AU2001285220A1 - Polymers with high internal free volume - Google Patents
Polymers with high internal free volumeInfo
- Publication number
- AU2001285220A1 AU2001285220A1 AU2001285220A AU8522001A AU2001285220A1 AU 2001285220 A1 AU2001285220 A1 AU 2001285220A1 AU 2001285220 A AU2001285220 A AU 2001285220A AU 8522001 A AU8522001 A AU 8522001A AU 2001285220 A1 AU2001285220 A1 AU 2001285220A1
- Authority
- AU
- Australia
- Prior art keywords
- polymers
- free volume
- liquid crystals
- high internal
- internal free
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title abstract 5
- 239000004973 liquid crystal related substance Substances 0.000 abstract 2
- 239000000463 material Substances 0.000 abstract 2
- 239000000126 substance Substances 0.000 abstract 2
- NGDCLPXRKSWRPY-UHFFFAOYSA-N Triptycene Chemical compound C12=CC=CC=C2C2C3=CC=CC=C3C1C1=CC=CC=C12 NGDCLPXRKSWRPY-UHFFFAOYSA-N 0.000 abstract 1
- 230000006399 behavior Effects 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 238000010668 complexation reaction Methods 0.000 abstract 1
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- 238000009472 formulation Methods 0.000 abstract 1
- 230000007246 mechanism Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 239000011368 organic material Substances 0.000 abstract 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 abstract 1
- 230000004044 response Effects 0.000 abstract 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/10—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/38—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/154—Ladder-type polymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/653—Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2323/00—Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
- C09K2323/03—Viewing layer characterised by chemical composition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Shape-persistent organic materials, including polymers, with large degrees of interior free volume are described, along with behaviors and phenomena enabled by their unique properties. One class of such a material is built up from triptycene base moieties wherein three benzene rings are bridged together about a [2.2.2] tricyclic ring system. These units can be assembled into discreet molecules and polymers. These materials and/or formulations thereof with liquid crystals or polymers are useful for the complexation of chemicals and/or polymers; they have very low dielectric constants for use as coatings in dielectric circuits, they provide additional ordering mechanisms in liquid crystals, and they display unusual mechanical responses when subjected to electrochemical, chemical, or mechanical stimuli.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22650600P | 2000-08-21 | 2000-08-21 | |
US60/226,506 | 2000-08-21 | ||
PCT/US2001/026293 WO2002016463A2 (en) | 2000-08-21 | 2001-08-21 | Polymers with high internal free volume |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001285220A1 true AU2001285220A1 (en) | 2002-03-04 |
Family
ID=22849196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001285220A Abandoned AU2001285220A1 (en) | 2000-08-21 | 2001-08-21 | Polymers with high internal free volume |
Country Status (7)
Country | Link |
---|---|
US (3) | US6783814B2 (en) |
EP (1) | EP1313785B1 (en) |
JP (1) | JP2004506791A (en) |
AT (1) | ATE427333T1 (en) |
AU (1) | AU2001285220A1 (en) |
DE (1) | DE60138196D1 (en) |
WO (1) | WO2002016463A2 (en) |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8198096B2 (en) | 1998-05-05 | 2012-06-12 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US20050147534A1 (en) * | 1998-05-05 | 2005-07-07 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
