AU2002314968A1 - Controlled release dosage forms using acrylic polymer, and process for making the same - Google Patents
Controlled release dosage forms using acrylic polymer, and process for making the sameInfo
- Publication number
- AU2002314968A1 AU2002314968A1 AU2002314968A AU2002314968A AU2002314968A1 AU 2002314968 A1 AU2002314968 A1 AU 2002314968A1 AU 2002314968 A AU2002314968 A AU 2002314968A AU 2002314968 A AU2002314968 A AU 2002314968A AU 2002314968 A1 AU2002314968 A1 AU 2002314968A1
- Authority
- AU
- Australia
- Prior art keywords
- dosage form
- mixture
- acrylic polymer
- controlled release
- tablet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 30
- 230000008569 process Effects 0.000 title claims description 26
- 239000002552 dosage form Substances 0.000 title claims description 25
- 238000013270 controlled release Methods 0.000 title claims description 22
- 229920000058 polyacrylate Polymers 0.000 title claims description 21
- 239000000203 mixture Substances 0.000 claims description 52
- 239000004480 active ingredient Substances 0.000 claims description 11
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 239000006186 oral dosage form Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 8
- 239000007892 solid unit dosage form Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 6
- 238000007907 direct compression Methods 0.000 claims description 5
- 238000007580 dry-mixing Methods 0.000 claims description 5
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 claims description 4
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 claims description 4
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 claims description 4
- 238000007908 dry granulation Methods 0.000 claims description 4
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 claims description 4
- 229960002085 oxycodone Drugs 0.000 claims description 4
- -1 oxymoφhone Chemical compound 0.000 claims description 4
- 229960004126 codeine Drugs 0.000 claims description 2
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 claims description 2
- 229960000920 dihydrocodeine Drugs 0.000 claims description 2
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 claims description 2
- 229960000240 hydrocodone Drugs 0.000 claims description 2
- NETZHAKZCGBWSS-CEDHKZHLSA-N nalbuphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]1(O)CC[C@@H]3O)CN2CC1CCC1 NETZHAKZCGBWSS-CEDHKZHLSA-N 0.000 claims description 2
- 229960000805 nalbuphine Drugs 0.000 claims description 2
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 claims description 2
- 229960004127 naloxone Drugs 0.000 claims description 2
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 claims description 2
- 229960003086 naltrexone Drugs 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 claims description 2
- BQNSLJQRJAJITR-UHFFFAOYSA-N 1,1,2-trichloro-1,2-difluoroethane Chemical compound FC(Cl)C(F)(Cl)Cl BQNSLJQRJAJITR-UHFFFAOYSA-N 0.000 claims 1
- 229960003617 oxycodone hydrochloride Drugs 0.000 claims 1
- 238000013268 sustained release Methods 0.000 claims 1
- 239000012730 sustained-release form Substances 0.000 claims 1
- 238000009472 formulation Methods 0.000 description 20
- 238000004090 dissolution Methods 0.000 description 19
- 239000003814 drug Substances 0.000 description 17
- 229940079593 drug Drugs 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 238000001035 drying Methods 0.000 description 10
- 238000000113 differential scanning calorimetry Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 238000005550 wet granulation Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920003134 Eudragit® polymer Polymers 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- TYVWBCMQECJNSK-UHFFFAOYSA-N [2-methyl-3-(2-methylprop-2-enoyloxy)butan-2-yl]azanium;chloride Chemical compound [Cl-].CC([NH3+])(C)C(C)OC(=O)C(C)=C TYVWBCMQECJNSK-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000012738 dissolution medium Substances 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 206010027175 memory impairment Diseases 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920006316 polyvinylpyrrolidine Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000009491 slugging Methods 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000001757 thermogravimetry curve Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
Description
CONTROLLED RELEASE DOSAGE FORMS USING ACRYLIC POLYMER, AND PROCESS FOR MAKING
Field of the Invention The present invention relates to controlled release dosage forms containing an acrylic polymer and a process for making the same.
