AU2002251029A1 - Coated biomedical devices - Google Patents
Coated biomedical devicesInfo
- Publication number
- AU2002251029A1 AU2002251029A1 AU2002251029A AU2002251029A AU2002251029A1 AU 2002251029 A1 AU2002251029 A1 AU 2002251029A1 AU 2002251029 A AU2002251029 A AU 2002251029A AU 2002251029 A AU2002251029 A AU 2002251029A AU 2002251029 A1 AU2002251029 A1 AU 2002251029A1
- Authority
- AU
- Australia
- Prior art keywords
- biomedical device
- coating
- functional groups
- multifunctional compound
- natural
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 claims description 26
- 210000004087 cornea Anatomy 0.000 claims description 26
- 125000000524 functional group Chemical group 0.000 claims description 23
- 229920005615 natural polymer Polymers 0.000 claims description 20
- 229920001059 synthetic polymer Polymers 0.000 claims description 19
- 239000013590 bulk material Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 18
- -1 polysiloxane Polymers 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 13
- 102000008186 Collagen Human genes 0.000 claims description 10
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 10
- 229920001436 collagen Polymers 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 108010035532 Collagen Proteins 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 7
- 150000002431 hydrogen Chemical group 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 3
- 108090000288 Glycoproteins Proteins 0.000 claims description 3
- 102000003886 Glycoproteins Human genes 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 229920000193 polymethacrylate Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 238000002513 implantation Methods 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 210000001508 eye Anatomy 0.000 description 13
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical group [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 12
- 239000003292 glue Substances 0.000 description 12
- 206010052428 Wound Diseases 0.000 description 11
- 208000027418 Wounds and injury Diseases 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 210000000981 epithelium Anatomy 0.000 description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- 239000003999 initiator Substances 0.000 description 11
- 229920000671 polyethylene glycol diacrylate Polymers 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 210000000056 organ Anatomy 0.000 description 10
- 210000002919 epithelial cell Anatomy 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910021641 deionized water Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- IEJPPSMHUUQABK-UHFFFAOYSA-N 2,4-diphenyl-4h-1,3-oxazol-5-one Chemical compound O=C1OC(C=2C=CC=CC=2)=NC1C1=CC=CC=C1 IEJPPSMHUUQABK-UHFFFAOYSA-N 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- WROBMYAZXGSSGL-UHFFFAOYSA-N 2-ethenyl-5,5-dimethyl-1,3-oxazol-4-one Chemical compound CC1(C)OC(C=C)=NC1=O WROBMYAZXGSSGL-UHFFFAOYSA-N 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 5
- 239000008272 agar Substances 0.000 description 5
- 230000003013 cytotoxicity Effects 0.000 description 5
- 231100000135 cytotoxicity Toxicity 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 210000000270 basal cell Anatomy 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 150000003573 thiols Chemical class 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- YSYRISKCBOPJRG-UHFFFAOYSA-N 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole Chemical compound FC1=C(F)OC(C(F)(F)F)(C(F)(F)F)O1 YSYRISKCBOPJRG-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 210000003560 epithelium corneal Anatomy 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229940095095 2-hydroxyethyl acrylate Drugs 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- 241000282324 Felis Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 101710137510 Saimiri transformation-associated protein Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000004956 cell adhesive effect Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 2
- 238000001804 debridement Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- ABADUMLIAZCWJD-UHFFFAOYSA-N 1,3-dioxole Chemical class C1OC=CO1 ABADUMLIAZCWJD-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000499489 Castor canadensis Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 235000011779 Menyanthes trifoliata Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical group CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920001616 Polymacon Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 239000000999 acridine dye Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000010640 amide synthesis reaction Methods 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 150000001634 bornane-2,3-dione derivatives Chemical class 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002440 hydroxy compounds Chemical class 0.000 description 1
- 229920006150 hyperbranched polyester Polymers 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical group CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 231100000683 possible toxicity Toxicity 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- ARJOQCYCJMAIFR-UHFFFAOYSA-N prop-2-enoyl prop-2-enoate Chemical compound C=CC(=O)OC(=O)C=C ARJOQCYCJMAIFR-UHFFFAOYSA-N 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- VDNLFJGJEQUWRB-UHFFFAOYSA-N rose bengal free acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C1=C2C=C(I)C(=O)C(I)=C2OC2=C(I)C(O)=C(I)C=C21 VDNLFJGJEQUWRB-UHFFFAOYSA-N 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- MCAHWIHFGHIESP-UHFFFAOYSA-N selenous acid Chemical compound O[Se](O)=O MCAHWIHFGHIESP-UHFFFAOYSA-N 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- QTENRWWVYAAPBI-YCRXJPFRSA-N streptomycin sulfate Chemical compound OS(O)(=O)=O.OS(O)(=O)=O.OS(O)(=O)=O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](N=C(N)N)[C@H](O)[C@@H](N=C(N)N)[C@H](O)[C@H]1O.CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](N=C(N)N)[C@H](O)[C@@H](N=C(N)N)[C@H](O)[C@H]1O QTENRWWVYAAPBI-YCRXJPFRSA-N 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical group ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000003894 surgical glue Substances 0.000 description 1
- 229920005613 synthetic organic polymer Polymers 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 239000001016 thiazine dye Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 239000003106 tissue adhesive Substances 0.000 description 1
- 229940075469 tissue adhesives Drugs 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Description
COATED BIOMEDICAL DEVICES
The present invention relates to a ready-to-use biomedical device that may be fixed to tissue by means of an adhesive, which can be cured on demand. Particularly, it relates to a ready-to-use corneal onlay, which may be fixed to the corneal basement membrane upon irradiation with a light source.
