AU2002334911A1 - Improving the Hydrophilicity of Water Repellent Soil - Google Patents
Improving the Hydrophilicity of Water Repellent SoilInfo
- Publication number
- AU2002334911A1 AU2002334911A1 AU2002334911A AU2002334911A AU2002334911A1 AU 2002334911 A1 AU2002334911 A1 AU 2002334911A1 AU 2002334911 A AU2002334911 A AU 2002334911A AU 2002334911 A AU2002334911 A AU 2002334911A AU 2002334911 A1 AU2002334911 A1 AU 2002334911A1
- Authority
- AU
- Australia
- Prior art keywords
- wetting agent
- agent composition
- block copolymer
- water repellent
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002689 soil Substances 0.000 title claims description 77
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 74
- 239000005871 repellent Substances 0.000 title claims description 40
- 230000002940 repellent Effects 0.000 title claims description 40
- 239000000203 mixture Substances 0.000 claims description 66
- 125000000217 alkyl group Chemical group 0.000 claims description 41
- 239000000080 wetting agent Substances 0.000 claims description 35
- 229920001400 block copolymer Polymers 0.000 claims description 30
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 24
- 229920005682 EO-PO block copolymer Polymers 0.000 claims description 20
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 17
- 238000009736 wetting Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 230000001965 increasing effect Effects 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- 229930182470 glycoside Natural products 0.000 claims description 9
- 150000002338 glycosides Chemical class 0.000 claims description 9
- 230000002441 reversible effect Effects 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 4
- 239000007859 condensation product Substances 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 3
- 239000010902 straw Substances 0.000 description 18
- 230000008595 infiltration Effects 0.000 description 13
- 238000001764 infiltration Methods 0.000 description 13
- 239000004094 surface-active agent Substances 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 8
- -1 polyoxypropylene cores Polymers 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 150000002191 fatty alcohols Chemical class 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 239000000575 pesticide Substances 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 230000002262 irrigation Effects 0.000 description 3
- 238000003973 irrigation Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 150000001241 acetals Chemical class 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000000266 injurious effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- WQZGKKKJIJFFOK-CBPJZXOFSA-N D-Gulose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O WQZGKKKJIJFFOK-CBPJZXOFSA-N 0.000 description 1
- WQZGKKKJIJFFOK-WHZQZERISA-N D-aldose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-WHZQZERISA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VSOAQEOCSA-N L-altropyranose Chemical compound OC[C@@H]1OC(O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-VSOAQEOCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 239000004435 Oxo alcohol Substances 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001323 aldoses Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- SRBFZHDQGSBBOR-STGXQOJASA-N alpha-D-lyxopyranose Chemical compound O[C@@H]1CO[C@H](O)[C@@H](O)[C@H]1O SRBFZHDQGSBBOR-STGXQOJASA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001719 carbohydrate derivatives Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 231100000584 environmental toxicity Toxicity 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 150000002453 idose derivatives Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 150000002584 ketoses Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000005645 linoleyl group Chemical group 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003090 pesticide formulation Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Description
Improving The Hvdrophilicitv of Water Repellent Soil
Field of The Invention
The present invention generally relates to the use of surfactant blends to enhance the infiltration of water and/or aqueous compositions through water repellent soil. More particularly, the present invention relates to blends of alkyl polyglycosides and ethylene oxide-propylene oxide block copolymers to rapidly improve the hydrophilicity of such soil.
Background of The Invention
Agriculturalists have to work with all types of plant growth media such as sand, natural earth, horticultural soils, and various soil-mimicking, soil-less plant culture substrates; however, the bane of essentially all agriculturalists is water repellent soil. Water repellent soil retards water infiltration into the soil matrix and often renders entire areas of the upper layers of the soil substrate essentially impervious to water penetration. Under rainfall or irrigation conditions, dire environmental consequences can result from the water repellency of the topsoil, such as surface runoff of water and aqueous compositions containing pesticides, this term inclusive of fertilizers, into pristine areas and/or potable reservoirs. Furthermore, and less obvious, are the serious consequences that result from aqueous pesticide flow through "fingers" that usually attend water repellent soil which can provide rapid transport of pesticide compositions to the local ground water table and thus increase the risk of ground water contamination. Water repellency of a soil is not only a function of the initial water content of the soil, but is also a function of soil particle size (sands are more prone to water repellency than clays), as well as, type of organic matter incorporated in it. This organic matter induces water repellency in the soils in many ways, such as by providing hydrophobic organic substances leached from the plant litter; organic substances that have been irreversibly dried; and microbial by-products.