Background of the Invention
Controlled release dosage forms of therapeutically active substances have advantages over conventional administration forms. These advantages include delaying drug absoφtion until it reaches a certain portion of the alimentary tract, where absoφtion of the drag is most therapeutically effective, and allowing the drug to be released slowly in the gastrointestinal tract, which prolongs the systemic action of the drug.
One major drawback of conventional administration of drug therapy is that it needs to be carefully monitored in order to maintain an effective steady state blood level of the drug.
Otherwise, undesirable peaks and valleys in the plasma drug concentration can occur, which may interfere with the therapeutic activity of the treatment. An advantage of controlled release dosage forms is their ability to maintain optimal steady drug plasma levels with reductions in the frequency of administration. A further advantage of these dosage forms is the improvement of patient compliance, which is usually achieved by incurring fewer missed doses due to patient forgetfulness. Another advantage of controlled release dosage forms is the ability to tailor the release of a drug to a specific portion of the gastrointestinal tract. This will not only ensure that a certain concentration of the drug is released at the appropriate site, but also limits the amount of unnecessary drug exposure to unaffected areas. One such method of obtaining controlled release dosage forms is by incoφorating the drug into a polymer matrix. Polymers such as certain cellulose derivatives, zein, acrylic resins, waxes, higher aliphatic alcohols, and polylactic and polyglycolic acids have been used. In addition to mixing the drug with the polymer matrix, coating the drug with an appropriate polymer matrix has also been known to produce controlled release dosage forms, such as specially formulated coated beads or pellets, coated tablets, capsules, and coated ion-exchange resins. Different types of polymers/matrices are known in the pharmaceutical industry for controlling the release of active pharmaceutical ingredient from dosage forms, and the mechanism of each control is based on the characteristics of the polymer, hi oral delivery matrices, the drug, when immersed in solution, diffuses through the polymer matrix and is released, hi other matrices, the water-soluble ingredients dissolve when the dosage form is contacted with a dissolution medium, leaving behind a backbone of the undissolved matrix.
Drugs in such situations release by migrating through the pores left behind by the dissolved ingredients.
In another dosage form, polymers may need to be treated before forming matrices with controlling mechanisms. This treatment usually involves heating the polymers, possibly above certain characteristic temperatures.
Two main conventional methods are known in the art for the preparation of materials to be included in a solid dosage form: wet processes and dry processes. Wet processes require the addition of water or organic solvent to the blend, forming a wet blend, prior to forming the dosage form. After being uniformly mixed, the formed granulate is then dried, in an oven, by fluid bed drying, or by any other conventional drying methods. Once the solvent has evaporated, the granules are milled or crushed in a manner so that particles of uniform particle size are foπned. After milling or crushing, the granules are ready to be processed into a finish dosage form. One frequent problem encountered with wet granulation processes is the inability to detect or determine the end point of drying, without the granules being too dry or too wet for subsequent steps. In order to achieve the optimal drying process, tedious steps are built into manufacturing processes so that at various intervals during the drying stage, representative samples are taken and measured for the moisture content until an optimal amount is reached. This drying process is difficult to control, as the drying rate varies from run to run. In addition, the wet granulation processes are not suitable for all formulations. Active pharmaceutical ingredients may be moisture sensitive; the exposure to the solvents used in wet granulation processes may increase the degradation of the compounds. In summary, wet granulation processes are complicated, tedious and time-consuming.
Dry processes consist of dry granulation and direct compression. Dry granulation may be used where one of the constituents, either the drug or the diluent, has sufficient cohesive properties to form the finished dosage form. This process includes mixing the ingredients, slugging, dry screening, lubricating, and finally compressing the ingredients. In direct compression, the powdered materials to be included in the solid dosage form are compressed directly without modifying the physical nature of the material itself. It may consist of a series of dry blendings, whereby various ingredients are mixed with the active ingredient in a blender. The resulting blend may be passed through a roller compacter before milling, after which the blend is ready to be put into its finished dosage form. Because no solvent is introduced during the dry processes, these processes are particularly useful with moisture sensitive substances.
