AU2002350598A1 - Process to prepare a hydrogen and carbon monoxide containing gas - Google Patents
Process to prepare a hydrogen and carbon monoxide containing gasInfo
- Publication number
- AU2002350598A1 AU2002350598A1 AU2002350598A AU2002350598A AU2002350598A1 AU 2002350598 A1 AU2002350598 A1 AU 2002350598A1 AU 2002350598 A AU2002350598 A AU 2002350598A AU 2002350598 A AU2002350598 A AU 2002350598A AU 2002350598 A1 AU2002350598 A1 AU 2002350598A1
- Authority
- AU
- Australia
- Prior art keywords
- metal alloy
- process according
- gas
- steam
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 50
- 239000007789 gas Substances 0.000 title claims description 48
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims description 13
- 239000001257 hydrogen Substances 0.000 title claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 13
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 32
- 230000003647 oxidation Effects 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- 229910052742 iron Inorganic materials 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 claims description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000004411 aluminium Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 238000003466 welding Methods 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000002407 reforming Methods 0.000 claims description 4
- 238000001193 catalytic steam reforming Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000008246 gaseous mixture Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 239000000203 mixture Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000003345 natural gas Substances 0.000 description 8
- 239000000571 coke Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229960004424 carbon dioxide Drugs 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 229910001098 inconels 690 Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 238000006257 total synthesis reaction Methods 0.000 description 1
Description
PROCESS TO PREPARE A HYDROGEN AND CARBON MONOXIDE
CONTAINING GAS
The invention is directed to a process for the preparation of a hydrogen and carbon monoxide containing product gas mixture from a gaseous hydrocarbon feedstock, by subjecting part of the gaseous feedstock to a partial oxidation step to obtain a first product mixture and part of the gaseous feedstock to a endothermic reaction in the presence of steam and/or carbon dioxide performed in a fixed bed tubular reactor to obtain a second product mixture, wherein the first product mixture is reduced in temperature by contacting said gas with the exterior of the tubular reactor.
Such a process is described in EP-A-168892 of applicant in 1986. According to this publication the endothermic reaction is preferably carried out in a fixed bed situated in at least one pipe in which a temperature of between 800 and 950 °C is maintained by routing at least part of the hot product gas from the partial oxidation along the pipe(s). According to this publication the combined partial oxidation and endothermic production of synthesis gas result in a better yield of synthesis gas, an increased H2/CO ratio, a lower usage of oxygen per M-3 of syngas product obtained and a lower capital cost of the plant for the production of CO and ^-containing gas mixtures. An example of the process as described in EP-A-168892 is described in EP-A-326662.
EP-A-171786 discloses a similar process as EP-A-168892. The difference is that the product gas having the elevated temperature is not prepared by means of partial oxidation of natural gas but in a conventional
reformer furnace wherein burners provide the required heat. This first process gas is then cooled in a so- called Enhanced Heat Transfer Reformer (EHTR) by routing this gas along the exterior of tubular pipes of the EHTR. EHTR reactors and the like are generally referred to as Convective Steam Reformer (CSR) . These pipes contain a fixed bed of catalyst for performing an endothermic reforming reaction using a second part of the natural gas feed. The mixture of carbon monoxide and hydrogen as obtained within the tubes could be considered to be the second product gas according this invention. The product gas as obtained in the conventional reformer contains approximately 33% steam.
US-B-6224789 discloses a similar process as described above except that the product gas having the elevated temperature is prepared from natural gas in a so-called Autothermal Reformer (ATR) in the presence of a Ni-containing catalyst and steam. The hot product gas is then contacted with the exterior of the reactor tubes of an EHTR like reactor.
The tubes of a Convective Steam Reformer are typically made from metal alloys comprising substantially of iron. Iron containing alloys are preferred because of their mechanical strength in combination with their relative low cost. Furthermore usage of these alloys makes it possible to manufacture the complicated tube structures of such an apparatus. A disadvantage of the above apparatus is that in use coke will form on the exterior surface of the tubes because part of the carbon monoxide reacts to carbon and carbon dioxide. Furthermore part of the surface will erode resulting eventually in an unacceptable low mechanical integrity of the tubes. These effects are especially significant when the amount of steam in the hot gas is below 50 vol%. Such a hot CO and H2 containing gas is for example obtained when performing
a partial oxidation of natural gas, refinery gas, methane and the like in the absence of added steam as described in WO-A-9639354. There is thus a need for an improved process if one intends to operate a partial oxidation and a reforming process in combination, as for example described in EP-A-168892 or in EP-A-326662.