ATE261483T1 (en) | 1998-05-05 | 2004-03-15 | Massachusetts Inst Technology | LIGHT EMITTING POLYMERS AND DEVICES CONTAINING SAME |
AU2001285220A1 (en) | 2000-08-21 | 2002-03-04 | Massachusetts Institute Of Technology | Polymers with high internal free volume |
US7462325B2 (en) * | 2001-11-30 | 2008-12-09 | Nomadics, Inc. | Luminescent polymer particles |
JP4360801B2 (en) * | 2001-12-25 | 2009-11-11 | シャープ株式会社 | Transistor and display device using the same |
JP3926180B2 (en) * | 2002-03-26 | 2007-06-06 | シャープ株式会社 | ORGANIC EL LIGHT EMITTING ELEMENT AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME |
AU2003269913A1 (en) | 2002-07-15 | 2004-02-02 | Massachusetts Institute Of Technology | Emissive, high charge transport polymers |
US20040048099A1 (en) | 2002-08-29 | 2004-03-11 | Chen Jian Ping | Organic light-emitting device using iptycene derivatives |
US20040121337A1 (en) * | 2002-12-19 | 2004-06-24 | Nomadics, Inc. | Luminescent polymers and methods of use thereof |
GB0307330D0 (en) | 2003-03-29 | 2003-05-07 | Dow Corning Ltd | Improvements in and relating to composite materials and structures |
US7291503B2 (en) * | 2003-05-21 | 2007-11-06 | Massachusetts Institute Of Technology | Reversible resistivity-based sensors |
US7615377B2 (en) | 2003-09-05 | 2009-11-10 | Massachusetts Institute Of Technology | Fluorescein-based metal sensors |
JP2005148416A (en) * | 2003-11-14 | 2005-06-09 | Seizo Miyata | Polarization optical element, method for continuously manufacturing the same, and reflection optical element using the polarization optical element |
US7759127B2 (en) | 2003-12-05 | 2010-07-20 | Massachusetts Institute Of Technology | Organic materials able to detect analytes |
WO2006034081A2 (en) | 2004-09-17 | 2006-03-30 | Massachusetts Institute Of Technology | Polymers for analyte detection |
EP1690917B1 (en) * | 2005-02-14 | 2008-10-08 | MERCK PATENT GmbH | Mesogenic compounds, liquid crystal medium and liquid crystal display |
US8067026B2 (en) * | 2005-03-14 | 2011-11-29 | Boston Scientific Scimed, Inc. | Drug release regions for medical devices, which include polycyclic-structure-containing polymers |
CN101180339A (en) * | 2005-05-24 | 2008-05-14 | 日立化成工业株式会社 | Manufacturing method of conjugated polymer |
US7671166B2 (en) * | 2005-11-22 | 2010-03-02 | Massachusetts Institute Of Technology | High internal free volume compositions for low-k dielectric and other applications |
WO2008019086A2 (en) * | 2006-08-04 | 2008-02-14 | Massachusetts Institute Of Technology | Detection of explosives, toxins and other compositions |
US7574830B2 (en) * | 2006-08-08 | 2009-08-18 | Christopher Baker | High strength lightweight material |
WO2008042289A2 (en) | 2006-09-29 | 2008-04-10 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8802447B2 (en) | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US20090215189A1 (en) * | 2006-10-27 | 2009-08-27 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
US20080102386A1 (en) * | 2006-11-01 | 2008-05-01 | Massachusetts Institute Of Technology | Compositions including polymers aligned via interchain interactions |
US8974873B2 (en) * | 2006-11-01 | 2015-03-10 | Massachusetts Institute Of Technology | Devices and methods involving polymers aligned via interchain interactions |
US7982878B1 (en) | 2007-10-03 | 2011-07-19 | Nomadics, Inc. | Optical emission collection and detection device and method |
WO2010048694A1 (en) * | 2008-10-27 | 2010-05-06 | National Research Council Of Canada | Ladder polymers with intrinsic microporosity and process for production thereof |