SUMMARY OF THE INVENTION
The present invention provides controlled release formulations and processes for obtaining controlled release dosage forms. "Dry" when used to describe embodiments of the present invention means that no solvent, water or organic solvents, are needed during the processes leading to obtaining a matrix for the dosage form. The dry methods involve dry mixing the active pharmaceutical ingredient(s) with an acrylic polymer and then forming and curing the dosage form. Forming can be done with drug granulation prior to compression or direct compression Curing the dosage form produces an oral dosage form with a desirable, uniform, predictable, controlled release rate in an efficient and cost effective manner. The method can be used with a wide range of active pharmaceutical compounds and acrylic matrices.
The preferred acrylic polymer is ammonio methacrylate copolymer.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the dissolution profile of uncured and cured tablets of Example 1. FIG. 2 shows the dissolution profile of uncured and cured tablets of Example 2. FIG. 3 shows the dissolution profile of uncured and cured tablets of Example 3. FIG. 4 shows the dissolution profile of uncured and cured tablets of Example 4. FIG. 5 shows the dissolution profile of uncured and cured tablets of Example 5. FIG. 6 is a Differential Scanning Calorimetry (DSC) thermogram of ammonio methacrylate copolymer (Eudragit®).
FIG. 7 is a DSC thermogram of the uncured tablet of Formulation 1 of Example 1. FIG. 8 is a DSC thermogram of the cured tablet of Formulation 1 of Example 1. FIG. 9 is a DSC thermogram of the uncured tablet of Formulation 2 of Example 2. FIG. 10 is a DSC thermogram of the cured tablet of Formulation 2 of Example 2.
In the present invention, it was surprisingly found that directly dry mixing a blend containing an acrylic polymer and an active ingredient, without the addition of water or solvent, coupled with a curing process, provides dosage forms having controlled release properties. A mixture is obtained by directly mixing the acrylic polymer with a therapeutically effective amount of an active ingredient. A preferred acrylic polymer is ammonio methacrylate copolymer. Ammonio methacrylate copolymers of this type preferred for use herein are water- insoluble, swellable, film-forming polymers based on neutral methacrylic acid esters with a small proportion of trimethyl-ammonioethyl methacrylate chloride. Most particularly preferred is a polymer having a molar ratio of the quarternary ammonium groups to the neutral ester groups of about 1 :40 (corresponding to roughly 25 meq./lOOg). One such polymer is sold under
the name Eudragit® from Rohm America, Inc. of Piscataway, NJ. The polymer/active ingredient mixture preferably further includes excipients. Any generally acceptable pharmaceutical excipients can be used. Examples of such excipients are flavoring agents, lubricants, solubilizers, suspending agents, fillers, compression aids, binders, and encapsulating material. Specific suitable solid carriers include calcium phosphate, magnesium stearate, talc, sugars, lactose, dextran, starch, gelatin, cellulose, methyl cellulose, sodium carboxymethyl cellulose, polyvinyl pyrrolidine, low melting waxes, and ion exchange carriers. Such carrier may be added before or after the tablet is compressed, as is well known in the art.
In a preferred embodiment, the acrylic polymer comprises from about 10% to about 90% of the dry weight of the mixture. More preferably, the acrylic polymer comprises from about 20% to about 80% of the dry weight of the mixture, more preferably from about 30% to about 70% of the dry weight of the mixture, and most preferably from about 30% to about 55% of the dry weight of the mixture.
The active ingredient may be any therapeutically active pharmaceutical ingredient(s) or a combination of active ingredients. Preferred active ingredients include opioids, including, but not limited to moφhine, hydromoφhone, codeine, oxycodone, oxymoφhone, nalbuphine, hydrocodone, dihydrocodeine, dihydromoφhine, buprenoφhine, naltrexone, naloxone, salts of any of the foregoing, mixtures of any of the foregoing, and the like.