It is desirable in many applications, especially in the biomaterial and medical field to adhere biomaterials and other materials or devices to tissue. Tissue is defined as any part of the body, living or dead. A biomedical device that can be glued directly to tissue and attains sufficient interfacial bond strength is attractive because it may obviate the need for surgical methods such as suturing. Useful applications include the adhesion of drug delivery devices to the epidermis, the gluing of anti-adhesion barriers for surgery and the adhesion of synthetic onlays to cornea. Conventional surgical adhesives are often not suitable for a wide range of adhesive applications. Currently cyanoacrylates and fibrin glues are used clinically as soft tissue adhesives. However the brittleness of cured adhesives, the potential toxicity of their biodegradation products and the lack of control over cure time are the major drawbacks of cyanoacrylates.
A variety of different methods for the bonding of devices to tissue have been disclosed in the prior art. For example, U.S. patent No. 5,354,336 describes a method for sealing lenticules onto a corneal surface comprising the steps of placing the lenticule to correct position, applying a polymerizable collagen composition onto the lenticule and the corneal surface to form a collagen coating over the lenticule and the corneal surface and polymerizing the coating in the presence of an initiator thereby sealing the lenticule onto the corneal surface. However said glues have not yet proven satisfactory mainly because of severe handling problems. For example, the surgeon always has to mix the glue components prior to use. Once the premixing has taken place, only a limited time period is available for using the glue depending on the glue's specific curing time; this puts time- pressure on the surgeon. Following the attachment of the onlay onto the cornea, excessive glue has to be removed carefully otherwise glue residues may inhibit the normal function of biological tissue. Further disadvantages of the known glues concern, for example,
insufficient mechanical stability and adhesive duration. In view of these and other drawbacks, there is clearly a need for a "cure on demand" biomedical device.
Surprisingly, it now has been found that biomedical devices, in particular corneal onlays comprising a suitable biocompatible bulk material, may be attached conveniently to living tissue if they comprise certain polymerizable carbon-carbon double bonds covalently attached to the surface of said bulk material. The present invention therefore in one aspect relates to a biomedical device comprising
(a) a biocompatible organic bulk material and
(b) a coating comprising polymerizable carbon-carbon double bonds covalently attached to at least part of the bulk surface.
Preferred embodiments of the invention concern biomedical devices obtainable by processes as outlined below.
A preferred process comprises the steps of
(a1) providing a biomedical device comprising functional groups on its surface, and
(b1) covalently attaching a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group that is coreactive to the functional groups of the surface of the biomedical device.
A particularly preferred process comprises the steps of
(a1) providing a biomedical device comprising functional groups on its surface, and
(b2) covalently coupling functional groups of the surface of the medical device with a natural or synthetic polymer comprising co-reactive groups, and
(b3) covalently coupling a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group that is coreactive to the reactive groups of said natural or synthetic polymer.
Examples of bulk materials that may be coated according to the process of the invention are natural or synthetic organic polymers, or laminates, composites or blends of said materials. Some examples of polymers are polyaddition and polycondensation polymers (polyurethanes, epoxy resins, polyethers, polyesters, polyamides, polycarbonates and polyimides); vinyl polymers (polyacrylates, polymethacrylates, polystyrene, polyethylene,
polyacrylamides and halogenated derivatives thereof, polyvinyl acetate and polyacrylonitrile); elastomers (silicones, polybutadiene and polyisoprene); or modified or unmodified biopolymers (collagen, cellulose, chitosan and the like).
Another preferred group of bulk materials are those conventionally used for the manufacture of biomedical devices, e.g. contact lenses, intraocular lenses or artificial cornea, which are not hydrophilic per se. Such materials are known to the skilled artisan and may comprise for example polysiloxanes, perfluoropolyethers, fluorinated poly(meth)acrylates or equivalent fluorinated polymers derived e.g. from other polymerizable carboxylic acids, polyalkyl (meth)acrylates or equivalent alkylester polymers derived from other polymerizable carboxylic acids, or fluorinated polyolefines, such as fluorinated ethylene propylene, or tetrafluoroethylene, preferably in combination with specific dioxols, such as perfluoro-2,2-dimethyl-1 ,3-dioxol. Examples of suitable bulk materials are e.g. Lotrafilcon A, Neofocon, Pasifocon, Telefocon, Fluorsilfocon, Paflufocon, Silafocon, Elastofilcon, Fluorofocon or Teflon AF materials, such as Teflon AF 1600 or Teflon AF 2400 which are copolymers of about 63 to 73 mol % of perfluoro-2,2-dimethyl- 1 ,3-dioxol and about 37 to 27 mol % of tetrafluoroethylene, or of about 80 to 90 mol % of perfluoro-2,2-dimethyl-1 ,3-dioxol and about 20 to 10 mol % of tetrafluoroethylene.