US9156938B2 (en) | 2010-08-19 | 2015-10-13 | Massachusetts Institute Of Technology | Compositions, methods, and systems comprising fluorous-soluble polymers |
US9645085B2 (en) | 2012-02-17 | 2017-05-09 | Flir Detection, Inc. | Optical emission collection and detection device and method |
US10101273B2 (en) | 2012-02-17 | 2018-10-16 | Flir Detection, Inc. | Optical emission collection and detection device and method |
US9441163B2 (en) | 2012-06-04 | 2016-09-13 | Massachusetts Institute Of Technology | Photoalignment of materials including liquid crystals |
US9403935B2 (en) * | 2012-07-25 | 2016-08-02 | Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Reno | Two dimensional polymers and methods of making same |
US9629397B2 (en) | 2012-08-31 | 2017-04-25 | Under Armour, Inc. | Articles of apparel including auxetic materials |
US11839253B2 (en) | 2012-08-31 | 2023-12-12 | Under Armour, Inc. | Article of apparel including fabric having auxetic structure |
US12070100B2 (en) | 2012-08-31 | 2024-08-27 | Under Armour, Inc. | Laminate panel with auxetic layer |
US9538798B2 (en) | 2012-08-31 | 2017-01-10 | Under Armour, Inc. | Articles of apparel including auxetic materials |
US10426226B2 (en) | 2012-08-31 | 2019-10-01 | Under Armour, Inc. | Footwear upper with dynamic and lock-out regions |
US9936755B2 (en) | 2012-08-31 | 2018-04-10 | Under Armour, Inc. | Articles of apparel with auxetic fabric |
TWI466861B (en) * | 2013-04-02 | 2015-01-01 | Nat Univ Kaohsiung | Synthesis method of oligo-anthracene and oligo-anthracene thereof |
US9751985B2 (en) * | 2013-06-06 | 2017-09-05 | King Abdullah University Of Science And Technology | Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use |
USD777452S1 (en) | 2014-01-17 | 2017-01-31 | Under Armour, Inc. | Textile substrate with overlay |
USD774783S1 (en) | 2014-01-29 | 2016-12-27 | Under Armour, Inc. | Elastic textile |
US10305052B2 (en) | 2014-07-15 | 2019-05-28 | Japan Science And Technology Agency | Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method |
RU2692367C2 (en) | 2014-10-24 | 2019-06-24 | Юнайтед Текнолоджиз Корпорэйшн | Polymer with improved characteristics and method for production thereof |
US20190072807A1 (en) * | 2016-03-04 | 2019-03-07 | Kent State University | Stimuli-driven dynamic reconfigurable helical superstructures, and compositions and uses thereof |
US10160715B2 (en) * | 2016-08-26 | 2018-12-25 | Massachusetts Institute Of Technology | Mechanochemical synthesis of iptycenes |
WO2018056237A1 (en) * | 2016-09-20 | 2018-03-29 | 国立研究開発法人科学技術振興機構 | Novel dielectric material |
CN107276452B (en) * | 2017-06-07 | 2019-04-19 | 南京航空航天大学 | Star-shaped Negative Poisson's Ratio Structure Based on Dielectric Electroactive Polymers |
CN108192643B (en) * | 2018-01-30 | 2020-07-28 | 深圳市华星光电技术有限公司 | Self-alignment material, self-alignment liquid crystal material, liquid crystal panel and manufacturing method thereof |
US11472915B2 (en) | 2018-06-08 | 2022-10-18 | Massachusetts Institute Of Technology | Porous compositions and related methods |
CN109929117B (en) * | 2019-01-15 | 2021-04-30 | 浙江大学宁波理工学院 | Phosphorus-nitrogen rigid skeleton porous flame retardant and preparation method and application thereof |
WO2021060042A1 (en) * | 2019-09-25 | 2021-04-01 | 富士フイルム株式会社 | Compound, composition, film, structural body, and electronic device |
CN110754887A (en) * | 2019-12-10 | 2020-02-07 | 南京工业大学 | Pillow with negative Poisson ratio effect and design method thereof |
US11629228B2 (en) | 2020-04-01 | 2023-04-18 | Saudi Arabian Oil Company | Compositions of and methods for producing modified monomers and polyimides for sour mixed gas separation |
US12091908B2 (en) * | 2022-10-21 | 2024-09-17 | Joon Bu Park | Negative poisson's ratio materials for doors and windows |
US12098790B2 (en) | 2022-11-04 | 2024-09-24 | Joon Bu Park | Plumbing connectors with negative Poisson's ratio material coating |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242186A (en) * | 1960-07-13 | 1966-03-22 | Polaroid Corp | 2, 5-dihydroxytriptycyl compounds and processes for their syntheses |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4687732A (en) | 1983-06-10 | 1987-08-18 | Yale University | Visualization polymers and their application to diagnostic medicine |
US4992302A (en) | 1985-10-10 | 1991-02-12 | Quantex Corporation | Process for making photoluminescent materials |
WO1989000593A1 (en) | 1987-07-16 | 1989-01-26 | Memtec Limited | Porous membranes of interpenetrating polymer networks |
US4927768A (en) | 1988-06-29 | 1990-05-22 | Uop | Grown crystalline sensor and method for sensing |
US4946890A (en) * | 1988-08-11 | 1990-08-07 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Novel ladder polymers for use as high temperature stable resins or coatings |
US5252743A (en) | 1989-11-13 | 1993-10-12 | Affymax Technologies N.V. | Spatially-addressable immobilization of anti-ligands on surfaces |
US5194393A (en) | 1989-11-21 | 1993-03-16 | Bayar Aktiengesellschaft | Optical biosensor and method of use |
US5111618A (en) | 1989-12-11 | 1992-05-12 | Ardco, Inc. | Refrigerator door assembly with stylized substantially all glass front |
FI91573C (en) | 1990-01-04 | 1994-07-11 | Neste Oy | Ways of producing electronic and electro-optical components and circuits |
US5723218A (en) | 1990-04-16 | 1998-03-03 | Molecular Probes, Inc. | Dipyrrometheneboron difluoride labeled flourescent microparticles |
US5244813A (en) | 1991-01-25 | 1993-09-14 | Trustees Of Tufts College | Fiber optic sensor, apparatus, and methods for detecting an organic analyte in a fluid or vapor sample |
DE4121139B4 (en) | 1991-06-26 | 2004-12-09 | Ticona Gmbh | Process for the preparation of polyarylene ethers and their use |
DE4121138A1 (en) | 1991-06-26 | 1993-01-07 | Hoechst Ag | Polyarylene ether(s) with high glass transition pt. and good melt processability - contain units derived from aromatic di:halide(s), triptycene bisphenol(s) and opt. other di:hydric phenol(s) |
US5254633A (en) | 1991-07-10 | 1993-10-19 | Allied Signal Inc. | Process for the preparation of conductive polymer blends |
US5869592A (en) | 1991-08-19 | 1999-02-09 | Maxdem Incorporated | Macromonomers having reactive side groups |
US5155149A (en) | 1991-10-10 | 1992-10-13 | Boc Health Care, Inc. | Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds |
DE69231853T2 (en) | 1991-11-07 | 2001-09-13 | Nanotronics, Inc. | HYBRIDIZING POLYNUCLEOTIDS CONJUGED WITH CHROMOPHORES AND FLUOROPHORS TO GENERATE A DONOR-TO-DONOR ENERGY TRANSFER SYSTEM |
JP3455217B2 (en) | 1992-02-13 | 2003-10-14 | バイオ−メトリック システムズ インコーポレイテッド | Immobilization of chemical species in crosslinked matrix |
US5607864A (en) | 1992-04-07 | 1997-03-04 | Societe Prolabo | Fluorescent latices having very low detection thresholds for fluorescent emission |
US5236808A (en) | 1992-04-13 | 1993-08-17 | E. I. Du Pont De Nemours And Company | Visible photosensitizers for photopolymerizable compositions |
US5580527A (en) | 1992-05-18 | 1996-12-03 | Moltech Corporation | Polymeric luminophores for sensing of oxygen |
EP0581058A1 (en) | 1992-07-08 | 1994-02-02 | Hoechst Aktiengesellschaft | Polyaryl ether films |
DK0653066T3 (en) | 1992-07-31 | 1998-09-23 | Dade Behring Marburg Gmbh | Photoactivatable chemiluminescent matrices |
DE9215344U1 (en) | 1992-11-11 | 1994-03-24 | A.W. Faber-Castell Unternehmensverwaltung GmbH & Co, 90547 Stein | Solid mine |
US5414069A (en) | 1993-02-01 | 1995-05-09 | Polaroid Corporation | Electroluminescent polymers, processes for their use, and electroluminescent devices containing these polymers |
US6160597A (en) | 1993-02-17 | 2000-12-12 | Rolic Ag | Optical component and method of manufacture |
BE1007071A3 (en) | 1993-04-28 | 1995-03-07 | Philips Electronics Nv | Optical systems. |
US5364797A (en) | 1993-05-20 | 1994-11-15 | Mobil Oil Corp. | Sensor device containing mesoporous crystalline material |
JP3534445B2 (en) | 1993-09-09 | 2004-06-07 | 隆一 山本 | EL device using polythiophene |
US5556706A (en) | 1993-10-06 | 1996-09-17 | Matsushita Electric Industrial Co., Ltd. | Conductive layered product and method of manufacturing the same |
US5597890A (en) | 1993-11-01 | 1997-01-28 | Research Corporation Technologies, Inc. | Conjugated polymer exciplexes and applications thereof |
US5700696A (en) | 1993-11-08 | 1997-12-23 | Lucent Technologies Inc. | Method for preparation of conjugated arylene or heteroarylene vinylene polymer and device including same |
US5591578A (en) | 1993-12-10 | 1997-01-07 | California Institute Of Technology | Nucleic acid mediated electron transfer |
WO1995016681A1 (en) | 1993-12-14 | 1995-06-22 | The Trustees Of The University Of Pennsylvania | Derivatized polythiophenes and devices comprising same |
US5511547A (en) | 1994-02-16 | 1996-04-30 | Biomedical Sensors, Ltd. | Solid state sensors |
FI95574C (en) | 1994-02-16 | 1996-02-26 | Valtion Teknillinen | Electron-conducting molecular preparations |
US5679773A (en) | 1995-01-17 | 1997-10-21 | Affymax Technologies N.V | Reagants and methods for immobilized polymer synthesis and display |
DE4424817A1 (en) | 1994-07-14 | 1996-01-18 | Basf Ag | Cross-linked polymer particles with fluorescent dye |
US5512490A (en) | 1994-08-11 | 1996-04-30 | Trustees Of Tufts College | Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns |
US5506420A (en) | 1994-09-14 | 1996-04-09 | The Regents Of The University Of California | Semiconductor bio-electronic devices incorporating biochemical stabilization layers |
US5629353A (en) * | 1995-05-22 | 1997-05-13 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
DE19744792A1 (en) | 1997-10-10 | 1999-04-15 | Hoechst Ag | Triptycene derivatives for use in electroluminescent devices |
DE19806037A1 (en) | 1998-02-13 | 1999-08-19 | Aventis Res & Tech Gmbh & Co | Electroluminescent polymers and copolymers of triptycene structure |
ATE261483T1 (en) * | 1998-05-05 | 2004-03-15 | Massachusetts Inst Technology | LIGHT EMITTING POLYMERS AND DEVICES CONTAINING SAME |
US6259277B1 (en) | 1998-07-27 | 2001-07-10 | University Of South Carolina | Use of molecular electrostatic potential to process electronic signals |
EP1011154B1 (en) * | 1998-12-15 | 2010-04-21 | Sony Deutschland GmbH | Polyimide layer comprising functional material, device employing the same and method of manufacturing same device |
AU2001285220A1 (en) * | 2000-08-21 | 2002-03-04 | Massachusetts Institute Of Technology | Polymers with high internal free volume |
-
2001
- 2001-08-21 AU AU2001285220A patent/AU2001285220A1/en not_active Abandoned
- 2001-08-21 JP JP2002521557A patent/JP2004506791A/en active Pending
- 2001-08-21 EP EP01964356A patent/EP1313785B1/en not_active Expired - Lifetime
- 2001-08-21 AT AT01964356T patent/ATE427333T1/en not_active IP Right Cessation
- 2001-08-21 US US09/935,060 patent/US6783814B2/en not_active Expired - Lifetime
- 2001-08-21 WO PCT/US2001/026293 patent/WO2002016463A2/en active Application Filing
