d) amino acids 20-137 of SEQ ID NO: 112; (e) amino acids 20-128 of SEQ ID NO: 76; and (f) amino acids 20-128 of SEQ ID NO: 78.
Preferably, the nucleic acid is selected from:
(a) nucleotides 58-384 of SEQ ID NO: 1 ;
(b) nucleotides 61-390 of SEQ ID NO: 24; (c) nucleotides 58-384 of SEQ ID NO: 71 ;
(d) nucleotides 58-384 of SEQ ID NO: 73.
(e) nucleotides 58-411 of SEQ ID NO: 3;
(f) nucleotides 58-420 of SEQ ID NO: 26;
(g) nucleotides 58-411 of SEQ ID NO: 44; (h) nucleotides 58-411 of SEQ ID NO: 111 ;
(i) nucleotides 58-384 of SEQ ID NO: 75; and (j) nucleotides 58-384 of SEQ ID NO: 77.
The present invention also provides a recombinant vector comprising any of the foregoing polynucleotides along with a host cell comprising the vector. The present invention also comprises a polypeptide selected from:
(a) amino acids 20-128 of SEQ ID NO: 2;
(b) amino acids 21-130 of SEQ ID NO: 25;
(c) amino acids 20-128 of SEQ ID NO: 72;
(d) amino acids 20-128 of SEQ ID NO: 74; (e) amino acids 20-137 of SEQ ID NO: 4;
(f) amino acids 20-140 of SEQ ID NO: 27;
(g) amino acids 20-137 of SEQ ID NO: 45; (h) amino acids 20-137 of SEQ ID NO: 112;
(i) amino acids 20-128 of SEQ ID NO: 76; and 0) amino acids 20-128 of SEQ ID NO: 78.
Preferably, the binding composition of the present invention is a human antibody comprising at least one (e.g., 1 or 2) light chain/heavy chain combination selected from:
a) a light chain variable region comprising amino acids 20-128 of SEQ ID NO: 2 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 4; [15H12/19D12 mature LC - 15H12/19D12 mature HC] b) a light chain variable region comprising amino acids 21-130 of SEQ ID NO: 25 and a heavy chain variable region comprising amino acids 20-140 of SEQ ID NO:
27; [1 H3 mature LC - 1 H3 mature HC] c) a light variable region comprising amino acids 20-128 of SEQ ID NO: 72 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 45; [mature LCC - mature HCA] d) a light variable region comprising amino acids 20-128 of SEQ ID NO: 74 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 45; [mature LCD - mature HCA] e) a light variable region comprising amino acids 20-128 of SEQ ID NO: 76 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 45; [mature LCE - mature HCA] f) a light variable region comprising amino acids 20-128 of SEQ ID NO: 78 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 45; [mature LCF - mature HCA] g) a light variable region comprising amino acids 20-128 of SEQ ID NO: 72 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112;
[mature LCC - mature HCB] h) a light variable region comprising amino acids 20-128 of SEQ ID NO: 74 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112;
[mature LCD - mature HCB] i) a light variable region comprising amino acids 20-128 of SEQ ID NO: 76 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112;
[mature LCE - mature HCB] and j) a light variable region comprising amino acids 20-128 of SEQ ID NO: 78 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112. [mature LCF - mature HCB].
More preferably, the human antibody is a tetramer comprising two of the foregoing light/heavy chain pairs. Preferably, the human antibody includes mature LCF paired with mature HCA or mature HCB.
Also provided is a method for making a polypeptide comprising amino acids 20-128 of SEQ ID NO: 2, amino acids 20-137 of SEQ ID NO: 4, amino acids 21-130 of SEQ ID NO: 25, amino acids 20-140 of SEQ ID NO: 27, amino acids 20-128 of SEQ ID NO: 41 , 43, 72, 74, 76 or 78, amino acids 20-137 of SEQ ID NO: 45 or amino acids 20-137 of SEQ ID NO: 112 comprising culturing the host cell under conditions in which the polypeptide is produced. Preferably, the polypeptide is also isolated from the host cell.
The invention also provides a method for treating or preventing a medical condition in a subject which is mediated by elevated expression or activity of Insulin- like Growth Factor Receptor-I or by elevated expression of one or more of its ligands (e.g., IGF-I or IGF-II) comprising administering a binding composition of the invention (e.g., antibody or antigen-binding fragment of the invention) to the subject. Preferably, the binding composition comprises a member selected from:
(a) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 8, CDR-L2 defined by SEQ ID NO: 9 and CDR-L3 defined by SEQ ID NO: 10; (b) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 31 , CDR-L2 defined by SEQ ID NO: 32 and CDR-L3 defined by SEQ ID NO: 33; (c) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 14 or SEQ ID NO: 17, CDR-H2 defined by SEQ ID NO: 15 and CDR-H3 defined by SEQ ID NO: 16; and (d) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 37 or SEQ ID NO: 70, CDR-H2 defined by SEQ ID NO: 38 and CDR-H3 defined by SEQ ID NO: 39.
The present invention includes any plasmid selected from the group consisting of : (i) CMV promoter-15H12/19D12 HCA (γ4)-
Deposit name: "15H12/19D12 HCA (γ4)";
ATCC accession No.: ; (ii) CMV promoter-15H12/19D12 HCB (γ4)-
Deposit name: "15H12/19D12 HCB (γ4)";
ATCC accession No.: ;
(iii) CMV promoter-15H12/19D12 HCA (γl)-
Deposit name: "15H12/19D12 HCA (γl)";
ATCC accession No.: ;
(iv) CMV promoter-15H12/19D12 LCC (κ>
Deposit name: "15H12/19D12 LCC (K)";
ATCC accession No.: ; (v) CMV promoter-15H12/19D12 LCD (K)-
Deposit name: "15H12/19D12 LCD (K)";
ATCC accession No.: ;
(vi) CMV promoter-15H12/19D12 LCE (κ>
Deposit name: "15H12/19D12 LCE (K)"; ATCC accession No.: ; and
(vii) CMV promoter-15H12/19D12 LCF (κ>
Deposit name: "15H12/19D12 LCF (K)";
ATCC accession No.: ; as well as the nucleic acid inserts of any of the foregoing plasmids. Also included are the nucleic acid portions of the inserts encoding the immunoglobulin variable regions included in the plasmid inserts optionally including the immunoglobulin constant region (i.e., excluding the signal sequence). Also included are any polypeptides encoded by the nucleic acids of any of the foregoing plasmid inserts as well as polypeptides encoding the immunoglobulin variable regions included in any insert optionally including the immunoglobulin constant region (i.e., excluding the signal sequence).
The above-identified plasmids were deposited, under the Budapest Treaty, on with the American Type Culture Collection (ATCC); 10801 University
Boulevard; Manassas, Virginia 20110-2209. All restrictions on access to the plasmids deposited in ATCC will be removed upon grant of a patent.
Preferably, the binding composition is combined with a pharmaceutically acceptable carrier in a pharmaceutical composition. Such medical conditions, as contemplated by the present invention, include acromegaly, ovarian cancer, pancreatic cancer, benign prostatic hyperplasia, breast cancer, prostate cancer, bone cancer, lung cancer, colorectal cancer, cervical cancer, synovial sarcoma, diarrhea associated with metastatic carcinoid, vasoactive intestinal peptide secreting tumors, gigantism, psoriasis, atherosclerosis, smooth muscle restenosis of blood vessels and inappropriate microvascular proliferation.
The binding compositions may be administered to a subject, for example, by a parenteral route. Combination therapies comprising administration of a binding composition of the present invention in association with an anti-cancer therapy agent or in association with an anti-cancer therapeutic procedure are also provided. A method for producing a fully-human anti-IGFR1 antibody which comprises the steps of immunizing a transgenic non-human animal having a genome comprising a human heavy chain transgene and a human light chain transgene with IGFR1 antigenic polypeptide, preferably amino acids 30-902 of SEQ ID NO: 19 and/or a cell (e.g., HEK293) which expresses IGFR1 on its surface, such that antibodies are produced by B cells of the animal; isolating B cells of the animal; fusing the B cells with myeloma cells to form immortal, hybridoma cells that secrete human monoclonal antibodies specific for IGFR1 ; and isolating the human monoclonal antibodies specific for IGFR1 is also provided.
DETAILED DESCRIPTION
Preferred embodiments of the present invention include a fully human, monoclonal antibody or antigen-binding fragment thereof which specifically recognizes and binds to Insulin-like Growth Factor Receptor-I, preferably amino acids 30-902 of SEQ ID NO: 19. Preferably, the antibody or antigen-binding fragment thereof is 1H3, 15H12, 19D12, 15H12/19D12 LCA, 15H12/19D12 LCB, 15H12/19D12 LCC, 15H12/19D12 LCD, 15H12/19D12 LCE, 15H12/19D12 LCF, 15H12/19D12 HCA OM5H12/19D12 HCB.
A binding composition or agent refers to a molecule that binds with specificity to IGFR1 , e.g., in a ligand-receptor type fashion or an antibody-antigen interaction, e.g., proteins which specifically associate with IGFR1 , e.g., in a natural physiologically relevant protein-protein interaction, either covalent or non-covalent. The term "binding composition" is preferably a polypeptide, such as a full antibody or antigen- binding fragment thereof of the present invention (e.g., 15H12/19D12 LCA, 15H12/19D12 LCB, 15H12/19D12 LCC, 15H12/19D12 LCD, 15H12/19D12 LCE, 15H12/19D12 LCF, 15H12/19D12 HCA OR 15H12/19D12 HCB or any peptide set forth, below, in Table 1).
The antibodies and antigen-binding fragments of the invention may be used to inhibit growth of cells, preferably malignant cells, both in vitro and in vivo. Without being bound by a single theory, the antibodies and antigen-binding fragments of the
invention may inhibit cellular growth by inhibiting the interaction between IGFR1 and a ligand for the receptor, such as Insulin-like Growth Factor-I (IGF-I) or Insulin-like Growth Factor-ll (IGF-II). The antibodies and antigen-binding fragments may also inhibit IGFR1 autophosphorylation, inhibit anchorage-independent growth of cells (e.g., cancer cells) expressing IGFR1 and inhibit activation of AKT kinase by inducing degradation of IGFRL Preferably, the antibodies and antigen-binding fragments neutralize the activity of IGFR1 and/or down-regulate IGFR1. The antibodies and antigen-binding fragments may be used to treat or prevent diseases which are mediated by IGFR1. The present invention also provides methods for making the antibodies and antigen-binding fragments of the invention.
The term "antibody molecule" refers to whole antibodies (e.g., IgG, preferably, lgG1 or lgG4) and fragments, preferably antigen-binding fragments, thereof. Antibody fragments include Fab antibody fragments, F(ab)2 antibody fragments, Fv antibody fragments, single chain Fv antibody fragments and dsFv antibody fragments. The terms "IGFR1 " "Insulin-like Growth Factor Receptor-I" and "Insulin-like
Growth Factor Receptor, type I" are well known in the art. Although IGFR1 may be from any organism, it is preferably from an animal, more preferably from a mammal (e.g., mouse, rat, rabbit, sheep or dog) and most preferably from a human. The nucleotide and amino acid sequence of a typical human IGFR1 precursor has the Genbank Accession No. X04434 or NM_000875 (SEQ ID NO: 19). Cleavage of the precursor (e.g., between amino acids 710 and 711) produces an α-subunit and a β- subunit which associate to form a mature receptor. In preferred embodiments of the invention, amino acids 30-902, from the full length IGFR1 polypeptide are used as an antigen for generation of anti-IGFR1 antibodies. The terms "IGF-I" "Insulin-like Growth Factor-I" and "Insulin-like Growth
Factor, type I" are also well known in the art. The terms "IGF-II" "Insulin-like Growth Factor-ll" and "Insulin-like Growth Factor, type II" are also well known in the art. Although IGF-I or IGF-II may be from any organism, they are preferably from an animal, more preferably from a mammal (e.g., mouse, rat, rabbit, sheep or dog) and most preferably from a human. The nucleic acid and amino acid sequence of typical, human IGF-I and IGF-II have the Genbank Accession No. XM_052648 (SEQ ID NO: 20) and NM_000612 (SEQ ID NO: 21), respectively. The term "slGFRI" or "soluble IGFR1" includes any soluble fragment of IGFR1 (e.g., human IGFR1), preferably a
fragment from which the receptor trans-membrane region has been deleted, more preferably amino acids 30-902 of SEQ ID NO: 19.
The amino acid sequence of the variable region of preferred, fully human, monoclonal anti-IGFR1 antibody molecules of the invention (e.g., 1 H3, 15H12 and 19D12) along with the nucleotide sequences of nucleic acids which encode the regions are summarized in Table 1. The present invention includes any nucleic acid or polypeptide (e.g., antibody) which comprises one or more (e.g., 1 , 2, 3, 4, 5, 6, 7 or 8) of any of the nucleic acids or polypeptides (including mature fragments thereof) set forth, below, in Table 1. Table 1 also includes a summary of the amino acid and nucleotide sequences which correspond to the CDR regions of the antibodies. The amino acid and nucleotide sequences corresponding to the variable region of 15H12 and 19D12 are identical; for this reason, only a single sequence for each variable region or CDR is shown.
Table 1. Summary of amino acid and nucleotide sequences of the invention.
CDR-L1 is the first complementarity determining region (CDR) which occurs in the light chain, CDR-L2 is the second CDR which occurs on the light chain and CDR- L3 is the third CDR which occurs on the light chain. Similarly, CDR-H1 is the first CDR which occurs on the heavy chain, CDR-H2 is the second CDR which occurs on the heavy chain and CDR-H3 is the third CDR which occurs on the heavy chain.
FR-L1 is the first framework region of the light chain, FR-L2 is the second framework region of the light chain, FR-L3 is the third framework region of the light chain, FR-L4 is the fourth framework region on the light chain, FR-H1 is the first framework region of the heavy chain, FR-H2 is the second framework region of the heavy chain, FR-H3 is the third framework region of the heavy chain and FR-H4 is the fourth framework region of the heavy chain. These terms and the arrangement of CDRs and FRs on an immunoglobulin chain are well known in the art. A mature light chain variable region of the invention, which lacks the signal peptide (i.e., first 19 or 20 residues), is amino acids 20-128 of SEQ ID NO: 2, 41 , 43,
72, 74, 76 or 78 which is encoded by nucleotides 58-384 of SEQ ID NO: 1 , 40, 42, 71 ,
73, 75, or 77 or amino acids 21-130 of SEQ ID NO: 25 which is encoded by nucleotides 61-390 of SEQ ID NO: 24.
A mature heavy chain variable region, which lacks the signal peptide (i.e., first 19 residues), is amino acids 20-137 of SEQ ID NO: 4, 45 or 112 which is encoded by nucleotides 58-411 of SEQ ID NO: 3, 44 or 111 or amino acids 20-140 of SEQ ID NO: 27 which is encoded by nucleotides 58-420 of SEQ ID NO: 26. In some embodiments the 15H12 and 19D12 CDR-H1 is GFTFSSFAMH (SEQ
ID NO: 17) which is encoded by the nucleotide sequence of SEQ ID NO: 8. In some embodiments the 1H3 CDR-H1 is NYAMH (SEQ ID NO: 70).
The present invention also includes antibodies and antigen-binding fragments which include the framework regions of the antibodies and antigen-binding fragments of the invention. Preferably, FR-L1 is amino acids 20-42 of SEQ ID NO: 2 or amino acids 21-43 of SEQ ID NO: 25; FR-L2 is amino acids 54-68 of SEQ ID NO: 2 or amino acids 55-69 of SEQ ID NO: 25; FR-L3 is amino acids 76-107 of SEQ ID NO: 2 or amino acids 77-108 of SEQ ID NO: 25; FR-L4 is amino acids 17-128 of SEQ ID NO: 2 or amino acids 128-130 of SEQ ID NO: 25; FR-H1 is amino acids 20-44 or 20- 49 of SEQ ID NO: 4 or amino acids 20-44 or 20-49 of SEQ ID NO: 27; FR-H2 is amino acids 55-68 of SEQ ID NO: 4 or amino acids 55-68 of SEQ ID NO: 27; FR-H3 is amino acids 85-116 of SEQ ID NO: 4 or amino acids 85-116 of SEQ ID NO: 27 and FR-H4 is amino acids 127-137 of SEQ ID NO: 4 or amino acids 130-140 of SEQ ID NO: 27. In preferred embodiments, the antibody molecules of the present invention include FR-L1 defined by amino acids 20-42 of SEQ ID NO: 41 or 43; FR-L2 defined by amino acids 54-68 of SEQ ID NO: 41 or 43; FR-L3 defined by amino acids 76-107 of SEQ ID NO: 41 or 43; and FR-L4 defined by amino acids 117-128 of SEQ ID NO: 41 or 43. Furthermore, preferred embodiments include antibody molecules including FR-H1 defined by amino acids 20-44 of SEQ ID NO: 45; FR-H2 defined by amino acids 55-68 of SEQ ID NO: 45; FR-H3 defined by amino acids 85-116 of SEQ ID NO: 45; and FR-H4 defined by amino acids 127-137 of SEQ ID NO: 45.
