AU2002253768A1 - Gastric acid secretion inhibiting composition - Google Patents
Gastric acid secretion inhibiting compositionInfo
- Publication number
- AU2002253768A1 AU2002253768A1 AU2002253768A AU2002253768A AU2002253768A1 AU 2002253768 A1 AU2002253768 A1 AU 2002253768A1 AU 2002253768 A AU2002253768 A AU 2002253768A AU 2002253768 A AU2002253768 A AU 2002253768A AU 2002253768 A1 AU2002253768 A1 AU 2002253768A1
- Authority
- AU
- Australia
- Prior art keywords
- salt
- dosage form
- proton pump
- receptor antagonist
- pump inhibitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims description 43
- 230000027119 gastric acid secretion Effects 0.000 title claims description 15
- 230000002401 inhibitory effect Effects 0.000 title description 13
- 239000002253 acid Substances 0.000 claims description 105
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 91
- 239000000612 proton pump inhibitor Substances 0.000 claims description 91
- 239000003485 histamine H2 receptor antagonist Substances 0.000 claims description 84
- 239000010410 layer Substances 0.000 claims description 79
- 150000003839 salts Chemical class 0.000 claims description 72
- 239000002552 dosage form Substances 0.000 claims description 62
- 239000008188 pellet Substances 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 40
- 239000002702 enteric coating Substances 0.000 claims description 37
- 238000009505 enteric coating Methods 0.000 claims description 37
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 34
- 201000006549 dyspepsia Diseases 0.000 claims description 32
- 229960000381 omeprazole Drugs 0.000 claims description 29
- 230000002496 gastric effect Effects 0.000 claims description 22
- 239000003159 antacid agent Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 235000010443 alginic acid Nutrition 0.000 claims description 16
- 229920000615 alginic acid Polymers 0.000 claims description 16
- 239000002775 capsule Substances 0.000 claims description 16
- 239000006186 oral dosage form Substances 0.000 claims description 16
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 11
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 9
- 229940072056 alginate Drugs 0.000 claims description 9
- 239000003814 drug Substances 0.000 claims description 9
- 229960001596 famotidine Drugs 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 claims description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 7
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical group CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 7
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 claims description 7
- 241000590002 Helicobacter pylori Species 0.000 claims description 6
- 229960001380 cimetidine Drugs 0.000 claims description 6
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical group N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 claims description 6
- 239000007884 disintegrant Substances 0.000 claims description 6
- 229940037467 helicobacter pylori Drugs 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000003242 anti bacterial agent Substances 0.000 claims description 5
- 229940088710 antibiotic agent Drugs 0.000 claims description 5
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 claims description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- 238000009472 formulation Methods 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 4
- 229960003174 lansoprazole Drugs 0.000 claims description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 4
- 239000001095 magnesium carbonate Substances 0.000 claims description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 4
- 229960005019 pantoprazole Drugs 0.000 claims description 4
- 229960004157 rabeprazole Drugs 0.000 claims description 4
- 229960000620 ranitidine Drugs 0.000 claims description 4
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 4
- -1 salts of isomers Chemical class 0.000 claims description 4
- PSIREIZGKQBEEO-UHFFFAOYSA-N 2-(1h-benzimidazol-2-ylsulfinylmethyl)-n-methyl-n-(2-methylpropyl)aniline Chemical compound CC(C)CN(C)C1=CC=CC=C1CS(=O)C1=NC2=CC=CC=C2N1 PSIREIZGKQBEEO-UHFFFAOYSA-N 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 230000008029 eradication Effects 0.000 claims description 3
- 239000003112 inhibitor Substances 0.000 claims description 3
- 229950007395 leminoprazole Drugs 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- 229960004872 nizatidine Drugs 0.000 claims description 3
- SGXXNSQHWDMGGP-IZZDOVSWSA-N nizatidine Chemical compound [O-][N+](=O)\C=C(/NC)NCCSCC1=CSC(CN(C)C)=N1 SGXXNSQHWDMGGP-IZZDOVSWSA-N 0.000 claims description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 2
- 239000003826 tablet Substances 0.000 description 44
- 239000000546 pharmaceutical excipient Substances 0.000 description 23
- 239000011162 core material Substances 0.000 description 17
- 208000024891 symptom Diseases 0.000 description 15
- 229940077716 histamine h2 receptor antagonists for peptic ulcer and gord Drugs 0.000 description 13
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- 239000008108 microcrystalline cellulose Substances 0.000 description 12
- 229940016286 microcrystalline cellulose Drugs 0.000 description 12
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 239000008187 granular material Substances 0.000 description 9
- 210000002784 stomach Anatomy 0.000 description 9
- 230000009858 acid secretion Effects 0.000 description 8
- QJHCNBWLPSXHBL-UHFFFAOYSA-N cimetidine hydrochloride Chemical compound [H+].[Cl-].N#C/N=C(/NC)NCCSCC=1N=CNC=1C QJHCNBWLPSXHBL-UHFFFAOYSA-N 0.000 description 8
- 229960002908 cimetidine hydrochloride Drugs 0.000 description 8
- 210000004211 gastric acid Anatomy 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 239000011247 coating layer Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- NTYJJOPFIAHURM-UHFFFAOYSA-N Histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 208000021302 gastroesophageal reflux disease Diseases 0.000 description 6
- 238000005469 granulation Methods 0.000 description 6
- 230000003179 granulation Effects 0.000 description 6
- 208000024798 heartburn Diseases 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000002045 lasting effect Effects 0.000 description 6
- KWORUUGOSLYAGD-UHFFFAOYSA-N magnesium 5-methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)methylsulfinyl]benzimidazol-1-ide Chemical compound [Mg+2].N=1C2=CC(OC)=CC=C2[N-]C=1S(=O)CC1=NC=C(C)C(OC)=C1C.N=1C2=CC(OC)=CC=C2[N-]C=1S(=O)CC1=NC=C(C)C(OC)=C1C KWORUUGOSLYAGD-UHFFFAOYSA-N 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229940069428 antacid Drugs 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- MVPICKVDHDWCJQ-UHFFFAOYSA-N ethyl 3-pyrrolidin-1-ylpropanoate Chemical compound CCOC(=O)CCN1CCCC1 MVPICKVDHDWCJQ-UHFFFAOYSA-N 0.000 description 5
- OONJNILIBCMSNC-UHFFFAOYSA-N famotidine hydrochloride Chemical compound [H+].[Cl-].NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 OONJNILIBCMSNC-UHFFFAOYSA-N 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 5
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229930195725 Mannitol Natural products 0.000 description 4
- 206010030216 Oesophagitis Diseases 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 208000006881 esophagitis Diseases 0.000 description 4
- 239000007903 gelatin capsule Substances 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000594 mannitol Substances 0.000 description 4
- 235000010355 mannitol Nutrition 0.000 description 4
- 210000001711 oxyntic cell Anatomy 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- 229940124531 pharmaceutical excipient Drugs 0.000 description 4
- 229920001592 potato starch Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229940122957 Histamine H2 receptor antagonist Drugs 0.000 description 3
- 208000007107 Stomach Ulcer Diseases 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229960001340 histamine Drugs 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 108010079943 Pentagastrin Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 150000001556 benzimidazoles Chemical class 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 208000000718 duodenal ulcer Diseases 0.000 description 2
- 239000012055 enteric layer Substances 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229940083646 famotidine 20 mg Drugs 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 210000004877 mucosa Anatomy 0.000 description 2
- 230000000422 nocturnal effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- ANRIQLNBZQLTFV-DZUOILHNSA-N pentagastrin Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1[C]2C=CC=CC2=NC=1)NC(=O)CCNC(=O)OC(C)(C)C)CCSC)C(N)=O)C1=CC=CC=C1 ANRIQLNBZQLTFV-DZUOILHNSA-N 0.000 description 2
- 229960000444 pentagastrin Drugs 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 238000011287 therapeutic dose Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- MDVYIGJINBYKOM-IBSWDFHHSA-N 3-[(1r,2s,5r)-5-methyl-2-propan-2-ylcyclohexyl]oxypropane-1,2-diol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OCC(O)CO MDVYIGJINBYKOM-IBSWDFHHSA-N 0.000 description 1
- 206010000087 Abdominal pain upper Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- 208000023665 Barrett oesophagus Diseases 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000019505 Deglutition disease Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 206010017886 Gastroduodenal ulcer Diseases 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 206010019375 Helicobacter infections Diseases 0.000 description 1
- 102000003710 Histamine H2 Receptors Human genes 0.000 description 1
- 108090000050 Histamine H2 Receptors Proteins 0.000 description 1
- 102000000543 Histamine Receptors Human genes 0.000 description 1
- 108010002059 Histamine Receptors Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 102100021904 Potassium-transporting ATPase alpha chain 1 Human genes 0.000 description 1
- 108010083204 Proton Pumps Proteins 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 1
- 206010000059 abdominal discomfort Diseases 0.000 description 1
- 239000000159 acid neutralizing agent Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000035597 cooling sensation Effects 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- AMTWCFIAVKBGOD-UHFFFAOYSA-N dioxosilane;methoxy-dimethyl-trimethylsilyloxysilane Chemical compound O=[Si]=O.CO[Si](C)(C)O[Si](C)(C)C AMTWCFIAVKBGOD-UHFFFAOYSA-N 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 210000001156 gastric mucosa Anatomy 0.000 description 1
- 201000005917 gastric ulcer Diseases 0.000 description 1
- 231100000029 gastro-duodenal ulcer Toxicity 0.000 description 1
- 159000000011 group IA salts Chemical class 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 1
- MQEUGMWHWPYFDD-UHFFFAOYSA-N magnesium;6-methoxy-2-[(4-methoxy-3,5-dimethylpyridin-2-yl)methylsulfinyl]-1h-benzimidazole Chemical class [Mg].N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C MQEUGMWHWPYFDD-UHFFFAOYSA-N 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 208000000689 peptic esophagitis Diseases 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000002325 prokinetic agent Substances 0.000 description 1
- 239000003223 protective agent Substances 0.000 description 1
- 229960001520 ranitidine hydrochloride Drugs 0.000 description 1
- GGWBHVILAJZWKJ-KJEVSKRMSA-N ranitidine hydrochloride Chemical compound [H+].[Cl-].[O-][N+](=O)\C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 GGWBHVILAJZWKJ-KJEVSKRMSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229940083037 simethicone Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005563 spheronization Methods 0.000 description 1
- 210000005070 sphincter Anatomy 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009492 tablet coating Methods 0.000 description 1
- 239000002700 tablet coating Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 239000001069 triethyl citrate Substances 0.000 description 1
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 1
- 235000013769 triethyl citrate Nutrition 0.000 description 1
Description
GASTRIC ACID SECRETION INHIBITING COMPOSITION
FIELD OF THE INVENTION
The present invention relates to a gastric acid secretion inhibiting composition, to a method for its manufacture and to its use in treating conditions which are related to the secretion of gastric acid.