Another preferred group of biocompatible polymers are those being conventionally used for the manufacture of biomedical devices, e.g. contact lenses, which are hydrophilic per se, since hydrophilic groups, e.g. carboxy, carbamoyl, sulfate, sulfonate, phosphate, amine, ammonium or hydroxy groups, are inherently present in the material. Such materials are known to the skilled artisan and comprise for example polyhydroxyethyl acrylate, poly- hydroxyethyl methacrylate (HEMA), polyvinyl pyrrolidone (PVP), polyacrylic acid, polymeth- acrylic acid, polyacrylamide, poly-N,N-dimethyl acrylamide (DMA), polyvinyl alcohol, copolymers for example from two or more monomers from the group hydroxyethyl acrylate, hydroxyethyl methacrylate, N-vinyl pyrrolidone, acrylic acid, methacrylic acid, acrylamide, N.N-dimethyl acrylamide, vinyl alcohol, vinyl acetate and the like, polyalkylene glycols such as polyethylene glycols, polypropylene glycols or polyethylene/polypropylene glycol block copolymers. Typical examples are e.g. Polymacon, Tefilcon, Methafilcon, Deltafilcon, Bufilcon, Phemfilcon, Ocufilcon, Focofilcon, Etafilcon, Hefilcon, Vifilcon, Tetrafilcon, Perfilcon, Droxifilcon, Dimefilcon, Isofilcon, Mafilcon, Nelfilcon or Atlafilcon.
An even more preferred group of bulk materials are, for example, porous polymers with improved wettability and cell growth ability as described in WO 97/35906 or in WO 00/15686.
The surface of the bulk material may inherently contain functional groups or may be provided with covalently attached functional groups, for example, by plasma deposition. The method of coating a surface by plasma deposition is well known to the skilled artisan and is described in, e.g. WO 98/52620 and WO 00/29548. Typical examples of reactive groups being introduced to the surface of the bulk material by plasma surface preparation include aldehyde groups, amino groups, hydroxy groups, carboxy groups, carbonyl groups, sulfonic acid groups, sulfonyl chloride groups and groups able to be replaced by amino or hydroxy groups, such as halo groups. Aldehyde groups, thiol groups, amino groups, hydroxy groups and carboxy groups are preferred.
Examples of natural or synthetic polymer used in step (b2) are cell-adhesive glycoproteins like collagens (various types), fibronectin, vitronectin, laminin, poly(ethyl imine), amino dextran, PAMAM dendrimers, poly(allyl amine), poly(vinyl alcohol), poly(arylic acid) and poly(methacrylic acid). Collagen and collagen-like proteins are preferred. The coupling of cell-adhesive glycoproteins to plasma polymers covalently bound to the underlying bulk material is known and described, for example, in WO 00/29548.
Multifunctional compounds comprising at least one polymerizable carbon-carbon double bond to be coupled with functional groups covalently attached to the surface of a biomedical device, or to be covalently coupled to a natural or synthetic polymer are, for example, compounds of formula
2C = Ψ C- C- 0- (A\k**) - N=C=0 (1b),
O
o o
H2C = C- C-O — (CH2 2)/1-4 C CH
H " '2 (1e),
Rt
H,C = C-R, I (ig)
Rt
wherein Ri is hydrogen, CrC4-alkyl or halogen;
R2 is hydrogen, unsubstituted or hydroxy-substituted CrCβ-alkyl or phenyl;
R3 and R3' are each an ethylenically unsaturated radical having from 2 to 6 C-atoms, or R3 and R3' together form a bivalent radical -C(R )=C(R4')- wherein R4 and R4' are each independently of the other hydrogen, Cι-C4-alkyl or halogen; and
(Alk*) is CrCe-alkylene, and (Alk**) is C2-C12-alkylene;
R5 is a bivalent organic radical, which may be substituted, for example, by one or more acrylate, methacrylate, acrylamide, methacrylamide, vinyl or styryl functional groups.
R6 is hydrogen, methyl or phenyl; s and t independently of each other is an integer 0 or 1 ;
Xi and X2 are each independently from the other, O, NH, or N-CrC4-alkyl; and
R7 is a carboxy derivative.
The following preferences apply to the variables contained in formulae (1a) - (1g):
Ri is preferably hydrogen or CrC4-alkyl, in particular hydrogen or methyl.
R2 is preferably hydrogen or hydroxy-CrC4-alkyl, in particular hydrogen or β-hydroxyethyl.
R3 and R3' are preferably each vinyl or 1-methylvinyl, or R3 and R3' together form a radical
-C(R4)=C(R4')-; wherein R4 and R4' are each independently hydrogen or methyl.
(Alk*) is preferably methylene, ethylene or 1 ,1-dimethyl-methylene, in particular a radical
-CH2- or -C(CH3)2-.
(Alk**) is preferably C2-C4-alkylene and in particular 1 ,2-ethylene.
X is preferably NH or in particular O.
Examples of bivalent organic radicals R5 are, for example, an optionally branched CrC12- alkylene; a radical of dendrimer or star bust polymer; a radical of a polyethylene glycol; a radical of a polyvinyl alcohol, for example, a polyvinyl alcohol with pendant polymerisable groups as described in WO 96/24075; or a radical of a hyperbranched polyester resin as described by M. Johansson and A. Hult in Journal of Coatings Technology, 67, No. 849, 35 (1995).
R6 is preferably hydrogen or methyl.
Examples of suitable carboxy derivatives R7 are an acid halide, for example, -COCI or -COBr; or an ester or amide, preferably an activated derivative thereof.
R7 as an activated ester or amide is, for example, a radical of formula
(2a) (2b) (2c)
o— c C12-alkyl
(2d) (2β)
A preferred activated carboxy derivative is of formula (2a), (2d) or, in particular, of formula (2h).
Preferred vinyl monomers having a reactive group are 5,5-dimethyl-2-vinyl-oxazolin-4-one, 2-isocyanatoethylmethacrylate (IEM), acrylic acid, methacrylic acid, acrylic anhydride, maleic acid anhydride, 2-hydroxyethylacrylate (HEA), 2-hydroxyethylmethacrylate (HEMA), glycidylacrylate or glycidylmethacrylate, polyethylene glycol(dimethacrylate), polyethylene glycol (diacrylate), particularly preferred are 5,5-dimethyl-2-vinyl-oxazolin-4-one and 2-isocyanatoethylmethacrylate (IEM).
The method of attaching a bifunctional compound of formula (1a) - (1f) to a bulk material surface provided with coreactive functional groups or to a natural or synthetic polymer comprising coreactive functional groups depends on the nature of the reactive groups being present in compounds (1a)-(1e) and at the surface of said bulk material or natural or synthetic polymer.
In case that a compound of formula (1 a) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino groups, the reaction may be carried out advantageously at room temperature or at elevated temperature, for example at about
20 to 75°C, in water, in a suitable organic solvent or mixtures thereof, for example in an aqueous medium or in an aprotic polar solvent such as DMF, DMSO, dioxane, acetonitrile and the like.
In case that a compound of formula (1a) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing hydroxy groups, aprotic polar solvents are preferred.
In case that a compound of formula (1b) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino or hydroxy groups, the reaction may be carried out in an inert organic solvent such as acetonitrile, an optionally halogenated hydrocarbon, for example petroleum ether, methylcyclohexane, toluene, chloroform, methylene chloride and the like, or an ether, for example diethyl ether, tetrahydrofurane, dioxane, or a more polar solvent such as DMSO, DMA, N-methylpyrrolidone or even a lower alcohol or water, at a temperature of from 0 to 100°C, preferably from 0 to 50°C and particularly preferably at room temperature, optionally in the presence of a catalyst, for example a tertiary amine such as triethylamine or tri-n-butylamine, 1 ,4-diazabicyclooctane, or a tin compound such as dibutyltin dilaurate or tin dioctanoate. In addition, the reaction of the isocyanato groups with amino groups may also be carried out in an aqueous solution in the absence of a catalyst. It is advantageous to carry out the above reactions under an inert atmosphere, for example under a nitrogen or argon atmosphere.
In case that a carboxy compound of formula (1c) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino, thiol or hydroxy groups, or a hydroxy compound of formula (1c) with carboxy groups of the surface, the reaction may be carried out under the conditions that are customary for ester or amide formation. It is preferred to carry out the esterif ication or amidation reaction in the presence of an activating agent, for example N-ethyl-N'-(3-dimethyl aminopropyl)carbodiimide (EDO), N-hydroxy succinimide (NHS) or N.N'-dicyclohexyl carbodiimide (DCC).
In case that a compound of formula (1d) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino, thiol or hydroxy groups the reaction may be carried out as described in organic textbooks, for example in an aprotic solvent, for example one of the above-mentioned aprotic solvents, at a temperature from room temperature to about 100°C.
ln case that a compound of formula (1e) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino, thiol or hydroxy groups, the reaction may be carried out, for example, at room temperature or at elevated temperature, for example at about 20 to 100°C, in an aprotic medium using a base catalyst, for example AI(O-Cι-C6-alkyl)3 or Ti(O-Cι-C6-alkyl)4.
In case that a compound of formula (1f) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino, thio or hydroxy groups, the Michael- type addition reaction may be carried out, for example, at room temperature, for example at about 20 to 100°C, in an aprotic or protic medium.
In case that a compound of formula (1g) has to be coupled to the surface of a bulk material or to a natural or synthetic polymer containing amino, thiol or hydroxygroups, the reaction may be carried out, for example, at room temperature or at elevated temperature, for example at about 20 to 100°C, in an aprotic medium.
The fixation of a biomedical device such as a corneal onlay according to the present invention on the cornea may be initiated, for example, by irradiation, particularly by irradiation with UV or visible light. Preferably, the cornea is previously prepared for the attachment of the onlay, for example by removing the epithelial cell layers of the cornea by scraping.
The tissue to which the device is to be attached and also the device itself may optionally be treated with an initiator or catalyst to promote the adhesion of the device to the tissue surface. The initiator may be used at any concentration that does not have a detrimental effect on the device or the tissue. The term "initiator" is used herein in a broad sense, in that it is a composition, which under appropriate conditions will result in the polymerisation of a monomer. The use of a photo-initiator is preferred. Any of the photo-initiators found in the art may be suitable, if they are biocompatible and adhere to the particular surface. Examples are photo-oxidisable and photo-reducible dyes that may be used to initiate polymerisation, for example, acridine dyes; for example, acriblarine; thiazine dyes, for example, thionine; xanthine dyes, for example, rose Bengal; and phenazine dyes, for example, methylene blue. Other initiators include camphorquinones and acetophenone
derivatives. A preferred photo-initiator for biological use is Eosin Y, which absorbs strongly to most tissue and is an efficient photo-initiator.
Any of the compounds typically used in the art as radical generators or co-initiators in photo-initiation may be used. These include co-catalysts or co-initiators such as amines, for example triethanolamine, as well as other trialkyl amines and trialkylol amines; sulfur compounds; heterocycles, for example, imidazole; enolates; organometallics; and other compounds, such as N-phenyl glycine.