Molecular Biology In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (herein
"Sambrook, et al., 1989"); DNA Cloning: A Practical Approach. Volumes I and II (D.N. Glover ed. 1985); Oliqonucleotide Synthesis (M.J. Gait ed. 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. (1985)); Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press, (1986)); B. Perbal, A Practical Guide To Molecular Cloning (1984); F.M. Ausubel, et al. (eds.), Current Protocols in Molecular Biology. John Wiley & Sons, Inc. (1994).
A "polynucleotide", "nucleic acid " or "nucleic acid molecule" may refer to the phosphate ester polymeric form of ribonucleosides (adenosine, guanosine, uridine or cytidine; "RNA molecules") or deoxyribonucleosides (deoxyadenosine, deoxyguanosine, deoxythymidine, or deoxycytidine; "DNA molecules"), or any phosphoester analogs thereof, such as phosphorothioates and thioesters, in single stranded form, double-stranded form or otherwise.
A "polynucleotide sequence", "nucleic acid sequence" or "nucleotide sequence" is a series of nucleotide bases (also called "nucleotides") in a nucleic acid, such as DNA or RNA, and means any chain of two or more nucleotides.
A "coding sequence" or a sequence "encoding" an expression product, such as a RNA, polypeptide, protein, or enzyme, is a nucleotide sequence that, when expressed, results in production of the product. The term "gene" means a DNA sequence that codes for or corresponds to a particular sequence of ribonucleotides or amino acids which comprise all or part of one or more RNA molecules, proteins or enzymes, and may or may not include regulatory DNA sequences, such as promoter sequences, which determine, for example, the conditions under which the gene is expressed. Genes may be transcribed from DNA to RNA which may or may not be translated into an amino acid sequence.
"Amplification" of DNA as used herein may denote the use of polymerase chain reaction (PCR) to increase the concentration of a particular DNA sequence within a mixture of DNA sequences. For a description of PCR see Saiki, et al., Science (1988) 239: 487. In a specific embodiment, the present invention includes a nucleic acid, which encodes an anti-IGFR1 antibody, an anti-IGFR1 antibody heavy or light chain, an anti-IGFR1 antibody heavy or light chain variable region, an anti- IGFR1 antibody heavy or light chain constant region or anti-IGFR1 antibody CDR
(e.g., CDR- L1 , CDR-L2, CDR-L3, CDR-H1, CDR-H2 or CDR-H3) which can be amplified by PCR.
As used herein, the term "oligonucleotide" refers to a nucleic acid, generally of at least 10 (e.g., 10, 11 , 12, 13 or 14), preferably at least 15 (e.g., 15, 16, 17, 18 or 19), and more preferably at least 20 nucleotides (e.g., 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29 or 30), preferably no more than 100 nucleotides (e.g., 40, 50, 60, 70, 80 or 90), that may be hybridizable to a genomic DNA molecule, a cDNA molecule, or an mRNA molecule encoding a gene, mRNA, cDNA, or other nucleic acid of interest. Oligonucleotides can be labeled, e.g., by incorporation of 32P-nucleotides, 3H- nucleotides, 14C-nucleotides, 35S-nucleotides or nucleotides to which a label, such as biotin, has been covalently conjugated. In one embodiment, a labeled oligonucleotide can be used as a probe to detect the presence of a nucleic acid. In another embodiment, oligonucleotides (one or both of which may be labeled) can be used as PCR primers, either for cloning full length or a fragment of the gene, or to detect the presence of nucleic acids. Generally, oligonucleotides are prepared synthetically, preferably on a nucleic acid synthesizer.
The sequence of any nucleic acid (e.g., a nucleic acid encoding an IGFR1 gene or a nucleic acid encoding an anti-IGFR1 antibody or a fragment or portion thereof) may be sequenced by any method known in the art (e.g., chemical sequencing or enzymatic sequencing). "Chemical sequencing" of DNA may denote methods such as that of Maxam and Gilbert (1977) (Proc. Natl. Acad. Sci. USA 74:560), in which DNA is randomly cleaved using individual base-specific reactions. "Enzymatic sequencing" of DNA may denote methods such as that of Sanger (Sanger, et al., (1977) Proc. Natl. Acad. Sci. USA 74:5463). The nucleic acids herein may be flanked by natural regulatory (expression control) sequences, or may be associated with heterologous sequences, including promoters, internal ribosome entry sites (IRES) and other ribosome binding site sequences, enhancers, response elements, suppressors, signal sequences, polyadenylation sequences, introns, 5'- and 3'- non-coding regions, and the like. A "promoter" or "promoter sequence" is a DNA regulatory region capable of binding an RNA polymerase in a cell (e.g., directly or through other promoter-bound proteins or substances) and initiating transcription of a coding sequence. A promoter sequence is, in general, bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or
elements necessary to initiate transcription at any level. Within the promoter sequence may be found a transcription initiation site (conveniently defined, for example, by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. The promoter may be operably associated with other expression control sequences, including enhancer and repressor sequences or with a nucleic acid of the invention (e.g., SEQ ID NO: 1, 3, 5-7, 11-13, 18, 22-24, 26, 28-30 or 34-36). Promoters which may be used to control gene expression include, but are not limited to, cytomegalovirus (CMV) promoter (U.S. Patent Nos. 5,385,839 and 5,168,062), the SV40 early promoter region (Benoist, et al., (1981 ) Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., (1980) Cell 22:787-797), the herpes thymidine kinase promoter (Wagner, et al., (1981) Proc. Natl. Acad. Sci. USA 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster, et al., (1982) Nature 296:39-42); prokaryotic expression vectors such as the β-lactamase promoter (Villa-Komaroff, et al., (1978) Proc. Natl. Acad. Sci. USA 75:3727-3731), or the tac promoter (DeBoer, etal., (1983) Proc. Natl. Acad. Sci. USA 80:21-25); see also "Useful proteins from recombinant bacteria" in Scientific American (1980) 242:74-94; and promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter or the alkaline phosphatase promoter.
A coding sequence is "under the control of", "functionally associated with" or "operably associated with" transcriptional and translational control sequences in a cell when the sequences direct RNA polymerase mediated transcription of the coding sequence into RNA, preferably mRNA, which then may be trans-RNA spliced (if it contains introns) and, optionally, translated into a protein encoded by the coding sequence.
The terms "express" and "expression" mean allowing or causing the information in a gene, RNA or DNA sequence to become manifest; for example, producing a protein by activating the cellular functions involved in transcription and translation of a corresponding gene. A DNA sequence is expressed in or by a cell to form an "expression product" such as an RNA (e.g., mRNA) or a protein (e.g., antibody 1H3, 15H12 or 19D12 or a fragment thereof). The expression product itself may also be said to be "expressed" by the cell.
The terms "vector", "cloning vector" and "expression vector" mean the vehicle (e.g., a plasmid) by which a DNA or RNA sequence can be introduced into a host cell, so as to transform the host and, optionally, promote expression and/or replication of the introduced sequence. The term "transfection" or "transformation" means the introduction of a nucleic acid into a cell. These terms may refer to the introduction of a nucleic acid encoding an anti-IGFR1 antibody or fragment thereof into a cell. The introduced gene or sequence may be called a "clone". A host cell that receives the introduced DNA or RNA has been "transformed" and is a "transformant" or a "clone". The DNA or RNA introduced to a host cell can come from any source, including cells of the same genus or species as the host cell, or cells of a different genus or species.
The term "host cell" means any cell of any organism that is selected, modified, transfected, transformed, grown, or used or manipulated in any way, for the production of a substance by the cell, for example the expression or replication, by the cell, of a gene, a DNA or RNA sequence, a protein or an enzyme.
The term "expression system" means a host cell and compatible vector which, under suitable conditions, can express a protein or nucleic acid which is carried by the vector and introduced to the host cell. Common expression systems include E. coll host cells and plasmid vectors, insect host cells and Baculovirus vectors, and mammalian host cells and vectors. In a specific embodiment, IGFR1 or an antibody and antigen-binding fragment of the invention may be expressed in human embryonic kidney cells (HEK293). Other suitable cells include CHO (Chinese hamster ovary) cells, HeLa cells and NIH 3T3 cells and NSO cells (non-lg-producing murine myeloma cell line). Nucleic acids encoding an antibody or antigen-binding fragment of the invention, slGFRI or IGFR1 may be expressed at high levels in an E.coli/T7 expression system as disclosed in U.S. Patent Nos. 4,952,496, 5,693,489 and 5,869,320 and in Davanloo, P., etal., (1984) Proc. Natl. Acad. Sci. USA 81 , 2035- 2039; Studier, F. W., etal., (1986) J. Mol. Biol. 189: 113-130; Rosenberg, A. H., etal., (1987) Gene 56: 125-135; and Dunn, J. J., et al., (1988) Gene 68: 259 which are herein incorporated by reference.
The present invention contemplates any superficial or slight modification to the amino acid or nucleotide sequences which correspond to the antibodies or antigen- binding fragments of the invention. In particular, the present invention contemplates sequence conservative variants of the nucleic acids which encode the antibodies or
antigen-binding fragments of the invention. "Sequence-conservative variants" of a polynucleotide sequence are those in which a change of one or more nucleotides in a given codon results in no alteration in the amino acid encoded at that position. Function-conservative variants of the antibodies of the invention are also contemplated by the present invention. "Function-conservative variants" are those in which one or more amino acid residues in a protein or enzyme have been changed without altering the overall conformation and function of the polypeptide, including, but, by no means, limited to, replacement of an amino acid with one having similar properties. Amino acids with similar properties are well known in the art. For example, polar/hydrophilic amino acids which may be interchangeable include asparagine, glutamine, serine, cysteine, threonine, lysine, arginine, histidine, aspartic acid and glutamic acid; nonpolar/hydrophobic amino acids which may be interchangeable include glycine, alanine, valine, leucine, isoleucine, proline, tyrosine, phenylalanine, tryptophan and methionine; acidic amino acids which may be interchangeable include aspartic acid and glutamic acid and basic amino acids which may be interchangeable include histidine, lysine and arginine.
The present invention includes anti-IGFR1 antibodies and fragments thereof which are encoded by nucleic acids as described in Table 1 as well as nucleic acids which hybridize thereto. Preferably, the nucleic acids hybridize under low stringency conditions, more preferably under moderate stringency conditions and most preferably under high stringency conditions and, preferably, exhibit IGFR1 binding activity. A nucleic acid molecule is "hybridizable" to another nucleic acid molecule, such as a cDNA, genomic DNA, or RNA, when a single stranded form of the nucleic acid molecule can anneal to the other nucleic acid molecule under the appropriate conditions of temperature and solution ionic strength (see Sambrook, et al., supra). The conditions of temperature and ionic strength determine the "stringency" of the hybridization. Typical low stringency hybridization conditions may be 55°C, 5X SSC, 0.1% SDS, 0.25% milk, and no formamide; or 30% formamide, 5X SSC, 0.5% SDS. Typical, moderate stringency hybridization conditions are similar to the low stringency conditions except the hybridization is carried out in 40% formamide, with 5X or 6X SSC. High stringency hybridization conditions are similar to low stringency conditions except the hybridization conditions are carried out in 50% formamide, 5X or 6X SSC and, optionally, at a higher temperature (e.g., 57 °C, 59 °C, 60 °C, 62 °C, 63 °C, 65°C or 68 °C). In general, SSC is 0.15M NaC1 and 0.015M Na-citrate. Hybridization
requires that the two nucleic acids contain complementary sequences, although, depending on the stringency of the hybridization, mismatches between bases are possible. The appropriate stringency for hybridizing nucleic acids depends on the length of the nucleic acids and the degree of complementation, variables well known in the art. The greater the degree of similarity or homology between two nucleotide sequences, the higher the stringency under which the nucleic acids may hybridize. For hybrids of greater than 100 nucleotides in length, equations for calculating the melting temperature have been derived (see Sambrook, etal., supra, 9.50-9.51). For hybridization with shorter nucleic acids, i.e., oligonucleotides, the position of mismatches becomes more important, and the length of the oligonucleotide determines its specificity (see Sambrook, et al., supra, 11.7-11.8).
Also included in the present invention are nucleic acids comprising nucleotide sequences and polypeptides comprising amino acid sequences which are at least about 70% identical, preferably at least about 80% identical, more preferably at least about 90% identical and most preferably at least about 95% identical (e.g., 95%, 96%, 97%, 98%, 99%, 100%) to the reference nucleotide and amino acid sequences of Table 1 when the comparison is performed by a BLAST algorithm wherein the parameters of the algorithm are selected to give the largest match between the respective sequences over the entire length of the respective reference sequences. Polypeptides comprising amino acid sequences which are at least about 70% similar, preferably at least about 80% similar, more preferably at least about 90% similar and most preferably at least about 95% similar (e.g., 95%, 96%, 97%, 98%, 99%, 100%) to the reference amino acid sequences of Table 1 (e.g., SEQ ID NOs. 2 (e.g., amino acids 20-128), 4 (e.g., amino acids 20-137), 8-10, 14-16, 17, 25 (e.g., amino acids 21- 130), 27 (e.g., amino acids 20-140), 31-33 or 37-39) when the comparison is performed with a BLAST algorithm wherein the parameters of the algorithm are selected to give the largest match between the respective sequences over the entire length of the respective reference sequences, are also included in the present invention. Sequence identity refers to exact matches between the nucleotides or amino acids of two sequences which are being compared. Sequence similarity refers to both exact matches between the amino acids of two polypeptides which are being compared in addition to matches between nonidentical, biochemically related amino
acids. Biochemically related amino acids which share similar properties and may be interchangeable are discussed above.
The following references regarding the BLAST algorithm are herein incorporated by reference: BLAST ALGORITHMS: Altschul, S.F., et al., (1990) J. Mol. Bid. 215:403-410; Gish, W., et al., (1993) Nature Genet. 3:266-272; Madden, T.L, et al., (1996) Meth. Enzymol. 266:131-141 ; Altschul, S.F., et al., (1997) Nucleic Acids Res. 25:3389-3402; Zhang, J., et al., (1997) Genome Res. 7:649-656; Wootton, J.C., et al., (1993) Comput. Chem. 17:149-163; Hancock, J.M. et al., (1994) Comput. Appi. Biosci. 10:67-70; ALIGNMENT SCORING SYSTEMS: Dayhoff, M.O., etal., "A model of evolutionary change in proteins." in Atlas of Protein Seguence and
Structure. (1978) vol. 5, suppl. 3. M.O. Dayhoff (ed.), pp. 345-352, Natl. Biomed. Res. Found., Washington, DC; Schwartz, R.M., et al., "Matrices for detecting distant relationships." in Atlas of Protein Seguence and Structure, (1978) vol. 5, suppl. 3." M.O. Dayhoff (ed.), pp. 353-358, Natl. Biomed. Res. Found., Washington, DC; Altschul, S.F., (1991) J. Mol. Bid. 219:555-565; States, D.J., etal., (1991) Methods 3:66-70; Henikoff, S., etal., (1992) Proc. Natl. Acad. Sci. USA 89:10915-10919; Altschul, S.F., et al., (1993) J. Mol. Evol. 36:290-300; ALIGNMENT STATISTICS: Karlin, S., et al., (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268; Karlin, S., et al., (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877; Dembo, A., et al., (1994) Ann. Prob. 22:2022-2039; and Altschul, S.F. "Evaluating the statistical significance of multiple distinct local alignments." in Theoretical and Computational Methods in Genome Research (S. Suhai, ed.), (1997) pp. 1-14, Plenum, New York.
Antibody Structure In general, the basic antibody structural unit is known to comprise a tetramer.
Each tetramer includes two identical pairs of polypeptide chains, each pair having one "light" (about 25 kDa) and one "heavy" chain (about 50-70 kDa). The amino-terminal portion of each chain may include a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain may define a constant region primarily responsible for effector function. Typically, human light chains are classified as kappa and lambda light chains. Furthermore, human heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant
regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D" region of about 10 more amino acids. See generally, Fundamental Immunology Ch. 7 (Paul, W., ed., 2nd ed. Raven Press, N.Y. (1989)) (incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair may form the antibody binding site. Thus, in general, an intact IgG antibody has two binding sites. Except in bifunctional or bispecific antibodies, the two binding sites are, in general, the same.
Normally, the chains all exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. The CDRs from the two chains of each pair are usually aligned by the framework regions, enabling binding to a specific epitope. In general, from N-terminal to C-terminal, both light and heavy chains comprise the domains FR1 , CDR1 , FR2 , CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain is, generally, in accordance with the definitions of Sequences of Proteins of Immunoloqical Interest, Kabat, et al.; National Institutes of Health, Bethesda, Md. ; 5th ed.; NIH Publ. No. 91-3242 (1991); Kabat (1978) Adv. Prot. Chem. 32:1-75; Kabat, etal., (1977) J. Biol. Chem. 252:6609-6616; Chothia, et al., (1987) J Mol. Biol. 196:901-917 or Chothia, et al., (1989) Nature 342:878-883. The present invention provides antibodies or antigen-binding fragments of the invention comprising CDRs and FRs from the light and heavy chains of 1H3, 15H12 and 19D12 (e.g., 15H12/19D12 LCA, 15H12/19D12 LCB, 15H12/19D12 HCA, SEQ ID NOs: 2, 4, 25, 27, 41, 43 and 45) as defined by Kabat and Chothia (see above references).
