AU2002302019A1 - Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images - Google Patents
Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images Download PDFInfo
- Publication number
- AU2002302019A1 AU2002302019A1 AU2002302019A AU2002302019A AU2002302019A1 AU 2002302019 A1 AU2002302019 A1 AU 2002302019A1 AU 2002302019 A AU2002302019 A AU 2002302019A AU 2002302019 A AU2002302019 A AU 2002302019A AU 2002302019 A1 AU2002302019 A1 AU 2002302019A1
- Authority
- AU
- Australia
- Prior art keywords
- dot
- light emitting
- display
- data
- cross members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011159 matrix material Substances 0.000 title claims description 35
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000003252 repetitive effect Effects 0.000 claims description 5
- 230000013011 mating Effects 0.000 claims description 4
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 13
- 238000012935 Averaging Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005286 illumination Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 101100063942 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) dot-1 gene Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001328 optic nerve Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
P/00/011 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images The following statement is a full description of this invention, including the best method of performing it known to us: Freehills Carter Smith Beadle Melbaurne\004174583 Printed 15 November2002 (14:31) page 2 Freehills Carter Smith Beadle Melbourne0041 74583 Printed 15 November 2002 (14 3 1) page 2 004171445 1A LOW-DENSITY DOT-MATRIX DISPLAY FOR DISPLAYING HIGH-DENSITY DOT-MATRIX BIT-MAPPED IMAGES Background of the Invention Field of the Invention The present invention relates to an image display device. The invention has particular application to large screen low-density dot-matrix display devices which are used to display high-density bit-mapped dot-matrix image data.
Description of the Related Art Large-scale dot-matrix displays of the type consisting of an array of vertically and horizontally oriented rows of light emitting diodes are frequently used on buildings, in sports stadiums, and at other locations as a means of imparting information visually. These types of displays use large display surfaces which generally offer a similar image resolution to that of conventional television.
A typical television receiver offers a level of image resolution equivalent to 480 vertical and 720 horizontal display lines. Bit mapped image data applied to this resolution standard is processed as 480 vertical dots by 720 horizontal dots. If this data display standard were to be applied to a large screen dot-matrix display having, for example, a 96 vertical by 144 horizontal dot pattern, the result would be a display that offers only one fifth of the resolution that the bit-mapped image data is capable of.
The simplest way to execute control of this type of display is to thin out the horizontal and vertical dot density to one fifth normal density whereby the 480 by 720 bit-mapped image data is re-formatted into the 96 by 144 pattern, and to drive each dot in the 96 by 144 dot pattern with one bit of data. Through this method, only one dot of 004171445 2 image data is used to drive one dot of display within an area in which 25 dots (5x5) of image data are available.
A significant amount of data is lost and image resolution lowered as a result of this image thinning display control method. Furthermore, when only this thinning process is applied, an aliasing effect is generated which significantly lowers image quality. It is known in the art that image format conversion, a process in which image data within a very small image area is averaged, can be applied to reduce the adverse affects of aliasing. Aliasing can be reduced, for example, through the averaging conversion offered by a low-pass filter in which one dot of image data is averaged from twenty five (25) dots (5x5), or from nine dots (3X3) within the 5x5 dot area (in this case, sixteen (16) dots of data (25-9) are ignored). After this format conversion is executed, that one dot of averaged image data is used to drive one display dot on screen. It is also known in the art that a weighted averaging format conversion operation can be applied in which the central portion of a small group of dots is specifically stressed, or "weighted" in the data conversion process. Bilinear, cubic spline, and Gaussian filters are some examples of weighted averaging format conversion.
Low-density bit-mapped image data can be derived from high-density image data through an averaging format conversion process and displayed on a large-scale low-density dot-matrix display device. Once the required control parameters are set, this method results in improved image quality when compared to simple image thinning.