In general, the onlay is placed in intimate contact with the corneal tissue and is then irradiated. Suitable light sources for the irradiation are known to the artisan and comprise for example mercury lamps, high pressure mercury lamps, xenon lamps, carbon arc lamps or sunlight. Sensitizers may be used to shift the irradiation wavelength. In addition, a suitable filter may be used to limit the irradiation to a specific wavelength range. Preferably, the onlay surface to which have been previously applied the compound(s) comprising radicals of formula (1 ) is irradiated with light of a wavelength >300 nm, preferably from 350 to 400 nm. The time period of irradiation is not critical but is usually in the range of up to 30 minutes, preferably from 10 secondes to 10 minutes, and more preferably from 15 seconds to 5 minutes, and particularly preferably from 30 seconds to 1.5 minutes.
The biomedical devices of the invention provide a new route towards implanting a corneal onlay onto a cornea which is easy to perform, does not affect the wearers vision, and is safe. In particular, a mechanically stable fixation of the implant on the cornea is obtained which lasts for a period of time sufficient for normal biological function to recover after surgery. This may include the chance to allow the epithelial cells to recover, grow over the implant and thus fix it in a persistent manner. The onlays are very easy to handle, since the use thereof does not involve, for example, a premixing of glue components or time pressure upon the surgeon due to specific curing times of the glue components. In addition, no tedious removal of excess glue after fixing the onlay onto the cornea is necessary, and the previous problem of inhibition of overgrowth by glue residues does not exist. Moreover, the onlays of the invention may be stored conveniently for a long time, for example in form of a patch with cover foils protecting the surface(s). The onlay is then immediately ready for use, by just removing the cover foil(s) from the surface(s). All of the advantages mentioned
above naturally apply not only to contact lenses but also to other biomedical moldings according to the invention as mentioned before.
The present invention is further described by the following non-limiting examples. If not specified otherwise, all parts are by weight. Temperatures are in degree Celsius.
Example A-1 : Lenticule f unctionalization using 2-vinyl-5,5-dimethyl-oxazolin-4-one on collagen
Six lenticules that have a thin coating of collagen on both sides are equilibrated into methanol from PBS (phosphate buffered saline). The methanol is exchanged for acetonitrile via a graded exchange of 25%, 50%, 75% and 100% acetonitrile. The lenticules are then individually treated with a 10% (v/v) solution of 2-vinyl-5,5-dimethyl-oxazolin-4-one in acetonitrile (8 ml) at room temperature with gentle shaking for 4 hours. The 2-vinyl-5,5- dimethyl-oxazolin-4-one solutions are removed and replaced with acetonitrile. The lenticules are shaken overnight with fresh acetonitrile. The next morning lenticules are again shaken with fresh acetonitrile for 8 hours. The lenticules are taken through a graded exchange with 25%, 50%, 75% and 100% deionized water.
Example A-2: Lenticule functionalization using polyethylene glycol(diacrylate) [PEG(diacrylate)] (Mw 700) on collagen
Six lenticules that have a thin coating of collagen on both sides are equilibrated into water/methanol (50:50) from PBS (phosphate buffered saline) The lenticules are then individually treated with a 10% (v/v) solution of PEG(diacrylate) (Mw 700) in water/methanol (50:50) (8 ml) at room temperature with gentle shaking for 24 hours. PEG(diacrylate) solutions are removed and replaced with methanol. The lenticules are shaken overnight • with fresh methanol. The lenticules are taken through a graded exchange with 25%, 50%, 75% and 100% deionized water.
Example B-1 : In situ curing of azlactone modified lenticules
Freshly slaughtered bovine eyes are debrided of their epithelium. A 1 mg/ml solution of Eosin Y (Aldrich) in deionized water is prepared and kept away from light. The debrided bovine cornea are treated with the Eosin Y solution (about 1-3 ml) for 1 minute. Freshly prepared modified lenticules from Example A-1 are treated with the Eosin Y solution for 1
minute. The excess solution is removed by absorption onto lint-free tissue paper. The lenticules are placed on the eye and any excess fluid or bubbles under the lenticule gently removed by wiping firmly across the top surface of the lenticule with a smooth object. The eye is irradiated with light from a xenon discharge lamp (greater than 1 Watt) for 1 min at a distance of 1 cm. After irradiation the lenticule can not be removed by a jet of water. The edges are firmly bound to the cornea and resisted lifting when the cornea is prodded. When attempts are made to remove the lenticule with tweezers it tears indicating the adhesives strength to the cornea is greater than the cohesive strength of the onlay.
Example B-2: In situ curing of PEG(diacrylate) modified lenticules Freshly slaughtered bovine eyes are debrided of their epithelium. A 1 mg/ml solution of Eosin Y (Aldrich) in deionized water is prepared and kept away from light. The debrided bovine cornea are treated with the Eosin Y solution (about 1 -3 ml) for 1 minute. Freshly prepared modified lenticules from Example A-2 are treated with the Eosin Y solution for 1 minute. The excess solution is removed by absorption onto lint-free tissue paper. The lenticules are placed on the eye and any excess fluid or bubbles under the lenticule gently removed by wiping firmly across the top surface of the lenticule with a smooth object. The eye is irradiated with light from a xenon discharge lamp (greater than 1 Watt) for 1 min at a distance of 1 cm. After irradiation the lenticule cannot be removed by a jet of water. The edges are firmly bound to the cornea and resisted lifting when the cornea is prodded. When attempts are made to remove the lenticule with tweezers it tears indicating the adhesives strength to the cornea is greater than the cohesive strength of the onlay.
Exampe B-3: Cytotoxicity testing of modified lenticules
Both PEG(diacrylate) and azlactone modified lenticules from Examples B-1 and B-2 are tested for cytotoxicity. They both pass direct contact assays and cell growth inhibitor assay.
Example B-4: Organ culture testing of modified lenticules
Organ culture general procedure
A corneal organ culture system originally developed by Foreman et al. [D. M. Foreman, S.
Pancholi, J. Jarvis-Evans, D. McLeod, M. E. Boulton, A simple organ culture model for assessing the effects of growth factors on corneal re-epithelialization, Exp. Eye Res. 62,
555-564 (1996)], is modified to evaluate polymers and adhesive formulations aimed at
ophthalmic applications that require epithelialization. The corneal organ culture utilizes bovine eyes enucleated from freshly slaughtered animals which are surgically wounded and then implanted with polymer lenticules with and without adhesive formulations. Following wounding and implantation, the corneas are excised from the eyeballs with a 5 mm scleral rim intact and transferred directly onto individual pre-formed agar plugs which provide support and maintain corneal curvature during the culture period. Agar plugs are pre- prepared using a 1 :1 mixture of double strength serum-free medium with additives (see below) and 2% agar (Bacto-Agar from Difco, Australia) in distilled water. This is allowed to gel in moulds created by inverting previously-excised bovine corneas. Wounded corneas on their agar plugs are placed in individual petri dishes with 5 ml complete serum-free culture medium, which is sufficient to bring the medium to the level of the scleral rim. Culture medium used throughout is Dulbecco's Modification of Eagles Medium containing 20mM L- glutamine (ICN Biomedicals, USA) with 120 ug/ml Penicillin G 200 ug/ml Streptomycin sulphate, 5 ug/ml Amphotericin B and ITS Premix (Collaborative Biomedical Products, Becton Dickinson USA) to a final concentration of 5μg/ml of insulin and transferrin and 5ng/ml of selenous acid. Samples are incubated for 8 days at 37°C in 5% CO2 in air with once daily medium changes washed over the corneal surface to remove desquamating epithelial cells from the anterior ocular surface. The growth of epithelium over the lenticule surface is monitored daily using a stereomicroscope. Corneas are fixed in 10% neutral buffered formalin after 8 days and paraffin histology is used to examine the structure and morphology of the migrating epithelium and the condition of the underlying stromal tissue. This system has been shown to model the in vivo wound healing process and has utility in the evaluation of candidate polymers, surface treatments and adhesives for certain ophthalmic applications.
Organ culture testing of azlactone modified lenticules
Azlactone modified lenticules (prepared as in Example B-1) were implanted using a superficial keratomoy and onlay (debridement) surgical models in organ culture using the above procedure. The wound bed was treated with Eosin Y solution (1 mg/ml) in deionized water for 2 minutes before placement of lenticule into the wound bed. The eye was irradiated with light from a Prolite light source (Dentsply Model 301 with an intensity of 78 mW/cm2) for 2 min at a distance of 1 cm.
Clinically azlactone modified lenticules cured to the wound bed in the onlay model are fully covered with epithelium by day 6.5. Histology on one of these samples show complete
coverage of the lenticule by corneal epithelium consisting of 1 -2 layers of epithelial cells with some evidence of differentiation in the basal cell layer. There is no evidence of cytotoxicity to the adhesive. In most places the lenticule is firm on the stromal surface, indicating adhesion between the posterior face of the lenticule and the stromal wound bed.
Clinically azlactone modified lenticules implanted in a superficial keratomoy wound bed are fully covered with epithelium by day 6. A Histological sample shows complete coverage of the lenticule by corneal epithelium consisting of 3-4 layers of epithelial cells with some evidence of differentiation in the basal cell layer. There is no evidence of cytotoxicity to the adhesive. As with the onlay model, the lenticule is firm on the stromal surface indicating adhesion between the posterior face of the lenticule and the stromal wound bed.
Organ culture testing of PEG(diacrylate) modified lenticules
PEG (diacrylate) modified lenticules (prepared as in Example B-2) are implanted using a superficial keratomoy and onlay (debridement) surgical models in organ culture using above procedure. The wound bed was treated with eosin Y solution (1 mg/ml) in deionized water for 2 minutes before placement of lenticule into the wound bed. The eye is irradiated with light from a Prolite light source (Dentsply Model 301 with an intensity of 78 mW/cm2) for 2 min at a distance of 1 cm.
Clinically PEG (diacrylate) modified lenticules cured to the wound bed in the onlay model are fully covered with epithelium by day 4-5. Histology shows the epithelium in these cases is composed of 5-7 layers of epithelial cells with columnar basal cells (i.e. normal looking epithelium). There are no epithelial cells underneath the lenticule in either case suggesting that the PEG (diacrylate) provided adhesion between the lenticule and the anterior stroma.
Clinically PEG(diacrylate) modified lenticules implanted in a superficial keratomoy wound bed are fully covered with epithelium by day 7. Histology of this sample shows 5 layers of epithelial cells on the wound bed. Histology shows that this epithelium was confined to the anterior surface, with none underneath, and is composed of 4-5 layers of epithelial cells with some evidence of differentiation in the basal cell layer.
PEG(diacrylate) modified lenticules supported epithelialisation in both onlay and superficial keratomoy surgical models when tested in organ culture without any apparent cytotoxicity.