BACKGROUND OF THE INVENTION
Dyspepsia (acid dyspepsia) is a common disorder. Heartburn is a symptom of dyspepsia. It is estimated that 44% of Americans have heartburn at least once monthly but that only about 25 % of them are seeing the doctor because of their dyspepsia problem. Symptoms associated with dyspepsia are for instance upper abdominal pain/discomfort and heartburn, indigestion, "sour" stomach, and gastro-esophageal reflux.
Dyspepsia is a multi-factorial disease and may be associated with organic pathology such as duodenal ulcer, gastric ulcer, esophagitis, Barrett's esophagus or gastro-duodenal inflammation (e.g., Helicobacter pylori infection). Dyspepsia also includes conditions where no organic pathology can be found, e.g., non-ulcer dyspepsia (NUD) or functional dyspepsia.
Dyspepsia can be controlled by administration of medicines that reduce the pH in the stomach. Therapeutic agents effective in the treatment of dyspepsia include gastric acid suppressing agents, such as histamine H2 receptor antagonists (in the following called H2 receptor antagonists), acid susceptible proton pump inhibitors, antacids/alginates, anticholinergics and prokinetic agents. They can be distinguished by their mechanism of action, safety profile, and pharmacokinetics. The stomach pathogen Helicobacter pylori has been associated with dyspepsia, gastro-duodenal ulcer disease and stomach cancer. The treatment of H. pylori infection usually comprises the administration of a combination of acid secretion suppressing agents and one or two antibiotic agents.
The therapeutic effect on dyspepsia related discomfort and organic lesions when inhibiting acid production by administration of acid secretion- inhibiting drugs is related to the degree of acid inhibition as well as to the onset and duration of action of the particular drug. The majority of patients who have symptomatic acid reflux disease have a normal esophageal mucosa or only a mild degree of esophagitis. Treatment to relieve symptoms as they occur may be the best way to manage these patients, to whom the speed of symptom relief is of primary importance.
Antacid agents, that is, acid neutralizing agents, and alginates are the first therapeutic choice in the treatment of mild heartburn. They have a extremely short duration of action but are seen as inexpensive and safe. Antacid agents work locally through a neutralization of gastric acid. Alginates provide some mechanical protection against reflux of gastric acid into the esophagus . The main advantages of antacid agents and alginates are, that they provide fast relief of symptoms . The main disadvantage of antacid agents and alginates is the extremely short duration of action and dosing has to be repeated frequently to keep the patients free of symptoms, further that antacids often do not provide symptom resolution, i.e. complete relief of symptoms.
Several classes of compounds are known which affect the secretion of gastric acid. Among them proton pump inhibitors, such as the substituted benzimidazoles omeprazole, lansoprazole, rabeprazole, pantoprazole, and H2 receptor antagonists, such as cimetidine, ranitidine, famotidine, are the most prominent ones. H2 receptor antagonists and acid susceptible proton pump inhibitors are widely prescribed for reducing gastric acid secretion systemically. After 5 days' treatment, acid susceptible proton pump inhibitors have in clinical studies been proven to be very effective in providing symptom resolution in patients with dyspepsia associated with gastric ulcers, duodenal ulcers, reflux esophagitis and gastro- esophageal reflux without esophagitis. Acid susceptible proton pump inhibitors and H2 receptor antagonists, respectively, have also proven to be effective in curing H. pylori infection in combination with one or two antibiotics (Gschwandtler M et al., Aliment
Pharmacol Ther 1999, 13 (8) :1063-9) . It is established that omeprazole is superior to H2 receptor antagonists regarding healing of gastro-duodenal and esophageal lesions as well as providing dyspeptic symptom resolution in these conditions (Eriksson S., European Journal of Gastroenterology & Hepatologγ 1995, 7:465).
Various combinations of antacid and/or mucosa protecting agents with agents that reduce acid secretion have been disclosed to be useful in treating dyspepsia.
WO 95/017080 describes a composition for use in the treatment of for instance heartburn comprising an H2 receptor antagonist, such as famotidine, and an alginate and optionally simethicone (an activated polysiloxane) .
EP 338861 A describes a solid pharmaceutical preparation consisting of an antacid and excipients which is proposed to be used in combination with an acid susceptible proton pump inhibitor or any other substance inhibiting gastric acid secretion. There is no suggestion to combine these substances in a fixed unit dosage form.
US 5244670 A describes an ingestible pharmaceutical composition comprising a substance selected from the group consisting of antacid agents, acid secretion prevention agents, bismuth- containing agents and their mixtures, and 3- (1-menthoxy) -propane- 1,2-diol which is present to provide a cooling sensation to the throat .
WO 97/25066 discloses a pharmaceutical formulation comprising a combination of an acid susceptible proton pump inhibitor or an H2 receptor antagonist and one or more antacid agents or alginates .
Neither acid susceptible proton pump inhibitors nor H2 receptor antagonists, alone or in combination with antacids and/or alginates, provide fully satisfactory quick and lasting relief to patients, to whom the speed of symptom relief is of primary importance but who also desire to be free of symptoms for a longer period of time.
OBJECTS OF THE INVENTION
It is an object of the invention to provide a medicine which provides quick and lasting relief to a patient suffering from conditions related to gastric acid secretion.
It is another object of the invention to provide a method for treating a patient suffering from conditions related to gastric acid secretion which provides quick and lasting relief.
Further objects of the invention will be evident from the following short description of the invention, a preferred embodiment thereof, and the appended claims.
SUMMARY OF THE INVENTION
The present invention is based on the insight that acid susceptible proton pump inhibitors and H2 receptor antagonists possess mutually supplementing properties in respect of inhibiting acid secretion and that they can be used for designing a pharmaceutical composition which provides quick and lasting relief to a patient suffering from conditions related to gastric acid secretion.
Acid susceptible proton pump inhibitors are acid activated prodrugs that covalently inhibit the gastric H+,K+-ATPase, the proton- transporting enzyme involved in the production of hydrochloric acid in the stomach. The action of gastric H+, K+-ATPase represents the final step in the sequence of events resulting in secretion of hydrochloric acid by the parietal cell. Thus inhibition of this enzyme is the most effective and specific means of controlling acid secretion regardless of the nature of the stimulus to secretion. As would be expected with such a mechanism of action, omeprazole has been shown to inhibit both basal and stimulated acid secretion. Omeprazole is a weak base which accumulates in the acidic milieu of the secretory membrane of the parietal cell where it undergoes rearrangement in acid to its active sulphenamide form which subsequently reacts with sulfhydryl groups of the acid pump.