With respect to a structure of display devices, it is advantageous to employ a low-density dot-matrix device for the above high-density image display since recent examples of large-scale display systems generally include a relatively 004171445 3 thick and solid panel structure, in which a number of light emitting elements such as a high-intensity LED combination lump. Because of electronic devices for driving the elements installed in the panel structure, the panel structure cannot be uransparent. However, in today's planning and designing of buildings with various types of faqades such as a curtain wall, there arise needs for a large-scale display device capable of maintaining visibility through the display device as well as the faqade. Obviously, the above conventional display device with a solid panel structure cannot be employed for this use.
Summary of the Invention It is an object of the present invention to provide an improved display device having at least some visibility through its structure.
According to the related Australian patent application 751502 (the contents of which are incorporated herein by reference) there is described and claimed a method of using high-density bit-mapped image data to drive a lowdensity dot-matrix display device, comprises the steps of allocating each of multiple dot groups oriented in mutual proximity in bit-mapped image data for one display dot on the display device, applying a predetermined image data selection sequence standard to alternately select one image dot of data from within each of the multiple dot groups by means of a repetitive high-speed data selection operation, and supplying each dot portion of the alternately selected data to the display device as one dot of display drive data. The predetermined image data selection sequence standard may include a predetermined image data calculation standard.
Another aspect of AU 751502 is a system for displaying high-density dot-matrix bit-mapped image data on a low- 004171445 4 density dot-matrix display which employs a method comprising the aforesaid steps.
According to a first aspect of the present invention there is provided a dot-matrix display device comprising a plurality of cross members intersecting with each other at such intervals as substantially larger than a width of each of the cross members, a plurality of light emitting elements disposed at the intersecting points of the cross members respectively, each of the light emitting elements being shaped so as not to deteriorate transparency of a structure configured by the intersecting cross members, each of the light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the structure formed by the intersecting cross members, and means for controlling drive of the light emitting elements respectively, the controlling means being distributed in the cross members.
Preferably, the controlling means is arranged in said lattice structure in a manner so that the arranged controlling means does not deteriorate visibility through said lattice structure.
According to a second aspect of the present invention there is provided a display module for configuring a large scale display device. Each module has substantially the same configuration as the aforesaid display device and further includes, in each cross member, a mating portion at least at one extremity thereof for mating with another display module adjacent thereto.
According to yet another aspect there is provided a display system for displaying high-density dot-matrix bitmapped image data on a low-density dot-matrix display device, 004171445 said display device comprising: a lattice structure having a plurality of cross members intersecting with each other at such intervals as substantially larger than a width of each said cross member; a plurality of light emitting elements disposed at said intersections respectively, each said light emitting element being shaped so as not to deteriorate transparency of said lattice structure, each said light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the lattice structure; and means for controlling drive of said light emitting elements respectively, said controlling means being distributed in said cross members in a manner so that the arranged controlling means does not deterioriate visibility through said lattice structure; said display device being driven by display dot data supplied according to the following steps of: allocating each of multiple dot groups oriented in mutual proximity in said bit-mapped image data for one display dot on said display device; applying a predetermined image data selection sequence standard to alternately select one image dot of data from within each said multiple dot groups by means of a repetitive high-speed data selection operation; and supplying each dot portion of said alternately selected data to said display device as one dot of display drive data.
Still other objects and advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only the preferred embodiment of the invention is shown and described, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be 004171445 6 realized, the invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawing and description are to be regarded as illustrative in nature, and not as restrictive.
Brief Description of the Drawing Fig. 1 is an external view of a transparent display panel according to an embodiment of the first aspect of the present invention; Fig. 2 is a schematic representation of multiple lattice modules, according to an embodiment of the second aspect of the present invention, which modules join together to form the transparent display panel shown in Fig. 1; Fig. 3 is a block diagram of the main electrical circuits utilized to drive the display panel shown in Figs. 1 and 2; Fig. 4 is a block diagram showing the electrical circuits installed to each lattice module; Fig. 5 is a block diagram showing a more detailed description of display circuit 10 of Fig. 4; Fig. 6 is an embodiment of the selection sequence standard prescribed by the invention described and claimed in AU 751502; Fig. 7 is a further embodiment of the selection sequence standard prescribed by the invention in AU 751502; and Fig. 8 is a still further embodiment of the selection sequence standard prescribed by the invention in AU 751502.