Antibody Molecules
The term "antibody molecule" includes, but is not limited to, antibodies and fragments, preferably antigen-binding fragments, thereof. The term includes monoclonal antibodies, polyclonal antibodies, bispecific antibodies, Fab antibody fragments, F(ab)2 antibody fragments, Fv antibody fragments (e.g., VH or V ), single chain Fv antibody fragments and dsFv antibody fragments. Furthermore, the antibody molecules of the invention may be fully human antibodies or chimeric antibodies. Preferably, the antibody molecules are monoclonal, fully human antibodies; more preferably, the antibody molecules are 1 H3, 15H12 or 19D12.
Preferably, the antibody molecules include one or more of the variable regions and CDRs whose amino acid and nucleotide sequences are set forth in Table 1.
The present invention includes any antibody molecule comprising a CDR selected from: RASQSIGSS H ( SEQ ID NO : 8 ) ;
YASQSLS ( SEQ ID NO : 9 ) ;
HQSSR PHT ( SEQ ID NO : 10 ) ;
SFAMH ( SEQ ID NO : 14 )
GFTFSSFAMH (SEQ ID NO: 17); VIDTRGATYYADSVKG (SEQ ID NO: 15) ;
LGNFYYGMDV (SEQ ID NO: 16);
RASQSVSSFLA (SEQ ID NO : 31);
DASNRAP (SEQ ID NO : 32);
QQRSNWPRWT (SEQ ID NO: 33); GFTFSNYAMH (SEQ ID NO : 37);
AIGAGGDTYYADSVKG (SEQ ID NO: 38); and
GRHRNWYYYNKDY (SEQ ID NO: 39);
NYAMH (SEQ ID NO: 70)
The scope of the present invention includes antibody variable regions of the present invention (e.g., any variable region, mature or unprocessed, indicated in
Table 1) linked to any immunoglobulin constant region. If a light chain variable region is linked to a constant region, preferably it is a K chain. If a heavy chain variable region is linked to a constant region, preferably it is aγl, γ2, γ3 orγ4 constant region, more preferably, γl, γ2 or γ4 and even more preferably γl orγ4. The anti-IGFR1 antibody molecules of the invention preferably recognize human IGFR1 , preferably slGFRI ; however, the present invention includes antibody molecules which recognize IGFR1 from different species, preferably mammals (e.g., mouse, rat, rabbit, sheep or dog). The present invention also includes anti-IGFR1 antibodies or fragments thereof which are complexed with IGFR1 or any fragment thereof (e.g., amino acids 30-902 of SEQ ID NO: 19) or with any cell which is expressing IGFR1 or any portion or fragment thereof on the cell surface (e.g., HEK293 cells stably transformed with human IGFR1 or MCF7 (e.g., ATCC Cell Line No. HTB-22)). Such complexes may be made by contacting the antibody or antibody fragment with IGFR1 or the IGFR1 fragment. In a preferred embodiment, fully-human monoclonal antibodies directed against IGFR1 are generated using transgenic mice carrying parts of the human immune system rather than the mouse system. These transgenic mice, which may be referred to, herein, as "HuMAb" mice, contain a human immunoglobulin gene miniloci that encodes unrearranged human heavy (μ and γ) and K light chain immunoglobulin sequences, together with targeted mutations that inactivate the
endogenous μ and K chain loci (Lonberg, N., etal., (1994) Nature 368(6474): 856- 859). Accordingly, the mice exhibit reduced expression of mouse IgM or K, and in response to immunization, the introduced human heavy and light chain transgenes undergo class switching and somatic mutation to generate high affinity human lgGκ monoclonal antibodies (Lonberg, N., et al., (1994), supra; reviewed in Lonberg, N.
(1994) Handbook of Experimental Pharmacology 113:49-101; Lonberg, N., et al.,
(1995) Intern. Rev. Immunol. 13:65-93, and Harding, F., etal., (1995) Ann. N. Y Acad. Sci 764:536-546). The preparation of HuMab mice is commonly known in the art and is described, for example, in Taylor, L., et al., (1992) Nucleic Acids Research 20:6287-6295; Chen, J., et al., (1993) International Immunology 5: 647-656; Tuaillon, etal., (1993) Proc. Natl. Acad. Sci USA 90:3720-3724; Choi, etal., (1993) Nature Genetics 4: 117-123; Chen, J., et al., (1993)EMBO J. 12: 821- 830; Tuaillon, et al.,
(1994) J Immunol. 152:2912-2920; Lonberg, et al., (1994) Nature 368(6474): 856- 859; Lonberg, N. (1994) Handbook of Experimental Pharmacology 113:49-101 ; Taylor, L., et al., (1994) International Immunology 6: 579-591 ; Lonberg, N., et al.,
(1995) Intern. Rev. Immunol. Vol. 13: 65-93; Harding, F., etal., (1995) Ann. N.Y Acad. Sci 764:536-546; Fishwild, D., et al., (1996) Nature Biotechnology 14: 845-851 and Harding, et al., (1995) Annals NY Acad. Sci. 764:536-546; the contents of all of which are hereby incorporated by reference in their entirety. See further, U.S. Patent Nos. 5,545,806; 5, 569,825; 5,625,126; 5,633,425; 5,789,650; 5,877,397; 5,661 ,016; 5,814,318; 5,874, 299; 5,770,429 and 5,545,807; and International Patent Application Publication Nos. WO 98/24884; WO 94/25585; WO 93/12227; WO 92/22645 and WO 92/03918 the disclosures of all of which are hereby incorporated by reference in their entity. To generate fully human, monoclonal antibodies to IGFR1 , HuMab mice can be immunized with an antigenic IGFR1 polypeptide, preferably amino acids 30-902 of SEQ ID NO: 19, as described by Lonberg, N., etal., (1994) Nature 368(6474): 856- 859; Fishwild, D., et al., (1996) Nature Biotechnology 14: 845-851 and WO 98/24884. Preferably, the mice will be 6-16 weeks of age upon the first immunization. For example, a purified preparation of IGFR1 or slGFRI can be used to immunize the HuMab mice intraperitoneally. The mice can also be immunized with whole HEK293 cells which are stably transformed or transfected with an IGFR1 gene. An "antigenic IGFR1 polypeptide" may refer to an IGFR1 polypeptide of any fragment thereof,
preferably amino acids 30-902 of SEQ ID NO: 19, which elicits an anti-IGFR1 immune response, preferably in HuMab mice.
In general, HuMAb transgenic mice respond well when initially immunized intraperitoneally (IP) with antigen in complete Freund's adjuvant, followed by every other week IP immunizations (usually, up to a total of 6) with antigen in incomplete Freund's adjuvant. Mice can be immunized, first, with cells expressing IGFR1 (e.g., stably transformed HEK293 cells), then with a soluble fragment of IGFR1 (e.g., amino acids 30-902 of SEQ ID NO: 19) and continually receive alternating immunizations with the two antigens. The immune response can be monitored over the course of the immunization protocol with plasma samples being obtained by retroorbital bleeds. The plasma can be screened for the presence of anti-IGFR1 antibodies, for example by ELISA, and mice with sufficient titers of immunoglobulin can be used for fusions. Mice can be boosted intravenously with antigen 3 days before sacrifice and removal of the spleen. It is expected that 2-3 fusions for each antigen may need to be performed. Several mice can be immunized for each antigen. For example, a total of twelve HuMAb mice of the HC07 and HC012 strains can be immunized.
Hybridoma cells which produce the monoclonal, fully human anti-IGFR1 antibodies may be produced by methods which are commonly known in the art. These methods include, but are not limited to, the hybridoma technique originally developed by Kohler, ef al., (1975) (Nature 256:495-497), as well as the trioma technique (Hering, et al., (1988) Biomed. Biochim. Acta. 47:211-216 and Hagiwara, et al., (1993) Hum. Antibod. Hybridomas 4:15), the human B-cell hybridoma technique (Kozbor, et al., (1983) Immunology Today 4:72 and Cote, et al., (1983) Proc. Natl. Acad. Sci. U.S.A 80:2026-2030), and the EBV-hybridoma technique (Cole, et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96, 1985).
Preferably, mouse splenocytes are isolated and fused with PEG to a mouse myeloma cell line based upon standard protocols. The resulting hybridomas may then be screened for the production of antigen-specific antibodies. For example, single cell suspensions of splenic lymphocytes from immunized mice may by fused to one-sixth the number of P3X63- Ag8.653 nonsecreting mouse myeloma cells (ATCC, CRL 1580) with 50% PEG. Cells may be plated at approximately 2 x 105 cells/mL in a flat bottom microtiter plate, followed by a two week incubation in selective medium containing 20% fetal Clone Serum, 18% "653" conditioned media, 5% origen (IGEN), 4 mM L-glutamine, 1 mM L-glutamine, 1 mM sodium pyruvate, 5mM HEPES, 0.055
mM 2-mercaptoethanol, 50 units/ml penicillin, 50 mg/ml streptomycin, 50 mg/ml gentamycin and 1X HAT (Sigma; the HAT is added 24 hours after the fusion). After two weeks, cells may be cultured in medium in which the HAT is replaced with HT. Individual wells may then be screened by ELISA for human anti-IGFR1 monoclonal IgG antibodies. Once extensive hybridoma growth occurs, medium can be observed usually after 10-14 days. The antibody secreting hybridomas may be replated, screened again, and if still positive for human IgG, anti-IGFR1 monoclonal antibodies, can be subcloned at least twice by limiting dilution. The stable subclones may then be cultured in vitro to generate small amounts of antibody in tissue culture medium for characterization.
The anti-IGFR antibody molecules of the present invention may also be produced recombinantly (e.g., in an E.colilll expression system as discussed above). In this embodiment, nucleic acids encoding the antibody molecules of the invention (e.g., VH or V ) may be inserted into a pET-based plasmid and expressed in the E.coliUl system. There are several methods by which to produce recombinant antibodies which are known in the art. One example of a method for recombinant production of antibodies is disclosed in U.S. Patent No. 4,816,567 which is herein incorporated by reference. Transformation can be by any known method for introducing polynucleotides into a host cell. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include dextran- mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, biolistic injection and direct microinjection of the DNA into nuclei. In addition, nucleic acid molecules may be introduced into mammalian cells by viral vectors. Methods of transforming cells are well known in the art. See, for example, U.S. Patent Nos. 4,399,216; 4,912,040; 4,740,461 and 4,959,455.
Mammalian cell lines available as hosts for expression are well known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC). These include, inter alia, Chinese hamster ovary (CHO) cells, NSO, SP2 cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), A549 cells, 3T3 cells, and a number of other cell lines. Mammalian host cells include human, mouse, rat, dog, monkey, pig, goat, bovine, horse and hamster cells. Cell lines of particular preference are selected through determining which cell lines have high expression
levels. Other cell lines that may be used are insect cell lines, such as Sf9 cells, amphibian cells, bacterial cells, plant cells and fungal cells. When recombinant expression vectors encoding the heavy chain or antigen-binding portion thereof, the light chain and/or antigen-binding portion thereof are introduced into mammalian host cells, the antibodies are produced by culturing the host cells for a period of time sufficient to allow for expression of the antibody in the host cells or, more preferably, 5 secretion of the antibody into the culture medium in which the host cells are grown.
Antibodies can be recovered from the culture medium using standard protein purification methods. Further, expression of antibodies of the invention (or other moieties therefrom) from production cell lines can be enhanced using a number of known techniques. For example, the glutamine synthetase gene expression system (the GS system) is a common approach for enhancing expression under certain conditions. The GS system is discussed in whole or part in connection with European Patent Nos. 0216 846, 0256 055, and 0323 997 and European Patent Application No. 89303964.4.
It is likely that antibodies expressed by different cell lines or in transgenic animals will have different glycosylation from each other. However, all antibodies encoded by the nucleic acid molecules provided herein, or comprising the amino acid sequences provided herein are part of the instant invention, regardless of the glycosylation of the antibodies.
"K0ff" refers to the off-rate constant for dissociation of the antibody from an antibody/antigen complex.
"Kon" refers to the rate at which the antibody associates with the antigen.
"Kd" refers to the dissociation constant of a particular antibody/antigen interaction. Kd = K0ff/K0n-
The term "monoclonal antibody," as used herein, refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Monoclonal antibodies are advantageous in that they may be synthesized by a hybridoma culture, essentially uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being amongst a substantially homogeneous population of antibodies, and is not to be construed as
requiring production of the antibody by any particular method. As mentioned above, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler, et al., (1975) Nature 256: 495. A polyclonal antibody is an antibody which was produced among or in the presence of one or more other, non-identical antibodies. In general, polyclonal antibodies are produced from a B-lymphocyte in the presence of several other B- lymphocytes which produced non-identical antibodies. Usually, polyclonal antibodies are obtained directly from an immunized animal. A bispecific or bifunctional antibody is an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or linking of Fab' fragments. See, e.g., Songsivilai, etal., (1990) Clin. Exp. Immunol. 79: 315-321 , Kostelny, et al., (1992) J Immunol. 148:1547- 1553. In addition, bispecific antibodies may be formed as "diabodies" (Holliger, et al., (1993) PNAS USA 90:6444-6448) or as "Janusins" (Traunecker, et al., (1991) EMBO J. 10:3655-3659 and Traunecker, et al., (1992) Int. J. Cancer Suppl. 7:51-52).
The term "fully human antibody" refers to an antibody which comprises human immunoglobulin protein sequences only. A fully human antibody may contain murine carbohydrate chains if produced in a mouse, in a mouse cell or in a hybridoma derived from a mouse cell. Similarly, "mouse antibody" refers to an antibody which comprises mouse immunoglobulin sequences only.
The present invention includes "chimeric antibodies"- an antibody which comprises a variable region of the present invention fused or chimerized with an antibody region (e.g., constant region) from another, non-human species (e.g., mouse, horse, rabbit, dog, cow, chicken). These antibodies may be used to modulate the expression or activity of IGFR1 in the non-human species.
"Single-chain Fv" or "sFv" antibody fragments have the VH and V domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the sFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. Techniques described for the production of single chain antibodies (U.S. Patent Nos. 5,476,786; 5,132,405 and 4,946,778) can be adapted to produce anti- IGFR1 -specific single chain antibodies. For a review of sFv see Pluckthun in The
Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer-Verlag, N.Y., pp. 269-315 (1994).
"Disulfide stabilized Fv fragments" and "dsFv" refer to antibody molecules comprising a variable heavy chain (VH) and a variable light chain (VL) which are linked by a disulfide bridge.
Antibody fragments within the scope of the present invention also include F(ab)2 fragments which may be produced by enzymatic cleavage of an IgG by, for example, pepsin. Fab fragments may be produced by, for example, reduction of F(ab)2 with dithiothreitol or mercaptoethylamine. A Fab fragment is a VL-CL chain appended to a VH-CHι chain by a disulfide bridge. A F(ab)2 fragment is two Fab fragments which, in turn, are appended by two disulfide bridges. The Fab portion of an F(ab)2 molecule includes a portion of the Fc region between which disulfide bridges are located.
An Fv fragment is a V or VH region. Depending on the amino acid sequences of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are at least five major classes of immunoglobulins: IgA, IgD, IgE, IgG and IgM, and several of these may be further divided into subclasses (isotypes), e.g. lgG-1 , lgG-2, lgG-3 and lgG-4; lgA-1 and lgA-2. The anti-IGFR1 antibody molecules of the invention may also be conjugated to a chemical moiety. The chemical moiety may be, inter alia, a polymer, a radionuclide or a cytotoxic factor. Preferably the chemical moiety is a polymer which increases the half-life of the antibody molecule in the body of a subject. Suitable polymers include, but are not limited to, polyethylene glycol (PEG) (e.g., PEG with a molecular weight of 2kDa, 5 kDa, 10 kDa, 12kDa, 20 kDa, 30kDa or 40kDa), dextran and monomethoxypolyethylene glycol (mPEG). Lee, etal., (1999) (Bioconj. Chem. 10:973-981) discloses PEG conjugated single-chain antibodies. Wen, et al., (2001) (Bioconj. Chem. 12:545-553) disclose conjugating antibodies with PEG which is attached to a radiometal chelator (diethylenetriaminpentaacetic acid (DTPA)). The antibodies and antibody fragments of the invention may also be conjugated with labels such as 99Tc,90Y, 1 1ln, 32P, 14C, 125l, 3H, 131l, 11C, 150, 13N, 18F, 35S, 51Cr, 57To, 226Ra, 60Co, 59Fe, 57Se, 152Eu, 67CU, 217Ci, 11At, 212Pb, 47Sc, 109Pd, 234Th, and 40K, 15 Gd, 55Mn, 52Tr and 56Fe.
The antibodies and antibody fragments of the invention may also be conjugated with fluorescent or chemilluminescent labels, including fluorophores such as rare earth chelates, fluorescein and its derivatives, rhodamine and its derivatives, isothiocyanate, phycoerythrin, phycocyanin, allophycocyanin, o-phthaladehyde, fluorescamine, 152Eu, dansyl, umbelliferone, luciferin, luminal label, isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridimium salt label, an oxalate ester label, an aequorin label, 2,3-dihydrophthalazinediones, biotin/avidin, spin labels and stable free radicals.