In gastric mucosa, the acid susceptible proton pump is situated in the apical membrane and in the tubovesicles bordering the secretory canaliculi of the parietal cell. Thus, after a single dose, omeprazole rapidly accumulates in the acidic compartment of the secretory membrane where its active sulphenamide form irreversible binds to the H+,K+-ATPase. The H+,K+-ATPase situated in the tubovesicles will however not be exposed for activated omeprazole. A major portion of synthesized H+,K+-ATPase will thus escape blockade after a single omeprazole dose. This may explain why the maximal acid inhibitory effect of omeprazole is reached only after about five days treatment.
H2 receptor antagonists competitively inhibit the action of histamine on all H2 receptors, mainly on the surface of the parietal cells. At therapeutic doses these agents are capable not only of decreasing both basal and nocturnal acid secretion, but also secretion stimulated by food, histamine, insulin and pentagastrin. A single dose of an H2 receptor antagonist results in maximal acid inhibitory effect already within 2 hours after intake. Furthermore, the acid inhibitory effect obtained with high doses of an H2 receptor antagonist is built up rapidly but has a tendency to fade substantially during the following 2-7 days, while the acid inhibitory effect of omeprazole gradually is built up during the same period of time.
According to the invention, by combining an H2-receptor antagonist with an acid susceptible proton pump inhibitor, it is possible to obtain rapid onset of action as well as good long-term efficacy.
Thus, according to the invention, is provided an oral pharmaceutical dosage form comprising pharmacologically effective amounts of an acid susceptible proton pump inhibitor or a salt thereof, and an H2 receptor antagonist or a salt thereof, and a pharmaceutically acceptable carrier. The terms "proton pump inhibitor" and "H2 receptor antagonist" include their isomers, such as enantiomers of proton pump inhibitors, as well as pharmaceutically acceptable salts of such isomers.
The invention is especially suitable for "on demand" treatment of gastro-esophageal reflux complaints e.g. heartburn, where potent acid reduction is needed for a shorter period of time and where a rapid onset of action is most important and a maximal acid reduction is to prefer. The maximal acid inhibitory effect would be able to be maintained during a 7 days period by the elimination of the "fade-off" phenomenon seen after H2-blocker given alone. This will be important in order to reduce the time for the treatment of stomach ulcers, acid related lesions in the esophagus and Helicobacter pylori eradication.
According to the invention is provided an oral dosage form comprising an H2 receptor antagonist in an amount effective to reduce the acidity in the stomach after administration and an acid susceptible proton pump inhibitor in an amount effective to sustain the low acidity effected by the H2 receptor antagonist over an extended period of time. It is preferred for the pharmacologically effective amounts to be amounts capable of raising gastric pH to above 3 within 2 hours from administration and to keep it above 3 for at least 4 hours, preferably for at least 8 hours. It is more preferred for said pharmacologically effective amounts to be amounts capable of raising gastric pH to above 4 within two hours after administration and to keep it above 4 for at least 4 hours, more preferred for at least 8 hours .
According to a first preferred aspect of the invention the H2 receptor antagonist is provided in an amount which is capable of providing at least 80% of maximal reduction, more preferred at least 95% of maximal reduction, of the acidity in the stomach within about two hours. "Maximal reduction" is the reduction of acidity which can be maximally obtained by administering an H2 receptor antagonist alone in therapeutically accepted amounts, that is, in amounts in which such drugs are administered in the art. The term ,H2 receptor antagonist (s) " as used herein includes all agents that substantially inhibit or block the secretion of gastric acid by binding to a histamine receptor in the stomach. At therapeutic doses such H2 receptor antagonists are capable not only of decreasing basal and nocturnal acid secretion, but also secretion
stimulated by food, histamine, insulin and pentagastrin. Exemplary H2 receptor antagonists according to the invention are cimetidine, ranitidine, nizatidine and famotidine which are normally used in form of their pharmacologically acceptable salts, in particular hydrochlorides . The dosage orm of the invention preferably comprises from 1 mg to 800 mg of H2 receptor antagonist or salt thereof, more preferred from 5 mg to 400 mg.
According to a second preferred aspect of the invention the acid susceptible proton inhibitor is provided in an amount which is capable of maintaining the low acidity effected by the histamine H2 antagonist over at least 6 hours. Acid susceptible proton pump inhibitors are rapidly taking market share from H2 receptor antagonists. The term "acid susceptible proton pump inhibitor (s) ", as used herein, comprises benzimidazole derivatives having substantial H+,K+-ATPase inhibiting activity, in particular omeprazole, pantoprazole, lanzoprazole, rabeprazole, pariprazole, leminoprazole and their pharmaceutically acceptable salts and enantiomers and salts of enantiomers, but include also the other compounds disclosed on pages 7-11 of WO 97/25066 which are hereby incorporated by reference as well as those disclosed in EP 005 129 Al, EP 174 726 Al, EP 166 287 Al, GB 2 163 747, WO 90/06925, W091/19711, W091/19712, W094/27988, WO95/01977. Omeprazole is known to offer significant gain over H2 receptor antagonists in terms of symptom resolution, healing and prevention of relapse. 3.
Thus the dosage form of the invention comprises preferably from 1 mg to 100 mg, more preferred from 5 mg to 50 mg, per single dose of an acid susceptible proton pump inhibitor or a salt thereof. Preferably the acid susceptible proton pump inhibitor or salt thereof is separated from the H2 receptor antagonist by an enteric coating.
According to a fourth preferred aspect of the invention the H2 receptor antagonist and the acid susceptible proton pump inhibitor need not to be comprised by the same pharmaceutical composition but may be administered separately but within a narrow time interval, such as a time interval of one hour, in particular a time interval
of 30 min, most preferred a time interval of 10 min. Thus is disclosed a corresponding dose regimen for separate but joint administration of an acid susceptible proton pump inhibitor and an H2 receptor antagonist to treat a condition related to gastric acid secretion.
The oral dosage form of the invention thus comprises an acid susceptible proton pump inhibitor, an H2 receptor antagonist and a pharmaceutical carrier and, optionally, a gastric acid suppressing agent and/or an alginate. Preferably, the dosage form, of the invention comprises from 100 mg to 1000 mg of antacid agent and/or alginate. The antacid agent of the invention comprises one or several of aluminum hydroxide, calcium carbonate, magnesium carbonate, basic magnesium carbonate, magnesium hydroxide, magnesium oxide, sodium hydrogen carbonate.
According to a fifth preferred aspect of the invention the bioavailability of the acid susceptible proton pump inhibitor is improved for the first three consecutive doses of a dose regimen or composition of the invention in the treatment of dyspepsia, in particular the first five consecutive doses, since less proton pump inhibitor will be degraded during passage of the drug through the stomach.
Due to the fact that acid susceptible proton pump inhibitors are generally sensitive to acid (acid susceptible proton pump inhibitors) they need to be administered in a form which protects them from degradation in the stomach to make them pass into the small intestine where they are absorbed. H2 receptor antagonists, on the other hand, can be administered without such protection. According to a further preferred aspect of the invention, compositions can be adapted to suit the purpose of the present invention are among those disclosed in WO 97/25066.
The oral dosage forms of WO 97/25066 comprise an acid susceptible proton pump inhibitor in an amount similar or identical to that used in the composition of the present invention, and one or several antacid agents and/or alginate (s) . The adaptation of the
compositions of WO 97/25066 essentially consists in substituting a pharmacologically effective amount of an H2 receptor antagonist for a portion of or the entire amount of the antacid agent (s) and/or alginate.
According to the invention is provided an oral, multiple unit tableted dosage form comprising an acid susceptible proton pump inhibitor in individually enteric coating layered units in combination with an H2 receptor antagonist in the form of a powder or granules compressed into a tablet. The enteric coating layer (s) covering the individual units of the acid susceptible proton pump inhibitor has properties such that the compression of the units into a tablet does not significantly affect the acid resistance of the individually enteric coating layered units. Furthermore, the multiple unit tableted dosage form provides a good stability to the active substances during long-term storage.
According to the invention is also provided a multiple unit tableted dosage form, which is divisible and easy to handle. Such a multiple unit tableted dosage form comprises enteric coating layered pellets of an acid susceptible proton pump inhibitor compacted with a pulverous H2-antagonist. This dosage form may also contain effervescent components for making it rapidly disintegrate when put into water; the pH of the aqueous phase thereby must be made slightly acidic to prevent dissolution of the enteric layer. This dosage for can be given to patients with swallowing disorders and in pediatrics. Such a suspension of dispersed units/pellets of appropriate size can be used for oral administration and also for feeding through a naso-gastric tube.