Description of Preferred Embodiments As the present invention has particular application to displaying high density dot-matrix bit-mapped images, the description of the preferred embodiments will be set in the context of the method of displaying such images on a display 004171445 7 according to the present invention. That method is the subject of AU 751502.
Transparent Display Panel Fig. 1 shows an external view of a transparent type of display panel as one embodiment of the present invention.
This display panel comprises vertical and horizontal cross members 1 intersecting at 100mm intervals to form a nonopaque lattice structure. Each of the cross members 1 is 12mm in width. Each intersection within the lattice incorporates a 27mm diameter cylindrical housing 2 which is formed as an integral part of the lattice structure, and high-intensity LED lamps 3 which are installed into each housing 2 and which can incorporate red, green, and blue lamp elements to allow multi-color display. As Fig. 1 shows, the axis of illumination of lamps 3 are perpendicular to the front surface of the display panel.
While Fig. 1 shows seven vertical and seven horizontal cross members 1, these cross members form only a single section of a large-scale display panel which incorporates 128 vertical and 256 horizontal cross members in total, and whose actual dimensions are thirteen (13) by twenty six (26) meters. The entire display panel incorporates 32,768 lamps (128x256) whose illumination can be individually and randomly controlled to provide static or dynamic displays of letters, numbers, and images in a manner similar to a dot-matrix display device. In this embodiment, the display utilizes four bits of data to drive each red, green, and blue lamp respectively, thus requiring a 12-bit data signal. This type of display drive allows the display of up to 4,096 colors.
As will be discussed in more detail eventually, the display drive circuit utilized to control display operation and for driving the respective lamps 3, is divided into several blocks and installed in the lattice structure.
004171445 8 Electric wiring runs along the cross members 1 to connect each lamp to its control circuit. A power source is connected to the panel as well as a main control device, such as a desktop computer, which is used to supply display control data to the panel.
This large-scale 13x26-meter display panel is installed in a building on a transparent wall with the lamps 3 facing outward so as to be easily viewed by passersby. As large intervals are formed between the cylindrical housings 2 and the cross members 1 within the lattice pattern, the display allows visibility through the transparent wall to which it is installed, and thus allows people within the building to view the area outside of the building despite the presence of this large-scale display panel. When looking into the building from the outside, the transparent lattice structure of the 13 by 26-meter 128 by 256 dot-matrix display panel makes the panel difficult to see, and allows the lights inside of the building to be clearly visible from outside.
Display Panel Modules The aforesaid large-scale dot-matrix display panel is comprised of a multitude of smaller lattice modules as shown in Fig. 2. These modules are designated as MI, M2, M3, etc.
in the diagram, and are each comprised of eight cross members 1 wherein four are disposed horizontally and four vertically so as to form sixteen (16) intersection points at which cylindrical housings 2 and LED lamps 3 installed therein.
The external dimensions of each module are 40cm by The right extremities of horizontal cross members 1 are mated with the left extremities of the horizontal cross members of the lattice module to the right. In the same manner, the top extremities of cross members 1 are mated with the bottom extremities of the cross members of the lattice module above. This interlocking module construction allows 004171445 9 multiple lattice modules to be mutually connected and attached to form a large-scale lattice display panel with uniform 100mm intervals between lattice intersections.
Each lattice module is equipped with a control circuit to drive the sixteen (16) lamps 3 contained therein, a signal transmission circuit for transmission of display drive data between the modules, and a power supply system to supply electrical power to the circuit contained within the module.
While space is available for installation of the aforesaid circuits and power supply system within the cross members 1 and the cylindrical housings 2, one of the nine open areas enclosed by the cross members can also be utilized to hold said circuits and power supply by means of a circuit unit or similar device. While the use of an open area within the lattice for the installation of circuit devices will lower the level of transparency of the panel, the uniform dispersion of said circuit devices throughout the display panel will result in minimal loss of panel transparency.