The antibody molecules may also be conjugated to a cytotoxic factor such as diptheria toxin, Pseudomonas aeruginosa exotoxin A chain , ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleu ites fordii proteins and compounds (e.g., fatty acids), dianthin proteins, Phytoiacca americana proteins PAPI, PAPII, and PAP- S, momordica charantia inhibitor, curcin, crotin, saponaria officinalis inhibitor, mitogellin, restrictocin, phenomycin, and enomycin. Any method known in the art for conjugating the antibody molecules of the invention to the various moieties may be employed, including those methods described by Hunter, et al., (1962) Nature 144:945; David, etal., (1974) Biochemistry 13:1014; Pain, et al., (1981) J. Immunol. Meth. 40:219; and Nygren, J., (1982) Histochem. and Cytochem. 30:407. Methods for conjugating antibodies are conventional and very well known in the art.
Modified Antibody Molecules
The present invention includes antibodies and antigen-binding fragments (e.g., fully-human antibodies, SFv, dsFv, Fv, chimeric antibodies) comprising a light chain of SEQ ID NOs: 41 , 43, 72, 74, 76 or 78 (15H12/19D12 LCA, LCB, LCC, LCD, LCE or LCF); preferably amino acids 20-128 of SEQ ID NOs: 41 , 43, 72, 74, 76 or 78 (mature 15H12/19D12 LCA, LCB, LCC, LCD, LCE or LCF). The present invention also includes antibody molecules including the heavy chain of SEQ ID NO: 45 or 112 (15H12/19D12 HCA, HCB); preferably amino acids 20-137 of SEQ ID NO: 45 or 112 (mature 15H12/19D12 HCA, HCB).
The 15H12/19D12 LCA, LCB, LCC, LCD, LCE and LCF may be dimerized with any other immunoglobulin heavy chain, preferably an immunoglobulin heavy chain of the present invention. Likewise, 15H12/19D12 HCA or HCB may be dimerized with any light chain, preferably a light chain of the present invention. For example,
15H12/19D12 HCA or HCB may be dimerized with 15H12/19D12 LCC, LCD, LCE or LCF.
Antibodies and antigen-binding fragments comprising 15H12/19D12 LCA, 15H12/19D12 LCB, 15H12/19D12 LCC, 15H12/19D12 LCD, 15H12/19D12 LCE, 15H12/19D12 LCF, 15H12/19D12 HCA or 15H12/19D12 HCB or any fragment thereof exhibit minimal immunogenicity in a human subject; thereby, leading to a low incidence of HAHA response when administered to a human subject.
Preferred antibody chains are shown below. Dotted underscored type encodes the signal peptide. Solid underscored type encodes the CDRs. Plain type encodes the framework regions. Most preferably, the antibody chains are mature fragments which lack the signal peptide.
Modified 19D12/15H12 Light Chain-C (SEQ ID NO: 71)
AT?..-T?G..?.?A.TCA_.C^.CTC.ATT GGG T CTG__CTG_C C TGG GTT CCA GCC TCC
AGG GGT GAA ATT GTG CTG ACT CAG AGC CCA GAC TCT CTG TCT GTG ACT CCA GGC GAG AGA GTC ACC ATC ACC TGC CGG GCC AGT CAG AGC ATT GGT AGT AGC
TTA CAC TGG TAC CAG CAG AAA CCA GGT CAG TCT CCA AAG CTT CTC ATC AAG
TAT GCA TCC CAG TCC CTC TCA GGG GTC CCC TCG AGG TTC AGT GGC AGT GGA TCT GGG ACA GAT TTC ACC CTC ACC ATC AGT AGC CTC GAG GCT GAA GAT GCT
GCA GCG TAT TAC TGT CAT CAG AGT AGT CGT TTA CCT CAC ACT TTC GGC CAA
GGG ACC AAG GTG GAG ATC AAA CGT ACG
(SEQ ID NO: 72)
M _S P S Q _L I_ _G F L_ L _L W V_ _ P A S
R G E I V L T Q S P D S L S V T P
G E R V T I T C R A S Q S I G S S L H W Y Q Q K P K K
Y A S Q S L S G V P S R F S G S G S G T D F T L T I S S E A E D A A A Y Y C H Q S S R L P H T F G Q G T K V E I K F
Modified 19D12/15H12 Light Chain-D (SEQ ID NO: 73)
ATG TCG CCA TCA CAA CTC_ ATT GGG__TTT CTG__CTC TCC
AGG GGT GAA ATT GTG CTG ACT CAG AGC CCA GAC TCT CTG TCT GTG ACT CCA GGC GAG AGA GTC ACC ATC ACC TGC CGG GCC AGT CAG AGC ATT GGT AGT AGC TTA CAC TGG TAC CAG CAG AAA CCA GGT CAG TCT CCA AAG CTT CTC ATC AAG
TAT GCA TCC CAG TCC CTC TCA GGG GTC CCC TCG AGG TTC AGT GGC AGT GGA
TCT GGG ACA GAT TTC ACC CTC ACC ATC AGT AGC CTC GAG GCT GAA GAT TTC GCA GTG TAT TAC TGT CAT CAG AGT AGT CGT TTA CCT CAC ACT TTC GGC CAA
GGG ACC AAG GTG GAG ATC AAA CGT ACG
(SEQ ID NO: 74)
M _S P S_ Q L_ I _G F _ _L W _V P A S
R G E I V L T Q S P D S L S V T P
G E R V T I T C R A S Q S I G S S H W Y Q Q K P G Q S P I K
Y A S Q S L S G V P S R F S G S G S G T D F T L T I S S L E A E D F A V Y Y C H Q S S R L P H T F G Q G T K V E I K R T
Modified 19D12/15H12 Light Chain-E (SEQ ID NO: 75)
AT.?..T.C.?.. CA.TCA_CAA__CTC ATT
AGG GGT GAA ATT GTG CTG ACT CAG AGC CCA GGT ACC CTG TCT GTG TCT CCA
GGC GAG AGA GCC ACC CTC TCC TGC CGG GCC AGT CAG AGC ATT GGT AGT AGC TTA CAC TGG TAC CAG CAG AAA CCA GGT CAG GCT CCA AGG CTT CTC ATC AAG
TAT GCA TCC CAG TCC CTC TCA GGG ATC CCC GAT AGG TTC AGT GGC AGT GGA
TCT GGG ACA GAT TTC ACC CTC ACC ATC AGT AGA CTG GAG CCT GAA GAT GCT
GCA GCG TAT TAC TGT CAT CAG AGT AGT CGT TTA CCT CAC ACT TTC GGC CAA GGG ACC AAG GTG GAG ATC AAA CGT ACA
(SEQ ID NO: 76)
M S _P S _Q L I G_ V
R_ G E I V L T Q S P G T L S V S P
G E R A T S C R A S Q S I G S S
L H Y Q Q K P G Q A P R L L I
Y A S Q S L S G I P D R F S G S G S G T D F T T I S R L E P E D A A A Y Y C H Q S S R P H T F G Q G T K V E I K R
Modified 19D12/15H12 Light Chain-F (SEQ ID NO: 77)
ATG TCG CCA TCA CAA CTC ATT GGG TTT CTG CTG CTC TGG GTT CCA GCC TCC
AGG__GGT GAA ATT GTG CTG ACT CAG AGC CCA GGT ACC CTG TCT GTG TCT CCA
GGC GAG AGA GCC ACC CTC TCC TGC CGG GCC AGT CAG AGC ATT GGT AGT AGC
TTA CAC TGG TAC CAG CAG AAA CCA GGT CAG GCT CCA AGG CTT CTC ATC AAG
TAT GCA TCC CAG TCC CTC TCA GGG ATC CCC GAT AGG TTC AGT GGC AGT GGA
TCT GGG ACA GAT TTC ACC CTC ACC ATC AGT AGA CTG GAG CCT GAA GAT TTC
GCA GTG TAT TAC TGT CAT CAG AGT AGT CGT TTA CCT CAC ACT TTC GGC CAA GGG ACC AAG GTG GAG ATC AAA CGT ACA
(SEQ ID NO: 78)
M W V
R G E I V L T Q S P G T L S V S P
G E R A T L S C R A S Q S I G S S
L H W Y Q Q K P G Q A P R L L I K
Y A S Q S L S G I P D R F S G S G S G T D F T L T I S R L E P E D F A V Y Y C H Q S S R L P H T F G Q G T K V E I K R
Modified 19D12/15H12 heavy chain-A (SEQ ID NO: 44)
ATG GAG_ TT_T__GGG CTG AGC TGG GTT TTC _CTT_GTT GCT .ATA .TTA._AAA__GGT__GTC
CAG TGT GAG GTT CAG CTG GTG CAG TCT GGG GGA GGC TTG GTA AAG CCT GGG
GGG TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT AGC TTT
GCT ATG CAC TGG GTT CGC CAG GCT CCA GGA AAA GGT CTG GAG TGG ATA TCA
GTT ATT GAT ACT CGT GGT GCC ACA TAC TAT GCA GAC TCC GTG AAG GGC CGA
TTC ACC ATC TCC AGA GAC AAT GCC AAG AAC TCC TTG TAT CTT CAA ATG AAC
AGC CTG AGA GCC GAG GAC ACT GCT GTG TAT TAC TGT GCA AGA CTG GGG AAC TTC TAC TAC GGT ATG GAC GTC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC
TCA
(SEQ ID NO: 45)
Gln__Cγs Glu Val Gin Leu Val Gin Ser Gly Gly Gly Leu Val Lys Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe
Ala Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp lie Ser
Val lie Asp Thr Arg Gly Ala Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg
Phe Thr lie Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Leu Gly Asn Phe Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser
Ser
Modified 19D12/15H12 heavy chain-B (SEQ ID NO: 111)
.A.TS..GAG._T_TT GGG CTG AGC__TC
CAG__TGT GAG GTT CAG CTG GTG CAG TCT GGG GGA GGC TTG GTA CAG CCC GGG GGG TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA TTC ACC TTC AGT AGC TTT
GCT ATG CAC TGG GTT CGC CAG GCT CCA GGA AAA GGT CTG GAG TGG ATA TCA
GTT ATT GAT ACT CGT GGT GCC ACA TAC TAT GCA GAC TCC GTG AAG GGC CGA TTC ACC ATC TCC AGA GAC AAT GCC AAG AAC TCC TTG TAT CTT CAA ATG AAC AGC CTG AGA GCC GAG GAC ACT GCT GTG TAT TAC TGT GCA AGA CTG GGG AAC TTC TAC TAC GGT ATG GAC GTC TGG GGC CAA GGG ACC ACG GTC ACC GTC TCC
TCA
(SEQ ID NO: 112)
Me .Glu Phe_.Gly___Le_u__Ser __^
Gin Cys Glu Val Gin Leu Val Gin Ser Gly Gly Gly Leu Val Gin Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Phe Ala Met His Trp Val Arg Gin Ala Pro Gly Lys Gly Leu Glu Trp lie Ser Val lie Asp Thr Arg Gly Ala Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg
Phe Thr lie Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Leu Gly Asn Phe Tyr Tyr Gly Met Asp Val Trp Gly Gin Gly Thr Thr Val Thr Val Ser Ser Gene Therapy
The anti-IGFR1 antibodies of the invention may also be administered to a subject in a gene therapy approach. In a gene therapy approach, the cells of a subject are transformed with nucleic acids which encode the antibodies of the invention. Subjects comprising the nucleic acids will then produce the antibody molecules endogenously. Previously, Alvarez, etal., (2000) (Clinical Cancer
Research 6:3081-3087) introduced single-chain anti-ErbB2 antibodies to subjects using a gene therapy approach. The methods disclosed by Alvarez, etal., may be easily adapted for the introduction of nucleic acids encoding an anti-IGFR1 antibody molecule of the invention to a subject. Although nucleic acids encoding any polypeptide or antibody molecule of the invention may be introduced to a subject, in preferred embodiments, the antibody molecule is a fully human, single-chain antibody.
The nucleic acids may be introduced to the cells of a subject by any means known in the art. In preferred embodiments, the nucleic acids are introduced as part of a viral vector. Examples of preferred viruses from which the vectors may be derived include lentiviruses, herpes viruses, adenoviruses, adeno-associated viruses, vaccinia virus, baculovirus, alphavirus, influenza virus, and other recombinant viruses with desirable cellular tropism.
Various companies produce viral vectors commercially, including, but by no means limited to, Avigen, Inc. (Alameda, CA; AAV vectors), Cell Genesys (Foster City, CA; retroviral, adenoviral, AAV vectors, and lentiviral vectors), Clontech (retroviral and baculoviral vectors), Genovo, Inc. (Sharon Hill, PA; adenoviral and AAV vectors), Genvec (adenoviral vectors), IntroGene (Leiden, Netherlands;
adenoviral vectors), Molecular Medicine (retroviral, adenoviral, AAV, and herpes viral vectors), Norgen (adenoviral vectors), Oxford BioMedica (Oxford, United Kingdom; lentiviral vectors), and Transgene (Strasbourg, France; adenoviral, vaccinia, retroviral, and lentiviral vectors). Methods for constructing and using viral vectors are known in the art ( see, e.g., Miller, etal., (1992) BioTechniques 7:980-990). Preferably, the viral vectors are replication defective, that is, they are unable to replicate autonomously, and thus are not infectious, in the target cell. Preferably, the replication defective virus is a minimal virus, i.e., it retains only the sequences of its genome which are necessary for encapsidating the genome to produce viral particles. Defective viruses, which entirely or almost entirely lack viral genes, are preferred. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Thus, a specific tissue can be specifically targeted.
Examples of vectors comprising attenuated or defective DNA virus sequences include, but are not limited to, a defective herpes virus vector (Kanno, et al., (1999) Cancer Gen. Ther. 6:147-154; Kaplitt, et al., (1997) J. Neurosci. Meth. 71:125-132 and Kaplitt, etal., (1994) J. Neuro One. 19:137-147).
Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid of the invention to a variety of cell types. Attenuated adenovirus vectors, such as the vector described by Stratford-Perricaudet, et al., (1992) (J. Clin. Invest. 90:626-630) are desirable in some instances. Various replication defective adenovirus and minimum adenovirus vectors have been described (PCT Publication Nos. WO94/26914, WO94/28938, WO94/28152, WO94/12649, WO95/02697 and WO96/22378). The replication defective recombinant adenoviruses according to the invention can be prepared by any technique known to a person skilled in the art
(Levrero, et al., (1991) Gene 101 :195; EP 185573; Graham, (1984) EMBO J. 3:2917; Graham, et al., (1977) J. Gen. Virol. 36:59).
The adeno-associated viruses (AAV) are DNA viruses of relatively small size which can integrate, in a stable and site-specific manner, into the genome of the cells which they infect. They are able to infect a wide spectrum of cells without inducing any effects on cellular growth, morphology or differentiation, and they do not appear to be involved in human pathologies. The use of vectors derived from the AAVs for transferring genes in wϊro and in vivo has been described (see Daly, et al., (2001) Gene Ther. 8:1343-1346, 1245-1315; Larson, et al., (2001) Adv. Exp. Med. Bio.
489:45-57; PCT Publication Nos. WO91/18088 and WO93/09239; U.S. Patent Nos. 4,797,368 and 5,139,941 and EP 488528B1).
In another embodiment, the gene can be introduced in a retroviral vector, e.g., as described in U.S. Patent Nos. 5,399,346, 4,650,764, 4,980,289, and 5,124,263; Mann, et al., (1983) Cell 33:153; Markowitz, etal., (1988) J. Virol., 62:1120; EP 453242 and EP178220. The retroviruses are integrating viruses which infect dividing cells.
Lentiviral vectors can be used as agents for the direct delivery and sustained expression of nucleic acids encoding an antibody molecule of the invention in several tissue types, including brain, retina, muscle, liver and blood. The vectors can efficiently transduce dividing and nondividing cells in these tissues, and maintain long-term expression of the antibody molecule. For a review, see Zufferey, et al., (1998) J. Virol. 72:9873-80 and Kafri, et al., (2001) Curr. Opin. Mol. Ther. 3:316-326. Lentiviral packaging cell lines are available and known generally in the art. They facilitate the production of high-titer lentivirus vectors for gene therapy. An example is a tetracycline-inducible VSV-G pseudotyped lentivirus packaging cell line which can generate virus particles at titers greater than 106 lU/ml for at least 3 to 4 days; see Kafri, et al., (1999) (J. Virol. 73: 576-584). The vector produced by the inducible cell line can be concentrated as needed for efficiently transducing nondividing cells in vitro and in vivo.
Sindbis virus is a member of the alphavirus genus and has been studied extensively since its discovery in various parts of the world beginning in 1953. Gene transduction based on alphavirus, particularly Sindbis virus, has been well-studied in vitro (see Straus, et al., (1994) Microbid. Rev., 58:491-562; Bredenbeek, etal., (1993) J. Virol., 67; 6439-6446 lijima, et al., (1999) Int. J. Cancer 80:110-118 and Sawai, et al., (1998) Biochim. Biophyr. Res. Comm. 248:315-323). Many properties of alphavirus vectors make them a desirable alternative to other virus-derived vector systems being developed, including rapid engineering of expression constructs, production of high-titered stocks of infectious particles, infection of nondividing cells, and high levels of expression (Strauss, et al., (1994) Microbiol. Rev. 58:491-562). Use of Sindbis virus for gene therapy has been described. (Wahlfors, et al., (2000) Gene. Ther. 7:472-480 and Lundstrom (1999) J. Recep. Sig. Transduct. Res. 19(1- 4):673-686).