Before water will evenly infiltrate into or percolate through a soil matrix, there must be a continuous film of water on the soil particles. In other words, the soil must first be wetted before water will flow. In addition, getting the soil evenly wetted is of paramount importance to the healthy growth of plants or seeds which are to be grown in the soil. Thus, agriculturalists will often apply various wetting agent surfactant compositions directly to the soil or admix same with aqueous pesticide formulations to reduce the surface tension of the composition before applying the pesticide to the plant growth media as taught, for example, in United States Patent 2,867,944; United States Patent 5,595,957; United States Patent 5,385,750; WO 96/34078; and WO 98/39273.
"Although an increasing number of researchers are aware of the occurrence and consequences of water repellency in a wide range of soils, it is still a neglected field in soil science." (Dekker et al., International Turfgrass Society Research Journal, Volume 9, 2001, pages 498-505) It has been recognized for years that in water repellent soil significant spatial variability can occur both in soil water content and degree of water repellency. Agriculturalists have attacked the soil water repellency problem through the use of wetting agent surfactant compositions. The degree of efficacy among chemistries and formulations have varied significantly. Often, the amount of surfactant required to ameliorate water repellency and/or to enhance infiltration, either perform variably or in an attempt to improve performance, higher rates of wetting agents are applied, such elevated rates often becoming injurious to plants.
Thus, there is a continuing search for wetting agent compositions with increased wetting rate that are able to quickly penetrate and infiltrate the water repellent soil. The use of wetting agent compositions with increased wetting rates, in turn, will result in a more effective wetting of the root zone during rain events and/or irrigation applications, thereby, inducing better plant growth and decreased run-off.
Summary of the Invention The instant invention provides a process for rapidly increasing the hydrophilicity and infiltration of water into water repellent soil matrices. The process consists of applying to the water repellent soil an effective amount of a wetting agent composition comprising alkyl polyglycosides and ethylene oxide- propylene oxide (EO/PO) block copolymers in weight ratios of the polyglycoside to the block copolymer of from 6:1 to 0.5:1. These compositions unexpectedly exhibit significantly enhanced infiltration (wetting) rates in water repellent soil over that previously achieved in the art.
Detailed Description of The Invention
The instant invention specifically relates to the discovery that wetting agent compositions comprising alkyl polyglycosides and ethylene oxide- propylene oxide (EO/PO) block copolymers in weight ratios of the polyglycoside to the block copolymer of from 6:1 to 0.5:1, preferably from 4:1 to 0.7:1 significantly and unexpectedly enhance water and aqueous composition transport or infiltration through the solid matrices of water repellent soil. Additionally, it has been found that these compositions are highly efficacious over a wide range of concentrations which is of critical importance in achieving maximum agronomic and/or hydrological benefit when the compositions are to be used in irrigation scenarios, e.g., both for the reduction in run-off and in the delivery of water soluble fertilizers.
The commonly accepted method of classifying the water repellency of soils is the Water Drop Penetration Time (WDPT) test (ibid.). In this test, drops of distilled water from a standard medicine dropper are placed on the smoothed solid surface of a soil sample, and the time that elapses before the drops are completely absorbed is determined. All WDPT tests are conducted under controlled conditions usually at a constant temperature of about 20°C and a relative air humidity of about 50%. These tests are normally replicated three times.
Although soil water repellency is a relative property, varying in intensity, it is generally recognized in the art that a soil is to be considered water repellent if the WPDT exceeds five seconds. This allows soils to be qualitatively classified and referred to as being either wettable or water repellent. The instant invention is specifically directed to rapidly increasing the hydrophilicity of water repellent soil.
The ethylene oxide-propylene oxide (EO/PO) block copolymers of the instant invention include the straight block polymeric glycols obtained, for example, by the addition of ethylene oxide (EO) on a condensation product of propylene oxide (PO) with propylene glycol. The block polyoxypropylene cores, being the hydrophobe, have PO units at least about 9, and are usually in the range of from about 950 to about 4,000 mass average molecular weight. The ethylene oxide (EO) is added to the core at from about 10 weight percent to about 80 weight percent. In a preferred embodiment, the polyoxypropylene core mass average molecular weight is from about 1500 to about 2000 with EO addition of from about 20 to about 40 weight percent. Reverse block copolymers, which are also acceptable for use in the instant invention, are prepared by adding ethylene oxide to ethylene glycol to provide a hydrophile of designated molecular weight. Polypropylene oxide is then added to obtain hydrophobic blocks on the outside of the molecule. Reversing the hydrophobic and hydrophilic blocks creates surfactants similar to the regular EO/PO/EO block copolymers, but with some important differences. While the EO/PO/EO straight block copolymers tend to be better emulsifiers and dispersants and cover a broader range of molecular weights, the reverse block copolymers have lower foaming, greater defoaming, and reduced gelling tendencies. Additionally, reverse block copolymers are terminated by secondary hydroxyl groups, which have lower reactivity and acidity than the primary hydroxyl groups which terminate the EO/PO/EO straight block copolymers.