Sixty four (64) of the aforesaid lattice modules are connected horizontally, and thirty two (32) modules are connected vertically to form a 13 by 26-meter large-scale transparent display panel offering a dot-matrix display pattern comprised of 128 dots by 256 dots. The circuits contained within the sixty four (64) lattice modules on the horizontal axis are connected in series by means of input connectors installed within the left extremities of the cross members 1, and output connectors installed within the right extremities, said connectors being mutually joined when the right ends of the cross members 1 are inserted into the left ends of the cross members of the lattice module to the right as discussed previously.
004171445 Wiring Arrangement for the Entire Display Panel As discussed previously, a 13 by 26-meter transparent display panel having a 128 by 256 display dot pattern is formed by connecting sixty four (64) lattice modules on the horizontal axis and thirty two (32) lattice modules on the vertical axis, each of the aforesaid lattice modules having a 4 by 4 dot display pattern. The aforesaid sixty four (64) horizontally connected lattice modules are electrically connected in series as is shown in Fig. 3.
In Fig. 3, a main control device 4 can be a desktop computer or a computer workstation serving as a display control means for the display panel. The main control device 4 contains specific static or dynamic display data files stored on a hard disk or other data storage device, and is able to utilize a computer program to control the distribution of display data through the wiring system of the display panel.
The horizontal array of sixty four (64) connected lattice modules, which are electrically connected in series, is hereinafter referred to as a module line. The embodiment of the display panel structure shown here is comprised of a total of thirty two (32) module lines. Data distribution circuits S1 through S32 are connected to the left extremity of each module line, and are also connected in series to the main control device 4.
The display incorporates a 128 by 256 dot pattern, and as discussed previously, control data for one dot display is in a 12-bit format. Accordingly, image control data needed for one display frame is calculated as 128x256x12-bits. The image data for one frame is serially output at high speed as arrayed 12-bit data by the main control device 4. A clock signal or display frame synchronization signal is simultaneously output to control the rate of data change.
004171445 11 Because one module line incorporates sixty four (64) lattice modules, and one lattice module includes sixteen (16) lamps which correspond to display dots, image data of 1,064 (16x64) dots is needed for one module line. Each image data distribution circuit (SI through S32) at each module line receives the necessary 1,064 (16x64) dot data, from the main control device 4, for one module line display within one frame display, and supplies that data to the modules in the line.
The data supplied by the distribution circuits S1 through S32 to each module line is sent to each lattice module sequentially. The circuit built into each module receives and holds in memory its specific 16-dot portion of the 1,064 (64x16) dot image data sent to that module line, and use that data to control illumination of the sixteen (16) lamps in the module. The control system repeatedly sends image data at high speed to the 2,048 (64x32) lattice modules in the panel and thus makes possible static and dynamic image displays, in various colors, on a large-scale 13 by 26-meter transparent display panel having a 32,768 (128x256) dotmatrix pattern.
Module Circuit Structure Fig. 4 shows the electrical circuit structure contained in one lattice module. As discussed previously, an input connector 5 is installed to the left extremity of each cross member, and an output connector 9 to the right extremity.
Input signals coming in from the input connector 5 are processed through an input buffer 6 and supplied to a data selector 7. The data selector 7 extracts the 16-dot data for that specific lattice module and sends it to a display circuit 10 together with the necessary clock or synchronization signal. Furthermore, in order to send various types of signals to the next lattice module in the 004171445 12 horizontal array, a wave form or timing generation operation can be executed at an output buffer 8 before those signals are output from the connector 9.
Moreover, a power line 11, which originates at the data distribution circuit on the left extremity of the lattice module line, is installed repeatedly between the input connector 5 and the output connector 9 as a means of supplying power to all sixty four (64) lattice modules in the horizontal line. A switching regulator 12 is installed internally to each lattice module, receives power from an external source, and operates so as to supply a stable electrical current to drive the logic circuits and display lamps within the lattice module.
Fig. 5 shows the structure of the aforesaid display circuit 10 which is installed within each lattice module.