The object of the present invention is to provide a process having the advantages of the process of EP-A-168892 or EP-A-326662 wherein less or no coke formation and/or erosion on the exterior of the reactor tubes occurs.
This object is achieved when the following process is used. A process for the preparation of hydrogen and carbon monoxide containing gas from a gaseous hydrocarbon feedstock by performing the following steps:
(a) partial oxidation of part of the feedstock thereby obtaining a first gaseous mixture of hydrogen and carbon monoxide and
(b) catalytic steam reforming of part of the gaseous feedstock in a Convective Steam Reformer comprising a tubular reactor provided with one or more tubes containing a reforming catalyst, wherein the exterior of the tubes of the tubular reactor is used to cool the hot gas as obtained in step (a) and wherein the exterior of the tubes is a metal alloy surface comprising between 0 and 20 wt% iron. Applicants found that less erosion and coke formation will occur on the exterior of the reactor tubes of the CSR if a low iron metal alloy surface is applied. It becomes possible to combine the partial oxidation of natural gas as performed in the absence of (a substantial amount of) steam as moderator gas, i.e. generating a hot gas having a steam content of below 50 vol% and more preferred below 15 vol% with a CSR process. The combination of a partial oxidation and a CSR process
is furthermore advantageous because the hot gas generated by the partial oxidation has a higher temperature than the hot gas generated by the conventional reformer. This will enable one to process relatively more natural gas through the CSR and/or making it possible to operate at a higher conversion of said gas because of the higher possible exit temperature of the catalytic steam reforming section of the CSR apparatus. Preferably the weight ratio of natural gas processed in step (a) and in step (b) is between 0.5 and 3. Another advantage is that the hydrogen to carbon monoxide ratio can be lower relative to the process as disclosed in US-A-4919844 , which is advantageous when such a gas is used as feedstock for a Fischer-Tropsch synthesis process, methanol synthesis process or DME synthesis process.
Preferred H2/CO molar ratio's of the total synthesis gas product as obtained by the above combined process is between 1.9 and 2.3.
In step (a) the partial oxidation may be performed according to well known principles as for example described for the Shell Gasification Process in the Oil and Gas Journal, September 6, 1971, pp 85-90. Publications describing examples of partial oxidation processes are EP-A-291111, WO-A-9722547 , WO-A-9639354 and WO-A-9603345. In such processes the feed is contacted with an oxygen containing gas, such as air or pure oxygen or a mixture thereof, under partial oxidation conditions. Contacting is preferably performed in a burner placed in a reactor vessel. Preferably the partial oxidation is performed in the absence of significant amounts of added steam, and preferably in the absence of added steam, as moderator gas. The gaseous feed is for example natural gas, refinery gas, associated gas or (coal bed) methane and the like.
The product gas of step (a) preferably has a temperature of between 1100 and 1500 °C and a H2/CO molar ratio of between 1.5 and 2.6, preferably between 1.6 and 2.2. Step (b) may be performed by well known steam reforming processes, wherein steam and the gaseous hydrocarbon feed are contacted with a suitable reforming catalyst in a CSR reactor. Suitable processes of are exemplified in the earlier referred to US-B1-6224789 and EP-A-171786. The steam to carbon (as hydrocarbon and CO) molar ratio is preferably between 0 and 2.5 and more preferably between 0.5 and 1. Preferably the feed also comprises an amount of CO2 , wherein preferably the CO2 over carbon (as hydrocarbon and CO) molar ratio is between 0.5 and 2. The product gas of step (b) preferably has a temperature of between 600 and 1000 °C and a H2/CO molar ratio of between 0.5 and 2.5.
The gaseous feedstock to both step (a) and (b) may also comprise recycle fractions comprising hydrocarbons and carbon dioxide as may be obtained in earlier referred to downstream processes, such as the Fischer-Tropsch process, which use the CO/H2 containing gas as feedstock.