Tetra-functional block copolymers and their reverse counterparts, which are derived from the sequential addition of propylene oxide and ethylene oxide to ethylene diamine are also useful in the compositions of this invention.
Commercially available block polymeric surfactants of this type include those of the Antarox series, e.g., L-62 and L-64 marketed by Rhodia Inc.
Alkyl polyglycosides are understood to be the reaction products of sugars and fatty alcohols, suitable sugar components being the aldoses and ketoses such as glucose, fructose, mannose, galactose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose, lactose, sucrose, maltose, maltotriose, cellobiose, mellobiase, and ribose, which are referred to hereinafter as glycoses. Particularly preferred alkyl polyglycosides are alkyl glucosides by virtue of the ready availability of glucose. In its broadest sense, the term "alkyl" in alkyl polyglycoside is intended to encompass the residue of an aliphatic alcohol, preferably a fatty alcohol, obtainable from natural fats, i.e., saturated and unsaturated residues and also mixtures thereof, including those having different chain lengths. The terms alkyl oligoglycoside, alkyl polyglycoside, alkyl oligosaccharide and alkyl polysaccharide apply to alkylated glycoses of the type in which one alkyl radical in the form of the acetal is attached to more than one glycose residue, i.e., to a polysaccharide or oligosaccharide residue; these terms are generally regarded as synonymous with one another. Accordingly, alkyl monoglycoside is the acetal of a monosaccharide. Since the reaction products of the sugars and the fatty alcohols are generally mixtures, the term alkyl polyglycoside is intended to encompass both alkyl monoglycosides and also alkyl poly(oligo)glycosides.
Optionally, there can be a polyoxyalkylene chain joining the alcohol moiety and the saccharide moiety. The preferred alkoxide is ethylene oxide.
The higher alkyl polyglycosides express surfactant properties. By "higher alkyl polyglycoside" is meant a glycoside having an alkyl substituent that averages more than four carbon atoms in size.
The lipophilic groups in the alkyl polyglycosides are derived from alcohols, preferably monohydric for compatibilizer applications and should contain from 4 to 22, preferably 7 to 16 carbon atoms. While the preferred groups are saturated aliphatic or alkyl, there may be present some unsaturated aliphatic hydrocarbon groups. Thus, the preferred groups are derived from the
fatty alcohols derived from the naturally-occurring fats and oils, such as octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, oleyl and linoleyl, but groups may be derived from synthetically produced Ziegler alcohols or oxo alcohols containing 9, 10, 11, 12, 13, 14 or 15 carbon atoms. The alcohols of naturally- occurring fatty acids, typically containing an even number of carbon atoms and mixtures of alcohols, are commercially available such as mixtures of C8 and C10 , Cι2 and Cι4, and the like. Synthetically-produced alcohols, for example those produced by an oxo process, contain both an odd and even number of carbon atoms such as the C9, Cio, Cπ mixtures. From their production, the alkyl polyglycosides may contain small quantities, for example 1 to 2%, of unreacted long-chain alcohol which does not adversely affect the properties of the surfactant systems produced with them.
Specifically, the preferred alkyl polyglycosides for use in the present invention are obtained by the reaction of alkanols with glucose or other mono- or di- or polysaccharides. Preferred alkyl polyglycosides for use in the present invention are the alkyl polyglucosides obtained by the reaction of glucose with a straight or branched chain alkanol or mixture of alkanols, for example, a mixture of alkanols containing 4 to 22, preferably 7 to 16 carbon atoms, for example, 8 to 10 carbon atoms. The number of glucose groups per alkyl group in the molecule may vary and alkyl mono- or di- or polyglucose or saccharide derivatives are possible. Commercial alkylpolyglucosides usually contain a mixture of derivatives having an average number of glycose groups per alkyl group (the Degree of Polymerization or D.P.) of between 1 and 4 for example, preferably from 1 to 2. A number of suitable alkylpolyglycosides are commercially available and include, for example, AL2042 (ICI); AGRIMUL 2069 and AGRIMUL PG 2067 (Cognis) and ATPLUS 438 and ATPLUS 452 (Uniqema).