According to the invention is also provided a tablet preparation comprising an acid susceptible proton pump inhibitor in admixture with tablet excipients forming a tablet core which is enterically coated, and a separate layer surrounding the tablet core. The surrounding layer comprises an H2 receptor antagonist in admixture with a pharmaceutical carrier. Optionally a separating layer is applied on the tablet core before the core is enteric coating layered. Alternatively, the prepared tablet is sectioned in
separate layers, each one comprising different active substances. One of the layers, preferably the innermost layer (core), comprises the acid susceptible proton pump inhibitor in the form of enteric coating layered pellets in admixture with pharmaceutical excipients and the other layer(s) comprise(s) the histamine H2-antagonist (s) , respectively in admixture with pharmaceutical excipient (s) . Optionally the two layers are separated by a separating layer to prevent tacking between the two layers . The core comprising the acid susceptible proton pump inhibitor may also be advantageously coated directly with an enteric layer by following, for instance, procedures disclosed in WO 00/78284 which is incorporated herein by reference.
According to the invention the acid susceptible proton pump inhibitor in the form of enteric coating layered pellets may be mixed with histamine H2-antagonist (s) and optionally pharmaceutical excipient (s) to be administered in a sachet intended for oral administration after dispersion in a slightly acidic aqueous solution.
It is thus preferred for the dosage form of the invention to comprise the acid susceptible proton pump inhibitor or a salt thereof protected by an enteric coating layer and, optionally, a layer separating it from the enteric coating. Preferably the dosage form of the invention comprises two concentric layers optionally separated by one or more separating layer (s), one layer comprising said acid susceptible proton pump inhibitor or salt thereof, the other layer comprising said H2 receptor antagonist or salt thereof. The inner layer comprises the acid susceptible proton pump inhibitor or salt thereof and the outer layer comprises the H2 receptor antagonist or salt thereof. According to the invention it is also possible for the outer layer to comprise the acid susceptible proton pump inhibitor or salt thereof and fort the inner layer to comprise the H2 receptor antagonist or salt thereof. According to a preferred aspect the inner layer comprises a disintegrant . The oral dosage form of the invention may take different shapes, such as a tablet, a capsule, a divided powder/pellet formulation, and the like.
According to the invention is also disclosed a method for the manufacture of an oral tableted dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming a first layer comprising said acid susceptible proton pump inhibitor or salt thereof, an enteric coat surrounding said first layer, and a second layer comprising said H2 receptor antagonist or salt thereof surrounding said first layer and said enteric coat. Also disclosed is a method for the manufacture of an oral dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming pellets comprising said acid susceptible proton pump inhibitor or salt thereof, covering said pellets with enteric coat, and mixing said pellets covered with said enteric coat with a carrier comprising said H2 receptor antagonist or salt thereof; the carrier may comprise a disintegrant . The aforementioned methods of the invention further comprise a final tablet forming step, possibly followed by a film- covering step.
Another method for the manufacture of the oral dosage form of the invention comprises filling a capsule capable of disintegrating in gastrointestinal fluids to release its contents with the mixture comprising enteric proton pump inhibitor pellets and a H2 receptor antagonist in powderous or granular form.
A further method for the manufacture of the oral dosage form of the invention comprises forming a layer comprising an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof, and covering said layer with an enteric coat.
A still further method for the manufacture of the oral dosage form of the invention comprises forming a mixture comprising an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof, filling the mixture in a capsule capable of disintegrating in gastrointestinal fluids to
release its contents, and covering the capsule with an enteric coat.
The use of the pharmaceutical dosage form of the invention is however not restricted to provide quick and lasting relief to a patient suffering from conditions related to gastric acid secretion. The rapid onset of inhibition of gastric acid secretion combined with the maintenance of inhibition as long as desired (by repeated administration of a composition comprising an acid susceptible proton pump inhibitor, preferably by repeated administration of the composition of the invention) can be expected to have a positive effect on the healing of esophagitis for which the maintenance of intra-gastric pH above 4 for a maximal duration is acknowledged (Huang J Q and Hunt R H, pH, healing rate and symptom relief in patients with GERD, Yale J Biol Med 1999, 72:181- 94) . The composition of the invention thus is also preferred for maintaining gastric pH above 4 for extended periods of time, such as 4 hours and more.
According to the invention the aforementioned mixture comprising an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof can be used for the manufacture of a medicament for the treatment of a disorder associated with gastric acid secretion.
The dosage form of the invention can also be used, in association with one or more antibiotic agent (s), for the eradication of Helicobacter pylori.
According to the invention is also disclosed a method of treating disorders associated with gastric acid secretion, the method comprising the administration of the dosage form of the invention or the concomitant administration of two separate oral dosage forms, one comprising a pharmacologically effective amount of an acid susceptible proton pump inhibitor or salt thereof, the other comprising a pharmacologically effective amount of an H2 receptor antagonist or salt thereof.
Furthermore, according to the invention is disclosed a method of treating an infection by Helicobacter pylori, comprising the administration of the dosage form of the invention or the concomitant administration of two separate oral dosage forms, one comprising a pharmacologically effective amount of an acid susceptible proton inhibitor or salt thereof, the other comprising a pharmacologically effective amount of an H2 receptor antagonist or salt thereof, in association with the administration of one or more antibiotic agent (s) effective against H. pylori.
It is preferred for the aforementioned methods of treatment according to the invention to comprise a dose regimen capable of maintaining gastric pH above 4 for at least 95% of the time period starting at 2 hours from the administration of the first dose and extending until 6 hours from the administration of the last dose, in particular a regiment wherein the time period is one week or more, preferably two weeks or more, even more preferred four weeks or more. Also preferred in this context is a dose regimen capable of maintaining gastric pH above 3 for at least 95% of the time period starting at 2 hours from the administration of the first dose and extending until 6 hours from the administration of the last dose, in particular for four weeks or more.
The invention will now be described in greater detail by reference to a number of preferred but not limiting embodiments illustrated in a drawing.
BRIEF DESCRIPTION OF THE FIGURES
Figures 1-6 are schematic cross sections illustrating:
Fig. 1 a multiple unit tableted dosage form comprising an acid susceptible proton pump inhibitor in the form of enteric coating layered pellets in admixture with an H2-receptor antagonist dispersed in a pharmaceutical carrier;
Fig. 2 a tableted dosage form consisting of two halves, one of which comprises enteric coating layered pellets of an
acid susceptible proton pump inhibitor in admixture with excipients whereas the other comprises an H2 receptor antagonist in admixture with excipients; Fig. 3 a multiple-layered tableted dosage form comprising an acid susceptible proton pump inhibitor in a core surrounded by an enteric coating layer and a layer containing an H2 receptor antagonist dispersed in a pharmaceutical carrier surrounding the core; Fig. 4 a tableted dosage form comprising an acid susceptible proton pump inhibitor, an H2-receptor antagonist and excipients in admixture, provided with an enteric coating; Fig. 5 a capsule dosage form containing an acid susceptible proton pump inhibitor in enteric coating layered pellets in admixture with an H2 receptor antagonist and pharmaceutical excipients; Fig. 6 an acid resistant capsule dosage form containing an acid susceptible proton pump inhibitor, an H2 receptor antagonist and excipients; Fig. 7 is a diagram of the gastric pH trace in a person after administration of a conventional omeprazole oral dosage form; Fig. 8 is a diagram of the gastric pH trace in the same person after joint administration of omeprazole and famotidine according to the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
Multiple unit tableted dosage form. The multiple unit tableted dosage form of the invention illustrated in Fig. 1 consists of a tablet body 1 optionally covered by a film layer 3 and small pellets 2 distributed at random in the tablet body 2. The pellets 2 contain an acid susceptible proton pump inhibitor in form of the racemate, an alkaline salt or one of its enantiomers. The individually enteric coating layered units 2 (small beads, granules or pellets) containing the acid susceptible proton pump inhibitor and optionally containing alkaline substances, are mixed with the H2 receptor antagonist and conventional tablet excipients forming,
in combination, the tablet body 1. The H2 receptor antagonist and tablet excipients may be dry mixed or wet mixed into granules. The mixture of enteric coated layered units, H2 receptor antagonist and excipients are compressed into the multiple unit tableted dosage forms. By the expression "individual units" is meant small beads, granules or pellets, in the following referred to as proton pump inhibitor pellets. In compressing the mixture into tablets, care must be taken not to significantly affect the acid resistance of the enteric coated layered pellets . In regard of the core material for enteric coating layered pellets comprising an acid susceptible proton pump inhibitor reference is made to WO 97/25066, page 13, next but last paragraph, to page 15, end of second paragraph, which are hereby incorporated by reference. In regard of the enteric coating layer (s) reference is made to WO 97/25066, page 15, next but last paragraph, to page 18, end of second paragraph, which are hereby incorporated by reference. The acid susceptible proton pump inhibitor pellets covered with enteric coating layer (s) may be further covered with one or more over-coating layers. In regard of such over-coating layer (s) reference is made to WO 97/25066, page 18, last paragraph, to page 19, end of first paragraph, which are hereby incorporated by reference. The H2 receptor antagonist is dry mixed with inactive excipients such as filler, binders, disintegrants, and other pharmaceutically acceptable additives. The mixture is wet massed with a granulation liquid. The wet mass is dried preferably to a loss on drying of less than 3% by weight. Then the dry mass is milled to a suitable size for granules, preferably smaller than 1 mm. Suitable inactive excipients are, for instance, mannitol, corn starch, potato starch, low substituted hydroxypropyl cellulose, microcrystalline cellulose and crosslinked polyvinylpyrrolidone. The dry mixture comprising the H2 receptor antagonist may be mixed with a suitable granulation liquid comprising, for instance, hydroxypropylcellulose or polyvinylpyrrolidone dissolved in water or alcohol or their mixtures. Alternatively the H2 receptor antagonist is dry mixed with pharmaceutically acceptable excipients (see supra) .