Example B-5: In vivo curing of modified lenticules
Felines are anaesthetized using an intramuscular injection of 10-15 mg/kg bodyweight ketamine and 1 mg/kg bodyweight xylazine to a depth of stage 3-plane 2. The corneal surface is lightly marked in the centre using an 8 mm diameter trephine and the corneal epithelium within this area is debrided using a beaver blade to expose the basement membrane. A 1 mg/ml solution of Eosin Y (Aldrich) in deionized water is prepared and kept away from light. The debrided feline cornea are treated with the Eosin Y solution (about 1 -3 ml) for 1 minute. Freshly prepared modified lenticules from Example A-1 are treated with the Eosin Y solution for 1 minute. The excess solution is removed by absorption onto lint-free tissue paper. The lenticules are placed on the eye and any excess fluid or bubbles under the lenticule gently removed by wiping firmly across the top surface of the lenticule with a smooth object. The eye is irradiated with light from a Prolite light source (Dentsply Model 301 with an intensity of 78 mW/cm2) for 2 min at a distance of 1 cm. After irradiation the lenticule cannot be removed by a jet of water. The edges are firmly bound to the cornea and resisted lifting when the cornea is prodded. The lenticule is held in place for greater than 6 days and the eyes are quiet.
Claims
1. A biomedical device comprising
(a) a biocompatible organic or inorganic bulk material and
(b) a coating comprising polymerizable carbon-carbon double bonds covalently attached to at least part of the bulk surface.
2. A biomedical device according to claim 1 , which is an ophthalmic device, preferably a contact lens, intraocular lens, or an artificial cornea.
3. A biomedical device according to claims 1 or 2, wherein the biocompatible organic bulk material is selected from the group consisting of a polysiloxane, perfluoroalkyl polyether, fluorinated poly(meth)acrylate, polyalkyl (meth)acrylate, and a fluorinated polyolefin.
4. A biomedical device according to any one of the claims 1 to 3, wherein the coating according to step (b) is obtainable by covalently coupling functional groups of the surface of the medical device with a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group that is coreactive to the functional groups of the device surface.
5. A biomedical device according to any one of the claims 1 to 3, wherein the coating is obtainable by covalently coupling functional groups of the surface of the medical device with a natural or synthetic polymer comprising co-reactive groups, and covalently coupling a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group to said natural or synthetic polymer.
6. A biomedical device according to claims 4 or 5, wherein the multifunctional compound is selected from the group consisting of a compound of formula
H2C = C - C - O - (Alk**) - N=C=0 (1b), O
.
H2C = C - C - O — R„ (1 C),
-«. dd).
-F
>
o o II / \ H2C = C — C-0 - (CH2) — C CH
H 2 (1 e),
Rt
H2C = C-R7
I dg)
R, wherein
Ri is hydrogen, CrC^alkyl or halogen;
R2 is hydrogen, unsubstituted or hydroxy-substituted Cι-C6-aIkyl or phenyl;
R3 and R3' are each an ethylenically unsaturated radical having from 2 to 6 C-atoms, or R3 and R3 * together form a bivalent radical -C(R4)=C(R4')- wherein R4 and R4' are each independently hydrogen, CrC4-alkyl or halogen and
(Alk*) is d-Cβ-alkylene, and (Alk**) is C2-C12-alkylene;
R5 is a bivalent organic radical, which may be substituted;
R6 is hydrogen, methyl or phenyl; s and t independently of each other is an integer 0 or 1 ;
Xi and X2 are each independently from the other, O, NH, or N-CrC4-alkyl; and
R7 is a carboxy derivative.
7. A biomedical device according to claim 6, wherein the multifunctional compound is a compound of formula (1a) or (1b).
8. A biomedical device according to any claims 5 to 7, wherein the natural or synthetic polymer is a glycoprotein, preferably a collagen.
9. A process for the coating of a biomedical device comprising the steps of
(a) providing a biomedical device comprising functional groups on its surface, and
(b) covalently attaching a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group that is coreactive to the functional groups of the surface of the biomedical device.
10. A process for the coating of a biomedical device comprising the steps of
(a) providing a biomedical device comprising functional groups on its surface, and
(b) covalently coupling functional groups of the surface of the medical device with a natural or synthetic polymer comprising co-reactive groups, and
(c) covalently coupling a multifunctional compound comprising at least one polymerizable carbon-carbon double bond and at least one additional functional group that is coreactive to the reactive groups of said natural or synthetic polymer.
11. A process for the coating of a biomedical device according to claim 9 or 10, wherein the multifunctional compound is of formula (1a)-(1g) as defined in claim 6.
12. A process for the coating of a biomedical device according to claim 9 or 10, wherein the multifunctional compound is of formula (1a) or (1b) as defined in claim 6.
13. The use of a biomedical device according to any one of claims 1 to 8 as an intraocular lens for the implantation into or onto the cornea.