The mixture containing an active ingredient, an acrylic polymer, and any optional excipients is formed into a solid unit dosage form. Such processes include the preparation of the mixture and compression of the mixture into tablets. The resulting tablets are solid dosage forms of substantially homogenous composition. A lubricant may also be used. The tablet is a substantially uniform matrix, that may dissolve in a relatively uniform manner.
Such processes also include a curing step during manufacturing of the tablet. In a preferred sequence of the process, the mixture is compressed, and the compressed mixture or tablet is then cured. Cured tablets of the present invention have been found to produce better control of the release of the active ingredients, as evidenced by more desirable dissolution profiles. As shown in Figure 1, the release profile of the dosage form of the cured tablet was slower and more consistent than that of the uncured tablet. To obtain cured tablets, the tablets are exposed to a temperature exceeding the curing temperature of the polymer. The temperature for which the tablet must be cured varies with the nature of the acrylic polymer used, as well as the composition and size of the dosage form. In the case of the preferred acrylic material set forth herein, temperatures in the range of from about 40°C to about70 °C are appropriate. Preferably, a temperature of at least about 50°C is used, more preferably at least about 55°C. Higher temperatures may be used, so long as the tablet (or
more preferably at least about 55°C. Higher temperatures may be used, so long as the tablet (or active ingredient) remains unharmed. The time of curing varies with the temperature. Higher temperatures allow the tablet to cure faster. It is important that the entire tablet reach the cure temperature. The time required will therefore depend on the temperature of the oven (or coating pan, etc.), the desired cure temperature for the polymer, and the tablet size, among other factors. Generally, the desired curing occurs between about 10 minutes and about one hour. Longer cure times are generally not harmful, unless the temperature is so high that damage to one or more components of the tablet occurs.
Although the tablets produced using the above process provide excellent controlled release characteristics, it may be desirable to further control the release of the active pharmaceutical ingredient through the use of a coating layer. Such a layer could be used to delay the initial release of the active pharmaceutical ingredient, for instance, until the tablet moves out of the stomach. Coating of dosage forms to obtain delayed release may be used in conjunction with the curing process described herein, and can be applied before or after the tablet is cured. Inks, dyes, and imprinting may also be applied to such tablets.
DSC results can be used to examine the difference in the release profiles of cured and uncured tablets. Figures 7 and 8 show DSC scans of uncured and cured tablets of Formulation 1. Figure 7, taken before curing, has a peak around 56°C. In contrast, the absence of the peak in this temperature area shown in Figure 8 indicates that the tablets had been cured. Likewise, the uncured tablet of Formulation 2 shows a peak at 56°C (Figure 9) while the cured tablet has no peak in the same region (Figure 10). As shown in Figures 1 and 2 and Tables 1A and 2A, cured tablets were able to release the drug in a more controlled manner producing slower and more consistent dissolution profiles.
The following examples illustrate various aspects of the present invention. They are not to be construed to limit the claims in any manner whatsoever.
EXAMPLES Oxycodone controlled release tablets were prepared by dry mixing the ingredients and directly compressing the blend into tablets. These tablets were then cured.
Example 1
TABLE 1: Formulation 1
Comparison of Cured and Uncured Tablets
Dissolution profiles for cured and uncured Formulation 1 tablets were obtained using the USP Basket Method (Type I Dissolution) at 100 φm in 0.1N HC1 at 37D°C. As seen from Figure 1, uncured tablets were found to have rapid release profiles. When these same tablets were cured, it was suφrisingly found that the release profiles become slower than before they were subjected to the elevated temperature. Table 1A below shows a comparison between the dissolution profiles of cured and uncured Formulation 1 tablets.