Multi unit tablets . The enteric coated layered pellets comprising an acid susceptible proton pump inhibitor are mixed with the H2
receptor antagonist granules or with the prepared dry mixture comprising the H2 receptor antagonist. The mixture is admixed with lubricant (s) and compressed into a multiple unit tableted dosage form. Suitable lubricants for the tableting process are, for instance, sodium stearyl fumarate, magnesium stearate and talc. The compressed tablets are optionally covered with filmforming agent (s) to obtain a smooth surface. Such coating layer may further comprise additives such as anti-tacking agents, colorants and pigments or other additives.
The fraction of enteric coating layered pellets constitutes preferably less than 60% by weight of the total tablet weight. The preferred multiple unit table formulation thus consists of enteric coated layered pellets comprising the acid susceptible proton pump inhibitor, optionally in admixture with alkaline reacting compound (s), compressed into tablets with the prepared H2 receptor antagonist/excipient (s) mixture. The enteric coating layer (s) make(s) the pellets of the dosage form insoluble in acidic media but disintegrating/ dissolving in near neutral to alkaline media such as, for instance, the gastric fluid present in the proximal part of the small intestine where the dissolution and uptake of the acid susceptible proton pump inhibitor is desired. The enteric coating layered proton pump inhibitor pellets may also be covered with an overcoating layer before being formulated into tablets, and they may also contain one or more separating layer (s) in between the core material and the enteric coating layer (s).
Process for making multi-unit tablets. The process for the manufacture of the dosage form represents a further aspect of the invention. After formulating the pellets by dry mixing (ordered mixture) , spray coating or layering of the acid susceptible proton pump inhibitor onto seeds, or by extrusion/spheronization or granulation, the pellets are first optionally covered with the separating layer (s) and then with the enteric coating layer (s), or a separating layer is spontaneously developed in situ between the core material and the enteric coating layer material. The coating is carried out as described above and in the accompanying examples.
The preparation of the H2 receptor antagonist mixture is also described in the examples.
The enteric coating layered pellets, with or without an overcoat, are mixed with the prepared H2 receptor antagonist granules or dry powder, tablet excipients and other pharmaceutically acceptable additives and compressed into tablets. Alternatively, the enteric coated proton pump inhibitor pellets may be covered by a second layer containing the H2 receptor antagonist as described in the following examples. Furthermore, as illustrated in Fig. 2, the enteric coating layered pellets 4 may be intimately mixed with excipients 5 and precompressed and further layered with the H2 receptor antagonist preparation 7 and finally compressed into a tablet, optionally with film-forming agent (s) 6 to obtain a smooth surface. As a further alternative illustrated in Fig. 3 the acid susceptible proton pump inhibitor in form of a powder may be mixed with tablet excipients and compressed into a tablet 8 which is optionally layered with a separating layer and thereafter enteric coating 9 layered. The thus produced tablet core is presscoated with the H2 receptor antagonist preparation 10. Finally the table may be covered with a tablet coat 11 to obtain a smooth surface.
It is also possible to fill the acid susceptible proton pump inhibitor in form of enteric coated layered pellets in a sachet together with H2 receptor antagonist optionally mixed with excipients .
Fig. 4 illustrated a tableted dosage form with a core 12 comprising an acid susceptible proton pump inhibitor and an H2 receptor antagonist dispersed in a pharmaceutical carrier, the core 12 being surrounded by an enteric coat 13.
Fig. 5 illustrates a hard gelatin capsule 16 filled with the uncompressed core material 14, 15 of the embodiment of Fig. 1.
Fig. 6 illustrates a hard gelatin capsule 18 comprising an enteric coat filled with the uncompressed core material 17 of the embodiment of Fig. 4.
In general, the methods of WO 97/25066 for making oral pharmaceutical dosage forms comprising an acid susceptible proton pump inhibitor and an antacid agent or alginate can be adapted to suit the purpose of the invention by substituting part or the entire amount of antacid agent or alginate by a pharmacologically effective amount of an H2 receptor antagonist, the remainder of the antacid agent or alginate (if substitution is not 1:1 by weight) being omitted or substituted by excipients like microcrystalline cellulose, silica, lactose, mannitol, ant the like.
Use of the dosage forms according to the invention.
The dosage forms according to the invention are especially advantageous in the treatment of dyspepsia and other gastrointestinal disorders related to the production of gastric acid to provide quick and lasting relief from symptoms. The dosage forms are administered once or several times a day. The typical daily dose of the acid susceptible proton pump inhibitor and the H2 receptor antagonist will depend on various factors such as individual requirements of patients, the mode of administration, and the particular condition to be treated. In general each dosage form will comprise from 1 mg to 100 mg of acid susceptible proton pump inhibitor and from 1 to 800 mg of the H2 receptor antagonist. Preferably each dosage form will comprise from 5 to 50 mg of the acid susceptible proton pump inhibitor and from 5 to 200 mg of the H2 receptor antagonist. The multiple unit tablet preparation is also suitable for dispersion in water which had been made slightly acidic by the addition of citric acid.
EXAMPLE 1. Multiple unit tableted dosage form comprising magnesium omeprazole and ranitidine hydrochloride; batch size 400 tablets. For omeprazole Mg-salt pellet production (core material, separating layer, enteric coating layer and over-coating layer, see WO 97/25066, p. 22-23 under respective headings), see WO 97/25066, first two paragraphs, all of which is hereby incorporated by reference.
Tablets
Prepared pellets comprising omeprazole Mg-salt 31.3 g
Microcrystalline cellulose 300.0 g
Cimetidine hydrochloride 40.0 g Potato starch 50.0 g
Water 200.0 g
PVP crosslinked 38.0 g
Sodium stearyl fumarate 4.6 g
A small amount of the potato starch is dissolved in purified hot water to form the granulation liquid. Cimetidine hydrochloride, the rest of potato starch and microcrystalline cellulose are dry mixed. The granulation liquid is added to the dry mixture and the mass is wet mixed. The wet mass is dried in an oven at 50°C. The prepared granulation is milled through sieve 1 mm in an oscillating mill equipment. The enteric coating layered pellets with an over-coating layer, the prepared H2 receptor antagonist granules, crosslinked polyvinylpyrrolidone and sodium stearyl fumarate are mixed and compressed into tablets using a tableting machine equipped with oval punches. The amount of omeprazole in each tablet is approx. 10 mg and the amount of cimetidine hydrochloride is approx. 100 mg.
By a slight modification this multiple unit tablet form can be made to comprise an antacid agent (instead of microcrystalline cellulose, 300 mg: microcrystalline cellulose, 100 g; calcium carbonate, 100 mg; magnesium oxide, 100 mg; all other constituents, except water, in the amounts given above) .
EXAMPLE 2. Three-layered tableted dosage form. The tablet comprises the acid susceptible proton pump inhibitor omeprazole, a separating layer and a core layer comprising cimetidine hydrochloride. Batch size 1000 tablets.
First tablet layer Cimetidine hydrochloride 200.0 g
Microcrystalline cellulose 250.0 g
PVP crosslinked 13.0 g
Sodium stearyl fumarate 3.8 g
Separating layer
Microcrystalline cellulose 80.0 g
Second tablet layer
Enteric coating layered pellets comprising omeprazole magnesium salt (same as in EXAMPLE 1) 78.3 g Microcrystalline cellulose 174.0 g
PVP crosslinked 26.0 g Sodium stearyl fumarate 1.4 g
The constituents of the first tablet layer are dry mixed and precompressed as a first layer in a tableting machine equipped with oval punches . Microcrystalline cellulose is filled on the top of the first layer to form a separating layer to the next layer. The constituents of the second tablet layer are dry mixed and filled on top of the separating layer. The three layers are compressed into a three layer tablet which may be coated by a tablet coating layer. The amount of omeprazole is approx. 10 mg and that of cimetidine hydrochloride approx. 200 mg per tablet.
EXAMPLE 3. Capsule dosage form. No. 1 hard gelatin capsules (16)
(Fig. 5; volume 0.48 ml) were filled with enteric coated omeprazole pellets (15) containing 20 mg omeprazole recovered from commercially available omeprazole (Losec®) capsules and a dry mixture 14 of commercially available famotidine 20 mg for injection
(Pepcidin®; containing 20 mg famotidine hydrochloride, 8 mg aspartic acid and 40 mg mannitol) , and closed.
EXAMPLE 4. Divided powder/pellet formulation. Enteric pellets containing 15 mg lansoprazole recovered from commercially available capsules (Lanzo®, enterocapsules) and the famotidine preparation for injection of EXAMPLE 4 were dry mixed with citric acid. Single dose portions thereof containing 10 mg each of lansoprazole and famotidine hydrochloride and 200 mg powderous citric acid were dry packed in plastic laminate. The composition is intended to be poured into 20 ml of water, stirred for a short time, and swallowed.
EXAMPLE 5. Multiple unit capsule dosage form. The tabled comprises magnesium omeprazole and famotidine hydrochloride. For enteric coating layer and over-coating layer, see WO 97/25066, page 22-23 under respective headings, the information under which is hereby incorporated by reference.
Magnesium omeprazole is mixed with microcrystalline cellulose spheres to an ordered mixture. The ordered mixture is coated with an enteric coating layer consisting of methacrylic acid copolymer, mono- and diglycerides, triethyl citrate and polysorbate in a fluid bed apparatus . The enteric coated ordered mixture is then over- coated with a water suspension containing famotidine hydrochloride, hydroxypropylmethyl cellulose and magnesium stearate in a fluid bed apparatus. The enteric coated ordered mixture with an over-coating layer was filled in hard gelatin capsules . The amount of omeprazole is approx. 10 mg and that of famotidine hydrochloride approx. 20 mg per capsule.
EXAMPLE 7. Multiple unit tableted dosage form comprising magnesium omeprazole and cimetidine hydrochloride. Magnesium omeprazole is mixed with microcrystalline cellulose spheres to an ordered mixture which is coated with an enteric coating layer as described in EXAMPLE 6. Cimetidine hydrochloride is granulated as described in EXAMPLE 1. The enteric coated ordered mixture comprising magnesium omeprazole, the cimetidine granules and excipients are dry mixed and compressed into tablets. The amount of omeprazole in each tablet is approx. 10 mg and that of cimetidine is approx. 100 mg.
EXAMPLE 8. Inhibition of gastric acid secretion. A healthy subject (male, 31 years of age, having fasted for 10 hours) was provided with a double lumen nasogastric tube through one nasal passage and with a icroelectrode for pH registration through the second nasal passage. A two point calibration of the electrode was performed before and after each 24 h recording, using standard buffers of pH 7.0 and 1.7. The electrode was placed 10 cm below the lower esophagal sphincter during the pH recording and the position marked on the electrode lead to ensure proper positioning during
consecutive recordings. A commercially available omeprazole (Losec®) capsule containing 20 mg omeprazole was carefully opened and the contents (pellets) placed in a plastic syringe which had been put into communication with one of the lumina of the nasogastric tube. The syringe was filled with 20 ml tap water and the pellets injected through the nasogastric tube immediately thereafter. The syringe was flushed with 20 ml water. The gastric pH trace recorded by the microelectrode during a period of more than four hours is illustrated in Fig. 7. In a second experiment the syringe was filled with the same amount of omeprazole micropellets and famotidine 20 mg for injection (Pepcidin®; containing 20 mg famotidine, 8 mg aspartic acid and 40 mg mannitol), the procedure of injection and measurement being the same as with omeprazole. The gastric pH trace for the combination is illustrated in Fig. 8. The experiments demonstrate that a reduction of pH to about 6 is obtained with the omeprazole/famotidine within about 2 hours and maintained until the end of recording (4 hours from injection) whereas with omeprazole alone no increase in pH can be noted after 4 hours from injection.
Claims (41)
1. An oral pharmaceutical dosage form comprising pharmacologically effective amounts of an acid susceptible proton pump inhibitor or a salt thereof and an H2 receptor antagonist or a salt thereof, and a pharmaceutically acceptable carrier.
2. The dosage form of claim 1, wherein the acid susceptible proton pump inhibitor is selected from lanzoprazole, omeprazole, pantoprazole, rabeprazole, pariprazole, leminoprazole, their pharmaceutically acceptable salts, enantiomers and salts of enantiomers .
3. The dosage form of claim 1, comprising from 1 mg to 100 mg per single dose of an acid susceptible proton pump inhibitor or a salt thereof.
4. The dosage form of any of claims 1-3, wherein the acid susceptible proton pump inhibitor or a salt thereof is separated from the H2 receptor antagonist by an enteric coating.
5. The dosage form of claim 1, wherein the H2 receptor antagonist is selected from cimetidine, ranitidine, nizatidine and famotidine, their pharmaceutically acceptable salts, isomers and salts of isomers.
6. The dosage form of claim 1, comprising from 1 mg to 800 mg of H2 receptor antagonist or salt thereof.
7. The dosage form of claim 1, wherein said pharmacologically effective amounts are amounts capable to raise gastric pH to above 4 within two hours after administration and to keep it above 4 for at least 4 hours .
8. The dosage form of claim 7, wherein said amounts are capable to keep gastric pH above 4 for at least 8 hours .
9. The dosage form of claim 1, wherein said pharmacologically effective amounts are amounts capable to raise gastric pH to above 3 within 2 hours from administration and to keep it above 3 for at least 4 hours .
10. The dosage form of claim 9, wherein said amounts are amounts capable to keep gastric pH above 3 for at least 8 hours .
11. The dosage form of any of claims 1-10, comprising from 100 mg to 1000 mg of antacid agent and/or alginate.
12. The dosage form of claim 11, wherein the antacid agent comprises one or several of aluminum hydroxide, calcium carbonate, magnesium carbonate, basic magnesium carbonate, magnesium hydroxide, magnesium oxide, sodium hydrogen carbonate.
13. The dosage form of any of claims 1-12, wherein said acid susceptible proton pump inhibitor or a salt thereof is protected by an enteric coating layer and, optionally, a layer separating it from the enteric coating.
14. The dosage form of any of claims 1-13, comprising two concentric layers optionally separated by one or more separating layer (s), one layer comprising said acid susceptible proton pump inhibitor or salt thereof, the other layer comprising said H2 receptor antagonist or salt thereof.
15. The dosage form of claim 14, wherein the inner layer comprises the acid susceptible proton pump inhibitor or salt thereof and the outer layer comprises the H2 receptor antagonist or salt thereof.
16. The dosage form of claims 14, wherein the outer layer comprises the acid susceptible proton pump inhibitor or salt thereof and the inner layer comprises the H2 receptor antagonist or salt thereof.
17. The dosage form of claim 16, wherein the inner layer comprises a disintegrant.
18. A capsule according to any of claims 1-13.
19. A divided powder/pellet formulation according to any of claims 1-13.
20. A tablet according to any of claims 1-17.
21. The tablet of claim 20, divisible.
22. The tablet of claim 20, dispersible in water.
23. The tablet of claim 22, comprising a disintegrant.
24. A method for the manufacture of an oral tableted dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming a first layer comprising said acid susceptible proton pump inhibitor or salt thereof, an enteric coat surrounding said first layer, and a second layer comprising said H2 receptor antagonist or salt thereof surrounding said first layer and said enteric coat.
25. A method for the manufacture of an oral dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming pellets comprising said acid susceptible proton pump inhibitor or salt thereof, covering said pellets with enteric coat, and mixing said pellets covered with said enteric coat with a carrier comprising said H2 receptor antagonist or salt thereof.
26. The method of claim 25, wherein said carrier comprises a disintegrant .
27. The method of claim 25 or 26, comprising forming a tablet of said mixture.
28. The method of claim 25, comprising filling a capsule capable of disintegrating in gastrointestinal fluids to release its contents with said mixture.
29. A method for the manufacture of an oral dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming a layer comprising an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof, and covering said layer with an enteric coat.
30. A method for the manufacture of an oral dosage form comprising amounts of an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof pharmacologically effective in treating a condition related to dyspepsia, the method comprising forming mixture comprising an acid susceptible proton pump inhibitor or salt thereof and an H2 receptor antagonist or salt thereof, filling said mixture in a capsule capable of disintegrating in gastrointestinal fluids to release its contents, and covering said capsule with an enteric coat.
31. The method of any of claims 24-30, wherein said acid susceptible proton pump inhibitor is selected from lansoprazole, omeprazole, pantoprazole, rabeprazole, pariprazole, leminoprazole, their pharmaceutically acceptable salts, enantiomers and salts of enantiomers .
32. The method of any of claims 24-30, wherein said H2 receptor antagonist is selected from are cimetidine, ranitidine, nizatidine and famotidine, their pharmaceutically acceptable salts, isomers and salts of isomers.
33. Use of the dosage form of any of claims 1-23 for the manufacture of a medicament for the treatment of a disorder associated with gastric acid secretion.
34. Use of the dosage form of any of claims 1-23 in association with one or more antibiotic agent (s) for the eradication of Helicobacter pylori.
35. A method of treating disorders associated with dyspepsia, comprising the administration of the dosage form of any of claims
1-23 or the concomitant administration of two separate oral dosage forms, one comprising a pharmacologically effective amount of an acid susceptible proton pump inhibitor or salt thereof, the other comprising a pharmacologically effective amount of an H2 receptor antagonist or salt thereof.
36. A method of treating an infection by Helicobacter pylori, comprising the administration of the dosage form of any of claims 1-23 or the concomitant administration of two separate oral dosage forms, one comprising a pharmacologically effective amount of an acid susceptible proton inhibitor or salt thereof, the other comprising a pharmacologically effective amount of an H2 receptor antagonist or salt thereof, in association with the administration of one or more antibiotic agent (s) effective against H. pylori.
37. The method of claim 35 or 36, comprising a dose regimen capable of maintaining gastric pH above 4 for at least 95% of the time period starting at 2 hours from the administration of the first dose and extending until 6 hours from the administration of the last dose.
38. The method of claim 37, wherein said time period is one week or more.
39. The method of claim 37, wherein said time period is two weeks or more.
40. The method of claim 37, wherein said time period is four weeks or more.
41. The method of claim 35 or 36, comprising a dose regimen capable of maintaining gastric pH above 3 for at least 95% of the time period starting at 2 hours from the administration of the first dose and extending until 6 hours from the administration of the last dose, in particular for four weeks or more.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0101379-6 | 2001-04-18 | ||
SE0101379A SE0101379D0 (en) | 2001-04-18 | 2001-04-18 | Composition that inhibits gastric acid secretion |
PCT/SE2002/000757 WO2002083132A1 (en) | 2001-04-18 | 2002-04-17 | Gastric acid secretion inhibiting composition |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002253768A1 true AU2002253768A1 (en) | 2003-04-17 |
AU2002253768B2 AU2002253768B2 (en) | 2006-08-17 |
Family
ID=20283818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002253768A Ceased AU2002253768B2 (en) | 2001-04-18 | 2002-04-17 | Gastric acid secretion inhibiting composition |
Country Status (14)
Country | Link |
---|---|
US (3) | US7815940B2 (en) |
EP (3) | EP1731141A3 (en) |
CN (1) | CN1236770C (en) |
AT (1) | ATE363282T1 (en) |
AU (1) | AU2002253768B2 (en) |
CA (1) | CA2444268A1 (en) |
CY (1) | CY1106802T1 (en) |
DE (1) | DE60220403T2 (en) |
DK (1) | DK1389109T3 (en) |
ES (1) | ES2290285T3 (en) |
NZ (1) | NZ528475A (en) |
PT (1) | PT1389109E (en) |
SE (1) | SE0101379D0 (en) |
WO (1) | WO2002083132A1 (en) |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0101379D0 (en) | 2001-04-18 | 2001-04-18 | Diabact Ab | Composition that inhibits gastric acid secretion |
US8206741B2 (en) | 2001-06-01 | 2012-06-26 | Pozen Inc. | Pharmaceutical compositions for the coordinated delivery of NSAIDs |
SE0203065D0 (en) * | 2002-10-16 | 2002-10-16 | Diabact Ab | Gastric acid secretion inhibiting composition |
CA2537182A1 (en) * | 2003-08-29 | 2005-03-10 | Dynogen Pharmaceuticals, Inc. | Compositions useful for treating gastrointestinal motility disorders |
ES2297604T3 (en) * | 2004-01-26 | 2008-05-01 | Draka Comteq B.V. | COUPLING COUPLING FOR A PROTECTION AND METHOD TUBE FOR INSTALLING A FIBER CABLE. |
WO2005074931A1 (en) * | 2004-01-28 | 2005-08-18 | Altana Pharma Ag | Pharmaceutical combinations comprising (s) -pantoprazole |
CA2569833A1 (en) * | 2004-04-30 | 2005-11-10 | Altana Pharma Ag | Method of classifying gerd |
WO2006026337A1 (en) * | 2004-08-25 | 2006-03-09 | Fairfield Clinical Trials, Llc | Combination of a proton pump inhibitor and a h2 antagonist for the treatment of gastroesophageal reflux disease |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
CN101980700A (en) * | 2008-02-20 | 2011-02-23 | 密苏里大学董事会 | Compositions comprising a combination of omeprazole and lansoprazole and a buffer and methods of use thereof |
WO2009145905A1 (en) * | 2008-05-30 | 2009-12-03 | Pozen Inc. | Dosage forms for the rapid and sustained elevation of gastric ph |
CN102209529A (en) * | 2008-09-09 | 2011-10-05 | 阿斯利康(瑞典)有限公司 | Method for delivering a pharmaceutical composition to patient in need thereof |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
US20110008432A1 (en) * | 2009-06-25 | 2011-01-13 | Pozen Inc. | Method for Treating a Patient in Need of Aspirin Therapy |
SG176724A1 (en) | 2009-06-25 | 2012-01-30 | Astrazeneca Ab | Method for treating a patient at risk for developing an nsaid-associated ulcer |
BR112012000220A2 (en) | 2009-08-31 | 2020-12-22 | Abbott Diabetes Care Inc. | METHODS AND MEDICAL DEVICES |
WO2011080500A2 (en) | 2009-12-29 | 2011-07-07 | Orexo Ab | New pharmaceutical dosage form for the treatment of gastric acid-related disorders |
WO2011080502A2 (en) | 2009-12-29 | 2011-07-07 | Orexo Ab | New pharmaceutical dosage form for the treatment of gastric acid-related disorders |
EP2519229A2 (en) * | 2009-12-29 | 2012-11-07 | Novartis AG | New pharmaceutical dosage form for the treatment of gastric acid-related disorders |
USD924406S1 (en) | 2010-02-01 | 2021-07-06 | Abbott Diabetes Care Inc. | Analyte sensor inserter |
ES2881798T3 (en) | 2010-03-24 | 2021-11-30 | Abbott Diabetes Care Inc | Medical device inserters and medical device insertion and use procedures |
DK4056105T3 (en) | 2011-12-11 | 2024-01-02 | Abbott Diabetes Care Inc | Analyte sensor devices |
US9539214B2 (en) | 2011-12-28 | 2017-01-10 | Pozen Inc. | Compositions and methods for delivery of omeprazole plus acetylsalicylic acid |
WO2016174664A1 (en) | 2015-04-29 | 2016-11-03 | Dexcel Pharma Technologies Ltd. | Orally disintegrating compositions |
US10213139B2 (en) | 2015-05-14 | 2019-02-26 | Abbott Diabetes Care Inc. | Systems, devices, and methods for assembling an applicator and sensor control device |
EP3294134B1 (en) | 2015-05-14 | 2020-07-08 | Abbott Diabetes Care Inc. | Inserter system for a compact medical device and corresponding method |
EP3162371A1 (en) * | 2015-10-27 | 2017-05-03 | Przemyslaw Taciak | A composition comprising simethicone, gastric acid-neutralizing substances and gastric enzyme(s) (e.g. pancreatine) for use in the treatment of digestive disorders |
US20170188911A1 (en) | 2015-12-30 | 2017-07-06 | Dexcom, Inc. | Transcutaneous analyte sensor systems and methods |
US10076494B2 (en) | 2016-06-16 | 2018-09-18 | Dexcel Pharma Technologies Ltd. | Stable orally disintegrating pharmaceutical compositions |
CA3050721A1 (en) | 2017-01-23 | 2018-07-26 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
US11395631B2 (en) | 2017-06-23 | 2022-07-26 | Dexcom, Inc. | Transcutaneous analyte sensors, applicators therefor, and associated methods |
EP3928687B1 (en) | 2017-10-24 | 2024-06-26 | Dexcom, Inc. | Wearable device with pre-connected analyte sensor |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
USD926325S1 (en) | 2018-06-22 | 2021-07-27 | Dexcom, Inc. | Wearable medical monitoring device |
USD1002852S1 (en) | 2019-06-06 | 2023-10-24 | Abbott Diabetes Care Inc. | Analyte sensor device |
EP4417150A3 (en) | 2020-08-31 | 2024-11-06 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
USD999913S1 (en) | 2020-12-21 | 2023-09-26 | Abbott Diabetes Care Inc | Analyte sensor inserter |
CN113425717B (en) * | 2021-04-22 | 2023-06-16 | 成都欧林生物科技股份有限公司 | Medicament for improving efficacy of oral helicobacter pylori vaccine and application thereof |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7804231L (en) | 1978-04-14 | 1979-10-15 | Haessle Ab | Gastric acid secretion |
JPS6056143B2 (en) | 1979-08-02 | 1985-12-09 | 山之内製薬株式会社 | Amidine derivatives and their production method |
IL75400A (en) | 1984-06-16 | 1988-10-31 | Byk Gulden Lomberg Chem Fab | Dialkoxypyridine methyl(sulfinyl or sulfonyl)benzimidazoles,processes for the preparation thereof and pharmaceutical compositions containing the same |
JPS6150978A (en) | 1984-08-16 | 1986-03-13 | Takeda Chem Ind Ltd | Pyridine derivative and preparation thereof |
AU4640985A (en) | 1984-08-31 | 1986-03-06 | Nippon Chemiphar Co. Ltd. | Benzimidazole derivatives |
GB8809421D0 (en) | 1988-04-21 | 1988-05-25 | Fordonal Sa | Antacid compositions with prolonged gastric residence time |
SE8804629D0 (en) | 1988-12-22 | 1988-12-22 | Ab Haessle | NEW THERAPEUTICALLY ACTIVE COMPOUNDS |
US5204118A (en) * | 1989-11-02 | 1993-04-20 | Mcneil-Ppc, Inc. | Pharmaceutical compositions and methods for treating the symptoms of overindulgence |
SE9002206D0 (en) | 1990-06-20 | 1990-06-20 | Haessle Ab | NEW COMPOUNDS |
EP0593463B1 (en) | 1990-06-20 | 1999-09-15 | Astra Aktiebolag | Dialkoxy-pyridinyl-benzimidazole derivatives, process for their preparation and their pharmaceutical use |
US5244670A (en) | 1991-04-04 | 1993-09-14 | The Procter & Gamble Company | Ingestible pharmaceutical compositions for treating upper gastrointestinal tract distress |
PL170554B1 (en) | 1991-12-17 | 1996-12-31 | Fuisz Technologies Ltd | Method of obtaining an anti-ulcerous composition |
SE9301830D0 (en) | 1993-05-28 | 1993-05-28 | Ab Astra | NEW COMPOUNDS |
WO1995001780A1 (en) | 1993-07-06 | 1995-01-19 | Merck & Co., Inc. | H2 antagonist-alginate combinations |
SE9302396D0 (en) | 1993-07-09 | 1993-07-09 | Ab Astra | A NOVEL COMPOUND FORM |
WO1995017080A1 (en) | 1993-12-14 | 1995-06-22 | Neo-Concepts, Inc. | Solid state power supply circuit for cold cathode lighting |
US5407687A (en) | 1994-02-22 | 1995-04-18 | Glaxo Inc. | Ranitidine solid dosage form |
US5945124A (en) | 1995-07-05 | 1999-08-31 | Byk Gulden Chemische Fabrik Gmbh | Oral pharmaceutical composition with delayed release of active ingredient for pantoprazole |
US6132768A (en) | 1995-07-05 | 2000-10-17 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Oral pharmaceutical composition with delayed release of active ingredient for reversible proton pump inhibitors |
US6699885B2 (en) | 1996-01-04 | 2004-03-02 | The Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and methods of using same |
US6645988B2 (en) | 1996-01-04 | 2003-11-11 | Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and method of using same |
US6489346B1 (en) | 1996-01-04 | 2002-12-03 | The Curators Of The University Of Missouri | Substituted benzimidazole dosage forms and method of using same |
US5840737A (en) | 1996-01-04 | 1998-11-24 | The Curators Of The University Of Missouri | Omeprazole solution and method for using same |
US20050054682A1 (en) * | 1996-01-04 | 2005-03-10 | Phillips Jeffrey O. | Pharmaceutical compositions comprising substituted benzimidazoles and methods of using same |
SE9600071D0 (en) | 1996-01-08 | 1996-01-08 | Astra Ab | New oral formulation of two active ingredients I |
SE9600072D0 (en) | 1996-01-08 | 1996-01-08 | Astra Ab | New oral formulation of two active ingredients II |
US6949264B1 (en) * | 1996-11-27 | 2005-09-27 | Wm. Wrigley Jr. Company | Nutraceuticals or nutritional supplements and method of making |
DE19709897A1 (en) * | 1997-03-11 | 1998-09-17 | Hoechst Ag | Bismuth salts of antibiotics of the moenomycin group, process for their preparation, their use and medicaments containing such salts |
SE9700885D0 (en) * | 1997-03-12 | 1997-03-12 | Astra Ab | New pharmaceutical formulation |
CN1166365C (en) * | 1997-07-22 | 2004-09-15 | 麦克公司 | Method for inhibiting bone resorption |
US6013680A (en) * | 1997-10-21 | 2000-01-11 | Amano Pharmaceutical Co., Ltd. | Digestive enzyme-containing medicament |
FR2772615B1 (en) | 1997-12-23 | 2002-06-14 | Lipha | MULTILAYER TABLET FOR INSTANT RELEASE THEN PROLONGED ACTIVE SUBSTANCES |
JP2000063280A (en) | 1998-06-11 | 2000-02-29 | Takeda Chem Ind Ltd | Anti-helicobacter pylori active gastrointestinal drug |
DE69930648T2 (en) | 1998-08-12 | 2006-12-21 | Altana Pharma Ag | ORAL PHARMACEUTICAL FORM OF PYRIDINE-2-YLMETHYLSULFINYL-1H-BENZIMIDAZOLE |
DE69906335T2 (en) * | 1998-10-06 | 2004-02-12 | Mars U.K. Ltd., Slough | ANIMAL BEHAVIOR |
US6852739B1 (en) * | 1999-02-26 | 2005-02-08 | Nitromed Inc. | Methods using proton pump inhibitors and nitric oxide donors |
DE19925710C2 (en) | 1999-06-07 | 2002-10-10 | Byk Gulden Lomberg Chem Fab | New preparation and dosage form containing an acid labile proton pump inhibitor |
IL130602A0 (en) | 1999-06-22 | 2000-06-01 | Dexcel Ltd | Stable benzimidazole formulation |
US6316469B1 (en) | 2000-03-01 | 2001-11-13 | Duke University | Use of selective serotonin reuptake inhibitors for treatment of chest pain of non-cardiac origin and gastro-esophageal reflux disease |
SE0101379D0 (en) | 2001-04-18 | 2001-04-18 | Diabact Ab | Composition that inhibits gastric acid secretion |
-
2001
- 2001-04-18 SE SE0101379A patent/SE0101379D0/en unknown
-
2002
- 2002-04-17 US US10/475,254 patent/US7815940B2/en not_active Expired - Fee Related
- 2002-04-17 ES ES02723029T patent/ES2290285T3/en not_active Expired - Lifetime
- 2002-04-17 WO PCT/SE2002/000757 patent/WO2002083132A1/en active IP Right Grant
- 2002-04-17 EP EP06076646A patent/EP1731141A3/en not_active Withdrawn
- 2002-04-17 EP EP02723029A patent/EP1389109B1/en not_active Expired - Lifetime
- 2002-04-17 NZ NZ528475A patent/NZ528475A/en not_active IP Right Cessation
- 2002-04-17 DE DE60220403T patent/DE60220403T2/en not_active Expired - Lifetime
- 2002-04-17 DK DK02723029T patent/DK1389109T3/en active
- 2002-04-17 CA CA002444268A patent/CA2444268A1/en not_active Abandoned
- 2002-04-17 AT AT02723029T patent/ATE363282T1/en active
- 2002-04-17 CN CNB028083784A patent/CN1236770C/en not_active Expired - Fee Related
- 2002-04-17 AU AU2002253768A patent/AU2002253768B2/en not_active Ceased
- 2002-04-17 PT PT02723029T patent/PT1389109E/en unknown
- 2002-04-17 EP EP10075409A patent/EP2253309A3/en not_active Withdrawn
-
2007
- 2007-07-06 US US11/822,502 patent/US20080031941A1/en not_active Abandoned
- 2007-08-07 CY CY20071101056T patent/CY1106802T1/en unknown
-
2010
- 2010-07-12 US US12/803,982 patent/US20110104264A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002253768B2 (en) | Gastric acid secretion inhibiting composition | |
AU2002253768A1 (en) | Gastric acid secretion inhibiting composition | |
CA2501201C (en) | Gastric acid secretion inhibiting composition | |
EP0813424B1 (en) | Oral pharmaceutical dosage forms comprising a proton pump inhibitor and an antacid agent or alginate | |
KR100486057B1 (en) | Oral Pharmaceutical Dosage Forms Comprising a Proton Pump Inhibitor and a Prokinetic Agent |