Illustrative of the many processes available for the preparation of alkyl polyglycosides useful in the present invention are those disclosed in the following U.S. Patents: 4,950,743; 5,266,690; 5,304,639; 5,374,716; 5,449,763; and 5,457,190.
The ecotoxicity profiles of the alkyl polyglycosides show them to be among the most environmentally friendly of the nonionic surfactants and with the exception of Cognis's Agrimul PG 2067, are reported to be strong wetting agents (Alkyl Polyglycosides: Technology Properties and Applications edited by Hill, et al. - New Solutions for Agricultrual Applications; R. Garst; Chapter 7; pages 131-137).
The concentration of the wetting agent compositions of this invention in the aqueous formulations to be applied to the water repellent soil is not critical. Wetting agent composition levels of up to 200,000 ppm are contemplated in this invention for those concentrations are non-injurious to most plant. Thus, the concentration of the wetting agent in the compositions will range from about 200,000 to about 2 ppm; preferably from about 120,000 to about 5 ppm. One of the surprising features of the use of these wetting agent compositions is the outstanding effectiveness at very low concentrations: a highly desirable environmental property. In any event, appropriate concentration levels are easily determined by those skilled in the art.
With respect to the weight ratios of the alkyl polyglycosides to the EO/PO block copolymers of this invention, the synergistically enhanced wetting rate occurs when the glycoside to block copolymer ratio is from about 6:1 to 0.5:1; preferably when the ratio is from about 4: 1 to about 0.7: 1.
By the term "effective amount" is meant that the amount of the polyglycoside and EO/PO block copolymer in contact with the water repellent soil is such that there is a measurable increase in the wetting rate of the soil.
A simple laboratory "straw" test developed by Aquatrols Corporation of America can be used to record the initial effectiveness of a wetting agent composition on water repellent soil. (International Turfgrass Society Research Journal 7. Intertec Pubishing Corp. 1993 Chapter 67, pages 485-488) The straw test consists of taking clear plastic drinking straws (19 cm. in length and 0.5 cm. in diameter) and folding them in the center to give a sharp "V shape, i.e., no flat crimps. Adhesive tape is used to hold the two arms of the straw in this "V position. One arm of the straw is filled with hydrophobic soil while tapping the
straw gently on a solid surface to ensure even settling of the soil in the straw. The resulting soil column is plugged with cotton and the straws arranged on a flat support. Test solutions at selected concentrations are introduced individually into each of the empty arms of the straws with a pasteur capillary pipet. The arm containing the hydrophobic soil column is laid horizontally on the support surface; the adhesive tape removed; and the arm lowered toward the support surface until the arm is at a 25° angle to the surface.
A wedge or support is fixed to the surface to ensure that the straw angle is maintained throughout the test. A stopwatch is started as soon as a test solution comes in contact with the hydrophobic soil and the time to wet a 6 cm. length of the soil column is recorded. Distilled water is usually used as a standard. This straw test is sensitive to concentrations as low as 10 ppm.
Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein are to be understood as modified in all instances by the term "about".
The following examples will further illustrate, but not limit, the invention with all percentages and ratios being by weight unless otherwise indicated.
Example 1 The water repellent soil which is used in the following examples is made by coating a hydrophilic sand with octadecyl trichloro silane (OTS) as described by Bauters, et al., 1998 Soil Sci. Soc. Am. J. 62: 1185-1190.
Using the aforedescribed straw test, the infiltration rate in seconds of distilled water through a six centimeter column of this water repellent soil is determined through three replications. The results are set forth in Table I. Table I
These numbers indicate the base-line hydrophobicity of this mineral soil and serve as the control in the quantification of the performance of wetting agent compositions tested.
Water droplet penetration time (WDPT) tests were also performed on this mineral soil in the following manner: The soil is evenly loaded into a deep container and the surface smoothed to realize a flat, unconsolidated substrate surface. A 30 microliter drop of distilled water is placed on the sample surface. A stopwatch is started when the water drop contacts the soil surface and terminated when the drop is totally absorbed by the soil. The time is recorded in seconds.
The WDPT values obtained with the instant mineral soil prepared above all exceed six hours (21,600 sec) and thus this soil is extremely hydrophobic, i.e., clearly water repellent.