In another embodiment, a vector can be introduced to cells by lipofection or with other transfection facilitating agents (peptides, polymers, etc.). Synthetic cationic lipids can be used to prepare liposomes for in vivo and in vitro transfection of a gene encoding a marker (Feigner, etal., (1987) Proc. Natl. Acad. Sci. USA 84:7413-7417 and Wang, et al., (1987) Proc. Natl. Acad. Sci. USA 84:7851-7855). Useful lipid compounds and compositions for transfer of nucleic acids are described in PCT Publication Nos. WO 95/18863 and WO96/17823, and in U.S. Patent No. 5,459,127.
It is also possible to introduce the vector in vivo as a naked DNA plasmid. Naked DNA vectors for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., electroporation, microinjection, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun, or use of a DNA vector transporter (see, e.g., Wilson, etal., (1992) J. Biol. Chem. 267:963-967; Williams, et al., (1991) Proc. Natl. Acad. Sci. USA 88:2726-2730). Receptor-mediated DNA delivery approaches can also be used (Wu, et al., (1988) J. Biol. Chem. 263:14621- 14624). U.S. Patent Nos. 5,580,859 and 5,589,466 disclose delivery of exogenous DNA sequences, free of transfection facilitating agents, in a mammal. Recently, a relatively low voltage, high efficiency in vivo DNA transfer technique, termed electrotransfer, has been described (Vilquin, et al., (2001) Gene Ther. 8:1097; Payen, etal., (2001) Exp. Hematol. 29:295-300; Mir (2001) Bioelectrochemistry 53:1-10; PCT Publication Nos. WO99/01157, WO99/01158 and WO99/01175).
Pharmaceutical Compositions
An antibody or antigen-binding fragment of the invention can be incorporated into a pharmaceutical composition, along with a pharmaceutically acceptable carrier, suitable for administration to a subject in vivo. Although the scope of the present invention includes pharmaceutical compositions which may be administered to a subject by any route (e.g., oral, ocular, topical or pulmonary (inhalation)), administration by a parenteral route such as intratumoral injection, intravenous injection, subcutaneous injection or intramuscular injection is preferred. In a preferred embodiment, the pharmaceutical compositions of the invention comprise 1 H3, 15H12, 19D12, 15H12/19D12 LCA, 15H12/19D12 LCB, 15H12/19D12 LCC, 15H12/19D12 LCD, 15H12/19D12 LCE, 15H12/19D12 LCF, 15H12/19D12 HCA or 15H12/19D12 HCB and a pharmaceutically acceptable carrier.
For general information concerning formulations, see, e.g., Gilman, et al., (eds.) (1990), The Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18th Edition, (1990), Mack Publishing Co., Easton, Pennsylvania.; Avis, et al., (eds.) (1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, New York; Lieberman, et al., (eds.) (1990) Pharmaceutical Dosage Forms: Tablets Dekker, New York; and Lieberman, et al., (eds.) (1990), Pharmaceutical Dosage Forms: Disperse Systems Dekker, New York, Kenneth A. Walters (ed.) (2002) Dermatoloqical and Transdermal Formulations (Drugs and the Pharmaceutical Sciences), Vol 119, Marcel Dekker. Pharmaceutically acceptable carriers are conventional and very well known in the art. Examples include aqueous and nonaqueous carriers, stabilizers, antioxidants, solvents, dispersion media, coatings, antimicrobial agents, buffers, serum proteins, isotonic and absorption delaying agents, and the like that are physiologically compatible. Preferably, the carrier is suitable for injection into a subject's body.
Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
Stabilizers, such as α, α-trehalose dihydrate may be included for stabilizing the antibody molecules of the invention from degrading effects of dessication or f reeze- drying.
Examples of pharmaceutically-acceptable antioxidants include: water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; and oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
Prevention of the presence of microorganisms may be ensured both by sterilization procedures, and by the inclusion of various antimicrobial agents such as EDTA, EGTA, paraben, chlorobutanol, phenol sorbic acid, and the like.
Suitable buffers which may be included in the pharmaceutical compositions of the invention include L-histidine based buffers, phosphate based buffers (e.g., phosphate buffered saline, pH ~ 7), sorbate based buffers or glycine-based buffers.
Serum proteins which may be included in the pharmaceutical compositions of the invention may include human serum albumin.
Isotonic agents, such as sugars, ethanol, polyalcohols (e.g., glycerol, propylene glycol, liquid polyethylene glycol, mannitol or sorbitd), sodium citrate or sodium chloride (e.g., buffered saline) may also be included in the pharmaceutical compositions of the invention.
Prolonged absorption of an injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and/or gelatin.
Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils.
Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The use of such media and agents for pharmaceutically active substances is well known in the art.
Sterile injectable solutions can be prepared by incorporating the antibody or antigen-binding fragment of the invention in the required amount in an appropriate solvent, optionally with one or a combination of ingredients enumerated above, as required, followed by sterilization microfiltration. Generally, dispersions are prepared by incorporating the antibody molecule into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying (lyophilization) that yield a powder of the active ingredient plus any additional, desired ingredient from a previously sterile-filtered solution thereof.
The antibody or antigen-binding fragment of the invention may also be orally administered. Pharmaceutical compositions for oral administration may contain, in addition to the binding composition, additives such as starch (e.g., potato, maize or
wheat starch or cellulose), starch derivatives (e.g., microcrystalline cellulose or silica), sugars (e.g., lactose), talc, stearate, magnesium carbonate or calcium phosphate. In order to ensure that oral compositions comprising an antibody or antigen-binding fragment of the invention are well tolerated by the patient's digestive system, mucus formers or resins may be included. It may also be desirable to improve tolerance by formulating the antibody or antigen-binding fragment in a capsule which is insoluble in the gastric juices. An exemplary pharmaceutical composition of this invention in the form of a capsule is prepared by filling a standard two-piece hard gelatin capsule with the antibody or antigen-binding fragment of the invention in powdered form, lactose, talc and magnesium stearate. Oral administration of immunoglobulins has been described (Foster, et al., (2001) Cochrane Database System rev. 3:CD001816)
An antibody or antigen-binding fragment of the invention may also be included in a pharmaceutical composition for topical administration. Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site where treatment is required, such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, ear or nose.
Drops according to the present invention may comprise sterile aqueous or oily solutions or suspensions and may be prepared by dissolving the antibody or antigen- binding fragment in a suitable aqueous solution of a bactericidal and/or fungicidal agent and/or any other suitable preservative, and preferably including a surface active agent. The resulting solution may then be clarified by filtration.
Lotions according to the present invention include those suitable for application to the skin or eye. An eye lotion may comprise a sterile, aqueous solution optionally containing a bactericide and may be prepared by methods similar to those for the preparation of drops. Lotions or liniments for application to the skin may also include an agent to hasten drying and to cool the skin, such as an alcohol or acetone, and/or a moisturizer such as glycerol or an oil such as castor oil or arachis oil.
Creams, ointments or pastes according to the present invention are semi-solid formulations of the active ingredient for external application. They may be made by mixing the antibody or antigen-binding fragment of the invention in finely-divided or powdered form, alone or in solution or suspension in an aqueous or non-aqueous fluid, with the aid of suitable machinery, with a greasy or non-greasy basis. The basis may comprise hydrocarbons such as hard, soft or liquid paraffin, glycerol, beeswax, a
metallic soap; a mucilage; an oil of natural origin such as almond, corn, arachis, castor or olive oil; wool fat or its derivatives, or a fatty acid such as stearic or oleic acid together with an alcohol such as propylene glycol or macrogels. The formulation may incorporate any suitable surface active agent such as an anionic, cationic or non- ionic surface active such as sorbitan esters or polyoxyethylene derivatives thereof. Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
The antibodies and antigen-binding fragments of the invention may also be administered by inhalation. A suitable pharmaceutical composition for inhalation may be an aerosol. An exemplary pharmaceutical composition for inhalation of an antibody or antigen-binding fragment of the invention may include: an aerosol container with a capacity of 15-20 ml comprising the antibody or antigen-binding fragment of the invention, a lubricating agent, such as polysorbate 85 or oleic acid, dispersed in a propellant, such as freon, preferably in a combination of 1 ,2- dichlorotetrafluoroethane and difluorochloromethane. Preferably, the composition is in an appropriate aerosol container adapted for either intranasal or oral inhalation administration.
In yet another embodiment of the present invention, the pharmaceutical composition can be administered by combination therapy. For example, the combination therapy can include a pharmaceutical composition of the present invention in association with one or more anti-cancer therapeutic agents (e.g., alkylating agents, antimetabolites, anti-tumor antibiotics, mitotic inhibitors, chromatin function inhibitors, anti-angiogenesis agents, anti-estrogens, anti-androgens, antibody therapies or immunomodulators). An "anti-cancer therapeutic agent" is a substance which, when administered to a subject, treats or prevents the development of cancer in the subject's body. The compositions of the invention may be administered in association with one or more anti-cancer therapeutic procedures (e.g., radiation therapy or surgical tumorectomy). An "anti-cancer therapeutic procedure" is a process which is performed on a subject which treats or reduces the incidence of cancer in the subject. When a combination therapy is used, the antibodies or antigen-binding fragments of the invention, or pharmaceutical compositions thereof, may be formulated into a single composition for simultaneous delivery or formulated separately into two or more compositions (e.g., a kit). Furthermore, the antibody or
antigen-binding fragment may be administered to a subject at a different time than when the other therapeutic agent or therapeutic procedure is administered; for example, each administration may be given non-simultaneously at several intervals over a given period of time. "Alkylating agent" refers to any substance which can cross-link or alkylate any molecule, preferably nucleic acid (e.g., DNA), within a cell. Examples of alkylating agents include mechlorethamine, cyclophosphamide, ifosfamide, phenylalanine mustard, melphalen, chlorambucol, uracil mustard, estramustine, thiotepa, busulfan, lomustine, carmustine, streptozocin, dacarbazine, cis-platinum, carboplatin and altretamine.
"Antimetabolites" refer to substances that block cell growth and/or metabolism by interfering with certain activities, usually DNA synthesis. Examples of antimetabolites include methotrexate, 5-fluoruraciI, floxuridine, 5-fluorodeoxyuridine, capecitabine, fludarabine, cytosine arabinoside, 6-mercaptopurine, 6-thioguanine, gemcitabine, cladribine, deoxycoformycin and pentostatin.
"Anti-tumor antibiotics" refer to compounds which may prevent or inhibit DNA, RNA and/or protein synthesis. Examples of anti-tumor antibiotics include doxorubicin, daunorubicin, idarubicin, valrubicin, mitoxantrone, dactinomycin, mithramycin, plicamycin, mitomycin C, bleomycin, and procarbazine. "Mitotic inhibitors" prevent normal progression of the cell cycle and mitosis. In general, microtubule inhibitors such as paclitaxel and docetaxel are capable of inhibiting mitosis. Vinca alkaloids such as vinblastine, vincristine and vinorelbine are also capable of inhibiting mitosis.
"Chromatin function inhibitors" refer to substances which inhibit the normal function of chromatin modeling proteins such as topoisomerase I or topoisomerase II. Examples of chromatin function inhibitors include topotecan, irinotecan, etoposide and teniposide.
"Anti-angiogenesis agent" refers to any drug, compound, substance or agent which inhibits growth of blood vessels. Exemplary anti-angiogenesis agents include, but are by no means limited to, razoxin, marimastat, COL-3, neovastat, BMS-275291 , thalidomide, squalamine, endostatin, SU5416, SU6668, interferon-alpha, EMD121974, interleukin-12, IM862, angiostatin and vitaxin.
"Anti-estrogen" or "anti-estrogen ic agent" refer to any substance which reduces, antagonizes or inhibits the action of estrogen. Examples of anti-estrogen
agents are tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene, anastrozole, letrozole, and exemestane.
"Anti-androgens" or "anti-androgen agents" refer to any substance which reduces, antagonizes or inhibits the action of an androgen. Examples of anti- androgens are flutamide, nilutamide, bicalutamide, sprironolactone, cyproterone acetate, finasteride and cimitidine.
Antibody therapies which may be administered in conjunction with the antibodies or antigen-binding fragments of the invention include trastuzumab (e.g., herceptin) (see, for example, Sliwkowski, et al., (1999) Semin. Oncol. 26(4 Suppl 12):60-70), vitaxin and rituximab.
"Immunomodulators" are substances which stimulate the immune system. Examples of immunomodulators include denileukin diftitox, levamisole in conjunction with 5-fluorouracil, interferon and interleukin-2.
"Radiotherapy" or "radiation therapy" refers to treating a disease, such as cancer, by administration of ionizing radiation (preferably to a tumor site). Examples of ionizing radiation which may be administered include X-rays, gamma rays (e.g., emitted by radium, uranium or cobalt 60), and particle beam radiation (e.g., protons, neutrons, pions or heavy ions).
Dosage
Preferably, an antibody or antigen-binding fragment of the invention is administered to a subject at a "therapeutical ly effective dosage" which preferably inhibits a disease or condition which is mediated by IGFR1 (e.g., tumor growth) to any extent-preferably by at least about 20%, more preferably by at least about 40%, even more preferably by at least about 60%, and still more preferably by at least about 80%-100% relative to untreated subjects. The ability of an antibody or antigen- binding fragment of the invention to inhibit cancer can be evaluated in an animal model system predictive of efficacy in human tumors. Alternatively, this property of a composition can be evaluated by examining the ability of an antibody or antigen- binding fragment of the invention to inhibit tumor cell growth in vitro by assays (see below) well-known to the skilled practitioner. One of ordinary skill in the art would be able to determine such amounts based on such factors as the subject's size, the severity of the subject's symptoms, and the particular composition or route of administration selected.
Dosage regimens may be adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by exigencies of the therapeutic situation. It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the antibody or antigen- binding fragment of the invention employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a composition of the invention may be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above. It is preferred that administration be by injection, preferably proximal to the site of the target (e.g., tumor). If desired, the effective daily dose of a pharmaceutical composition may be administered as two, three, four, five, six or more subdoses administered separately at appropriate intervals throughout the day.
Therapeutic Methods and Administration The antibodies or antigen-binding fragments of the invention and pharmaceutical compositions comprising the antibodies or antigen-binding fragments of the invention may be used for treating or preventing any disease or condition in a subject which is mediated by elevated expression or activity of IGFR1 or by elevated expression of its ligand (e.g., IGF-I or IGF-II) and which may be treated or prevented by modulation of IGFR1 ligand binding, activity or expression. Preferably, the disease or condition is mediated by an increased level of IGFR1 , IGF-I or IGF-II and is treated or prevented by decreasing IGFR1 ligand binding, activity (e.g., autophosphorylation activity) or expression. Preferably, the disease or condition is malignancy, more preferably a malignancy characterized by a tumor which expresses IGFR1 , such as, but not limited to, bladder cancer, Wilm's cancer, bone cancer, prostate cancer, lung cancer, colorectal cancer, breast cancer, cervical cancer, synovial sarcoma, ovarian cancer, pancreatic cancer, benign prostatic hyperplasia (BPH), diarrhea associated
with metastatic carcinoid and vasoactive intestinal peptide secreting tumors (e.g., VIPoma or Werner-Morrison syndrome). Acromegaly may also be treated with the antibody molecules of the invention. Antagonism of IGF-I has been reported for treatment of acromegaly (Drake, et al., (2001) Trends Endocrin. Metab. 12: 408-413). Other non-malignant medical conditions which may also be treated, in a subject, by administering an anti-IGFR1 antibody of the invention include gigantism, psoriasis, atherosclerosis, smooth muscle restenosis of blood vessels or inappropriate microvascular proliferation, such as that found as a complication of diabetes, especially of the eye. The term "subject" may refer to any organism, preferably an animal, more preferably a mammal (e.g., rat, mouse, dog, cat, rabbit) and most preferably a human.
In preferred embodiments, the antibodies and antigen-binding fragments of the invention and pharmaceutical compositions thereof are administered by an invasive route such as by injection (see above). Administration by a non-invasive route (see above) is also within the scope of the present invention.
Compositions can be administered with medical devices known in the art. For example, in a preferred embodiment, a pharmaceutical composition of the invention can be administered by injection with a hypodermic needle. The pharmaceutical compositions of the invention may also be administered with a needleless hypodermic injection device; such as the devices disclosed in U.S. Patent Nos. 5,399,163; 5,383,851 ; 5,312,335; 5,064,413; 4,941 ,880; 4,790,824 or 4,596,556.
Examples of well-known implants and modules useful in the present invention include: U.S. Patent No. 4,487,603, which discloses an implantable micro-infusion pump for dispensing medication at a controlled rate; U.S. Patent No. 4,447,233, which discloses a medication infusion pump for delivering medication at a precise infusion rate; U.S. Patent No. 4,447,224, which discloses a variable flow implantable infusion apparatus for continuous drug delivery; U.S. Patent. No. 4,439,196, which discloses an osmotic drug delivery system having multi-chamber compartments. Many other such implants, delivery systems, and modules are well known to those skilled in the art.