The sixteen (16) display lamps 3 are connected to a 16-dot matrix circuit 13 which controls the illumination of the lamps 3 through a conventional timing operation executed by a common driver 14 and a line driver 15. The extracted 16-dot image data, as well as the applied clock or synchronization signals supplied by the aforesaid data selector 7, are processed through a controller 17 as control data, and temporarily written into a data memory 16. The controller 17 sequentially reads out the image data in the data memory 16 in 4-dot data groups and inputs that data to the line driver while simultaneously scanning the common driver 14.
Display Control System The 128x256 dot-matrix pattern of the display panel is driven by bit-mapped image data for a 640x1,280 dot-matrix pattern. As was discussed previously, the density of the bit-mapped image data is five times greater than the resolution capability of the display panel.
004171445 13 When this type of image data is used to drive the entire surface of the display panel, there are twenty five (25) dots of display data available for one dot on the display panel. As shown in Fig.6, which is one embodiment of the invention in AU 751502, nine dots (3x3) can be designated as effective dots within the aforesaid 25-dots of available data, and thus can be driven as multiple dots within a one dot display. Data for the sixteen (16) dots (25-9) surrounding the aforesaid nine effective dots is not utilized. In other words, data for the aforesaid 9-dot group is allocated to each dot on the display, thereby making possible a system which allows all of the image data specified to be used to drive the display.
The bit-mapped image data for a 640x1,280 dot-matrix pattern display is stored in a video RAM device and read accessed at high speed by a display control processor. The display control processor extracts data for one dot of the display from the 9-dot group data by means of an alternating selection operation repeated at high speed according to a specific selection sequence standard, and applies that data as a means of driving one dot on the display. This process is synchronized in order to drive all of the display dots on the 128x256-dot panel at a high speed.
The following discussion will explain a first embodiment of the aforesaid selection sequence standard of AU 751502.
As shown in Fig. 6, the data bits within the 9-dot group are labeled 1 through 9. A 1-2-3-4-5-6-7-8-9 sequence can be established, for example, as a first embodiment of the selection sequence standard which is applied to alternately extract the display dot data through a repetitive high-speed selection operation. In cases where the image data in the video RAM is refreshed at intervals of 1/30th of a second, the display control processor will execute nine display 004171445 14 scans at 1/270th of a second for each display frame in order to alternately apply each bit of data in the 9-dot group as display drive data. In this example, the data for all nine dots is uniformly and equally utilized.
The following example will explain a second embodiment of the aforesaid selection sequence standard. In this selection sequence, data for dot 5 is extracted at a frequency eight times greater than the other dot data. This selection sequence can be illustrated as 1-5-2-5-3-5-4-5-6-5- 7-5-8-5-9-5, a sequence which is continually repeated during the data selection operation.
The data selection sequence standards explained above are by no means limiting embodiments of the invention in AU 751502. A variety of other data selection sequences can be applied as necessity and application dictate. For example, as Fig. 7 illustrates, the data selection operation can be applied to data for only four display dots in a 1-2-3-4 sequence in which each bit of data is extracted alternately in the repetitive high speed data selection operation. The four display dots are selected from the high-density dotmatrix bit-mapped image data according to a predetermined selection standard to define a multiple dot group. The selection standard may be established dependent on such factors as required quality of actual visibility, clarity, or the like.
Fig. 8 illustrates a further embodiment of the invention in AU 751502. In this embodiment, a 16-dot display data group is sequentially allocated to one display dot in a sequence in which the data for dot 1 is first extracted and used as display data. This is followed by selection of dots 2, 3, and 4, averaging of the data and then application of that average to drive one display dot. This is in turn followed by selection of dot data 5, 6, 7, 8, and 9, 004171445 averaging of the data and then application of that average to drive one display dot. The sequence continues with selection of dot data 10, 11, 12, 13, 14, 15, and 16, averaging of the data and then application of that average to drive one display dot. This data selection operation is executed continually and repetitively at high speed.