Example π
Aqueous compositions of numerous alkyl polyglycosides; EO/PO block copolymers; and blends of the alkyl polyglycosides and EO/PO block copolymers in concentrations and weight ratios as indicated below are examined using the aforedescribed straw test in order to ascertain their ability to affect the infiltration wetting rate of the water repellent soil of Example 1. Agrimul is the trademark of
Cognis for the alkyl polyglycoside product line, and Tetronic is a trademark of
BASF for its EO/PO ethylene diamine based block copolymers. Straight "L" block copolymers and reverse "R" block copolymers are produced by various manufacturers such as Rhodia, BASF, and Uniqema.
The results of the tests are set forth in Tables DA and IDB below.
Table IIA
Table πB
The above straw test results clearly show the outstanding and unexpected synergy realized in the increase in the infiltration rate when the blends of this invention at the concentrations tested are applied to water repellent soil. With a few exceptions, such as the L31 which being a relatively smaller molecule was not particularly effective at the concentrations tested and other block copolymers with hydrophile concentrations in excess of about 40 weight percent, the wetting rate increases achieved with the instant blends are remarkable.
It is observed from the above results that the soil wetting speed increases (wetting time decreases) with increasing hydrophobe molecular weight and decreasing HLB value within each particular EO/PO block copolymer structural type, i.e., the straight EO/PO block copolymers; the reverse EO/PO block copolymers; the diamine-based EO/PO block copolymers; and the diamine-based EO/PO reverse block copolymers.
Stated another way, generally EO/PO surfactants with a lower HLB value and a higher average molecular weight show the shortest infiltration times through a column of hydrophobic soil. This trend holds true for all four surfactant structural types.
The preferred EO/PO block copolymer for use in this invention are those having an HLB value less than or equal to 10; an average molecular weight of from 2,000 to 8,000 and a percent hydrophile of from less than 10 to 40. The most preferred block copolymers are those having an HLB value less than or equal to 10; an average molecular weight of from 2,000 to 8,000 and a percent hydrophile of from less than 10 to 20.
The following example is illustrative of the magnitude of the effectiveness of the instant blends even at extremely low concentrations.
Example UI
Aqueous compositions of AGRIMUL 2067; ANTAROX L64; and a 1:1 weight ratio blend of the 2067 and L64 are prepared at various concentrations from 8000 ppm to 250 ppm. The straw test results on these compositions are set forth in Table m below. The results realized with an AGRIMUL 2069 composition are also included in Table IH.
Table m
Use of the wetting agent blend of the instant invention realized more than a four-fold increase in the infiltration rate of the water repellent soil over the use of the most effective component, i.e., the EO/PO straight block copolymer alone and more than a forty-fold increase over the use of the polyglycoside alone.
Example IN
Aqueous blends of various alkyl polyglycosides and AΝTAROX 17R2 in 1 : 1 weight ratio and wetting agent concentration of 2000 ppm are examined using the straw test in order to ascertain their ability to affect the infiltration wetting rate of the water repellent soil of Example I. AΝTAROX 17R2 is known to be a very poor wetting agent. The results of these tests are set forth in Table IV below.
Table IV
The above results are illustrative of the significantly enhanced filtration properties that can be achieved in water repellent soil even with very poor EO/PO block copolymer wetting agents by utilizing the polyglycosides of the instant invention.
Example V
Aqueous compositions of AGRIMUL 2067 and ANTAROX L64 are blended at seven different weight ratios of the polyglycoside to the EO/PO block copolymer starting at 4:1 through 1:4. Each blend is prepared at four concentrations, i.e., 8000 ppm, 6000 ppm, 4000 ppm, and 2000 ppm. Straw test results on these blends are set forth in Table V below.
Table V
The straw test results illustrate the outstanding synergy that can be achieved in increasing the infiltration rate in water repellent soil especially when the weight ratio of the polyglycoside to EO/PO block copolymer is within the 4:1 to 0.7:1 range.
It is anticipated that the compositions of the instant invention be also utilized in solid form, e.g., powder or granular form, by either being added to
inert filler material and/or blended with fillers and additives in methods well known by those skilled in the agrochemical water dispersible or dry spreadable art. In this way, the compositions are able to be delivered in solid form to the water repellent soil and controlled release of the compositions can be achieved if one so desires.
The metes and bounds of the instant discovery are as set forth in the following paragraphs.
Claims (10)
1. A process for increasing the wetting rate of water repellent soil which comprises the steps of: i) preparing an aqueous wetting agent composition comprising
a) alkyl polyglycoside;
b) ethylene oxide-propylene oxide block copolymer; and
c) water
wherein the weight ratio of the glycoside to the block copolymer is from 6:1 to 0.5:1; and ii) intimately contacting water repellent soil with an effective amount of said wetting agent composition.
2. The process of claim 1 wherein the total concentration of the polyglycoside and block copolymer in the wetting agent composition is from 200,000 ppm to 2 ppm.
3. The process of claim 1 wherem the ethylene oxide-propylene oxide block copolymer is selected from the group consisting of: i) straight block polymeric glycols obtained by the addition of ethylene oxide (EO) on a condensation product of propylene oxide (PO) with propylene glycol; ii) reverse block polymeric glycols obtained by the addition of propylene oxide (PO) on a condensation product of ethylene oxide (EO) with ethylene glycol; iii) tetra functional block copolymers obtained by the sequential addition of initially propylene oxide and then ethylene oxide to ethylene diamine; and iv) tetra functional reverse block copolymers obtained by the sequential addition of initially ethylene oxide and then propylene oxide to ethylene diamine.
4. The process of claim 1 wherein in the alkyl polyglycoside the alkyl lipophilic group contains from 4 to 22 carbon atoms; and the degree of polymerization is from 1 to 4.
5. A process for increasing the wetting rate of water repellent soil which comprises the steps of
i) preparing an aqueous wetting agent composition comprising:
a) an alkyl polyglycoside having predominantly C8 and Cio alkyl chains and an average degree of polymerization of from 1.4 to 1.7; b) an EO-PO-EO block copolymer having an average molecular weight of from 2000 to 8000, a hydrophile weight percent of from less than 10 to 40; and an HLB value less than or equal to 10; and c) water wherein the weight ratio of the glycoside to the block copolymer is from 4:1 to 0.7:1; and ii) intimately contacting water repellent soil with an effective amount of said wetting agent composition.
6. The process of claim 5 wherein the block copolymer has an average molecular weight of from 2000 to 8000; a hydrophile weight percent of from less than 10 to 20; and an HLB value less than or equal to 10.
7. A process for increasing the wetting rate of water repellent soil which comprises the steps of: i) preparing a solid granular or powder wetting agent composition comprising: a) alkyl polyglycoside; and b) ethylene oxide-propylene oxide block copolymer wherein the weight ratio of the glycoside to the block copolymer is from 6:1 to 0.5:1; and ii) contacting water repellent soil with an effective amount of said solid wetting agent composition.
8. A process for increasing the wetting rate of water repellent soil which comprises the steps of: i) preparing a solid granular or powder wetting agent composition comprising: a) an alkyl polyglycoside having predominantly C8 and CIO alkyl chains and an average degree of polymerization of from 1.4 to 1.7; b) an EO-PO-EO block copolymer having an average molecular weight of from 2000 to 8000, a hydrophile weight percent of from less than 10 to 40; and an HLB value less than or equal to 10; and wherein the weight ratio of the glycoside to the block copolymer is from 4:1 to 0.7:1; and ii) contacting water repellent soil with an effective amount of said solid wetting agent composition.
9. A process for increasing the wetting rate of water repellent soil which comprises the steps of: i) preparing a solid granular or powder wetting agent composition comprising: c) alkyl polyglycoside; and d) ethylene oxide-propylene oxide block copolymer wherein the weight ratio of the glycoside to the block copolymer is from 6:1 to 0.5:1; and ii) adding said solid wetting agent composition to water to form an aqueous wetting agent composition; and iii) intimately contacting water repellent soil with an effective amount of said aqueous wetting agent composition.