Assays
The anti-IGFR1 antibodies may be used to detect IGFR1 in a biological sample in vitro or in vivo (see, for example, Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc., 1987)). The anti-IGFR1 antibodies may be used in a conventional immunoassay, including, without limitation, an ELISA, an RIA, FACS, tissue immunohistochemistry, Western blot or immunoprecipitation. The anti-IGFR1 antibodies of the invention may be used to detect IGFR1 from humans. The invention provides a method for detecting IGFR1 in the biological sample comprising contacting the biological sample with an anti-IGFR1 antibody of the invention and detecting the anti-IGFR1 antibody bound to IGFR1 , thereby indicating the presence of the IGFR1 in the biological sample. In one embodiment, the anti- IGFRI antibody is directly labeled with a detectable label and may be detected directly. In another embodiment, the anti-IGFR1 antibody (the first antibody) is unlabeled and a secondary antibody or other molecule that can bind the anti-IGFR1 antibody is labeled. As is well known to one of skill in the art, a secondary antibody is chosen that is able to specifically bind the specific species and class of the first antibody. For example, if the anti-IGFR1 antibody is a human IgG, then the secondary antibody may be an anti-human-lgG. The presence of an anti- IGFR1/IGFR1 complex in the biological sample can be detected by detecting the presence of the labeled secondary antibody. Other molecules that can bind to antibodies (e.g., anti-IGFR1 antibodies) include, without limitation, Protein A and Protein G, both of which are available commercially, e.g., from Pierce Chemical Co. (Rockford, IL)
Suitable labels for the anti-IGFR1 antibody or secondary antibody have been disclosed supra, and include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, magnetic agents and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; an example of a magnetic agent includes gadolinium; and examples of suitable radioactive material include 125l, 131l, 35S or 3H.
In an alternative embodiment, IGFR1 can be assayed in a biological sample by a competition immunoassay utilizing IGFR1 standards labeled with a detectable substance and an unlabeled anti-IGFR1 antibody. In this assay, the biological sample, the labeled IGFR1 standards and the anti-IGFR1 antibody are combined and the amount of labeled IGFR1 standard bound to the unlabeled antibody is determined. The amount of IGFR1 in the biological sample is inversely proportional to the amount of labeled IGFR1 standard bound to the anti-IGFR1 antibody. One may use the immunoassays disclosed above for a number of purposes. In one embodiment, the anti-IGFR1 antibodies may be used to detect IGFR1 in cells in cell culture. In a preferred embodiment, the anti-IGFR1 antibodies may be used to determine the level of tyrosine phosphorylation, tyrosine autophosphorylation of IGFR1, and/or the amount of IGFR1 on the cell surface after treatment of the cells with various compounds. This method can be used to test compounds that may be used to activate or inhibit IGFR1. In this method, one sample of cells is treated with a test compound for a period of time while another sample is left untreated. If tyrosine autophosphorylation is to be measured, the cells are lysed and tyrosine phosphorylation of the IGFR1 is measured using an immunoassay, for example, as described above. If the total level of IGFR1 is to be measured, the cells are lysed and the total IGFR1 level is measured using one of the immunoassays described above.
A preferred immunoassay for determining IGFR1 tyrosine phosphorylation or for measuring total IGFR1 levels is an ELISA or Western blot. If only the cell surface level of IGFR1 is to be measured, the cells are not lysed, and the cell surface levels of IGFR1 are measured using one of the immunoassays described above. A preferred immunoassay for determining cell surface levels of IGFR1 includes the steps of labeling the cell surface proteins with a detectable label, such as biotin or 125l, immunoprecipitating the 1GFR1 with an anti-IGFR1 antibody and then detecting the labeled IGFR1. Another preferred immunoassay for determining the localization of IGFR1, e.g., cell surface levels, is by using immunohistochemistry. Methods such as ELISA, RIA, Western blot, immunohistochemistry, cell surface labeling of integral membrane proteins and immunoprecipitation are well known in the art. In addition, the immunoassays may be scaled up for high throughput screening in order to test a large number of compounds for either activation or inhibition of IGFR1.
The anti-IGFR1 antibodies of the invention may also be used to determine the levels of IGFR1 in a tissue or in cells derived from the tissue. In a preferred embodiment, the tissue is a diseased tissue. In a more preferred embodiment, the tissue is a tumor or a biopsy thereof. In a preferred embodiment of the method, a tissue or a biopsy thereof is excised from a patient. The tissue or biopsy is then used in an immunoassay to determine, e.g., IGFR1 levels, cell surface levels of IGFR1 , levels of tyrosine phosphorylation of IGFR1 , or localization of IGFR1 by the methods discussed above. The method can be used to determine if a tumor expresses IGFR1 at a high level. The above-described diagnostic method can be used to determine whether a tumor expresses high levels of IGFR1 , which may he indicative that the tumor will respond well to treatment with anti-IGFR1 antibody. The diagnostic method may also be used to determine whether a tumor is potentially cancerous, if it expresses high levels of IGFR1 , or benign, if it expresses low levels of IGFR1. Further, the diagnostic method may also be used to determine whether treatment with anti-IGFR1 antibody is causing a tumor to express lower levels of IGFR1 and/or to exhibit lower levels of tyrosine autophosphorylation, and thus can be used to determine whether the treatment is successful. In general, a method to determine whether an anti- IGFRI antibody decreases tyrosine phosphorylation comprises the steps of measuring the level of tyrosine phosphorylation in a cell or tissue of interest, incubating the cell or tissue with an anti-IGFR1 antibody or antigen-binding portion thereof, then re-measuring the level of tyrosine phosphorylation in the cell or tissue. The tyrosine phosphorylation of IGFR1 or of another protein(s) may be measured. The diagnostic method may also be used to determine whether a tissue or cell is not expressing high enough levels of IGFR1 or high enough levels of activated IGFR1 , which may be the case for individuals with dwarfism, osteoporosis or diabetes. A diagnosis that levels of IGFR1 or active IGFR1 are too low could be used for treatment with activating anti-IGFR1 antibodies, IGF-1, IGF-2 or other therapeutic agents for increasing IGFR1 levels or activity. The antibodies of the present invention may also be used in vivo to localize tissues and organs that express IGFR1. In a preferred embodiment, the anti-IGFR1 antibodies can be used to localize IGFR1 -expressing tumors. The advantage of the anti-IGFR1 antibodies of the present invention is that they will not generate an immune response upon administration. The method comprises the steps of
administering an anti-IGFR1 antibody or a pharmaceutical composition thereof to a patient in need of such a diagnostic test and subjecting the patient to imaging analysis to determine the location of the IGFR1 -expressing tissues. Imaging analysis is well known in the medical art, and includes, without limitation, x-ray analysis, magnetic resonance imaging (MRI) or computed tomography (CT). In another embodiment of the method, a biopsy is obtained from the patient to determine whether the tissue of interest expresses IGFR1 rather than subjecting the patient to imaging analysis. In a preferred embodiment, the anti-IGFR1 antibodies may be labeled with a detectable agent that can be imaged in a patient. For example, the antibody may be labeled with a contrast agent, such as barium, which can be used for x-ray analysis, or a magnetic contrast agent, such as a gadolinium chelate, which can be used for MRI or CE. Other labeling agents include, without limitation, radioisotopes, such as 99Tc. In another embodiment, the anti-IGFR1 antibody will be unlabeled and will be imaged by administering a secondary antibody or other molecule that is detectable and that can bind the anti-IGFR1 antibody.
EXAMPLES
The following examples are provided to further describe the present invention and should not be construed to limit the scope of the invention in any way.
EXAMPLE 1: Construction of Fully Human Anti-IGFR1 Antibodies.
1.0. Introduction.
Fully human monoclonal antibodies specific for human insulin-like growth factor receptor 1 (IGFR1) were generated from HuMab mice of the Hco7 genotype (see below), immunized with recombinant slGFRI and IGFR1 transfected HEK293 cells. A detailed description of Hco7 mice is provided in U.S. Patent Nos. 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661 ,016; 5,770,429; 5,789,650; 5,814,318; 5,874,299 and 5,877,397 and in Harding, et al., (1995) Ann. NY Acad. Sci. 764:536- 546. Antibodies 1 H3, 15H12 and 19D12 were isolated from a HuMab mouse (referred to herein as #23716) which was selected for fusion based on the presence of antigen specific serum IgG titers of 25,600 to the immunizing antigen. The 1 H3, 15H12 and 19D121 antibodies were found to bind IGFRL
Materials and Methods and Results.
2.1. Antigen.
2.1.1. Mice were immunized with two forms of antigen: (1) live cells
(IGFR1 transfected HEK293 cells) and (2) purified protein (slGFRI ; an NSO-expressed recombinant protein encompassing the α-subunit and the extracellular domain of the β-subunit of IGFR1). The biologically active version of this protein is in glycosylated form.
2.1.2. Three immunizations with soluble IGFR1 antigen and final tail vein boosts were performed with a purified IGFR1 preparation at a concentration of 2.67 mg/ml. Soluble IGFR1 was mixed with either complete or incomplete Freund's adjuvant (CFA and IFA) and mice were injected with 0.2 cc (cubic centimeters) prepared antigen into the intraperitoneal cavity. Final tail vein immunizations were performed with soluble IGFR1 in sterile PBS (phosphate buffer saline).
2.1.3. Immunizations were also performed with HEK293 cells transfected with IGFR1 DNA. Specifically, each mouse was immunized, by injection into the intraperitoneal cavity, with 0.2 cc of sterile saline containing 1.0-2.0 x 107 HEK293 cells expressing IGFRL
2.2. Transgenic Mice.
2.2.1. Mice were housed in filter cages and were evaluated to be in good physical condition at the time of immunization, at the time of the bleeds and on the day fusions were produced. 2.2.2. The mouse that produced the selected hybridomas was a male (mouse ID #23716) of the (CMD)++; (Hco7) 11952+; (JKD) ++; (KCo5) 9272+ genotype. Individual transgene designations are in parentheses, followed by line numbers for randomly integrated transgenes. The symbols ++ and + indicate homozygous or hemizygous; however, because the mice are routinely screened using a PCR-based assay that does not allow us to distinguish between heterozygosity and homozygosity for the randomly integrated human Ig transgenes, a +
designation may be given to mice that are actually homozygous for these elements.
2.3. Immunization Procedure and Schedule.
2.3.1. The immunization schedule is shown in the following table.
Table 2. Mouse immunization schedule.
1 Titer information is shown below. Fusions were performed on day 131.
Table 3. Titers of IGFR1 specific antibody during the immunization period of mouse 23716 described in Table 2 (see above).
2.4. Hybridoma Preparation and Testing.
2.4.1. The SP2/0-AG14 myeloma cell line (ATCC CRL 1581) was used for the fusions. The original ATCC vial was thawed and expanded in culture. A seed stock of frozen vials was prepared from this expansion. Cells were maintained in culture for 6-8 weeks and passed twice a week.
2.4.2. High Glucose DMEM containing 10% FBS, Antibiotic-antimycotic (100X), and 0.1 % L-glutamine was used to culture myeloma cells.
Additional media supplements were added to the hybridoma growth media which included: 5% Origen - Hybridoma Cloning Factor (Fischer Scientific; Suwanee, GA), 4.5 x10"4 M sodium Pyruvate, HAT 1.0 X 10"4 M Hypoxanthine, 4.0 x 10"7 M Aminopterin, 1.6 x10"5 M Thymidine, or HT 1.0 x 10"4 M Hypoxanthine, 1.6 x10"5 M Thymidine; and characterized fetal bovine serum.
2.4.3. The spleen from mouse number #23716 was normal in size and yielded 5.73 x 108 viable cells.
2.4.4. The splenocytes were fused according to the following procedure:
1. Place approximately 10 ml of DMEM + 10%FBS into a 50 mL tube.
2. Sacrifice the intravenously boosted mouse.
3. Transfer the mouse into a hood onto a paper towel. 4. Soak the mouse with alcohol, and place onto its right side - left side up.
5. Make a small cut into the skin above the spleen area.
6. Pull skin away from the mouse using both hands.
7. Soak with alcohol again. 8. Use sterile instruments to open the peritoneum.
9. Insert the scissor points under the spleen and open the scissors so as to allow room to grasp the spleen with the forceps.
10. Remove the spleen and place into the tube containing DMEM + 10%FBS. Transfer to a sterile tissue culture room. 11. Inside a sterile hood, add approximately 7 mL of DMEM without serum to each of 2 sterile 60 mm culture dishes.
12. Transfer the spleen to the first dish.
13. Remove any adhesions from the spleen using sterile instruments. 14. Place a sterile homogenizer base into a test tube rack (for support).
15. Add the cleaned spleen into the homogenizer.
16. Add approximately 5 mL of DMEM and homogenize 4 passes. Pour off into a sterile 50 mL centrifuge tube. 17. Add another 5-6 mL of DMEM into the homogenizer and make another 3-4 additional passes.
18. Pour off into the same tube as described above.
19. Spin the cells at 1000 rpm for 10 minutes in a centrifuge.
20. Remove the supernatant. Pour off and resuspend pellets in DMEM.
21. Count the spleen cells.
22. Transfer appropriate volume of SP2/0 cells (6 spleen cells per 1 cell of SP2/0) to a 50 mL centrifuge tube. Record volume.
23. Adjust volume of spleen cells with DMEM for more convenient balancing for centrifugation.
24. Spin cells for 10 minutes at 1000 rpm in a centrifuge.
25. Remove supematants - pour off and resuspend pellets in 30-40 mL of DMEM wash medium (serum free). Combine all cells in one tube. 26. Spin again as above.
27. Pour off supernatant and resuspend pellet.
28. Add approximately 1.2 mL of PEG (polyethylene glycol) at about 1 minute while gently swirling the tube in a beaker containing 37°C water.
29. Let the tube sit for 90 seconds, then add 15 mL of DMEM wash medium at 3 minutes.
30. Spin the tube as described above.
31. Remove the supernatant and resuspend the pellet gently. 32. Add approximately 10 mL of Hat medium to the tube.
33. Pipette cells into the full volume of HAT medium. Allow the cells to sit for 30-60 minutes in an incubator before plating.
34. Plate cells into 96 well culture plates, 200 μL/well (about 1x107 cells per 96-well plate). 35. Feed cells on day 7 with HT media, 250μl/well. (HT media, same as HAT media, with Aminopterin removed) 2.4.5. An initial ELISA screen for human lgGκ antibodies was performed 7-10 days post fusion according to the following procedure:
1. Coat plate overnight with anti-hu- , I μg/mL or anti-hu-γ, 1 μg/mL in 1X PBS, 50 μL/well. Store in refrigerator.
2. Empty plate and block plate in 1X PBST (PBS with Tween) + 5% chicken serum for 1 hour at room temperature (100 μUwell).
3. Empty plate and wash manually with wash bottle (3X) or plate washer (3X) using 1X PBST. If wash bottle used, drain plates on paper towels.
4. Standards are used for testing production level of the clones. Make dilutions with unknowns (1:10 in first well and dilute 2 fold across plate). Hu-lgG standards start at 1000 ng/mL and dilute 2 fold across plate. Leave a few wells for blanks: 1 X PBST + 5% chicken serum which is used for dilutions, 100 μL/well. Incubate at room temperature for 1 hour. Fusion screens and subclones are generally tested diluted 1 :2 in blocking buffer. A positive control may also be used when screening fusions and subclones.
5. Repeat wash step #3. 6. Dilute secondary antibody HRP(horse radish peroxidase)- anti-hu IgG-Fc reagent 1 :5000 or HRP-anti-hu-κ in 1XPBST +5% chicken serum, add 100 μL/well. Incubate 1 hour at room temperature. 7. Repeat wash step#3. (2X)
8. Develop plate using 10 ml citrate phosphate buffer pH4.0, 80 μL ABTS, 8 μL H202 per plate.
9. Incubate 30 minutes to 1 hour at room temperature. Read plate at OD415 nm-490 nm- Solutions:
1X PBST= 1xPBS + 0.05% tween-20 Citrate phosphate buffer = 21 gm/L citric acid, 14.2 gm/L disodium hydrogen phosphate (anhydrous); pH4.0
ABTS= 27.8 mg/mL 2,2'-azino-bis (3-ethylbenz- thiazoIine-6-sulfonic acid) diammonium salt in citrate buffer, freeze 1 mL aliquots.
Plate = 96 well assay plate. A positive ELISA signal was detected in the wells corresponding to hybridomas 1 H3, 15H12 and 19D12, demonstrating that these hybridomas produced human IgG antibodies.
2.4.6. Hybridoma supernatants corresponding to human lgGκ positive wells were then screened on soluble IGFR1 coated ELISA plates according to the following procedure:
1. Coat plate overnight with IGFR1 (1.0 μg/mL) in 1X PBS, 50 μL/well. Store in refrigerator. Five milliliters needed for coating plate.
2. Empty plate and block plate in 1X PBST + 5% chicken serum for 1 hour at room temperature (100 μL/well).
3. Empty plate and wash manually with wash bottle (3X) or plate washer (3X) using 1X PBST. If wash bottle used, drain plates on paper towels.
4. Use blocking buffer as diluent. Test sera, beginning at 1 :50 dilution in the top row of the plate and dilute 2 fold/row down the plate (7X). Incubate at room temperature 1 hour. For subclone screening, a 1 :1 dilution of culture supernatant in blocking buffer is used as starting material.
5. Repeat wash step #3.
6. Dilute secondary HRP-anti-hu IgG-Fc specific and/or HRP- anti-hu-κ reagent 1 :2500-5000 in 1X PBST +5% chicken serum, add 100 μlJwell. Incubate 1 hour at room temperature.
7. Repeat wash step#3. (2X)
8. Develop plate using 10 mL citrate-phosphate buffer pH4.0, 80 μL ABTS, 8 μL H202 per plate.
9. Incubate 30 minutes to 1 hour at room temperature. Read plate at OD 415 nm.49o nm. Consider twice above background titer limit.
In these assays, hybridomas 15H12 and 19D12 produced a positive ELISA signal. These data demonstrate that the hybridomas produced antibodies which can bind to soluble IGFRL
Antigen positive hybridomas were then transferred to 24 well plates, and eventually to tissue culture flasks. IGFR1 specific hybridomas were subcloned by limiting dilution to assure monoclonality. Antigen positive hybridomas were preserved at several stages in the development process by freezing cells in Origen DMSO freeze medium (Fischer Scientific; Suwanee, GA).
2.4.7. Antibody isotypes were determined according to the following procedure:
1. Coat plate overnight in refrigerator at Iμg/ml soluble IGFR1 in 1X PBS, δOμLΛ/vell. Empty plate.
2. Add 1X PBST + 5% chicken serum for 1 hour at room temperature. (100 μlJwell). Empty plate. 3. Use blocking buffer as a diluent, add supernatant or purified material to be tested in 1 well per secondary antibody to be tested- 50μlJwell. Incubate for 90 minutes at room temperature. Empty plate.
4. Empty plate and wash manually with wash bottle (3X) or plate washer (3X) using 1X PBST. If wash bottle used, drain plates on paper towels.
5. Using blocking buffer as a diluent, add secondary antibodies: HRP-anti-hu-gamma;
HRP-anti-hu kappa; HRP-anti-human IgGI; or HRP-anti-human lgG3 diluted 1 :1000. Incubate for 45 minutes at room temperature. Empty plate.
6. Repeat wash step #4 (3X).
7. Develop plate using 10 mL citrate-phosphate buffer pH4.0, 80 μL ABTS, 8 μL H202 per plate.
8. Incubate 30 minutes to 1 hour at room temperature. Read plate at OD415nm-490nπι-
The data from these assays is shown, below, in Table 4.
Table 4. Isotype ELISA results* γ K γi γ3
1 2 3 4 clone 1.903 1.003 0.064 0.813 I15H12
*Each number represents the magnitude of the ELISA signal observed for each secondary antibody.
These data demonstrate that antibody 15H12 is an lgG3κ antibody. 2.4.8. Hybridoma supernatants (1 H3, 15H12 and 19D12) and MAB391 were also tested, in a fixed cell ELISA assay, for the ability to directly bind cells expressing IGFR1. In the assay, MCF-7 cells or HEK293 cells transfected with IGFRl DNA were used. The assays were performed as follows:
1. Add 50 μg/well of a 20 μg/mL solution of Poly-L-lysine in 1X PBS to each well of a 96 well plate and incubate for 30 minutes at room temperature or overnight at 4°C. Empty plate to remove Poly-L-lysine from the wells and allow to dry at room temperature until use.
2. Wash live cells three times with 1X PBS by centrifugation (1000 RPM/5 minutes). Adjust final cell concentration to 2 X 106 cells per well in 1X PBS. Add 50μL per well of this cell suspension.
3. Spin cells 5 minutes at 2000 RPM. Empty buffer.
4. Add 50μlJwell of 0.5% ice cold glutaraldehyde in 1X PBS. Let sit for 15 minutes at room temperature. Empty plate.
5. Add 1X PBST + 5% chicken serum and incubate for 1 hour at room temperature (100 μlJwell). Empty plate.
6. Wash plate gently using 1X PBST (2X). To avoid cell loss, this step should be done manually in a container avoiding any plate washers.
7. Using blocking buffer as a diluent, test culture supernatant by adding 100μg of a 1 :1 dilution. Incubate 1 hour at room temperature.
8. Repeat step 6 (3X).
9. Dilute secondary HRP anti-hu IgG-Fc specific and/or HRP anti-hu-κ, reagent 1:2500-5000 in 1X PBST + 5% chicken serum, add 100 μL/well. Incubate 1 hour at room temperature. 10. Repeat step 6 (3X).
11. Develop plate using 10 ml citrate-phosphate buffer pH4.0, 80 μL, ABTS, 8 μL H202 per plate.
12. Incubate 15-20 minutes at room temperature. Read plate at
OD 4i5nm-490nm- The results from these assays demonstrated that hybridomas 1 H3, 15H12 and
19D12 produced an immunoglobulin which binds to HEK293 cells expressing IGFR1 and that hybridomas 1 H3, 15H12 and 19D12 produced an immunoglobulin which binds to MCF-7 cells which express endogenous IGFR1. Additionally, the results demonstrated that MAB391 bound to IGFR1 expressing HEK293 cells and to MCF-7 cells.
2.4.9. The ability of hybridoma supernatants (1H3, 15H12 and 19D12) to block binding of IGF1 to IGFR1 was evaluated by measuring 1) staining intensity of the supernatant on IGFR1 expressing HEK293 cells and on MCF7 cells and 2) the ability of the supernatants to block binding of IGF1-biotin to IGFR1 expressing cells. Initially, biotinylated
IGF1 was titrated on IGFR1 expressing HEK293 cells in order to establish the proper concentration to evaluate blocking of IGF1 binding to its receptor by the antibodies of the present invention. This was done by the following procedure: 1. IGFR1 expressing HEK293 cells are harvested from a flask by slapping the flask to loosen the cells which were pipeted in to a conical tube. The cells are then centrifuged at 300 X g for 5 minutes to pellet the cells. The medium is then aspirated.
2. The cells are washed in 10-20 mL PBS containing 0.02% sodium azide and resuspended in the same buffer at approximately 2.5 X 106 cells/mL (+106 cells). The cells are aliquoted, 200μL/well into a 96 well microtiter plate in the same buffer at 4°C. The cells are pelleted and the supernatant is aspirated.
3. The cells are stained by adding δOμLΛvell serially diluted IGFI-biotin in the same buffer, starting at a 1 :5 dilution followed by 4- fold serial dilutions. The plate is tapped or gently vortexed to ensure an even suspension of cells are suspended. The cells are then incubated for 30 minutes at 4°C.
4. The cells are washed 3X by adding 150μL buffer for the first wash and then pelleted. The supernatant is aspirated and 200μL buffer is added. Again, the cells are pelleted and the supernatant is aspirated; this wash step is repeated once more. Streptavidin-PE (streptavidin-R-Phycoerythrin) is added and the cells are incubated for
30 minutes at 4°C.
5. The cells are washed once in PBS containing 2% FBS and 0.02% azide and resuspended in the same buffer except containing also δ0 μg/mL propidium iodide to exclude dead cells. 6. The cells are analyzed by FACS.
The blocking assays were performed as follows:
1. Harvest MCF7 cells or HEK293/IGFR1 cells from a tissue culture flask by slapping the flask sides to loosen the cells. Pipet the cells into a conical tube. Centrifuge the tube for δ minutes at 300 X g to pellet the cells. Aspirate the medium.
2. Wash the cells in 10-20 mL PBS containing 2% FBS and 0.02% sodium azide (PFA), and resuspend in the same buffer at approximately 2.δ X 106 ( ± 1 X 106). Aliquot 200 μlJwell into a 96 well microtiter plate in the same buffer at 4°C. Pellet the cells and aspirate the buffer.
3. Stain the cells with each IGFR1 hybridoma supernatant by adding 100 μL/well, including a medium (negative) control, and MAB391 as a positive control. Tap the plate to ensure even suspension of the cells. Incubate 30-60 minutes at 4°C.
4. Wash the cells 3 times in PFA by adding 10OμL buffer for the first wash, pellet, aspirate, resuspend in 200μL buffer, pellet, aspirate, resuspend again in 200μL buffer, divide each sample into two wells and pellet. δ. To one set of wells, add anti-human IgG-FITC diluted 1 :100 in PFA (para-formaldehyde) to the supernatant stained samples and the medium control, and anti-mouse IgG-FITC at 1 :200 to the MAB391 stained samples, again ensuring even dispersal of the cells (staining assay). Incubate for 30 minutes at 4°C. 6. To the second set of wells, add IGFI-biotin diluted 1 :δ00 in
PBS containing 0.02% azide (no FBS) and incubate for 30 minutes at 4°C. Wash the cells 3 times as described in step 4 (but without dividing the sample). Stain these cells by adding streptavidin-PE (streptavidin-R-Phycoerythrin) in PFA (blocking assay). Incubate for 30 minutes at 4°C.
7. Wash all the samples once in PFA, and resuspend in the same buffer except containing also δOμg/mL propidium iodide to exclude dead cells.
8. Analyze by FACS analysis. The results from these blocking assays demonstrated that the supernatants from hybridomas 1 H3, 16H12 and 19D12 block binding of biotinylated IGF1 to IGFR1 , stain MCF7 cells which express endogenous IGFR1 and stain HEK293 cells expressing IGFR1.
2.4.10. The ability of purified antibodies 1H3 and 1δH12 to block binding of biotinylated IGF1 to IGFR1 in an ELISA assay and of antibodies 1 H3, 15H12 and 19D12 to block binding of biotinylated MAB391 to IGFR1 in an ELISA assay was also evaluated according to the following procedure:
1. Coat plate overnight in a refrigerator with 1 μg/mL soluble IGFR1 in 1 X PBS-50μl_Λ/vell.
2. Add 1 X PBST + 5% chicken serum for 1 hour at room temperature- 100μL well. Empty plate.
3. Wash plate 3X with wash buffer (1X PBS + 0.0δ% tween- 20). Slap plate dry.
4. 2 μg/mL 1H3, 1δH12 or 19D12 or positive or negative control antibodies are diluted in blocking buffer across the plate. The plates are incubated at room temperature for 1 hour. δ. Wash plates 3X in wash buffer. 6. Biotin-IGF1 or Biotin-MAB391 is added-δOμlJwell- and incubated for 30 minutes at room temperature.
7. Wash plate 3X
8. Add 100μLJwell of streptavidin labeled alkaline phosphatase or horse radish peroxidase, incubate for 30 minutes at room temperature.
9. Wash plate 3X. Develop with appropriate reagent depending on the label used.
10. Read after 10-1 δ minutes.
MAB391 was biotinylated according to the following procedure: 1. Prepare MAB391 in PBS buffer (dialyze or use desalting column to remove unwanted buffers such as Tris or glycine).
2. Prepare a fresh stock solution of Sulfo-NHS-LC-biotin solution just before use. Add 2.0 mg of Sulfo-NHS-LC-biotin to 200 DL distilled water. Add this reagent to MAB391 at a 12-fold molar excess if working with a 10 mg/mL solution of MAB391 , or a 20-fold molar excess when working with a dilute preparation of MAB391 (2 mg/mL).
3. Calculation: mmoles MAB391 = mg protein/1 δ0, 000 mmoles X 12 or 20 = mmoles biotin reagent to add mmoles biotin to add X δδ6 = mg biotin reagent to add For 1 mg/mL:
1/160000 = 6.6 X 10"6
20 X 6.6 X 10"6 mmoles = 1/32 X 10"4 NHS-LC-biotin
1.32 X 10"4 X δδ6 = 0.073 mg sulfo NHS-LC-biotin
From the stock NHS-LC-biotin solution, use 10 μL (100 μg) of solution per mg IgG for 1 or 2 mg.
4. Incubate for 2 hours on ice or for 30 minutes at room temperature. Dialyze against PBS or use desalting column to remove unreacted biotin reagent. Store at 4°C in PBS 0.1% sodium azide.
In general, 3-δ biotins should be added to each IgG molecule labeled.
The results from these blocking assays demonstrated that antibodies 1 H3 and 16H12 blocks binding of biotinylated IGF1 to slGFRI and that antibodies 1H3, 1δH12 and 19D12 block biotinylated MAB391 binding to slGFRL
2.4.11. Binding between IGFR1 and the 1H3, 15H12 and 19D12 antibodies was evaluated in a BIAcore/surface plasmon resonance assay according to the following procedure:
1. IGFR1 is immobilized on a CM-δ chip by amine coupling, to a level of 3δ0.4 response units on flow cells. The concentration of IGFR1 which is used to immobilize is 2.δ μg/mL in sodium acetate buffer and the protein is immobilized at pH 3.δ.
2. Antibodies 1H3, 16H12 and 19D12 are purified from hybridoma supernatants over a Protein-A or Protein-G column and tested for purity by SDS-PAGE analysis (4%-12% Tris-Glycine).
3. The antibodies are made to flow over the IGFR1 surface prepared above.
4. The concentration range of antibodies used is 4, 2, 1 , O.δ and 0.25 μg/mL. A blank is also used for background substitution. Samples are prepared in HBS buffer.
5. Injection time (association phase) is 10 minutes, at a flow rate of 20μL/minute, dissociation time (dissociation phase) is 1 hour at the same flow rate.
6. The assays are run at both 25°C and 37°C. All experiments are done in duplicate.
7. Data analysis is carried out using Bia-Evaluation software v.3.0.2 (Biacore, Inc; Piscataway, NJ).
8. All experiments are carried out using a Biacore 3000 surface plasmon resonance instrument (Biacore, Inc; Piscataway, NJ).
The results for these assays demonstrated that antibodies 15H12 and 19D12 associate with IGFR1 at 2δ°C and at 37°C and that antibody 1H3 associates with IGFR1 at 25°C. The data from these experiments were also used to calculate the affinity and rate constants of 1H3, 15H12 and 19D12 binding to IGFR1 (see Table 5, below).
Table 5. Affinity and rate constants of antibodies 1H3, 15H12 and 19D12 with IGFRL
EXAMPLE 2: Cell Based Receptor Binding Assay.
A cell based receptor binding assay was used to determine if antibodies 1 H3, 1δH12 and 19D12 competed with IGF1 for binding to IGFRL
In the assays, 96 well filter plates (1.2 μm pore) were pre-wet with 0.δ% bovine serum albumin (BSA)/PBS for 2 hours at 4°C. The buffer was then removed with a vacuum manifold. Various concentrations of 6X control or test antibody (1 H3, 16H12 or 19D12) were added to the wells (2δ μL). The [125I]-IGF-1 ligand was then added to the wells at a final concentration of 0.37δ nM in BSA/PBS. Cells were harvested with cell dissociation solution, counted with trypan blue, and resuspended in 0.δ% BSA/PBS to a cell number of 1-3 X 105/ml. One hundred μl of cells (10,000-30,000) were added to each well. The plate was shaken at 4°C for 1 hour. The plate was then aspirated and washed three times with ice cold PBS using a vacuum manifold. The filters were punched out and counted on a gamma counter. Data were analyzed for competitive binding. The results of these experiments indicated that 1H3, 16H12 and 19D12 were capable of competing with IGF-I for binding to IGFR1.
EXAMPLE 3: IGFR1 Autophosphorylation Assay.
The ability of 1H3, 1δH12 and 19D12 to inhibit IGFR1 autophosphorylation was also determined.
Antibodies (1 H3, 1δH12 or 19D12) were added to cells bearing IGFR1 for various lengths of times. Cells were then stimulated with 10 ng/ml IGF-I for δ min at
37°C. Cells were washed twice with cold PBS containing 0.1 mM sodium vanadate and lysed in lysis buffer (δO mM HEPES, pH7.4, 1δ0 mM NaCI, 10% glycerol, 1% Triton X-100, 1.δ mM MgCI2, protease inhibitors and 2 mM sodium vanadate). Lysates were incubated on ice for 30 min and then centrifuged at 13,000 RPM for 10 min at 4°C. Protein concentrations of the lysates were measured by a Coomassie colorimetric assay, and subjected to immunoprecipitation and Western blot analysis. The results of these assays indicated that antibodies 1 H3, 16H12 and 19D12 inhibited IGFR1 autophosphorylation with an IC5o of 0.10 nM.
EXAMPLE 4: Anchorage-Independent Growth (Soft Agar) Assay.
The ability of an anti-IGFR1 antibodies 1 H3, 1δH12, 19D12 and MAB391 to inhibit anchorage-independent growth of various cells, including human breast cancer cell line MCF7, human colorectal cancer cell HT29 and human prostatic cancer cell DU14δ, was evaluated. In these experiments, three milliliters of 0.6% agarose in complete MEM medium were added to each well of 6 well tissue culture plates and allowed to solidify (bottom layer). One hundred microliters of antibody 1 H3, 1δH12, 19D12 or MAB391 (discussed above), at various concentrations, was added to culture tubes. Cells were harvested. Aliquots of the cells (16,000 cells) were added to the culture tubes containing the antibody and incubated at room temperature for 10-1 δ minutes. Three milliliters of a 0.3δ% agarose/complete minimal essential media (MEM) layer (top layer) were added to the antibody/cell mixture and then plated onto the solidified bottom layer. The top layer was allowed to solidify. The plates were then incubated for three weeks. MTT (3-(4,δ-Dimethyl-2-Thiazolyl)-2,δ-Diphenyl-2H-Tetrazolium Bromide) was added to the wells and incubated for 1-2 hours. The plates were scanned and the colonies counted and analyzed using a customized colony counter application program.