TABLE 1A: Dissolution Profiles of Uncured and Cured Formulation 1 Tablets:
Example 2
TABLE 2: Formulation 2
TABLE 2A: Dissolution Profiles of Uncured and Cured Fomiulation 2 Tablets:
The dissolution data shown in Table 2A and illustrated in Figure 2 showed that slower release profiles were obtained with cured tablets as opposed to uncured ones.
Example 3
TABLE 3: Formulation 3
TABLE 3A: Dissolution Profiles of Uncured and Cured Formulation 3 Tablets:
The dissolution data shown in Table 3 A and illustrated in Figure 3 showed that slower
release profiles were obtained with cured tablets as opposed to uncured ones.
Example 4
TABLE 4: Formulation 4
TABLE 4A: Dissolution Profiles of Uncured and Cured Formulation 4 Tablets:
The dissolution data shown in Table 4A and illustrated in Figure 4 showed that slower release profiles were obtained with cured tablets as opposed to uncured ones.
Example 5 TABLE 5: Formulation 5
TABLE 5 A: Dissolution Profiles of Uncured and Cured Formulation 5 Tablets:
The dissolution data shown in Table 5A and illustrated in Figure 5 showed that slower release profiles were obtained with cured tablets as opposed to uncured ones.
Example 6
Differential Scanning Calorimetry (DSC) was used to detect physical changes of a polymer as a function of temperature. The DSC scan of the pure polymer, has a broad peak around 50°C (Figure 6). DSC scans of uncured tablets of formulation 1 and 2 showed similar peaks in the same region (Figures 7 & 9).
Claims (15)
1. A process of preparing a controlled release oral dosage form comprising:
(a) mixing an active pharmaceutical ingredient and an acrylic polymer to yield a mixture;
(b) forming said mixture into a solid unit dosage form, and
(c) curing said solid unit dosage form.
2. The process of claim 1, wherein the active pharmaceutical ingredient is selected from the group consisting of moφhine, hydromoφhone, codeine, oxymoφhone, nalbuphine, hydrocodone, dihydrocodeine, dihydromoφhine, buprenoφhine, oxycodone, naltrexone, naloxone, and pharmaceutically acceptable salts thereof.
3. The process of claim 1 , wherein the acrylic polymer is ammonio methacrylate copolymer.
4. The process of claim 1, wherein the acrylic polymer comprises of about 10% to about 90% of the weight of said mixture.
5. The process of claim 4, wherein the acrylic polymer comprises of about 30% to about 70% of the dry weight of said mixture.
6. The process of claim 1 wherein the step of forming said mixture into a solid unit dosage form comprises dry granulating said active pharmaceutical ingredient with said acrylic polymer.
7. The process of claim 1 wherein the step of forming said solid unit dosage form comprises compressing said mixture.
8. The process of claim 1 wherein said solid unit dosage form is a tablet.
9. A process of preparing a controlled release oral dosage form comprising:
(a) mixing oxycodone and ammonio methacrylate copolymer to yield a mixture;
(b) forming said mixture into a tablet using dry granulation or direct compression; and
(c) curing said tablet for a time and at a temperature sufficient such that a DSC scan will produce no significant peaks in the region of from about 40°C to about 70°C.
10. A controlled release oral dosage form produced according to the process comprising:
(a) dry mixing an active pharmaceutical ingredient and an acrylic polymer to yield a mixture;
(b) forming said mixture into a solid unit dosage form; and
(c) curing said solid unit dosage form.
11. A controlled release oral dosage form produced according to the process comprising:
(a) dry mixing oxycodone hydrochloride and ammonio methacrylate copolymer to yield a mixture; (b) forming said mixture into a tablet using dry granulation or direct compression; and
(c) curing said tablet at a temperature between about 40°C and about 70°C.
12. A controlled release oral dosage form comprising an active ingredient dispersed in a sustained release matrix comprising an acrylic polymer, wherein said dosage form has been cured.
13. The controlled release oral dosage form of claim 12, comprising an acrylic polymer that exhibits no significant peaks in the region of from about 40°C to about 70°C on a DSC scan.
14. The controlled release oral dosage form of claim 12, wherein said acrylic polymer exhibits no significant peaks in the region of from about 46°C to about 64°C on a DSC scan.
15. A controlled release oral dosage form comprising an active pharmaceutical ingredient and a substantially uniform matrix which comprises from about 30% to about 70% of a cured ammonio methacrylate copolymer.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29715001P | 2001-06-08 | 2001-06-08 | |
US60/297,150 | 2001-06-08 | ||
PCT/US2002/018088 WO2002100382A2 (en) | 2001-06-08 | 2002-06-07 | Controlled release dosage forms using acrylic polymer, and process for making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002314968A1 true AU2002314968A1 (en) | 2003-05-15 |
AU2002314968B2 AU2002314968B2 (en) | 2006-12-07 |
Family
ID=23145064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002314968A Ceased AU2002314968B2 (en) | 2001-06-08 | 2002-06-07 | Controlled release dosage forms using acrylic polymer, and process for making the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20050169990A1 (en) |
EP (1) | EP1392250A2 (en) |
JP (1) | JP2004534056A (en) |
CN (1) | CN100356907C (en) |
AU (1) | AU2002314968B2 (en) |
CA (1) | CA2449519A1 (en) |
WO (1) | WO2002100382A2 (en) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10179130B2 (en) | 1999-10-29 | 2019-01-15 | Purdue Pharma L.P. | Controlled release hydrocodone formulations |
KR20130010512A (en) | 1999-10-29 | 2013-01-28 | 유로-셀티크 소시에떼 아노뉨 | Controlled release hydrocodone formulations |
CN101317825A (en) | 2000-10-30 | 2008-12-10 | 欧罗赛铁克股份有限公司 | Controlled release hydrocodone formulations |
US20110104214A1 (en) | 2004-04-15 | 2011-05-05 | Purdue Pharma L.P. | Once-a-day oxycodone formulations |
UA81224C2 (en) | 2001-05-02 | 2007-12-25 | Euro Celtic S A | Dosage form of oxycodone and use thereof |
CN1703200B (en) * | 2002-09-20 | 2012-02-29 | 奥尔制药公司 | Sequestering subunit and related compositions and methods |
DE602004012403T2 (en) | 2003-04-29 | 2009-03-19 | Orexigen Therapeutics, Inc., La Jolla | COMPOSITIONS FOR INFLUENCING LOSS OF WEIGHT |
TWI365880B (en) | 2004-03-30 | 2012-06-11 | Euro Celtique Sa | Process for preparing oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone and oxycodone hydrochloride composition,pharmaceutical dosage form,sustained release oeal dosage form and pharmaceutically acceptable package having less than 25 pp |
AU2005320547B2 (en) | 2004-12-27 | 2009-02-05 | Eisai R & D Management Co., Ltd. | Method for stabilizing anti-dementia drug |
US8394812B2 (en) | 2005-08-24 | 2013-03-12 | Penwest Pharmaceuticals Co. | Sustained release formulations of nalbuphine |
PL1931315T3 (en) | 2005-08-24 | 2014-09-30 | Endo Pharmaceuticals Inc | Sustained release formulations of nalbuphine |
EP2292220A3 (en) | 2005-11-22 | 2012-01-04 | Orexigen Therapeutics, Inc. | Composition and methods for increasing insulin sensitivity |
US20070281017A1 (en) * | 2006-06-06 | 2007-12-06 | Endo Pharmaceuticals Inc., A Delaware Corporation | Sustained release oxycodone composition with acrylic polymer and metal hydroxide |
US20070281016A1 (en) * | 2006-06-06 | 2007-12-06 | Endo Pharmaceuticals Inc., A Delaware Corporation | Sustained release oxycodone composition with acrylic polymer and surfactant |
US20080069891A1 (en) | 2006-09-15 | 2008-03-20 | Cima Labs, Inc. | Abuse resistant drug formulation |