4. The use of a biomedical device obtainable from the process according to claim 9 or 10 r the production of an intraocular lens.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01810205.3 | 2001-02-28 | ||
EP01810205 | 2001-02-28 | ||
PCT/EP2002/002099 WO2002068008A1 (en) | 2001-02-28 | 2002-02-27 | Coated biomedical devices |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002251029A1 true AU2002251029A1 (en) | 2003-03-06 |
AU2002251029B2 AU2002251029B2 (en) | 2007-01-04 |
Family
ID=8183764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002251029A Ceased AU2002251029B2 (en) | 2001-02-28 | 2002-02-27 | Coated biomedical devices |
Country Status (7)
Country | Link |
---|---|
US (1) | US7060288B2 (en) |
EP (1) | EP1377324B1 (en) |
JP (1) | JP4285998B2 (en) |
AT (1) | ATE348639T1 (en) |
AU (1) | AU2002251029B2 (en) |
DE (1) | DE60216901T2 (en) |
WO (1) | WO2002068008A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7579442B2 (en) * | 2002-04-16 | 2009-08-25 | Ocugenics, LLC | Method for stromal corneal repair and refractive alteration |
JP2010508092A (en) * | 2006-10-30 | 2010-03-18 | イーチェー シューイー, | Method and system for immobilizing an artificial cornea |
WO2009145842A2 (en) * | 2008-04-04 | 2009-12-03 | Forsight Labs, Llc | Therapeutic device for pain management and vision |
EP2296580A2 (en) * | 2008-04-04 | 2011-03-23 | Forsight Labs, Llc | Corneal onlay devices and methods |
US9125735B2 (en) * | 2008-04-04 | 2015-09-08 | Forsight Labs, Llc | Method of correcting vision using corneal onlays |
WO2011050365A1 (en) | 2009-10-23 | 2011-04-28 | Forsight Labs, Llc | Conformable therapeutic shield for vision and pain |
US8591025B1 (en) | 2012-09-11 | 2013-11-26 | Nexisvision, Inc. | Eye covering and refractive correction methods for LASIK and other applications |
NO2490635T3 (en) | 2009-10-23 | 2018-02-03 | ||
AU2011323743B2 (en) | 2010-10-25 | 2016-01-28 | Nexisvision, Inc. | Methods and apparatus to identify eye coverings for vision |
US9423632B2 (en) | 2012-04-20 | 2016-08-23 | Nexisvision, Inc. | Contact lenses for refractive correction |
US12044905B2 (en) | 2011-04-28 | 2024-07-23 | Journey1 Inc | Contact lenses for refractive correction |
EP2701644B1 (en) | 2011-04-28 | 2018-05-30 | Nexisvision, Inc. | Eye covering having improved tear flow, comfort, and/or applicability |
WO2013086119A2 (en) * | 2011-12-08 | 2013-06-13 | Novartis Ag | Contact lenses with enzymatically degradable coatings thereon |
US9465233B2 (en) | 2012-04-20 | 2016-10-11 | Nexisvision, Inc. | Bimodular contact lenses |
CA2916885A1 (en) | 2013-06-26 | 2014-12-31 | Nexisvision, Inc. | Contact lenses for refractive correction |
US9341864B2 (en) | 2013-11-15 | 2016-05-17 | Nexisvision, Inc. | Contact lenses having a reinforcing scaffold |
WO2015116559A1 (en) | 2014-01-29 | 2015-08-06 | Nexisvision, Inc. | Multifocal bimodulus contact lenses |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69637198T2 (en) | 1995-03-23 | 2008-05-08 | Genzyme Corp., Cambridge | REDOX AND PHOTOINITIATOR SYSTEM FOR PRESERVING IMPROVED ADHESION FROM GELS TO SUBSTRATES |
TW393498B (en) * | 1995-04-04 | 2000-06-11 | Novartis Ag | The preparation and use of Polysiloxane-comprising perfluoroalkyl ethers |
US6099852A (en) * | 1998-09-23 | 2000-08-08 | Johnson & Johnson Vision Products, Inc. | Wettable silicone-based lenses |
AR021240A1 (en) | 1998-11-13 | 2002-07-03 | Commw Scient Ind Res Org | COUPLED PEPTIDES |
US6440571B1 (en) | 1999-05-20 | 2002-08-27 | Bausch & Lomb Incorporated | Surface treatment of silicone medical devices with reactive hydrophilic polymers |
US6514535B2 (en) | 1999-05-21 | 2003-02-04 | Noveon Ip Holdings Corp. | Bioadhesive hydrogels with functionalized degradable crosslinks |
-
2002
- 2002-02-21 US US10/080,245 patent/US7060288B2/en not_active Expired - Fee Related
- 2002-02-27 DE DE60216901T patent/DE60216901T2/en not_active Expired - Lifetime
- 2002-02-27 AT AT02719944T patent/ATE348639T1/en not_active IP Right Cessation
- 2002-02-27 WO PCT/EP2002/002099 patent/WO2002068008A1/en active IP Right Grant
- 2002-02-27 EP EP02719944A patent/EP1377324B1/en not_active Expired - Lifetime
- 2002-02-27 JP JP2002567371A patent/JP4285998B2/en not_active Expired - Fee Related
- 2002-02-27 AU AU2002251029A patent/AU2002251029B2/en not_active Ceased
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003225338B2 (en) | Biomedical adhesive | |
EP1409035B1 (en) | Biomedical moldings | |
US7060288B2 (en) | Biomedical devices | |
AU2002251029A1 (en) | Coated biomedical devices | |
US5836313A (en) | Methods for making composite hydrogels for corneal prostheses | |
US20080002146A1 (en) | Biocompatible, surface modified materials | |
US5723007A (en) | Biocompatible composite material and process for its production | |
WO2006116137A2 (en) | Artificial cornea | |
KR19980703533A (en) | Cell growth matrix polymer | |
US20020128346A1 (en) | Hydrogels | |
JP2005508663A (en) | Crosslinkable macromer | |
WO1994017851A1 (en) | Bilayer composite hydrogels for corneal prostheses | |
WO2025045458A1 (en) | Ophthalmic devices having a high refractive index |