When images displayed by the display system set forth by the invention in AU 751502 are recorded by a video camera, the respective multiple dots in a small area in one frame of the displayed data energizes a particular point of an imaging element of the video camera subsequently for a very short time at a time. As a result, a more smoothed image effect can be obtained because the image data for the aforesaid small area of multiple dots is averaged on a timed basis. As was discussed previously, the invention in AU 751502 can reduce aliasing distortion, a problem which arises when the image data is thinned out, by creating a low-pass filter effect from the averaging or weighted averaging of an extremely small area of image data.
The human eye works differently than a video camera in that the human eye finds it difficult to keep focus on a single spot, and instead will continually move around a small area of focus. When a display system driven by means of the invention in AU 751502 is viewed by the human eye, the illumination provided by extracting extremely small groups of dots within one frame stimulates different areas of the retina's optic nerve on a sequential basis. When compared to a simple image thinning operation, the image display means provided by the invention in AU 751502 offers the viewer more image data. It is thought that the invention in AU 751502 more closely simulates the characteristics of the human eye and the dynamic nature of vision. While the appearance of the images provided by a display system driven by means of 004171445 16 the invention in AU 751502 may vary as a result of perceptual differences between individual viewers, it provides, as previously discussed, an increase in display resolution made possible through a low-pass filter effect and a reduction in aliasing distortion.
As a result of the devices explained in this specification, high-density dot-matrix bit-mapped image data can be used to drive a large-scale low-density dot-matrix display according to the present invention to provide for the best possible image quality and highest resolution but yet does not deteriorate the transparency of the structure.
Claims (7)
1. A dot-matrix display device, comprising: a plurality of cross members intersecting with each other at such intervals as substantially larger than a width of each said cross member; a plurality of light emitting elements disposed at the intersecting points of said cross members respectively, each said light emitting element being shaped so as not to deteriorate transparency of a structure configured by said intersecting cross members, each said light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the structure formed by the intersecting cross members; and means for controlling drive of said light emitting elements respectively, said controlling means being distributed in said cross members.
2. A dot-matrix display device, comprising: a lattice structure having a plurality of vertical and horizontal cross members intersecting with each other at such intervals as substantially larger than a width of each said cross member; a plurality of light emitting elements disposed at said intersections respectively, each said light emitting element being shaped so as not to deteriorate transparency of said lattice structure, each said light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the lattice structure; and means for controlling drive of said light emitting elements respectively, said controlling means being arranged in said lattice structure in a manner so that the arranged 004171445 18 controlling means does not deteriorate visibility through said lattice structure.
3. A display module for configuring a large-scale dot- matrix display device, comprising: a plurality of cross members intersecting with each other at such intervals as substantially larger than a width of each said cross member, each said cross member including a mating portion at least at one extremity thereof for mating with another display module adjacent thereto; a plurality of light emitting elements disposed at the intersecting points of said cross members respectively, each said light emitting element being shaped so as not to deteriorate transparency of a structure configured by said intersecting cross members, each said light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the structure formed by the intersecting cross members; and means for controlling drive of said light emitting elements respectively, said controlling means being distributed in said structure of the intersecting cross members.
4. A display module as set forth in claim 3, wherein said controlling means comprises: input and output connectors for electrically connecting the display module with other display .modules adjacent thereto; an input buffer circuit for receiving an electrical signal applied to said input terminal; data selection and storage means for depicting data for controlling drive of said light emitting elements responsive 004171445 19 to output signals from said input buffer circuit and storing said depicted data temporarily; a drive circuit for driving said light emitting elements according to the data stored in said data selection and storage means; an output buffer circuit for transmitting a corresponding signal to output terminals responsive to the signal input from said input buffer circuit; and a power supply for stabilizing a voltage applied to said input connector and supplying power for driving said respective circuits in the module.