The results of these experiments demonstrated that an anti-IGFR1 antibody can inhibit anchorage-independent growth of all three malignant cell lines tested.
EXAMPLE 5: Cloning of the Variable Regions of an Antibody from Hybridomas.
Nucleic acids encoding the 1H3, 15H12 and 19D12 variable regions were obtained from hybridomas according to the following procedure.
Messenger RNA (mRNA) from 2x106 hybridoma cells was prepared by using a Micro-Fast Track kit (Invitrogen; Carlsbad, CA) . Cellular DNA (cDNA) encoding the variable region was prepared according the procedure described in "cDNA Cycle" kit (Invitrogen; Carlsbad, CA). The antibody variable regions were PCR amplified using the cDNA as a template using δ'RACE (Clotech; Palo Alto, CA) technology. The following 3'primer sequence was used to amplify the heavy chain: δ'-TGCCAGGGGGAAGACCGATGG- 3' (SEQ ID NO: 22) and following 3'primer sequence was used to amplify the light chain: δ'-CGGGAAGATGAAGACAGATG-3' (SEQ ID NO:23). Additionally, δ'-RACE PCR primers (Clotech; Palo Alto, CA) were used in each amplification.
The PCR reaction mixture included 2.δ units of Pfu I polymerase in its appropriate buffer (Stratagene; La Joola, CA), 0.2 mM of each dNTP, 760 nM of each δ' and 3' primer and cDNA template. Total reaction volume was δO μl. The following PCR cycling program was performed using a thermocycler:
1X 94°C, 2 min.
10X 94°C, 4δ sec.
6δ°C, 4δ sec. Minus 1 °C per cycle 72°C , 1 min. 25X 94°C, 45 sec. δδ°C, 4δ sec. 72°C, 1 min. 1X 72°C, 1δ min.
The resulting PCR amplification product was inserted into the Zero Blunt TOPO PCR cloning vector (Invitrogen; Carlsbad, CA). The identity of the insert was verified by restriction enzyme analysis and then the nucleotide sequence of the insert was obtained by sequencing.
Example 6: Recombinant Expression of Antibody Chains In this example, nucleic acids encoding various anti-IGFR1 antibody chains of the present invention were used to transfect a dhfr~ mammalian cell line (CHO- DXB11) wherein the chains were expressed. Transient transfections were carried out by cotransfection of the cell line with various combinations of one heavy (γl orγ4) and one light (K) chain plasmid, selected from plasmids 1-11 , listed below. Construction
of stable cell lines was performed by transfection by a single plasmid, either 12 or 13, listed below, as follows: The nucleic acids were located in a single plasmid and were operably linked to cytomegalovirus (CMV) promoters. The plasmids also contained DHFR cDNA operably linked to a mouse mammary tumor virus long terminal repeat (MMTV-LTR) which was used for plasmid amplification. The plasmid further included the hygromycin B gene operably linked to the TK promoter for selection in mammalian cells.
Below is a description of the promoter-expression cassette in the13 plasmids which were constructed. The indicated plasmids (2-4 and 8-11) were deposited, under the Budapest Treaty, on with the American Type Culture Collection
(ATCC); 10801 University Boulevard; Manassas, Virginia 20110-2209 under the indicated name and accession number: (1) CMV promoter-15H12/19D12 HC (γ4)
Insert Sequence: SEQ ID NO: 3; (2) CMV promoter-15H12/19D12 HCA (γ4)-
Deposit name: "15H12/19D12 HCA (γ4)"
ATCC accession No.:
Insert Sequence: SEQ ID NO: 44;
(3) CMV promoter-15H12/19D12 HCB (γ4)- Deposit name: "15H12/19D12 HCB (γ4)"
ATCC accession No.: Insert Sequence: SEQ ID NO: 111;
(4) CMV promoter-15H12/19D12 HCA (γl
Deposit name: "15H12/19D12 HCA (γl)"; ATCC accession No.:
Insert Sequence: SEQ ID NO: 44;
(5) CMV promoter-15H12/19D12 LC (K)
Insert Sequence: SEQ ID NO: 1;
(6) CMV promoter-15H12/19D12 LCA (K) Insert Sequence: SEQ ID NO: 40;
(7) CMV promoter-15H12/19D12 LCB (K)
Insert Sequence: SEQ ID NO: 42;
(8) CMV promoter-15H12/19D12 LCC (K)-
Deposit name: "15H12/19D12 LCC (K)";
ATCC accession No.:
Insert Sequence: SEQ ID NO: 71;
(9) CMV promoter-15H12/19D12 LCD (κ Deposit name: "15H12/19D12 LCD (K)";
ATCC accession No.: Insert Sequence: SEQ ID NO: 73;
(10) CMV promoter-15H12/19D12 LCE (K)-
Depositname: "15H12/19D12 LCE (K)"; ATCC accession No.:
Insert Sequence: SEQ ID NO: 75;
(11) CMV promoter~15H12/19D12 LCF (κ)~
Deposit name: "15H12/19D12 LCF (K)"; ATCC accession No.: Insert Sequence: SEQ ID NO: 77;
(12) CMV promoter-15H12/19D12 HC (γ4) and CMV promoter-15H12/19D12 LC (K);
(13) CMV promoter-15H12/19D12 HCA (γl) and CMV promoter-15H12/19D12 LC (K)
All restrictions on access to the plasmids deposited in ATCC will be removed upon grant of a patent. The 3' end of each cassette was linked to a beta-globin poly A signal. The variable chains which were expressed were linked to the constant region indicated in parentheses (i.e., γl, γ4 or K). Analysis of the transfected cell lines containing each plasmid indicated that the corresponding antibody chain polypeptides were expressed (amino acid sequences of the expression products not confirmed). Each of the above-referenced plasmids constitutes part of the present invention. Further, the nucleic acid located within each expression cassette, along with the immunoglobulin variable region therein, along with the mature, processed version thereof (i.e., lacking the signal sequence), particularly, SEQ ID NO: 44, mature HCA (nucleotides 68-411 of SEQ ID NO: 44), SEQ ID NO: 111 , mature HCB (nucleotides 68-411 of SEQ ID NO: 111 ), SEQ ID NO: 71 , mature LCC (nucleotides 68-384 of SEQ ID NO: 71), SEQ ID NO: 73, mature LCD (nucleotides 68-384 of SEQ ID NO: 73), SEQ ID NO: 75, mature LCE (nucleotides 58-384 of SEQ ID NO: 75), SEQ ID NO: 77 or mature LCF (nucleotides 58-384 of SEQ ID NO: 77), optionally including an immunoglobulin constant region, along with any polypeptide encoded by
any of the foregoing nucleic acids, including mature or unprocessed chains, optionally including an immunoglobulin constant region, is a part of the present invention. Moreover, any antibody or antigen-binding fragment thereof comprising one of the encoded polypeptides is part of the present invention.
************************
The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and the accompanying figures. Such modifications are intended to fall within the scope of the appended claims.
Patents, patent applications, Genbank Accession Numbers and publications are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties.
Claims (1)
- WE CLAIM:1. A binding composition that specifically binds to IGFR1 comprising a member selected from the group consisting of: a) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ IDNO: 8, CDR-L2 defined by SEQ ID NO: 9 and CDR-L3 defined by SEQ ID NO: 10; b) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ IDNO: 31 , CDR-L2 defined by SEQ ID NO: 32 and CDR-L3 defined by SEQ ID NO:33; c) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ IDNO: 14 or SEQ ID NO: 17, CDR-H2 defined by SEQ ID NO: 15 and CDR-H3 defined by SEQ ID NO: 16; and d) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ IDNO: 37 or SEQ ID NO: 70, CDR-H2 defined by SEQ ID NO: 38 and CDR-H3 defined by SEQ ID NO: 39.2. A binding composition of claim 1 that specifically binds to IGFR1 comprising a variable region selected from the group consisting of:(a) amino acids 20-128 of SEQ ID NO: 2; (b) amino acids 21-130 of SEQ ID NO: 25;(c) amino acids 20-128 of SEQ ID NO: 72;(d) amino acids 20-128 of SEQ ID NO: 74.(e) amino acids 20-137 of SEQ ID NO: 4;(f) amino acids 20-140 of SEQ ID NO: 27; (g) amino acids 20-137 of SEQ ID NO: 45;(h) amino acids 20-137 of SEQ ID NO: 112; (i) amino acids 20-128 of SEQ ID NO: 76; and (|) amino acids 20-128 of SEQ ID NO: 78.3. A binding composition that specifically binds to IGFR1 comprising a member selected from the group consisting of:(a) a light chain variable region comprising amino acids 20-128 of SEQ ID NO: 2 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 4; (b) a light chain variable region comprising amino acids 21-130 of SEQ ID NO: 2δ and a heavy chain variable region comprising amino acids 20-140 of SEQ ID NO: 27;(c) a light variable region comprising amino acids 20-1 8 of SEQ ID NO: 72 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 4δ; (d) a light variable region comprising amino acids 20-128 of SEQ ID NO: 74 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 46;(e) a light variable region comprising amino acids 20-128 of SEQ ID NO: 76 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 4δ;(f) a light variable region comprising amino acids 20-128 of SEQ ID NO: 78 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 46;(g) a light variable region comprising amino acids 20-128 of SEQ ID NO: 72 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112; (h) a light variable region comprising amino acids 20-128 of SEQ ID NO: 74 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112; (i) a light variable region comprising amino acids 20-128 of SEQ ID NO: 76 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112; and (j) a light variable region comprising amino acids 20-128 of SEQ ID NO: 78 and a heavy chain variable region comprising amino acids 20-137 of SEQ ID NO: 112.4. A pharmaceutical composition comprising a composition of claim 1 and a pharmaceutically acceptable carrier.δ. An isolated nucleic acid encoding a polypeptide selected from the group consisting of: (a) amino acids 20-128 of SEQ ID NO: 2;(b) amino acids 21-130 of SEQ ID NO: 26;(c) amino acids 20-128 of SEQ ID NO: 72;(d) amino acids 20-128 of SEQ ID NO: 74;(e) amino acids 20-137 of SEQ ID NO: 4; (f) amino acids 20-140 of SEQ ID NO: 27;(g) amino acids 20-137 of SEQ ID NO: 4δ; (h) amino acids 20-137 of SEQ ID NO: 112; (i) amino acids 20-128 of SEQ ID NO: 76; and 0) amino acids 20-128 of SEQ ID NO: 78.6. A nucleic acid of claim δ selected from the group consisting of:(a) nucleotides 68-384 of SEQ ID NO: 1 ;(b) nucleotides 61-390 of SEQ ID NO: 24; (c) nucleotides 68-384 of SEQ ID NO: 71 ;(d) nucleotides 68-384 of SEQ ID NO: 73.(e) nucleotides 68-411 of SEQ ID NO: 3;(f) nucleotides 68-420 of SEQ ID NO: 26;(g) nucleotides 68-411 of SEQ ID NO: 44; (h) nucleotides 68-411 of SEQ ID NO: 111 ;(i) nucleotides 68-384 of SEQ ID NO: 76; and 0) nucleotides 68-384 of SEQ ID NO: 77.7. A recombinant vector comprising a nucleic acid of claim δ.8. A host cell comprising a vector of claim 7.9. A method for producing a polypeptide comprising culturing the host cell of claim 8 under conditions in which the polypeptide is produced.10. A method for treating or preventing a medical condition in a subject, which medical condition is mediated by elevated expression or activity of Insulin-like Growth Factor Receptor-I, comprising administering a binding composition of claim 1 to the subject.11. The method of claim 10 wherein the medical condition is selected from the group consisting of acromegaly, bladder cancer, Wilm's cancer, ovarian cancer, pancreatic cancer, benign prostatic hyperplasia, breast cancer, prostate cancer, bone cancer, lung cancer, colorectal cancer, cervical cancer, synovial sarcoma, diarrhea associated with metastatic carcinoid, vasoactive intestinal peptide secreting tumors, gigantism, psoriasis, atherosclerosis, smooth muscle restenosis of blood vessels and inappropriate microvascular proliferation.12. The method of claim 10 wherein the binding composition is administered to the subject by a parenteral route.13. The method of claim 10 wherein the binding composition is administered to the subject in association with an additional, anti-cancer, therapeutic agent or anti-cancer, therapeutic procedure.14. A method for treating or preventing a medical condition in a subject, which medical condition is mediated by elevated expression or activity of Insulin-like Growth Factor Receptor-I, comprising administering a binding composition that specifically binds to IGFR1 comprising a member selected from the group consisting of:(a) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 8, CDR-L2 defined by SEQ ID NO: 9 and CDR-L3 defined by SEQ ID NO: 10;(b) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 31 , CDR-L2 defined by SEQ ID NO: 32 and CDR-L3 defined by SEQ ID NO:33;(c) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 14 or SEQ ID NO: 17, CDR-H2 defined by SEQ ID NO: 15 and CDR-H3 defined by SEQ ID NO: 16; and (d) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 37 or SEQ ID NO: 70, CDR-H2 defined by SEQ ID NO: 38 and CDR-H3 defined by SEQ ID NO: 39; to the subject.15. The method of claim 14 wherein the medical condition is selected from the group consisting of acromegaly, bladder cancer, Wilm's cancer, ovarian cancer, pancreatic cancer, benign prostatic hyperplasia, breast cancer, prostate cancer, bone cancer, lung cancer, colorectal cancer, cervical cancer, synovial sarcoma, diarrhea associated with metastatic carcinoid, vasoactive intestinal peptide secreting tumors, gigantism, psoriasis, atherosclerosis, smooth muscle restenosis of blood vessels and inappropriate microvascular proliferation.16. A method for producing a fully human, monoclonal antibody which specifically binds to IGFR1 comprising the steps of: (i) immunizing a transgenic non-human animal having a genome comprising a human heavy chain transgene and a human light chain transgene with an IGFR1 antigenic polypeptide, such that the antibody is produced by a B cell of the animal; (ii) isolating said B cell of the animal;(iii) fusing the B cell with a myeloma cell to form an immortal hybridoma cell that secretes said antibody; and(iv) isolating the antibody from the hybridoma cell.17. The method of claim 16 wherein the antigenic polypeptide is amino acids 30-902 of SEQ ID NO: 19.18. A binding composition which specifically binds to human IGFR1 comprising a property selected from the group consisting of: (a) Binds to IGFR1 with a Kd of about 86 X 10"11 or less;(b) Has an off rate (Koff) for IGFR1 of about 6.50 X 10"5 or smaller;(c) Has an on rate (Kon) for IGFR1 of about 0.7 X 105 or greater;(d) Competes with IGF1 for binding to IGFR1;(e) Inhibits autophosphorylation of IGFR1; and (f) Inhibits anchorage-independent growth of a cell expressing IGFR1.19. A binding composition of claim 18 comprising all of said properties.20. A binding composition of claim 18 comprising a member selected from the group consisting of:(a) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 8, CDR-L2 defined by SEQ ID NO: 9 and CDR-L3 defined by SEQ ID NO: 10;(b) a light chain amino acid sequence which comprises CDR-L1 defined by SEQ ID NO: 31 , CDR-L2 defined by SEQ ID NO: 32 and CDR-L3 defined by SEQ ID NO: 33;(c) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 14 or SEQ ID NO: 17, CDR-H2 defined by SEQ ID NO: 15 and CDR-H3 defined by SEQ ID NO: 16; and (d) a heavy chain amino acid sequence which comprises CDR-H1 defined by SEQ ID NO: 37 or SEQ ID NO: 70, CDR-H2 defined by SEQ ID NO: 38 and CDR-H3 defined by SEQ ID NO: 39.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007200876A AU2007200876B2 (en) | 2002-05-24 | 2007-02-28 | Neutralizing human anti-IGFR antibody |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38345902P | 2002-05-24 | 2002-05-24 | |
US60/383,459 | 2002-05-24 | ||
US39321402P | 2002-07-02 | 2002-07-02 | |
US60/393,214 | 2002-07-02 | ||
US43625402P | 2002-12-23 | 2002-12-23 | |
US60/436,254 | 2002-12-23 | ||
PCT/US2003/016283 WO2003100008A2 (en) | 2002-05-24 | 2003-05-22 | Neutralizing human anti-igfr antibody |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007200876A Division AU2007200876B2 (en) | 2002-05-24 | 2007-02-28 | Neutralizing human anti-IGFR antibody |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2003241590A1 AU2003241590A1 (en) | 2003-12-12 |
AU2003241590B2 true AU2003241590B2 (en) | 2007-03-01 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7667021B2 (en) | Neutralizing human anti-IGFR antibody | |
JP4473257B2 (en) | Antibodies to insulin-like growth factor I receptor and uses thereof | |
CA2532173C (en) | Antibodies against insulin-like growth factor i receptor and uses thereof | |
AU2003241590B2 (en) | Neutralizing human anti-IGFR antibody | |
AU2007200876B2 (en) | Neutralizing human anti-IGFR antibody | |
ZA200409440B (en) | Neutralizing human anti-IGFR antibody | |
NZ584381A (en) | Neutralizing human anti-IGFR antibody | |
HK1154270A (en) | Neutralizing human anti-igfr antibody | |
HK1154271A (en) | Neutralizing human anti-igfr antibody |