The invention is also related to CSR reactor vessel comprising reactor tubes having a metal alloy surface as exterior and a metal alloy support as the interior.
The temperature of the hydrogen and carbon monoxide containing gas is preferably reduced in step (b) from a temperature of between 1000 and 1500 °C to a temperature between 300 and 750 °C. The temperature of the alloy surface in step (b) is preferably below 1100 °C.
The mixture of carbon monoxide as obtained in step (b) may be directly combined with the product gas as obtained in step (a) . This may be achieved within the CSR reactor as exemplified in US-A-491984 . Alternatively the product gas as obtained in step (b) may be fed to step
(a) such that the combined mixture is used to cool the reactor tubes of the CSR reactor in step (b) .
The present invention is thus directed to a process to reduce the temperature of a hydrogen and carbon monoxide containing gas as prepared by a partial oxidation process by contacting the gas with a metal alloy surface having a lower temperature than the temperature of the gas, wherein the metal alloy surface comprises between 0 and 20 wt% and preferably between 0 and 7 wt% iron. The alloy surface preferably also contains between 0 and 5 wt% aluminium, preferably between 0 and 5 wt% silicon, preferably between 20 and 50 wt% chromium and preferably at least 35 wt% nickel. Preferably the nickel content balances the total to 100%. The metal alloy surface is preferably supported with a metal alloy support layer having better mechanical properties than said surface layer.
It has been found beneficial to have at least some aluminium and/or silicon in the metal alloy surface when the concentration of steam in the hot gas is lower than 50 vol%, preferably lower than 30 vol% and more preferably lower than 15 vol%. Preferably between 1-5 wt% aluminium and between 1-5 wt% silicon is present in said alloy layer under such low steam content conditions. The resulting aluminium oxide and silicon oxide layers will provide an improved protection against coke formation and erosion when the conditions become more reducing at such low steam concentrations. More preferably next to aluminium and silicon a small amount of titanium and/or REM (reactive elements) are added to the metal alloy. Examples of REM are Y2O3, a2θ3, Ceθ2, Zrθ2 and Hfθ2.
The total content of these added compounds is between 0 and 2 wt% .
The metal alloy support layer may be any metal alloy having the required mechanical strength for a particular
application. Typically these metal alloys will contain more iron than the surface layer, suitably more than 7 wt% and even up to 98 wt%. Other suitable metals, which can be present in this metal alloy, are chromium, nickel and molybdenum. Examples of suitable metal allow support layers are carbon steels, austenitic stainless steels, for example the AISI 300 series (examples 304, 310, 316) with a typical Cr content of between 18-25% and Ni content of between 8-22%, cast materials, like for example HK-40, HP-40 and HP-modified, nickel based alloys, for example Inconel 600, Inconel 601, Inconel 690 and Incoloy 800 and ferritic stainless steels, which are Fe based alloys having a low nickel content, e.g. less than 2 wt% and a Cr content of above 12 wt%.
The two layers of metal alloys may be prepared by methods known to one skilled in the art. Preferably the metal alloy composite is made by means of a building-up welding method resulting in a weld-mounted multi-layered metal surface. This method is preferred because it enables one to make difficult tubular structures, as used in a CSR reactor, having the metal alloy surface according to the present invention. Such a method is characterized in that the desired metal alloy for use as the surface layer is first atomized by gas atomization to form a powder of said alloy. Preferably the iron content of said powder is substantially zero. A layer of the metal alloy is subsequently applied on the support metal alloy by built-up welding by plasma powder welding of said powder. After machining the weld metal a flat metal alloy surface is obtained. Thickness of the surface metal alloy may range from 1 to 5 mm and preferably 1 to 3 mm. It has been found that the iron content in the metal alloy layer may contain iron in a situation wherein the staring powder did not contain iron. This is due to migration of iron from the support layer to the surface
layer during the welding step. Care should be taken to limit the migration of iron to the surface layer such that the end iron content in the surface layer will be below 20 wt% and preferably below 7 wt% . The iron migration effect can be limited by using a low iron- content support layer, increasing the layer thickness and/or by applying the layer in more than one step. A preferred method to perform such a building-up welding method is described in EP-A-1043084, which publication is hereby incorporated by reference. This publication describes a method to obtain coke resistant furnace reactor tubes for a steam cracker process, which is aimed at preparing lower olefins, e.g. ethylene and propylene.