SA07280459B1 (en) | 2006-08-25 | 2011-07-20 | بيورديو فارما إل. بي. | Tamper Resistant Oral Pharmaceutical Dosage Forms Comprising an Opioid Analgesic |
US8445018B2 (en) | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
WO2009114118A2 (en) * | 2008-03-08 | 2009-09-17 | Theraquest Biosciences, Inc. | Oral pharmaceutical compositions of buprenorphine and method of use |
EP2303025A4 (en) | 2008-05-30 | 2012-07-04 | Orexigen Therapeutics Inc | Methods for treating visceral fat conditions |
CA2750144C (en) | 2008-12-31 | 2016-10-25 | Upsher-Smith Laboratories, Inc. | Opioid-containing oral pharmaceutical compositions and methods |
AU2009352681B2 (en) | 2009-09-17 | 2014-11-20 | Upsher-Smith Laboratories, Llc | A sustained-release product comprising a combination of a non-opioid amine and a non-steroidal anti -inflammatory drug |
MX344303B (en) | 2010-01-11 | 2016-12-13 | Orexigen Therapeutics Inc | Methods of providing weight loss therapy in patients with major depression. |
US9901540B2 (en) | 2010-05-10 | 2018-02-27 | Euro-Celtique S.A. | Combination of active loaded granules with additional actives |
PE20130657A1 (en) | 2010-05-10 | 2013-06-15 | Euro Celtique Sa | PHARMACEUTICAL COMPOSITIONS INCLUDING HYDROMORPHONE AND NALOXONE |
JP5838199B2 (en) * | 2010-05-10 | 2016-01-06 | ユーロ−セルティーク エス.エイ. | Production of granules containing no active agent and tablets containing the granules |
JP2013526523A (en) | 2010-05-11 | 2013-06-24 | シマ ラブス インク. | Alcohol-resistant sustained release oral dosage form containing metoprolol |
CA2875056C (en) | 2012-06-06 | 2024-03-26 | Orexigen Therapeutics, Inc. | Methods of treating overweight and obesity |
ES2764445T3 (en) | 2013-03-15 | 2020-06-03 | Inspirion Delivery Sciences Llc | Pharmaceutical products comprising a pH dependent component and a pH increasing agent |
WO2015023675A2 (en) | 2013-08-12 | 2015-02-19 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
AU2014350135B2 (en) | 2013-11-13 | 2017-08-31 | Euro-Celtique S.A. | Hydromorphone and naloxone for treatment of pain and opioid bowel dysfunction syndrome |
US8969371B1 (en) | 2013-12-06 | 2015-03-03 | Orexigen Therapeutics, Inc. | Compositions and methods for weight loss in at risk patient populations |
US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US10172797B2 (en) | 2013-12-17 | 2019-01-08 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
US9707184B2 (en) | 2014-07-17 | 2017-07-18 | Pharmaceutical Manufacturing Research Services, Inc. | Immediate release abuse deterrent liquid fill dosage form |
JP2017531026A (en) | 2014-10-20 | 2017-10-19 | ファーマシューティカル マニュファクチュアリング リサーチ サービシズ,インコーポレーテッド | Sustained release abuse deterrent liquid filler form |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2521461B2 (en) * | 1987-03-10 | 1996-08-07 | エスエス製薬株式会社 | Persistent tablets |
CA1334379C (en) * | 1987-11-24 | 1995-02-14 | James William Mcginity | Method for preparing a solid sustained release form of a functionally active composition |
DE3827214A1 (en) * | 1988-08-11 | 1990-02-15 | Roehm Gmbh | RETARDED MEDICAMENT AND METHOD FOR THE PRODUCTION THEREOF |
CA2053005A1 (en) * | 1990-10-10 | 1992-04-11 | Achim Gopferich | Emulsifier-free emulsion polymers |
US5266331A (en) * | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5286493A (en) * | 1992-01-27 | 1994-02-15 | Euroceltique, S.A. | Stabilized controlled release formulations having acrylic polymer coating |
US5580578A (en) * | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
IL110014A (en) * | 1993-07-01 | 1999-11-30 | Euro Celtique Sa | Solid controlled-release oral dosage forms of opioid analgesics |
PT888111E (en) * | 1996-03-08 | 2003-09-30 | Nycomed Danmark As | COMPOSITION OF MULTIPLE UNITS OF MODIFIED LIBERTACAO DOSAGE. |
WO1999001111A1 (en) * | 1997-07-02 | 1999-01-14 | Euro-Celtique, S.A. | Stabilized sustained release tramadol formulations |
US6168805B1 (en) * | 1998-05-07 | 2001-01-02 | Endo Pharmaceuticals, Inc. | Aqueous process for manufacturing paroxetine solid dispersions |
PT1131070E (en) * | 1998-11-12 | 2008-11-19 | Smithkline Beecham Plc | Pharmaceutical composition for modified release of an insulin sensitiser and metformin |
DE19901683B4 (en) * | 1999-01-18 | 2005-07-21 | Grünenthal GmbH | Controlled-release analgesic |
KR20130010512A (en) * | 1999-10-29 | 2013-01-28 | 유로-셀티크 소시에떼 아노뉨 | Controlled release hydrocodone formulations |
DK1404331T3 (en) * | 2001-07-06 | 2008-01-28 | Penwest Pharmaceuticals Co | Sustained release formulations of oxymorphone |
-
2002
- 2002-06-07 EP EP02741900A patent/EP1392250A2/en not_active Withdrawn
- 2002-06-07 AU AU2002314968A patent/AU2002314968B2/en not_active Ceased
- 2002-06-07 CN CNB028114752A patent/CN100356907C/en not_active Expired - Fee Related
- 2002-06-07 JP JP2003503205A patent/JP2004534056A/en active Pending
- 2002-06-07 WO PCT/US2002/018088 patent/WO2002100382A2/en active Application Filing
- 2002-06-07 CA CA002449519A patent/CA2449519A1/en not_active Abandoned
-
2004
- 2004-07-19 US US10/501,798 patent/US20050169990A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002314968B2 (en) | Controlled release dosage forms using acrylic polymer, and process for making the same | |
AU2002314968A1 (en) | Controlled release dosage forms using acrylic polymer, and process for making the same | |
KR100384215B1 (en) | Release Persistence Polydisperse Hardogel System-Amorphous Drug | |
US6261599B1 (en) | Melt-extruded orally administrable opioid formulations | |
KR0175935B1 (en) | Therapeutic compositions with controlled release of medicaments supported on crosslinked polymers and coated with polymer films, and their preparation process | |
JPH07215843A (en) | Sustained release pharmacological composition having biological adhesion | |
JP5840201B2 (en) | Combination of granules loaded with active agent and additional active agent | |
EA015615B1 (en) | Alcohol resistant dosage forms | |
IL134079A (en) | Process for the preparation of pellets with a content of up to 90 wt.% of a pharmaceutical active ingredient | |
JP2006516969A (en) | Sustained release preparation and method for producing the same | |
AU770293B2 (en) | Sustained-release pharmaceutical preparation containing tilidine mesylate as active ingredient | |
IL177402A (en) | Composition for oral administration of tamsulosin hydrochloride | |
JPH08291063A (en) | Readily absorbable pharmaceutical preparation and its production | |
JP2003095948A (en) | Long persistent-type dry coated nifedipine tablet | |
HK1071696A (en) | Melt-extruded orally administrable opioid formulations | |
HK1099226A (en) | Melt-extruded orally administrable opioid formulations | |
JPS603366B2 (en) | Coated granules of alkali metal salt of polyacrylic acid | |
HK1059887B (en) | Melt-extruded orally administrable opioid formulations |