- 2001-08-21 DE DE60138196T patent/DE60138196D1/en not_active Expired - Lifetime
-
2004
- 2004-01-26 US US10/764,768 patent/US7494698B2/en not_active Expired - Lifetime
-
2007
- 2007-07-23 US US11/880,868 patent/US20080188634A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20020150697A1 (en) | 2002-10-17 |
US20080188634A1 (en) | 2008-08-07 |
US6783814B2 (en) | 2004-08-31 |
WO2002016463A2 (en) | 2002-02-28 |
WO2002016463A3 (en) | 2002-08-01 |
DE60138196D1 (en) | 2009-05-14 |
US20040170775A1 (en) | 2004-09-02 |
ATE427333T1 (en) | 2009-04-15 |
JP2004506791A (en) | 2004-03-04 |
EP1313785B1 (en) | 2009-04-01 |
US7494698B2 (en) | 2009-02-24 |
EP1313785A2 (en) | 2003-05-28 |
WO2002016463A9 (en) | 2003-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2001285220A1 (en) | Polymers with high internal free volume | |
Lavrenova et al. | Mechano-and thermoresponsive photoluminescent supramolecular polymer | |
Li et al. | Self-assembly of triangular and hexagonal molecular necklaces | |
Jeon et al. | Supramolecular amphiphiles: spontaneous formation of vesicles triggered by formation of a charge‐transfer complex in a host | |
Kim et al. | Highly emissive conjugated polymer excimers | |
Shen et al. | Iron alkynyl helicenes: redox‐triggered chiroptical tuning in the IR and near‐IR spectral regions and suitable for telecommunications applications | |
Sarkar et al. | Nonlinear optical properties of dehydrobenzo [18] annulenes: expanded two-dimensional dipolar and octupolar NLO chromophores | |
Ansari et al. | Triptycene-derived photoresponsive fluorescent azo-polymer as chemosensor for picric acid detection | |
Fu et al. | A polycyclic aromatic hydrocarbon diradical with pH-responsive magnetic properties | |
Wang et al. | An injectable interpenetrating polymer network hydrogel with tunable mechanical properties and self‐healing abilities | |
Wu et al. | Molecular clips form isostructural dimeric aggregates from benzene to water | |
Rawat et al. | Study of antimicrobial and antioxidant activities of pyrrole-chalcones | |
Amemiya et al. | Hetero-double-helix formation by an ethynylhelicene oligomer possessing perfluorooctyl side chains | |
Allen et al. | Thermal and photooxidation of high styrene–butadiene copolymer (SBC) | |
Ma et al. | Macrocycle γ-cyclodextrin confined polymeric chromophore ultralong phosphorescence energy transfer | |
Huang et al. | Mechanochromic polymers based on mechanophores | |
Wakamiya et al. | 1, 2-dithiin annelated with bicyclo [2.2. 2] octene frameworks. One-electron and two-electron oxidations and formation of a novel 2, 3, 5, 6-tetrathiabicyclo [2.2. 2] oct-7-ene radical cation with remarkable stability owing to a strong transannular interaction | |
DE60002175D1 (en) | NAPHTOPYRANS AND PHENANTROPYRANS ANNELELIZED TO C5-C6 WITH A BIZYCLISHE GROUP, AND THESE COMPOSITIONS AND (CO) POLYMERS MATRIXES | |
Scott | Cyclic homoconjugation in neutral organic molecules | |
Pan et al. | Supramolecular chiral j-aggregates of an amphiphilic boron-azadipyrromethene dye: kinetic pathway and circularly polarized near-infrared luminescence | |
Yin et al. | Internal Dynamics and Modular Peripheral Binding in Stimuli‐Responsive 3: 2 Host: Guest Complexes | |
Iuliano et al. | Chromogenic properties of p-Pyridinium-and p-Viologen-Calixarenes and their cation-sensing abilities | |
Aly et al. | Thieno [2, 3‐d] pyrimidines in the Synthesis of Antitumor and Antioxidant Agents | |
She et al. | Sensor for nitrophenol based on a fluorescent molecular clip | |
Kanbara et al. | Palladium‐catalyzed modification of poly (p‐bromostyrene) with carbazole and related heteroarenes containing an N H bond and their properties |