Claims (12)
1. A process for the preparation of hydrogen and carbon monoxide containing gas from a gaseous hydrocarbon feedstock by performing the following steps:
(c) partial oxidation of part of the feedstock thereby obtaining a first gaseous mixture of hydrogen and carbon monoxide and
(d) catalytic steam reforming of part of the gaseous feedstock in a Convective Steam Reformer comprising a tubular reactor provided with one or more tubes containing a reforming catalyst, wherein the exterior of the tubes of the tubular reactor is used to cool the hot gas as obtained in step (a) and wherein the exterior of the tubes is a metal alloy surface comprising between 0 and 20 wt% iron.
2. Process according to claim 1, wherein the metal alloy surface comprising further between 0 and 5 wt% aluminium, between 0 and 5 wt% silicon, between 20 and 50 wt% chromium and at least 35 wt% nickel and wherein the metal alloy surface is supported with a metal alloy support layer having better mechanical properties than said surface layer.
3. Process according to claim 2, wherein the content of chromium is more than 30 wt%.
4. Process according to any one of claims 2-3, wherein the metal alloy surface comprises between 1 and 5 wt% aluminium.
5. Process according to any one of claims 2-4, wherein the metal alloy surface comprises between 1 and 5 wt% silicon.
6. Process according to any one of claims 4-5, wherein the metal alloy surface comprises between 0 and 2 wt% titanium and/or REM.
7. Process according to any one of claims 2-6, wherein the metal alloy support layer comprises between 7 and
98 wt% iron.
8. Process according to any one of claims 2-7, wherein the metal alloy surface layer is applied to the metal alloy support layer by means of a building-up welding method.
9. Process according to any one of claims 1-8, wherein the temperature of the hydrogen containing gas of step (a) is reduced from a temperature of between 1000 and 1500 °C to a temperature between 300 and 750 °C in step (b) .
10. Process according to any one of claims 1-8, wherein the hot gas of step (a) has a hydrogen to CO molar ratio of between 1.5 and 2.5
11. Process according to any one of claims 1-10, wherein the hot gas used in step (b) comprises less than 15 vol% steam.
12. Process according to any one of claims 1-11, wherein the gaseous feed in step (b) comprises a hydrocarbon gas, steam and carbon dioxide and wherein the steam to carbon molar ratio is between 0.5 and 1 and the CO2 over carbon molar ratio is between 0.5 and 2
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01204009 | 2001-10-22 | ||
EP01204009.3 | 2001-10-22 | ||
PCT/EP2002/011804 WO2003036166A2 (en) | 2001-10-22 | 2002-10-22 | Process to prepare a hydrogen and carbon monoxide containing gas |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002350598A1 true AU2002350598A1 (en) | 2003-07-03 |
AU2002350598B2 AU2002350598B2 (en) | 2007-04-26 |
Family
ID=8181114
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002350598A Ceased AU2002350598B2 (en) | 2001-10-22 | 2002-10-22 | Process to prepare a hydrogen and carbon monoxide containing gas |
AU2002350595A Ceased AU2002350595B2 (en) | 2001-10-22 | 2002-10-22 | Process to reduce the temperature of a hydrogen and carbon monoxide containing gas and heat exchanger for use in said process |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002350595A Ceased AU2002350595B2 (en) | 2001-10-22 | 2002-10-22 | Process to reduce the temperature of a hydrogen and carbon monoxide containing gas and heat exchanger for use in said process |
Country Status (10)
Country | Link |
---|---|
US (3) | US7597067B2 (en) |
EP (2) | EP1438259A2 (en) |
JP (2) | JP2005515140A (en) |
AU (2) | AU2002350598B2 (en) |
GC (2) | GC0000326A (en) |
MY (2) | MY136087A (en) |
NO (2) | NO20042088L (en) |
RU (2) | RU2300493C2 (en) |
WO (2) | WO2003036165A2 (en) |
ZA (2) | ZA200402448B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603430B2 (en) * | 2002-02-05 | 2013-12-10 | The Regents Of The University Of California | Controlling the synthesis gas composition of a steam methane reformer |
US7125913B2 (en) | 2003-03-14 | 2006-10-24 | Conocophillips Company | Partial oxidation reactors and syngas coolers using nickel-containing components |
WO2004092063A1 (en) * | 2003-04-15 | 2004-10-28 | Shell Internationale Research Maatschappij B.V. | Process to prepare synthesis gas |
JP4527426B2 (en) * | 2004-03-25 | 2010-08-18 | アイシン精機株式会社 | Fuel reformer |
EP1610081A1 (en) * | 2004-06-25 | 2005-12-28 | Haldor Topsoe A/S | Heat exchange process and heat exchanger |
KR20070083658A (en) | 2004-10-08 | 2007-08-24 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | Process for preparing lower olefins from Fischer-Tropsch composites |
US7037485B1 (en) * | 2004-11-18 | 2006-05-02 | Praxair Technology, Inc. | Steam methane reforming method |
EP1838611B1 (en) * | 2004-11-18 | 2013-09-25 | Praxair Technology, Inc. | Steam methane reforming method |
US7354660B2 (en) | 2005-05-10 | 2008-04-08 | Exxonmobil Research And Engineering Company | High performance alloys with improved metal dusting corrosion resistance |
US7485767B2 (en) | 2005-06-29 | 2009-02-03 | Exxonmobil Chemical Patents Inc. | Production of synthesis gas blends for conversion to methanol or Fischer-Tropsch liquids |
US20070237710A1 (en) * | 2006-04-05 | 2007-10-11 | Genkin Eugene S | Reforming apparatus and method for syngas generation |
US7772292B2 (en) | 2006-05-31 | 2010-08-10 | Exxonmobil Chemical Patents Inc. | Synthesis gas production and use |
EP1995543A1 (en) * | 2007-05-10 | 2008-11-26 | AGC Flat Glass Europe SA | Heat exchanger for oxygen |
US8163809B2 (en) * | 2009-11-30 | 2012-04-24 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit |
US8168687B2 (en) * | 2009-11-30 | 2012-05-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch synthesis reactions in a syngas treatment unit |
US8202914B2 (en) * | 2010-02-22 | 2012-06-19 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit |
GB201115929D0 (en) | 2011-09-15 | 2011-10-26 | Johnson Matthey Plc | Improved hydrocarbon production process |
US20180155261A1 (en) * | 2016-11-17 | 2018-06-07 | Exxonmobil Research And Engineering Company | Method for converting natural gas to dimethyl ether |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US488513A (en) * | 1892-12-20 | Joiin anderson | ||
US2647041A (en) * | 1946-04-15 | 1953-07-28 | Phillips Petroleum Co | Production of hydrogen from hydrocarbons |
US2587530A (en) * | 1948-03-13 | 1952-02-26 | Rossi Giovanni | Water and fire tube for steam boilers |
FR1081773A (en) * | 1952-11-24 | 1954-12-22 | exchanger-vaporizer | |
US3918410A (en) * | 1974-06-19 | 1975-11-11 | Handelsbolaget Broderna Backma | Boiler for heating of water and generating of steam |
US4132065A (en) * | 1977-03-28 | 1979-01-02 | Texaco Inc. | Production of H2 and co-containing gas stream and power |
US4433644A (en) * | 1981-11-06 | 1984-02-28 | Fitzpatrick James J | Steam boilers |
EP0082614B1 (en) * | 1981-12-21 | 1986-07-23 | Imperial Chemical Industries Plc | Process for steam reforming a hydrocarbon feedstock and catalyst therefor |
JPS5919792A (en) * | 1982-07-26 | 1984-02-01 | 日揮株式会社 | Carbon deposition preventive centrifugal force casting double pipe |
US4487744A (en) * | 1982-07-28 | 1984-12-11 | Carpenter Technology Corporation | Corrosion resistant austenitic alloy |
JPS59176501A (en) * | 1983-03-28 | 1984-10-05 | 株式会社日立製作所 | boiler tube |
US4488513A (en) * | 1983-08-29 | 1984-12-18 | Texaco Development Corp. | Gas cooler for production of superheated steam |
GB2163449B (en) | 1984-07-18 | 1988-06-02 | Shell Int Research | Production of gas mixtures containing hydrogen and carbon monoxide |
US4919844A (en) * | 1984-08-16 | 1990-04-24 | Air Products And Chemicals, Inc. | Enhanced heat transfer reformer and method |
DE3663652D1 (en) * | 1985-03-05 | 1989-07-06 | Ici Plc | Steam reforming hydrocarbons |
CA1309907C (en) * | 1986-08-26 | 1992-11-10 | Herman Johannes Lameris | Process and apparatus for heating steam formed from cooling water |
US4685427A (en) * | 1986-12-08 | 1987-08-11 | Inco Alloys International, Inc. | Alloy for composite tubing in fluidized-bed coal combustor |
GB8711156D0 (en) | 1987-05-12 | 1987-06-17 | Shell Int Research | Partial oxidation of hydrocarbon-containing fuel |
DE3716665A1 (en) * | 1987-05-19 | 1988-12-08 | Vdm Nickel Tech | CORROSION RESISTANT ALLOY |
DE3803082A1 (en) | 1988-02-03 | 1989-08-17 | Uhde Gmbh | MULTI-STAGE PROCESS FOR GENERATING H (DOWN ARROW) 2 (DOWN ARROW) AND CO-CONTAINING SYNTHESIS GAS |
US4827074A (en) * | 1988-04-08 | 1989-05-02 | Idemitsu Petrochemical Co., Ltd. | Method of thermally decomposing hydrocarbon and thermal decomposition tube |
SE9102410L (en) * | 1991-08-21 | 1992-11-23 | Sandvik Ab | APPLICATION OF AN AUSTENITIC CHROME-NICKEL-MOLYBDEN-YEAR ALloy FOR MANUFACTURING COMPODO DRAWERS FOR APPLICATION AS BOTH TUBES IN SODA HOUSES |
US6274113B1 (en) * | 1994-01-04 | 2001-08-14 | Chevron Phillips Chemical Company Lp | Increasing production in hydrocarbon conversion processes |
SE513552C2 (en) * | 1994-05-18 | 2000-10-02 | Sandvik Ab | Use of a Cr-Ni-Mo alloy with good workability and structural stability as a component in waste incineration plants |
MY115440A (en) | 1994-07-22 | 2003-06-30 | Shell Int Research | A process for the manufacture of synthesis gas by partial oxidation of a gaseous hydrocarbon-containing fuel using a multi-orifice (co-annular)burner |
CN1104625C (en) | 1995-01-20 | 2003-04-02 | 国际壳牌研究有限公司 | Apparatus for cooling solids laden hot gases |
JP3611580B2 (en) | 1995-04-21 | 2005-01-19 | 均 武笠 | Input device capable of inputting all characters and symbols using only numeric keys and film drawing device using the same |
EG20966A (en) | 1995-06-06 | 2000-07-30 | Shell Int Research | A method for flame stabilization in a process for preparing synthesis gas |
US5931978A (en) * | 1995-12-18 | 1999-08-03 | Shell Oil Company | Process for preparing synthesis gas |
US5873950A (en) * | 1996-06-13 | 1999-02-23 | Inco Alloys International, Inc. | Strengthenable ethylene pyrolysis alloy |
JP3104622B2 (en) * | 1996-07-15 | 2000-10-30 | 住友金属工業株式会社 | Nickel-based alloy with excellent corrosion resistance and workability |
SE509043C2 (en) * | 1996-09-05 | 1998-11-30 | Sandvik Ab | Use of a compound tube with an outer layer of a Ni alloy for superheaters and waste boilers |
US6247113B1 (en) * | 1998-05-27 | 2001-06-12 | Arm Limited | Coprocessor opcode division by data type |
DK173742B1 (en) * | 1998-09-01 | 2001-08-27 | Topsoe Haldor As | Process and reactor system for producing synthesis gas |
US5945067A (en) * | 1998-10-23 | 1999-08-31 | Inco Alloys International, Inc. | High strength corrosion resistant alloy |
US6162267A (en) * | 1998-12-11 | 2000-12-19 | Uop Llc | Process for the generation of pure hydrogen for use with fuel cells |
CA2303732C (en) | 1999-04-09 | 2010-05-25 | Daido Tokushuko Kabushiki Kaisha | Multi-layered anti-coking heat resisting metal tube and the method for manufacturing thereof |
DE19926402C1 (en) | 1999-06-10 | 2000-11-02 | Steinmueller Gmbh L & C | Generating steam from gases produced by non-catalytic cracking of hydrocarbons comprises passing them through one tube of double-walled heat exchanger in water-filled container, with different fluid being passed through other tube |
AU4090600A (en) * | 1999-06-30 | 2001-01-04 | Rohm And Haas Company | High performance heat exchangers |
US6329079B1 (en) * | 1999-10-27 | 2001-12-11 | Nooter Corporation | Lined alloy tubing and process for manufacturing the same |
DE10028824A1 (en) | 2000-06-10 | 2001-12-13 | Linde Ag | Synthetic gas cooling process involves input of fresh water at least partly by topping up cooling water flow in circuit |
-
2002
- 2002-10-18 MY MYPI20023896A patent/MY136087A/en unknown
- 2002-10-18 MY MYPI20023897A patent/MY138154A/en unknown
- 2002-10-20 GC GCP20022283 patent/GC0000326A/en active
- 2002-10-20 GC GCP20022282 patent/GC0000404A/en active
- 2002-10-22 RU RU2004115633/15A patent/RU2300493C2/en not_active IP Right Cessation
- 2002-10-22 AU AU2002350598A patent/AU2002350598B2/en not_active Ceased
- 2002-10-22 EP EP02785275A patent/EP1438259A2/en not_active Withdrawn
- 2002-10-22 JP JP2003538634A patent/JP2005515140A/en active Pending
- 2002-10-22 JP JP2003538633A patent/JP4436675B2/en not_active Expired - Lifetime
- 2002-10-22 US US10/493,328 patent/US7597067B2/en active Active
- 2002-10-22 US US10/493,323 patent/US7422706B2/en not_active Expired - Fee Related
- 2002-10-22 EP EP02785273A patent/EP1438534B1/en not_active Expired - Lifetime
- 2002-10-22 WO PCT/EP2002/011801 patent/WO2003036165A2/en active Application Filing
- 2002-10-22 AU AU2002350595A patent/AU2002350595B2/en not_active Ceased
- 2002-10-22 RU RU2004115603/06A patent/RU2293912C2/en not_active IP Right Cessation
- 2002-10-22 WO PCT/EP2002/011804 patent/WO2003036166A2/en active Search and Examination
-
2004
- 2004-03-29 ZA ZA200402448A patent/ZA200402448B/en unknown
- 2004-04-06 ZA ZA2004/02707A patent/ZA200402707B/en unknown
- 2004-05-21 NO NO20042088A patent/NO20042088L/en not_active Application Discontinuation
- 2004-05-21 NO NO20042086A patent/NO20042086L/en not_active Application Discontinuation
-
2009
- 2009-08-12 US US12/539,870 patent/US20090294103A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7422706B2 (en) | Process to prepare a hydrogen and carbon monoxide containing gas | |
AU2002350598A1 (en) | Process to prepare a hydrogen and carbon monoxide containing gas | |
US7550635B2 (en) | Process for the preparation hydrogen and a mixture of hydrogen and carbon monoxide | |
CN106957674B (en) | The method of reforming hydrocarbon | |
KR20150028311A (en) | Process for reforming hydrocarbons | |
AU2002350595A1 (en) | Process to reduce the temperature of a hydrogen and carbon monoxide containing gas and heat exchanger for use in said process | |
JP2005515140A5 (en) | ||
CA2510442C (en) | Partial oxidation reformer-reforming exchanger arrangement | |
EP2594527A1 (en) | Process for reforming hydrocarbons | |
AU2016204971B2 (en) | Process for reforming hydrocarbons | |
AU2015261575B2 (en) | Process for reforming hydrocarbons | |
EA041955B1 (en) | METHOD FOR PRODUCING HYDROGEN-DEFERENT SYNTHESIS GAS FOR SYNTHESIS PROCESSES |