10. A process for increasing the wetting rate of water repellent soil which comprises the steps of: i) preparing a solid granular or powder wetting agent composition comprising: a) an alkyl polyglycoside having predominantly C8 and CIO alkyl chains and an average degree of polymerization of from 1.4 to 1.7; b) an EO-PO-EO block copolymer having an average molecular weight of from 2000 to 8000, a hydrophile weight percent of from less than 10 to 40; and an HLB value less than or equal to 10; and wherein the weight ratio of the glycoside to the block copolymer is from 4:1 to 0.7:1; and ii) adding said solid wetting agent composition to water to form an aqueous wetting agent composition; and iii) intimately contacting water repellent soil with an effective amount of said aqueous wetting agent composition.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32802701P | 2001-10-09 | 2001-10-09 | |
US60/328,027 | 2001-10-09 | ||
US10/266,025 US6851219B2 (en) | 2001-10-09 | 2002-10-07 | Hydrophilicity of water repellent soil |
US10/266,025 | 2002-10-07 | ||
PCT/US2002/032163 WO2003031535A1 (en) | 2001-10-09 | 2002-10-08 | Improving the hydrophilicity of water repellent soil |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2002334911A1 true AU2002334911A1 (en) | 2003-07-03 |
AU2002334911B2 AU2002334911B2 (en) | 2005-04-28 |
AU2002334911B9 AU2002334911B9 (en) | 2005-05-12 |
Family
ID=26951581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002334911A Ceased AU2002334911B9 (en) | 2001-10-09 | 2002-10-08 | Improving the hydrophilicity of water repellent soil |
Country Status (10)
Country | Link |
---|---|
US (1) | US6851219B2 (en) |
EP (1) | EP1442096B1 (en) |
JP (1) | JP4160507B2 (en) |
AT (1) | ATE438698T1 (en) |
AU (1) | AU2002334911B9 (en) |
CA (1) | CA2463524C (en) |
DE (1) | DE60233247D1 (en) |
ES (1) | ES2331236T3 (en) |
PT (1) | PT1442096E (en) |
WO (1) | WO2003031535A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030073583A1 (en) * | 2001-10-09 | 2003-04-17 | Kostka Stanley J. | Wetting of water repellent soil by low HLB EO/PO block copolymers and enhancing solubility of same |
WO2005000944A2 (en) * | 2003-06-13 | 2005-01-06 | Milliken & Company | Multi-branched regenerating wetting agents for treating sandy soils for long-term reduction of water repellency |
US6857225B2 (en) * | 2003-06-13 | 2005-02-22 | Milliken & Company | Method of treating sandy soils with multi-branched regenerating wetting agents |
EP1851287A1 (en) * | 2005-02-25 | 2007-11-07 | Ciba Specialty Chemicals Holding Inc. | Method of using anionic copolymer formulations for seepage control |
US7815807B2 (en) * | 2006-06-26 | 2010-10-19 | Bassett Brian D | Surfactant-based water treatment for irrigated soils |
CA2676488C (en) * | 2007-01-24 | 2016-03-22 | Ethox Chemicals, Llc | Method for improving the water transport characteristics of hydrophobic surfaces |
US9480254B2 (en) | 2008-05-08 | 2016-11-01 | Aquatrols Corporation Of America | Systemic mitigation of environmental stress on plants and the fruit thereof |
CN102438439B (en) * | 2009-03-23 | 2016-07-13 | 布莱阿姆青年大学 | Seed coating composition and method of applying soil surfactant to water-repellent soil |
US20110175026A1 (en) * | 2010-01-15 | 2011-07-21 | Lamberti Spa | Process for wetting a water repellant soil |
US20110176872A1 (en) * | 2010-01-15 | 2011-07-21 | Lamberti Usa, Inc. | Process for wetting a water repellent soil |
US20150045225A1 (en) | 2012-01-23 | 2015-02-12 | Syngenta Limited | Plant growth media wetting compositions |
MX2015011887A (en) * | 2013-03-13 | 2016-06-07 | Basf Se | Humectant compositions that effectively increase moisture retention in soil and associated methods for identifying same. |
GB201308244D0 (en) | 2013-05-08 | 2013-06-12 | Croda Int Plc | Soil treatment |
JP5937553B2 (en) * | 2013-09-11 | 2016-06-22 | スギムラ化学工業株式会社 | Soil treatment composition |
US8912122B1 (en) | 2013-11-21 | 2014-12-16 | Michael Blackstone | Wetting agent composition for enhancing plant productivity |
PL229494B1 (en) | 2015-05-15 | 2018-07-31 | Szewczyk Roman Zakl Produkcyjno Handlowy Agromix | Adjuvant for soil-applied agrochemicals |
CN110049676B (en) | 2016-11-02 | 2023-06-16 | 帕拉蒙特产品1有限责任公司 | Adjuvant composition for plant treatment chemicals |
US11666048B2 (en) | 2017-02-24 | 2023-06-06 | Corbet Scientific, Llc | Treatment for plants in conjunction with harvesting |
WO2022082285A1 (en) | 2020-10-19 | 2022-04-28 | Oxiteno S.A. Indústria E Comércio | Composition, agrochemical formulation, methods for increasing water and nutrient availability and for improving pest control in plants and seeds, and uses of the composition and the agrochemical formulation |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2867944A (en) | 1954-04-20 | 1959-01-13 | Agronomists Res Corp | Method of treating soil by non-ionic surface active agents |
US5580841A (en) * | 1985-05-29 | 1996-12-03 | Zeneca Limited | Solid, phytoactive compositions and method for their preparation |
US5468718A (en) | 1985-10-21 | 1995-11-21 | Ici Americas Inc. | Liquid, phytoactive compositions and method for their preparation |
US5024821A (en) | 1990-02-28 | 1991-06-18 | Ici Americas Inc. | Solvent extraction process |
US5385750A (en) | 1992-05-14 | 1995-01-31 | Henkel Corporation | Alkyl glycoside compositions with improved wetting properties |
US5697731A (en) * | 1995-08-22 | 1997-12-16 | Bonds; Larry Russell | Apparatus and method for blending and windrowing asphalt |
SE517612C2 (en) * | 1995-12-20 | 2002-06-25 | Rhone Poulenc Agrochimie | Use of 5-amino-4-ethylsulfinyl-1-arylpyrazole compounds as pesticides |
CA2283414C (en) * | 1997-03-07 | 2007-06-26 | Aquatrols Corporation Of America Inc. | Fully compatible surfactant-impregnated water-soluble fertilizer; concentrate; and use |
DE69814831T2 (en) | 1997-03-07 | 2003-12-24 | Aquatrols Holding Co., Inc. | COMPATIBLE WATER-SOLUBLE TENSIDE-IMPREGNATED FERTILIZER CONCENTRATE AND USE |
US5958104A (en) | 1997-09-11 | 1999-09-28 | Nonomura; Arthur M. | Methods and compositions for enhancing plant growth |
ID27661A (en) * | 1998-02-13 | 2001-04-19 | Monsanto Co | COMPOSITION THAT CONTAINS STABLE EXCHANGE CHEMISTRY OF EXOGENOUS CHEMISTRY AND SURFACTANT |
US6241994B1 (en) * | 1998-02-27 | 2001-06-05 | Buckman Laboratories International, Inc. | Solid TCMTB formulations |
HUP0100862A3 (en) * | 1998-03-09 | 2002-03-28 | Monsanto Technology Llc St Louis | Concentrate herbicidal composition and use thereof |
UA69415C2 (en) * | 1998-06-09 | 2004-09-15 | Басф Акцієнгезелльшафт | Herbicidal mixture, a method of obtaining thereof and a method of controlling undesirable vegetation |
US6451731B1 (en) * | 1999-09-10 | 2002-09-17 | Monsanto Company | Stable concentrated pesticidal suspension |
-
2002
- 2002-10-07 US US10/266,025 patent/US6851219B2/en not_active Expired - Lifetime
- 2002-10-08 DE DE60233247T patent/DE60233247D1/en not_active Expired - Lifetime
- 2002-10-08 AT AT02800965T patent/ATE438698T1/en active
- 2002-10-08 EP EP02800965A patent/EP1442096B1/en not_active Expired - Lifetime
- 2002-10-08 PT PT02800965T patent/PT1442096E/en unknown
- 2002-10-08 ES ES02800965T patent/ES2331236T3/en not_active Expired - Lifetime
- 2002-10-08 CA CA2463524A patent/CA2463524C/en not_active Expired - Fee Related
- 2002-10-08 WO PCT/US2002/032163 patent/WO2003031535A1/en active IP Right Grant
- 2002-10-08 AU AU2002334911A patent/AU2002334911B9/en not_active Ceased
- 2002-10-08 JP JP2003534508A patent/JP4160507B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2463525C (en) | Method for improving wetting of water repellent soil | |
AU2002334912A1 (en) | Method for improving wetting of water repellent soil | |
CA2463524C (en) | Improving the hydrophilicity of water repellent soil | |
AU2002334911A1 (en) | Improving the Hydrophilicity of Water Repellent Soil | |
EP2994519B1 (en) | Soil treatment | |
JPH07508024A (en) | Alkyl glycosides with improved wetting properties | |
US6826866B2 (en) | Fully compatible water-soluble fertilizer and use | |
US6460290B1 (en) | Fully compatible surfactant-impregnated water-soluble fertilizer; concentrate; and use | |
EP1740043B1 (en) | Enhancing plant productivity by improving the plant growth medium environment with alkyl ethers of methyl oxirane - oxirane copolymer surfactants | |
DE69814831T2 (en) | COMPATIBLE WATER-SOLUBLE TENSIDE-IMPREGNATED FERTILIZER CONCENTRATE AND USE | |
EP2524019A1 (en) | Process for wetting a water repellent soil | |
JP7309696B2 (en) | Treated media for growing plants with increased water retention | |
RU2798873C2 (en) | Processed plant growth media that has increased water retention | |
CN119570494A (en) | Surfactant composition for irrigation and preparation method and application thereof |