A display system for displaying high-density dot-matrix bit-mapped image data on a low-density dot-matrix display device, said display device comprising: a lattice structure having a plurality of cross members intersecting with each other at such intervals as substantially larger than a width of each said cross member; a plurality of light emitting elements disposed at said intersections respectively, each said light emitting element being shaped so as not to deteriorate transparency of said lattice structure, each said light emitting element being so disposed that an optical axis thereof is oriented substantially perpendicular to a surface of the lattice structure; and means for controlling drive of said light emitting elements respectively, said controlling means being distributed in said cross members in a manner so that the arranged controlling means does not deterioriate visibility through said lattice structure; said display device being driven by display dot data supplied according to the following steps of: 004171445 allocating each of multiple dot groups oriented in mutual proximity in said bit-mapped image data for one display dot on said display device; applying a predetermined image data selection sequence standard to alternately select one image dot of data from within each said multiple dot groups by means of a repetitive high-speed data selection operation; and supplying each dot portion of said alternately selected data to said display device as one dot of display drive data.
6. A dot-matrix display device as described herein with reference to and illustrated in the accompanying Figures 1 to
7. A display module substantially as described herein with reference to and illustrated in the accompanying Figures 2 to DATED: 15 November 2002 Freehills Carter Smith Beadle Patent Attorneys for the Applicant: AVIX INC
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002302019A AU2002302019B2 (en) | 1997-03-21 | 2002-11-15 | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images |
AU2006235785A AU2006235785B2 (en) | 1997-03-21 | 2006-10-24 | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-68457 | 1997-03-21 | ||
JP9-252372 | 1997-09-17 | ||
AU58462/98A AU751502B2 (en) | 1997-03-21 | 1998-03-11 | Method of displaying high-density dot-matrix bit-mapped image on low-density dot-matrix display and system therefor |
AU2002302019A AU2002302019B2 (en) | 1997-03-21 | 2002-11-15 | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU58462/98A Division AU751502B2 (en) | 1997-03-21 | 1998-03-11 | Method of displaying high-density dot-matrix bit-mapped image on low-density dot-matrix display and system therefor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2006235785A Division AU2006235785B2 (en) | 1997-03-21 | 2006-10-24 | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002302019A1 true AU2002302019A1 (en) | 2003-03-20 |
AU2002302019B2 AU2002302019B2 (en) | 2006-08-03 |
Family
ID=49303666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002302019A Ceased AU2002302019B2 (en) | 1997-03-21 | 2002-11-15 | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2002302019B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5900850A (en) * | 1996-08-28 | 1999-05-04 | Bailey; James Tam | Portable large scale image display system |
-
2002
- 2002-11-15 AU AU2002302019A patent/AU2002302019B2/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
AU2002302019B2 (en) | 2006-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU751502B2 (en) | Method of displaying high-density dot-matrix bit-mapped image on low-density dot-matrix display and system therefor | |
CA1200027A (en) | Video overlay system having interactive color addressing | |
CA1326081C (en) | Method and apparatus for displaying different shades of gray on a liquid crystal display | |
JP2958114B2 (en) | Electrophoretic display capable of gray scale display using area modulation method | |
US7259734B2 (en) | Multi-scanning control process and LED displaying device | |
US20090309855A1 (en) | LED Matrix Driving Device | |
US6144414A (en) | Image recording and reproduction apparatus | |
CA2226479C (en) | Scrolling display method and apparatus | |
KR100354405B1 (en) | Improved display system | |
AU2006235785B2 (en) | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images | |
AU2002302019B2 (en) | Low-density dot-matrix display for displaying high-density dot-matrix bit-mapped images | |
US5774178A (en) | Apparatus and method for rearranging digitized single-beam color video data and controlling output sequence and timing for multiple-beam color display | |
JP2761540B2 (en) | Method and apparatus for displaying an image on a hardware screen | |
JP3313312B2 (en) | Control method and display system for displaying bitmap image data with high-density dot configuration on large-screen dot matrix display with low-density dot configuration | |
EP0635155B1 (en) | Process for producing shaded color images on display screens | |
CA2221636C (en) | Improved display system | |
CN100354921C (en) | Method for driving display of a mobile communication terminal | |
AU706754B2 (en) | Improved display system | |
JPS63139485A (en) | Driving method for memory panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |