AU2001284191A1 - Transdermal pharmaceutical delivery composition - Google Patents
Transdermal pharmaceutical delivery compositionInfo
- Publication number
- AU2001284191A1 AU2001284191A1 AU2001284191A AU2001284191A AU2001284191A1 AU 2001284191 A1 AU2001284191 A1 AU 2001284191A1 AU 2001284191 A AU2001284191 A AU 2001284191A AU 2001284191 A AU2001284191 A AU 2001284191A AU 2001284191 A1 AU2001284191 A1 AU 2001284191A1
- Authority
- AU
- Australia
- Prior art keywords
- nitrite
- pharmacologically acceptable
- composition
- pharmaceutically active
- active agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims description 45
- 238000011282 treatment Methods 0.000 claims description 53
- -1 nitrite ions Chemical class 0.000 claims description 41
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 33
- 239000012528 membrane Substances 0.000 claims description 32
- 230000036407 pain Effects 0.000 claims description 29
- 230000003444 anaesthetic effect Effects 0.000 claims description 27
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 26
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 claims description 26
- 239000013543 active substance Substances 0.000 claims description 25
- 239000003814 drug Substances 0.000 claims description 25
- 239000002535 acidifier Substances 0.000 claims description 22
- 229960004194 lidocaine Drugs 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 206010002091 Anaesthesia Diseases 0.000 claims description 18
- 230000037005 anaesthesia Effects 0.000 claims description 18
- 238000001949 anaesthesia Methods 0.000 claims description 18
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 15
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 13
- 229960002372 tetracaine Drugs 0.000 claims description 12
- 239000011668 ascorbic acid Substances 0.000 claims description 11
- 235000010323 ascorbic acid Nutrition 0.000 claims description 11
- 229960005070 ascorbic acid Drugs 0.000 claims description 11
- 238000002360 preparation method Methods 0.000 claims description 11
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 10
- 150000007524 organic acids Chemical group 0.000 claims description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 229960003920 cocaine Drugs 0.000 claims description 7
- 229940072358 xylocaine Drugs 0.000 claims description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims description 6
- ZKMNUMMKYBVTFN-HNNXBMFYSA-N (S)-ropivacaine Chemical compound CCCN1CCCC[C@H]1C(=O)NC1=C(C)C=CC=C1C ZKMNUMMKYBVTFN-HNNXBMFYSA-N 0.000 claims description 5
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 claims description 5
- 229960005274 benzocaine Drugs 0.000 claims description 5
- 229960003150 bupivacaine Drugs 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 claims description 5
- 229960001807 prilocaine Drugs 0.000 claims description 5
- 229960001549 ropivacaine Drugs 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 claims description 3
- 229940088597 hormone Drugs 0.000 claims description 3
- 239000005556 hormone Substances 0.000 claims description 3
- 239000003018 immunosuppressive agent Substances 0.000 claims description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims description 3
- 229960004889 salicylic acid Drugs 0.000 claims description 3
- 150000003431 steroids Chemical class 0.000 claims description 3
- 230000000202 analgesic effect Effects 0.000 claims description 2
- 239000003085 diluting agent Substances 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 81
- 210000003491 skin Anatomy 0.000 description 58
- 239000000499 gel Substances 0.000 description 55
- 210000004379 membrane Anatomy 0.000 description 27
- 230000000694 effects Effects 0.000 description 19
- 239000000902 placebo Substances 0.000 description 19
- 229940068196 placebo Drugs 0.000 description 19
- 210000000245 forearm Anatomy 0.000 description 18
- 230000004044 response Effects 0.000 description 18
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 18
- 230000000699 topical effect Effects 0.000 description 16
- 238000009792 diffusion process Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 229940079593 drug Drugs 0.000 description 13
- 238000013186 photoplethysmography Methods 0.000 description 13
- 239000006071 cream Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000017531 blood circulation Effects 0.000 description 9
- 230000004907 flux Effects 0.000 description 9
- 206010015150 Erythema Diseases 0.000 description 8
- 235000010288 sodium nitrite Nutrition 0.000 description 8
- 231100000321 erythema Toxicity 0.000 description 7
- 239000002674 ointment Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229940124549 vasodilator Drugs 0.000 description 7
- 239000003071 vasodilator agent Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000011835 investigation Methods 0.000 description 6
- 230000008336 microcirculatory blood flow Effects 0.000 description 6
- 239000008177 pharmaceutical agent Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 230000001755 vocal effect Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000002459 sustained effect Effects 0.000 description 5
- 230000024883 vasodilation Effects 0.000 description 5
- 210000003462 vein Anatomy 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 210000003414 extremity Anatomy 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000008274 jelly Substances 0.000 description 4
- 229960005015 local anesthetics Drugs 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000011200 topical administration Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 206010047163 Vasospasm Diseases 0.000 description 3
- 206010052428 Wound Diseases 0.000 description 3
- 229940124326 anaesthetic agent Drugs 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 210000001142 back Anatomy 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 210000004243 sweat Anatomy 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000037317 transdermal delivery Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 206010002758 Anticipatory anxiety Diseases 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- 206010062016 Immunosuppression Diseases 0.000 description 2
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 108010025915 Nitrite Reductases Proteins 0.000 description 2
- 206010033664 Panic attack Diseases 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 208000012322 Raynaud phenomenon Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229960004106 citric acid Drugs 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000012953 feeding on blood of other organism Effects 0.000 description 2
- 210000003780 hair follicle Anatomy 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- 230000001506 immunosuppresive effect Effects 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 230000001861 immunosuppressant effect Effects 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229940005654 nitrite ion Drugs 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000037324 pain perception Effects 0.000 description 2
- 208000019906 panic disease Diseases 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 230000000391 smoking effect Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 231100000057 systemic toxicity Toxicity 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 description 1
- 229930000680 A04AD01 - Scopolamine Natural products 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 208000004881 Amebiasis Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010001980 Amoebiasis Diseases 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010013700 Drug hypersensitivity Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 238000000729 Fisher's exact test Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 208000018522 Gastrointestinal disease Diseases 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 208000006968 Helminthiasis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000583175 Homo sapiens Prolactin-inducible protein Proteins 0.000 description 1
- STECJAGHUSJQJN-GAUPFVANSA-N Hyoscine Natural products C1([C@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-GAUPFVANSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 208000004554 Leishmaniasis Diseases 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 238000001347 McNemar's test Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- STECJAGHUSJQJN-UHFFFAOYSA-N N-Methyl-scopolamin Natural products C1C(C2C3O2)N(C)C3CC1OC(=O)C(CO)C1=CC=CC=C1 STECJAGHUSJQJN-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 1
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 208000008469 Peptic Ulcer Diseases 0.000 description 1
- 206010034912 Phobia Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 102100030350 Prolactin-inducible protein Human genes 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 208000003782 Raynaud disease Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- YBCVMFKXIKNREZ-UHFFFAOYSA-N acoh acetic acid Chemical compound CC(O)=O.CC(O)=O YBCVMFKXIKNREZ-UHFFFAOYSA-N 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 159000000013 aluminium salts Chemical class 0.000 description 1
- 230000036592 analgesia Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 230000004872 arterial blood pressure Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Inorganic materials [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RFVVBBUVWAIIBT-UHFFFAOYSA-N beryllium nitrate Inorganic materials [Be+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O RFVVBBUVWAIIBT-UHFFFAOYSA-N 0.000 description 1
- 229960003403 betaine hydrochloride Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Inorganic materials [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- HOPSCVCBEOCPJZ-UHFFFAOYSA-N carboxymethyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC(O)=O HOPSCVCBEOCPJZ-UHFFFAOYSA-N 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 208000015114 central nervous system disease Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 229960002303 citric acid monohydrate Drugs 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229960002896 clonidine Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000000736 corneocyte Anatomy 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000004207 dermis Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 201000005311 drug allergy Diseases 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002124 endocrine Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 206010015037 epilepsy Diseases 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 201000006592 giardiasis Diseases 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 239000003163 gonadal steroid hormone Substances 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000008309 hydrophilic cream Substances 0.000 description 1
- 208000020346 hyperlipoproteinemia Diseases 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000003093 intracellular space Anatomy 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 description 1
- 229960000201 isosorbide dinitrate Drugs 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- FJQXCDYVZAHXNS-UHFFFAOYSA-N methadone hydrochloride Chemical compound Cl.C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 FJQXCDYVZAHXNS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 description 1
- 229960002237 metoprolol Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000035407 negative regulation of cell proliferation Effects 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229960002085 oxycodone Drugs 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 230000036281 parasite infection Effects 0.000 description 1
- 208000014837 parasitic helminthiasis infectious disease Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- SONNWYBIRXJNDC-VIFPVBQESA-N phenylephrine Chemical compound CNC[C@H](O)C1=CC=CC(O)=C1 SONNWYBIRXJNDC-VIFPVBQESA-N 0.000 description 1
- 229960001802 phenylephrine Drugs 0.000 description 1
- 208000019899 phobic disease Diseases 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 1
- 208000028172 protozoa infectious disease Diseases 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- RTHYXYOJKHGZJT-UHFFFAOYSA-N rubidium nitrate Inorganic materials [Rb+].[O-][N+]([O-])=O RTHYXYOJKHGZJT-UHFFFAOYSA-N 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- STECJAGHUSJQJN-FWXGHANASA-N scopolamine Chemical compound C1([C@@H](CO)C(=O)O[C@H]2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-FWXGHANASA-N 0.000 description 1
- 229960002646 scopolamine Drugs 0.000 description 1
- 210000001732 sebaceous gland Anatomy 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008326 skin blood flow Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Inorganic materials [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 206010042772 syncope Diseases 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000035488 systolic blood pressure Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- BWMISRWJRUSYEX-SZKNIZGXSA-N terbinafine hydrochloride Chemical compound Cl.C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 BWMISRWJRUSYEX-SZKNIZGXSA-N 0.000 description 1
- 229960000351 terfenadine Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 201000004647 tinea pedis Diseases 0.000 description 1
- 229940100611 topical cream Drugs 0.000 description 1
- 229940100615 topical ointment Drugs 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 201000002311 trypanosomiasis Diseases 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 230000002455 vasospastic effect Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229960001722 verapamil Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Description
TRANSDERMAL PHARMACEUTICAL DELIVERY COMPOSITION
The present invention relates to a new composition for transdermal delivery of topically applied pharmaceutical preparations. The system comprises the use of the pharmaceutical agent and acidified nitrite contained within a delivery system to allow passage of both the specific pharmaceutical agent and nitric oxide to the skin.
The penetration of substances through the skin is important from both toxicological and therapeutic viewpoints. Passive delivery of most compounds across different epithelia is limited due to the excellent barrier properties afforded by these epithelia. The stratum corneum is the principal barrier to penetration of most chemicals. Conventional topical delivery systems are therefore restricted to either substances for local effects or to highly potent, small, lipophilic substances for systemic effects. It is also difficult to deliver ionic and high-molecular-weight drugs in therapeutically sufficient amounts by conventional systems.
By way of example, many medical and surgical procedures require topical anaesthesia. The use of local anaesthetics requires an agent possessing the following general properties. It should not be irritating to the tissue to which it is applied, nor should it cause any permanent damage to nerve structure. Its systemic toxicity should be low because it is eventually absorbed from its site of administration. It is usually important that the time required for the onset of anaesthesia should be as short as possible. Furthermore, the action must last long enough to allow time for the contemplated medical or surgical intervention, yet not so long as to entail an extended period of recovery (J. Murdoch Ritchie & N. M. Greene Local
Anaesthetics in Goodman & Gilman's: The Pharmacological Basis of Therapeutics, pages 311-331 , McGraw-Hill Inc, (1992)) .
Local anaesthetics are rapidly absorbed into the circulation following topical administration to mucous membranes or denuded skin. It is extremely useful in achieving loss of sensation in a subject without the loss of consciousness, or the impairment of central control of vital functions. Typical uses, include minor
invasive procedures such as venepuncture, e.g. for the collection of blood for diagnostic purposes from a patient, for the administration of therapeutic agents, whole blood or blood plasma to a patient, or prior to the administration of a general anaesthetic to a patient. However, it is a common feature among patients that the pain of injection can cause discomfort and in certain cases a patient, in particular juvenile subjects, can experience acute anxiety or panic brought on by the sight of a needle or of the injection itself. Such panic attacks can be characterised by fainting, vomiting or other related symptoms. Whether the adverse reaction is pain or a panic attack, the problem leads to poor patient compliance with advisable medical procedures. There exists a need therefore for improved local anaesthetic compositions that can overcome these problems.
Intact, healthy human skin presents an excellent natural barrier to the external environment and restricts the passive diffusion of pharmaceuticals. Local anaesthetics do not readily penetrate intact skin (McCafferty et al Br J Anaesth 60, pages 64-69
(1988)).
The insertion of a needle through the skin, for procedures such as phlebotomy or vaccination, is painful and may induce great fear and anxiety especially in children and the elderly. Painful experiences lead to reduced compliance, with heightened anticipatory anxiety and fear. The introduction of topically-applied cutaneous anaesthetic preparations such as EMLA™ (Eutectic Mixture of Local Anaesthetics) , cream [Astra Pharmaceuticals Ltd.] (Arts et al Pediatrics 93, pages 797-801 (1994)) and more recently Ametop gel™ [Smith & Nephew Healthcare Ltd.] (Freeman et al Paediatr Anaesth 3, pages 129-138 (1993)), represented a definite advance in clinical practice and are contributing to breaking the cycle of "needle phobia".
Studies of the effects of these preparations have produced variable results (Molodecka et al Br J Anaesth 72, pages 174-176 (1994); Lawson et al Br J Anaesth 75, pages 282-285 (1995)). However, relatively slow onset times (EMLA™ 60 - 90 minutes;
Ametop gel™ 30 - 45 minutes) remain a deterrent to widespread clinical and patient
acceptance with the need to organise clinic, ward and operating theatre routines accordingly. These methods are of no benefit in acute situations. Additionally, even following the manufacturer's recommendations for dosage and administration, potential exists for improvement in the degree of anaesthesia afforded by these treatments.
A percutaneous local anaesthetic with a more rapid onset time and increased potency would be helpful in organisational terms for emergency cases, community medicine and for an increasing number of paediatric medical and surgical day cases. Shortening of the period of anticipatory anxiety while achieving the maximal desensitising of the skin would clearly be clinically advantageous.
Nitric oxide [NO] is a potent vasodilator synthesised and released by vascular endothelial cells and plays an important role in regulating vascular local resistance and blood flow (Palmer et al Nature 327, pages 524-6 (1987)). In mammalian cells, NO is produced along with L-citrulline by the enzymatic oxidation of L-arginine. Nitric oxide is also involved in the inhibition of both platelet and leukocyte aggregation and adhesion, the inhibition of cell proliferation, the scavenging of superoxide radicals and the modulation of endothelial layer permeability. Nitric oxide also has been shown to possess anti-microbial properties, reviewed by F. C. Fang (1997) (J. Clin. Invest. 99 (12) 2818-2825 (1997)).
A potential therapeutic utility of the anti-microbial properties of NO is described in WO 95/22335. A pharmaceutical composition comprising nitrite in an inert carrier cream or ointment and salicylic acid was used to show killing of cultures containing E. coli and C. albicans. This activity was further tested against patients with fungal infection of the feet ("Athlete's Foot" or Tidea pedis) and showed that the condition was amenable to treatment with the acidified nitrite composition. However, the composition of nitrite and organic acid caused erythema (redness) of the skin.
In addition to internal cell-mediated production, NO is also continually released externally from the surface of the skin by a mechanism, which appears to be
independent of NO synthase enzyme. Nitrate excreted in sweat is reduced to nitrite by an unknown mechanism, which may involve nitrite reductase enzymes, which are expressed by skin commensal bacteria. Alternatively mammalian nitrite reductase enzymes may be present in the skin which could reduce nitrite rapidly to NO on the skin surface (Weller et al J Invest Dermatol 107, pages 327-331 (1996)).
The production of NO from nitrite is believed to be through the following mechanism:
NO2 " + H+ o HNO2 [1]
2HNO2 => N2O3 + H2O [2]
N2O3 <^ NO + NO2 [3]
Topical application of a sodium nitrite/ascorbic acid NO-generating system causes significant increases in skin blood flow in patients with Raynaud's disease and in normal healthy subjects without causing local irritation (Tucker et al Lancet 354(9191): 1670-5 (1999); Harwick et al Clinical Science 100, pages 395-400 (2001)). The reaction can be terminated within a few seconds by gentle wiping of the skin with a tissue.
It has now been found that an improved delivery system for pharmaceutically active agents by topical application to the skin can be prepared from a suitable drug and a source of nitrite ions in an inert carrier cream or ointment when mixed with an organic acid such as ascorbic acid. The source of nitrite ions and the organic acid react to produce oxides of nitrogen to cause sustained vasodilation of the microcirculatory blood vessels, without significant inflammation. This new use for acidified compositions containing nitrite is a departure from the previously known uses of the composition as an anti-microbial agent. The side-effects of erythema associated with the treatment of fungal infections of the foot had been considered to suggest that the composition should not be used on broken skin or away from sites of infection needing immediate, short term therapeutic treatment. Additionally, the
skin on the foot is significantly thicker and tougher than elsewhere on the mammalian body and so can endure more prolonged erythema than other thinner areas of skin elsewhere. Furthermore, there is a widespread and generally accepted medical prejudice against inserting ointments or gels into open wounds or onto broken skin. Such practice is advised against because of the risk of actually causing infection or blood poisoning. The administration of a pharmaceutical or pharmaceuticals using this system has advantages over previous modes of administration.
This system overcomes the limitations associated with conventional transdermal pharmaceutical application and is feasible for ionisable, hydrophilic and higher molecular weight compounds. The pharmaceuticals enter the skin through intracellular spaces and specialised tissues such as eccrine and apocrine sweat ducts and hair follicles with sebaceous glands.
The system depends upon several variables in addition to factors, which affect the skin uptake of drugs during passive diffusion. These include vehicle pH, ionic strength, transport number of ions and water, drug conductivity, solute concentration and skin impedance.
With reference to systemically active compounds, trans-dermal delivery has several advantages, particularly avoidance of gastrointestinal incomparability and hepatic "first-pass" effect. Additionally, the nitric oxide induced vasodilation of the skin microcirculation significantly enhances percutaneous absorption of the pharmaceutical agent in to the systemic circulation.
According to a first aspect of the invention there is provided a composition comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore.
The pharmaceutically active agent may comprise any suitable drug or combination of
drugs to treat a disease in a patient. The agent may be immediately active in the form administered or may become active in the body of the patient following administration, such as for example through hydrolysis or by the action of an endogenous enzyme. In principle, any pharmaceutically active substance can be administered using this delivery system.
Therapeutically, the novel system facilitates the delivery of a wide number of systemically active substances. Active substances include, but are not limited to, antibiotics, hormones, proteins, peptides, proteogylcans, nucleotides, oligonucleotides (such as DNA, RNA, etc.), vitamins, minerals, growth factors, non-steroidal anti-inflammatory drugs (NSAIDs). In a preferred embodiment, the delivery system of the present invention can be used to deliver anaesthetic, analgesic, hormone, immunosuppressant or steroid formulations. Other pharmaceutical agents include, but are not limited to, analgesic agents such as ibuprofen, indomethacin, diclofenac, acetylsalicylic acid, paracetamol, propranolol, metoprolol, oxycodone, thyroid releasing hormone, sex hormones such as oestrogen, progesterone and testosterone, insulin, verapamil, vasopressin, hydrocortisone, scopolamine, nitroglycerine, Isosorbide dinitrate, anti-histamines (such as terfenadine), clonidine and nicotine, immunosuppressant drugs (such as cyclosporin), steroids.
The anaesthetic can be any appropriate anaesthetic for local anaesthesia and can be provided in aqueous or powdered form, for example, amethocaine (tetracaine), lignocaine (lidocaine), xylocaine, bupivacaine, prilocaine, ropivacaine, benzocaine, mepivocaine or cocaine, or a mixture thereof, preferably in the hydrochloride form. The general concentration range is around 1 to 4% w/w, although greater or lesser amounts can be empirically determined by a physician. Suitably preferred concentrations are tetracaine (0.01 to 10% w/w, suitably 1 to 8% w/w, preferably 2% w/w), lidocaine (0.01 to 10% w/w, suitably 1 to 8% w/w, preferably 5% w/w) and cocaine (1 to 4% w/w). Generally accepted safe dosages of such compounds for topical anaesthesia in a healthy 70 kg-adult are 750 mg for lidocaine, 200 mg for cocaine, and 50 mg for tetracaine. Other suitable anaesthetics are within the competence of the medical practitioner and can also be used in the composition of
the present invention at the relevant concentrations.
Prior art methods of improving local anaesthesia have suggested the use of low concentrations of vasoconstrictors, such as phenylephrine (0.005%). However, the compositions of the present invention utilise a previously unknown property of an acidified nitrite composition to produce NO, a vasodilator , which accelerates the transfer of anaesthetic into the dermis. The combination of the NO-generating system and anaesthetic will promote patient compliance of venepuncture and bloodletting techniques by reducing the pain experienced during the procedure.
The choice of pharmaceutically active agent may be determined by its suitability for the treatment regimen of the disease or medical condition concerned and reference can be made to standard reference works such as Mάrtindale, the Merck Index, Goodman & Gilman's "The pharmacological basis of therapeutics" , eighth edition (1992), McGraw Hill.
The pharmacologically acceptable acidifying agent is adapted to reduce the pH at the site of application and can include any suitable organic acid. For example, the organic acid can be a (CrC6) alkyl carboxylic acid, a (C6-Cι0) aryl (CrC6) carboxylic acid.
As used herein, the term "(C,-C6) alkyl" refers to straight chain or branched chain hydrocarbon groups having from one to six carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl and hexyl. The term "(C6-C10) aryl" includes phenyl and naphthyl.
According to Martindale The Extra Pharmacopoeia, 28th edition (1982), pharmaceutically acceptable acidifying agents can include: dilute hydrochloric acid, betaine hydrochloride, acetic acid, citric acid, citric acid monohydrate, fumaric acid, lactic acid, maleic acid, malic acid, tartaric acid
Other acceptable acidifying agents, include but are not limited to, hexose or pentose
sugar molecules substituted with a (CrC6) carboxyl' group, or furanolactone or pyranolactone molecules substituted with a (CrC6) carboxyl group.
Preferred acidifying agents, include, but are not limited to, ascorbic acid (vitamin C), salicylic acid, acetyl salicylic acid, a (CrC6) alkyl carboxylic acid, for example ethanoic acid (acetic acid), citric acid, or a salt, or a derivative thereof in a concentration up to 20% w/w, suitably 0.25 to 10% w/w, preferably 4 to 6% w/w. A particularly preferred concentration is 4% or 5% w/w. The preferred pH range is from pH2 to pH7, preferably pH4. Other acidifying agents include but are not limited to, ammonium or aluminium salts, (C6-C10) aryl compounds such as phenol, benzoic acid or derivatives thereof. Inorganic acids such as hydrochloric acid may be used if sufficient dilute and/or appropriately buffered. The acidifying agent may be present as a dissolved salt or in a liquid form.
The pharmacologically acceptable source of nitrite ions may an alkaline metal nitrite or an alkaline earth metal nitrite. For example, LiNO2, NaNO2, KNO2, RbNO2, CsNO2, FrNO2, Be(NO2)2, Mg(NO2)2, Ca(NO2)2, Sr(NO2)2, Ba(NO2)2, or Ra(NO2)2. Alternatively, a nitrite precursor may be used as the source of the nitrite ions in the composition, such as for example a dilute solution of nitrous acid. Other sources of nitrite ions are nitrate ions derived from alkali metal or alkaline earth metal salts capable of enzymic conversion to nitrite. For example, LiNO3, NaNO3, KNO3, RbNO3, CsNO3, FrNO3, Be(NO3)2, Mg(NO3)2, Ca(NO3)2, Sr(NO3)2, Ba(NO3)2, or Ra(NO3)2. The concentration of the nitrate ion source may be up to 20% w/w, suitably 0.25 to 10%, preferably 4 to 6%. A particularly preferred concentration is 4% or 5% w/w.
Suitably, the final nitrite ion concentration present in the composition is up to 20% w/w, generally in the range of from 0.25% to 15% w/w, suitably 2% to 10% w/w, preferably 4 to 6% w/w. A particularly preferred nitrite ion concentration is 4% or 5% w/w.
In the preparation of an agent according to this aspect of the invention, the
pharmaceutically active agent, the acidifying agent and the nitrite ions or source therefore are formulated in a pharmacologically acceptable carrier or diluent which may be an inert cream or ointment. In a particular preferred form of the invention the pharmaceutically active agent, the acidifying agent and the source of nitrite ions or precursor therefore are separately disposed in the said cream or ointment for admixture to release ions at the environment of use.
The pharmaceutical composition may be adapted for administration by any appropriate topical route, including buccal, sublingual or transdermal. Such compositions may be. prepared by any method known in the art of pharmacy, for example by admixing the active ingredient with the carrier(s) or excipient(s) under sterile conditions.
Pharmaceutical compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. For example, the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research, 3(6):318 (1986).
Pharmaceutical compositions adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols or oils. For treatment of the eye or other external tissues, for example mouth and skin, the compositions are preferably applied as a topical ointment or cream. When formulated in an ointment, the active ingredient may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredient may be formulated in a cream with an oil-in-water cream base or a water-in-oil base. Pharmaceutical compositions adapted for topical administration to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent. Pharmaceutical compositions adapted for topical administration in the mouth include lozenges, pastilles and mouth washes.
The pharmaceutical compositions may contain preserving agents, solubilising agents, stabilising agents, wetting agents, emulsifiers, sweeteners, colourants, odourants, salts
(substances of the present invention may themselves be provided in the form of a pharmaceutically acceptable salt), buffers, coating agents or antioxidants. They may also contain therapeutically active agents in addition to the substance of the present invention.
Dosages of the substance of the present invention can vary between wide limits, depending upon the disease or disorder to be treated, the age and condition of the individual to be treated, etc. and a physician will ultimately determine appropriate dosages to be used.
This dosage may be repeated as often as appropriate. If side effects develop the amount and/or frequency of the dosage can be reduced, in accordance with normal clinical practice.
Such compositions may be formulated for human or for veterinary medicine. The present application should be interpreted as applying equally to humans as well as to animals, unless the context clearly implies otherwise.
According to a second aspect of the invention there is provide the use of a composition as defined above in medicine. In a third aspect of the invention, there is provided the use of a pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore in the preparation of an agent for the treatment of a disease or medical condition. The medical condition can include local anaesthesia, immunosuppression, e.g. to prevent transplant rejection. Diseases suitable for treatment using the delivery system of the present invention, include but are not limited to cardio-vascular diseases, neurological diseases or disease of the central nervous system, (e.g. multiple sclerosis, Parkinsons' Disease), epilepsy, psychiatric disorders (e.g. schizophrenia), inflammation (e.g. rheumatoid arthritis, osteoarthritis, asthma, gout), in particular topical inflammation, hypertension, arrhythmia, hyperlipoproteinemias, gastrointestinal disorders (e.g. peptic ulcers), kidney disease, parasite infections (e.g. protozoal infection, helminthiasis, amebiasis,
giardiasis, thichomoniasis, leishmaniasis, trypanosomiasis, malaria), microbial infection (e.g. yeast, fungus, bacteria), viral infection, cancer, immunosuppression, blood disorders (blood clots etc.), endocrine (e.g. hormonal) disorders (e.g. thyroid condition, hypoglycaemia), diabetes, dermatological disorders (e.g. psoriasis).
According to a fourth aspect of the invention there is provided a method for the local anaesthesia of the skin of a patient, comprising the administration of a composition comprising a anaesthetic, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore.
According to a fifth aspect of the invention there is provided a composition comprising an pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore as a combined preparation for simultaneous, separate or sequential use in treatment of a disease or medical condition defined above.
According to a sixth aspect of the invention there is provided a kit comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent and a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore for use as a combined preparation in the treatment of a disease or medical condition defined above.
According to a seventh aspect of the present invention there is provided a permeable membrane comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent and a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore. The membrane may be fully-, or partially- permeable, including semi-permeable, to the passage of nitric oxide. Such membranes can prevent direct contact of the composition with the skin but can permit diffusion of nitric oxides into the skin. This is particularly advantageous in the treatment of areas of broken skin, open wounds or serious burns. In this way the integrity of the wound area is preserved. Suitable membranes include, but are not limited to, polymeric materials such as nitrocellulose, cellulose, agarose,
polyethylene, polyester (for example hydrophilic polyester block copolymer) etc. A suitable membrane that can be used in practice in Sympatex™ which is composed of fibres of hydrophilic polyester block copolymer.
Preferred features for the second and subsequent aspects of the invention are as for the first aspect mutatis mutandis.
The invention will now be described, by way of illustration only with reference to the following examples and figures, which are provided for the purposes of illustration and are not to be construed as being limiting on the invention.
FIGURE 1 shows the effect of direct application and subsequent removal of the treatment on the microcirculatory blood flow in forearm skin and finger pulps of healthy subjects. The vertical axes are blood flow, photoplethysmography (PPG) relating to microcirculatory volume and laser
Doppler fluximetry (LDF) which relates relating to microcirculatory flux (red blood cell count x velocity). The horizontal axis is the time in minutes; NS = not significant; points shown represent the mean value; error bars are 95 % confidence; * = p <0.05; ** = p <0.01; *** = p< 0.001; t = application of gel, and - = removal of gel.
FIGURE 2 shows the effect of direct application and subsequent removal of the treatment on the microcirculatory blood flow in forearm skin and finger pulps of subjects with severe Raynaud's phenomenon. The vertical axes are blood flow, photoplethysmography (PPG) relating to microcirculatory volume and laser Doppler fluximetry (LDF) which relates to microcirculatory flux. The horizontal axis is the time in minutes.
FIGURE 3 shows nitric oxide diffusion through a selection of membranes where the vertical axis shows nitric oxide concentration and the horizontal axis in the time in minutes. FIGURE 3a shows the results using Saranwrap™ (SW-01) and FIGURE 3b shows the results using Clingfilm (CF-02).
FIGURE 4 shows the diffusion effect of the treatment through a membrane on the forearm skin microcirculatory blood flow in a healthy subject. The vertical axis is blood flow, photoplethysmography (PPG) relating to microcirculatory volume and the horizontal axis is the time in minutes.
FIGURE 5 shows the diffusion effect of the treatment through a membrane on forearm skin microcirculatory blood flow in a healthy subject. The vertical axis is blood flow, laser Doppler fluximetry (LDF) relating to microcirculatory flux and the horizontal axis is the time in minutes.
FIGURES 6 (a)-(i) show the transmembrane diffusion for sodium nitrite and ascorbic acid in 0.8% agar gel, using 1 % sodium chloride as an intermediate at final concentrations of 500mM, 250mM, 165mM, 50mM, 25mM, 5mM, 2.5mM and 0.5mM. A control of nitrite and 0.8% agar gel using 1 % sodium chloride as an intermediate was also used. The figure illustrates nitric oxide diffusion through Sympatex™ lOμm (Akzo Nobel) membrane where the vertical axis shows the nitric oxide concentration in parts per million (PPM) and the horizontal axis shows the time in minutes. In Figures 6(a) and 6(b) the initial peaks are artificially flattened due to the full scale deflection of the detection device.
FIGURE 7 shows the results of the application of nitric oxide generating gel consisting of 330mM of sodium nitrite and ascorbic acid in KY jelly™ to the forearm skin and simultaneously to Sympatex™ lOμm membrane (Akzo
Nobel), which was then applied to the forearm skin of the contralateral limb if nine healthy subjects. Conditions and experimental methods were the same as used for the application of the NO-generation gel on healthy subjects in Figures 1, 2, 4 and 5. The vertical axis shows Laser Doppler Fluxmetry units and the horizontal axis shows the time in minutes.
FIGURE 8 shows results of pain levels experienced by subjects using Verbal
Rating Score (VRS); values are categories (percentage); n=100; P<0.0001 [1] no pain; [2] minimal sensation; [3] mild pain; [4] moderate pain; [5] severe pain (including withdrawal of hand).
FIGURE 9 shows results of Visual Analogue Score (VAS); values are mean ±
95% CI; n= 100; P< 0.001.
Example 1: Microcirculatory response to topical application of NO-generating gel in healthy subjects A nitric oxide-generating gel (NO-generating gel) was prepared as follows. Sodium nitrite (Analar™ grade from Sigma, Poole, Dorset, UK) was added to KY Jelly™ (Johnson & Johnson) to make a 5% w/w solution. Ascorbic acid (Sigma) was also added to KY Jelly™ (Johnson & Johnson) to make a 5% w/w solution. Approximately 0.5ml of each solution was mixed together on the skin of a patient using a sterile swab. When the two solutions are brought into contact, the ensuing reaction leads to the generation of nitric oxide. The reaction may be stopped by cleaning the skin with paper or a swab soaked in ethyl alcohol.
With reference to Figure 1 the microcirculatory response to topical application of NO-generating gel was measured in 10 healthy subjects. The effect of placebo treatment was measured simultaneously on the contra-lateral limb. The skin microcirculatory volume was measured by infra-red photoplethysmography [PPG] and microcirculatory velocity by laser Doppler fluxmetry [LDF]. All examinations were performed in a quiet, draught-free, temperature and humidity controlled laboratory (24°C +1°C; relative humidity 30-40%) in the morning at approximately the same time of day for each subject.
Placebo treatment did not have any effect upon microcirculatory blood flow in either the forearm or the finger of the normal subjects. The vasodilator response to the active treatment reached a plateau phase in all patients within the ten minutes of active gel application. Forearm skin and finger pulp blood flow increased markedly following topical application of a NO-generating gel in the healthy volunteers.
When the active gel was applied to the forearm skin all subjects showed a large vasodilator response to active gel treatment in both volume and flux. This increase in blood flow was sustained after removal of the active gel. The active gel had no significant effect on finger microcirculatory volume (PPG) (Figure 1 : Finger pulp), however microcirculatory flux increased significantly (p<0.01) and remained so after removal (p <0.01; Figure 1 : Finger pulp).
Example 2: Microcirculatory response to topical application of NO-generating gel in patients with severe primary vasospasm Figure 2 shows the microcirculatory response to topical application of NO- generating gel was measured in 20 patients with severe primary vasospasm. The effect of the placebo treatment was measured simultaneously on the contra-lateral limb. Conditions were the same as those used for the application of the treatment on healthy subjects in Figure 1. The skin microcirculatory volume was measured by infra-red photoplethysmography [PPG] and microcirculatory velocity by laser
Doppler fluxmetry [LDF].
Placebo treatment did not have any effect upon microcirculatory blood flow in either the forearm or the finger of any patients. The vasodilator response to the active treatment reached a plateau phase in all patients within ten minutes of the application of active gel. When the gel was applied to the forearm skin all patients showed a large vasodilator response to active gel treatment in both volume and flux. This increase in blood flow was sustained after removal of the active gel in both groups (Figure 2 : Forearm and finger pulp). The active gel to the finger pulp caused a significant increase in microcirculatory volume (p <0.05) which returned rapidly to the resting level on removal of the gel. Active gel also significantly increased finger microcirculatory flux (p<0.01) which achieved normal values. This increase was sustained, although reduced, after removal of the gel (p <0.05).
< Example 3: Generation of nitric oxide derived through a membrane
Figure 3 shows the generation of nitric oxide derived from the reaction previously detailed through a membrane. Nitric oxide concentrations were measured by a nitric
oxide sensitive meter : Model 42C Chenήluminescence NO-NO2-NOx analyser (Thermo Environmental Instruments Inc. , MA USA) connected to a data acquisition system and IBM computer. Measurements were made continually and readings were taken every 10 seconds for 275 minutes. Material 1 was domestic Clingfilm, Material 2 was Saranwrap™ (Sigma) and Material 3 was (Sympatex™, Akzo Nobel).
Example 4: Microcirculatory response of the application of NO-generating gel to three differing membrane materials
Figure 4 shows the microcirculatory response of the application of NO-generating gel to three differing membranes which were then applied to the forearm skin of a healthy subject. Conditions were the same as those used for the application of the treatment upon healthy subjects in Figure 1. The skin microcirculatory volume was measured by infra-red photoplethysmography [PPG]. Material 1 was domestic Clingfilm, Material 2 was Saranwrap™ (Sigma) and Material 3 was (Sympatex™, Akzo Nobel).
The increase in microcirculatory blood volume is a reflection of the diffusion of nitric oxide through the membrane towards the skin. The transfer of nitric oxide through the membrane is a reflection of the physical characteristics of the material and is highly variable. Material number 3 (Sympatex™, Akzo Nobel) had a superior diffusion profile.
Example 5: Microcirculatory response of the application of NO-generating gel to three differing membrane materials Figure 5 shows the microcirculatory response of the application of NO-generating gel to three differing membranes which were then applied to the forearm skin of a healthy subject. Conditions were the same as those used for the application of the treatment on healthy subjects in Figure 1. The skin microcirculatory velocity was measured by laser Doppler fluxmetry [LDF].
The increase in microcirculatory velocity is a reflection of the diffusion of nitric oxide through the membrane towards the skin. The transfer the nitric oxide through
the membrane is a reflection of the physical characteristics of the material and is highly variable. Material number 3 (Sympatex™, Akzo Nobel) had a superior diffusion profile.
Example 6: Comparison of nitric oxide generation through a membrane
Figure 6 shows the generation of nitric oxide derived from the reaction described above through a lOμm Sympatex™ membrane. Nitric oxide concentrations were measured by a nitric oxide sensitive meter: Model 42C chei luminescence NO-NO2- NOx analyser (Thermo Environmental Instrumental Inc., MA, USA) connected to a data acquisition system and an IBM computer. Measurements were made continually and readings were taken every 10 seconds for 1350 minutes.
The results shown in Figure 6 illustrate that the transmembrane diffusion coefficient is closely related to the production of nitric oxide, which is a direct product of the concentration of both the source of the nitrite ions and the acidifying agent.
Furthermore, the results demonstrate that a basal production of nitric oxide is sustained for a significant period of time after mixing the reagents.
Example 7: Microcirculatory response of the application of NO-generating gel The nitric oxide generating gel consisting of 330mM of both sodium nitrite and ascorbic acid in KY jelly™ was applied directly to the forearm skin and simultaneously to SympatexTM lOμm membrane (Akzo Nobel), which was then applied to the forearm skin of the contralateral limb if nine healthy subjects. Conditions and experimental methods were the same as used for the application of the NO-generation gel on healthy subjects in Figures 1, 2, 4 and 5. The results are shown in Figure 7. It should be noted that in Figure 7 that the concentrations of the admixture are in a different unit form (i.e. mM instead of %w/w). Laser Doppler Fluxmetry (LDF) measured the skin microcirculatory flux.
The statistically significant increase in microcirculatory flux from baseline was a reflection of the diffusion of nitric oxide through the membrane towards the skin. This vasodilation, indicated by LDF through the membrane ranged from 60-75%
(mean 64%) of that observed when the NO-generation gel was applied directly to the skin of the forearm. The results shown in Figure 7 support the observations described in Figure 1 which show that the vasodilator response to the direct treatment reached a plateau phase in all patients within 10 minutes of gel application. A plateau phase, although reduced in amplitude was achieved within 16 minutes when the NO-generation gel was applied to the membrane and reflects a lag phase which is related to membrane diffusion characteristics.
Example 8: Use of a combined percutaneous local anaesthetic and NO-generating system for venepuncture
The study was a placebo-controlled double blind trial. The effects of the active and placebo treatment were measured at the same time, applied to different hands. The pain response to cannulation of a dorsal hand vein with a 20G Butterfly™ needle was assessed in one hundred healthy volunteers. The nitric oxide generating system was prepared by mixing two viscous gels. The first was a solution of KY jelly™ and sodium nitrite (10% w/v) and the second KY jelly™ and ascorbic acid (10% w/v). This NO- generation gel was termed the placebo treatment, and when combined with lignocaine in aqueous cream to produce a final 5% anaesthetic concentration, active treatment. Approximately 2 ml of the gel mixtures were separately applied to the skin of the dorsum of the hands (3cm2) for ten minutes. Following successful cannulation pain perception was measured with a verbal rating score (VRS) and a visual analogue score (VAS).
Pilot studies of 2.5 - 5.0% xylocaine combined with the NO-generating gel applied to the ventral surface of the forearm and the dorsal surface of the hand suggested a significant level of local anaesthesia was achieved within 5-10 minutes as assessed by pin-prick and thermal sensitivity testing. Furthermore, application of xyolcaine directly to the skin failed to produce any discernible level of anaesthesia within 20 minutes. The anaesthetic used in these initial studies was xylocaine as it was readily available in a pharmaceutical form for mixing.
The aim of this study was to assess how the nitric oxide generating system previously investigated could be combined with lignocaine to decrease the time of onset and increase the effectiveness of percutaneous anaesthesia?
Materials and methods Subjects
The study was a placebo-controlled double blind controlled trial. One hundred healthy, normotensive volunteers were recruited. A medical history was taken including past medical illness, allergies, smoking, alcohol and consumption of other medically active substances. In a physical examination blood pressure, pulse rate and rhythm and signs of drug and alcohol abuse were also recorded.
Exclusion criteria included: analgesia within preceding 24-hour period; known hypersensitivity to anaesthetics; a history of drug allergy, eczema or psoriasis or with cracks or ulceration of the skin near the venepuncture/cannulation site; any significant concomitant disease; pregnancy or breast feeding; volunteers taking any medication with known or potential activity on the cardiovascular system or on blood rheology (for example aspirin or any other NSAID) and blood pressure > 160 mmHg systolic or > 100 mmHg diastolic.
The study was approved by the East London and City Health Authority Ethics Committee [ELCHA]. Participants were admitted to the investigation having been provided with a verbal and written explanation and signed a consent form.
Methods
The nitric oxide generating system was prepared by mixing two viscous solutions (A and B). Solution A was prepared in KY jelly™ [Johnson & Johnson Ltd.] a sterile lubricant, to which Analar™ grade sodium nitrite to make a 10% (w/v) gel in a sterile plastic specimen pot. Solution B was prepared by adding Analar grade ascorbic acid (vitamin C) to KY jelly™ to make a 10% (w/v) gel in a separate sterile plastic pot.
The NO-generation gel was termed the placebo treatment, and when further supplemented with lignocaine in aqueous cream to produce a final 5% anaesthetic concentration, active treatment. The NO-generating gel was used as a placebo treatment because topical application of this system results in a pronounced erythema, which would have prevented effective double blinding of the study. Fresh preparations of gels were prepared for each volunteer. Small quantities (approximately 2.0 ml containing 50 milligrams each of sodium nitrite and ascorbic acid) of active and placebo gel were separately applied to the dorsum of each hand over an area of 3cm2 and then mixed with a clean cotton bud. Randomisation was performed by computer generated allocation. The active treatment was applied to the dorsal surface of a randomly selected hand and the placebo treatment was simultaneously applied to the contralateral hand. Following 10 minutes of application both hands were cleaned prior to venepuncture.
A vein on each hand within the treatment area was then cannulated using a 20G butterfly needle, performed in accordance with guidelines detailed in the Royal Hospitals NHS Trust Code of Practice for Phlebotomy with reference to sterility, the risks of infection and contamination. The left hand was cannulated first, followed by the right. The success of cannulation will be recorded by the ability to withdrawal 1ml of venous blood. If blood was not obtained on the first attempt, then this was counted as a failed procedure and the patient excluded from the study. Following bilateral cannulation, each hand was be cleaned and dressed appropriately.
Efficacy measurements
Pain perception is subjective and difficult to measure * hence two outcome measures were used. The verbal rating score (VRS) and the visual analogue score (VAS) are well validated criteria (Bradley L.A., Arthr Care Res, 178-184 (1993); Woolfson et al Br J Clin Pharmacol 30 273-239 (1990)). Each assessment was made using a separate report form without visual reference to previous responses
Following successful bilateral cannulation, a VRS pain classification was used with reference first to the left hand, and than repeated for the right hand. The volunteer was asked the following question: "How strong was the pain of the procedure?" and provided with a choice of five answers: [1] No pain; [2] Minimal sensation; [3] Mild pain; [4] Moderate pain; [5] Severe pain (including withdrawal of hand). The volunteer selected one answer for each hand by circling the number.
Severity of pain was also assessed by a VAS, consisting of a 100 mm horizontal line with endpoints that are anchored by descriptors 'No Pain' and 'Severe Pain'. The VAS used with reference first to the left hand, and than the right hand. For each hand the Volunteer was asked the following question "What did the procedure feel like?" and then were requested to make a vertical line across the tramline, which represented the intensity or unpleasantness of his or her pain experienced by the procedure. Values were measured in millimetres from the left of the tramline.
The application of the gels to the volunteer, bilateral cannulation of the dorsal hand veins, and data recording were each performed blindly by separate investigators.
Study design and statistical analysis The number of patients required to obtain statistical power was difficult to calculate because of the lack of previous studies of this system. However, the uncontrolled pilot study allowed a preliminary power calculations and together with a literature search of similar investigations indicated that one hundred subjects would have an 80% power to detect a difference of 25 % in the primary outcome measures at p < 0.05. Additionally, assessment of one hundred subjects would reduce the influence of any variability of cannulation procedure.
All volunteers received both active and placebo treatment simultaneously. All analyses and summaries were performed using Microsoft Excel 5.0a and SPSS 6.1.3 commercially available statistical analysis packages. Comparisons were made between active and placebo treatment. The Verbal Rating Score was categorical / ordinal data, thus non-parametric analysis was used (Fisher's Exact test - an extension of
McNemar's test). The Visual Analogue Score data was an interval scale and showed normal distribution as confirmed by Ryan-Joiner probability plots. Therefore parametric analysis was performed using the 2-sample t-test. A P-value of less than 5% was taken to represent statistical significance.
Results
One hundred healthy volunteers were recruited to the study. The demographic data are summarised in Table 1. Additionally, of the one hundred subjects 83 were white European, 8 African/Caribbean, 7 Asian, and 2 Other (Turkish). Forty-four volunteers smoked an average of 5 cigarettes per day (range 1-30) and a further eight had ceased smoking for greater that one month. Eighty-seven volunteers consumed , an average of 14 units per week of alcohol (range 1-60 units).
The cannulation procedures were successfully completed at the first attempt for all one hundred volunteers. Tolerance and compliance was high for all subjects. There were no cases of hypersensitivity to either preparation nor adverse event to the investigation.
The verbal rating score (VRS) pain classification recorded significant differences in median scores (Figure 1). The active treatment (lignocaine + NO-generation system) resulted in a reduced pain response to cannulation than the placebo treatment (NO-generation system alone) (p < 0.001). However, seven subjects recorded category [4] Moderate pain for the active treatment representing failure of anaesthesia. Median VRS were similar between the sexes for active and placebo treatments.
The visual analogue score (VAS) were also significantly different between the two groups (Figure 2). The active treatment resulted in significantly less response to cannulation than the placebo treatment (p < 0.001). The active formulation produced a reduction in mean VAS pain score of 40.3%. There were no differences between male and female mean VAS pain scores for either treatment.
Table 1
Mean arterial blood pressure [MAP] was calculated as:
Systolic blood pressure - Diastolic blood pressure + Diastolic blood pressure
3
Findings Topical application of the NO-generating gel and lignocaine mixture significantly reduced the pain associated with venous cannulation. The formulation resulted in a decreased VRS (p < 0.0001) and produced a reduction in mean VAS of >40% compared to the placebo gel (P< 0.001).
Interpretation
This investigation suggests that topical application for ten minutes of the combination of anaesthetic with a nitric oxide-generation system may provided effective anaesthesia
for venous cannulation in adults. No adverse effects were reported with this treatment.
Discussion This study suggests that a ten-minute topical application of the combination of lignocaine with a nitric oxide-generation system may provide effective anaesthesia for venous cannulation of the dorsum of the hand in adults. These findings are important as cannulation of the dorsal hand vein is commonly described as a painful procedure in comparison to other anatomical regions. The degree of anaesthesia observed was achieved following only ten minutes of application. This is not the case for existing commercially available treatments.
The main route for a drug molecule penetrating the stratum cornuem is through the intercellular matrix while very limited drug penetration occurs via the intracellular corneocytes (Singh S, and Singh J. Med Res Rev 13(5), pages 569-621 (1993)). Additionally, drugs may enter the skin through specialised structures such as sweat ducts and hair follicles. The influence of the NO-generation system on the route of lignocaine transmission is unclear at this time and awaits elaboration, but may be related to increased cutaneous blood flow.
Although other investigators using EMLA™ and Ametop gel™ report variable levels of erythema dependent upon the duration of application (Arrowsmith J, and Campbell C. Arch Dis Child 82(4) pages 309-310 (2000)), clinical experience suggests that they do significantly effect the tone of the venous vessels. The nitric oxide component of this system results in an increase in luminal diameter (consequent to vasodilatation) and the apparent attenuation of vasospasm may assist in the cannulation of small, vasospastic or friable vessels.
A further observation in the treatment area with an associated increase in the colour contrast between the blue venous vessels and the red erythema of the skin. The delineated area of gel application facilitated the identification of the region of
treatment and targeting of the vein by the clinician. The erythema was transient in nature and was not associated with tissue oedema.
The ideal percutaneous local anaesthetic preparation will need to fulfil a number of requirements [a] To profoundly anaesthetise the skin surface and underlying tissues;
[b] Have a more rapid onset of action; [c] Increase vasodilation of venous vessels; [d] Have a prolonged duration of action; [e] Contain the minimum necessary concentration of local anaesthetic; [fj Produce no systemic toxicity; [g] Produce no significant local reactions; [h] Avoids sensitisation to future skin application. The formulation described in this study appears to have the potential to fulfil these criteria.
This investigation is a preliminary report. However, the findings of this study suggest that future studies are required to investigate the effects of anaesthetic type, formulation and concentration, duration of action and penetration depth, anatomical and physiological variation and comparisons with both EMLA™ and Ametop gel™. A further interesting possibility exists that the nitric oxide-generation gel may not be a true placebo and may in fact have some degree of anaesthetic effect (Redford et al Brain 120(12), pages 2149-2157 (1997); Sousa AM, and Prado WA., Brain Res 897(1-2), pages 9-19 (2001)). However, if demonstrated this effect would clearly add to the efficacy of the combined system as a topically-applied anaesthesia.
In summary, this investigation is believed to be the first to describe the addition of a primary pharmaceutical agent with a topically-applied nitric oxide generation system. The combined system may overcome the limitations associated with conventional transdermal drug application and be developed into a clinically useful transdermal delivery technology for a broad spectrum of pharmaceutical agents.
Claims (20)
1. A composition comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore.
2. A composition as claimed in claim 1, in which the pharmacologically acceptable source of nitrite ions is an alkaline metal nitrite or an alkaline earth metal nitrite.
3. A composition as claimed in claim 2, in which the nitrite concentration is up to 20 % , generally in the range of from 1 % to 15 % , preferably 2 % to 10 % .
4. A composition as claimed in any one of claims 1 to 3, in which the pharmaceutically active agent is an anaesthetic, an analgesic, a hormone, an immunosuppressant drug or a steroid.
5. A composition as claimed in any one of claims 1 to 4, in which the pharmacologically acceptable acidifying agent is an organic acid.
6. A composition as claimed in any one of claims 1 to 5, in which the organic acid is ascorbic acid, salicylic acid, acetyl salicylic acid, a (CrC6) alkyl carboxylic acid, citric acid, or a salt, or a derivative thereof.
7. A composition consisting of a pharmaceutically active agent, a pharmacologically acceptable organic acid, and an alkaline metal nitrite or an alkaline earth metal nitrite.
8. A pharmaceutical composition comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore, and an pharmacologically acceptable carrier or diluent.
9. A pharmaceutical composition consisting of a pharmaceutically active agent, a pharmacologically acceptable organic acid, and an alkaline metal nitrite or an alkaline earth metal nitrite.
10. The use of a composition as defined in any of claims 1 to 9 in medicine.
11. The use of an anaesthetic selected from the group consisting of amethocaine (tetracaine), lignocaine (lidocaine), xylocaine, bupivacaine, prilocaine, ropivacaine, benzocaine, mepivocame, cocaine or a mixture thereof, a pharmaceutically active agent, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore in the preparation of an agent for the treatment of pain.
12. A use as claimed in claim 11, in which the treatment of pain is local anaesthesia.
13. A method for the treatment of a disease in a patient, comprising the administration of a composition comprising a pharmaceutically active agent, a pphhaarrmmaaccoollooggiiccaallllyy aacccceeppttaabbllee aacciiddiifyfyiinngg aaggeenntt,, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore
14. A composition comprising an anaesthetic selected from the group consisting of amethocaine (tetracaine), lignocaine (lidocaine), xylocaine, bupivacaine, prilocaine, ropivacaine, benzocaine, mepivocaine, cocaine or a mixture thereof, a pharmacologically acceptable acidifying agent, a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore as a combined preparation for simultaneous, separate or sequential use in treatment of pain.
15. A kit of parts comprising an anaesthetic selected from the group consisting of amethocaine (tetracaine), lignocaine (lidocaine), xylocaine, bupivacaine, prilocaine, ropivacaine, benzocaine, mepivocaine, cocaine or a mixture thereof, a pharmacologically acceptable acidifying agent and a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore for treatment of pain.
16. A membrane comprising a pharmaceutically active agent, a pharmacologically acceptable acidifying agent and a pharmacologically acceptable source of nitrite ions or a nitrite precursor therefore.
17. A membrane composition consisting of a pharmaceutically active agent, a pharmacologically acceptable organic acid, and an alkaline metal nitrite or an alkaline earth metal nitrite.
18. The use of a membrane as defined in claim 16 or claim 17 in medicine.
19. A membrane as claimed in claim 16 or claim 17, in which the pharmaceutically active agent is an anaesthetic selected from the group consisting of amethocaine (tetracaine), lignocaine (lidocaine), xylocaine, bupivacaine, prilocaine, ropivacaine, benzocaine, mepivocaine, cocaine or a mixture thereof.
20. The use of a membrane as defined in claim 16 or claim 17 in local anaesthesia.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0021317.3A GB0021317D0 (en) | 2000-08-30 | 2000-08-30 | Transdermal pharmaceutical delivery composition |
GB0021317.3 | 2000-08-30 | ||
PCT/GB2001/003863 WO2002017881A2 (en) | 2000-08-30 | 2001-08-30 | Transdermal pharmaceutical delivery composition |
Publications (3)
Publication Number | Publication Date |
---|---|
AU2001284191C1 AU2001284191C1 (en) | 2002-03-13 |
AU2001284191A1 true AU2001284191A1 (en) | 2002-06-06 |
AU2001284191B2 AU2001284191B2 (en) | 2006-02-16 |
Family
ID=9898548
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001284191A Ceased AU2001284191B2 (en) | 2000-08-30 | 2001-08-30 | Transdermal pharmaceutical delivery composition |
AU8419101A Pending AU8419101A (en) | 2000-08-30 | 2001-08-30 | Transdermal pharmaceutical delivery composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU8419101A Pending AU8419101A (en) | 2000-08-30 | 2001-08-30 | Transdermal pharmaceutical delivery composition |
Country Status (9)
Country | Link |
---|---|
US (4) | US8128964B2 (en) |
EP (1) | EP1328252B1 (en) |
JP (1) | JP4869540B2 (en) |
AT (1) | ATE347879T1 (en) |
AU (2) | AU2001284191B2 (en) |
DE (1) | DE60125217T2 (en) |
ES (1) | ES2275716T3 (en) |
GB (1) | GB0021317D0 (en) |
WO (1) | WO2002017881A2 (en) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0021317D0 (en) * | 2000-08-30 | 2000-10-18 | Queen Mary & Westfield College | Transdermal pharmaceutical delivery composition |
WO2005004884A2 (en) | 2003-07-09 | 2005-01-20 | The Government Of The United States Of America As Represented By The Secretary, Department Of Health And Human Services | Use of nitrite salts for the treatment of cardiovascular conditions |
WO2006084911A2 (en) * | 2005-02-11 | 2006-08-17 | Nolabs Ab | Improved device for application of medicaments, manufacturing method therefor, and method of treatment |
WO2006125123A2 (en) * | 2005-05-19 | 2006-11-23 | University Of Cincinnati | Methods for treating bacterial respiratory tract infections in an individual using acidified nitrite |
US20090214618A1 (en) | 2005-05-27 | 2009-08-27 | Schoenfisch Mark H | Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications |
GB0607402D0 (en) | 2006-04-12 | 2006-05-24 | Barts & London Nhs Trust | Therapeutic composition and use |
US8445018B2 (en) * | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US8221690B2 (en) | 2007-10-30 | 2012-07-17 | The Invention Science Fund I, Llc | Systems and devices that utilize photolyzable nitric oxide donors |
US20110190604A1 (en) * | 2006-12-22 | 2011-08-04 | Hyde Roderick A | Nitric oxide sensors and systems |
US20090112197A1 (en) | 2007-10-30 | 2009-04-30 | Searete Llc | Devices configured to facilitate release of nitric oxide |
US8642093B2 (en) | 2007-10-30 | 2014-02-04 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US7862598B2 (en) * | 2007-10-30 | 2011-01-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US20090110933A1 (en) * | 2007-10-30 | 2009-04-30 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems and devices related to nitric oxide releasing materials |
WO2009055008A1 (en) * | 2007-10-24 | 2009-04-30 | Wharton Innovative Products, Llc | Two part lotion for the delivery of nitrite ions to the skin |
US8980332B2 (en) | 2007-10-30 | 2015-03-17 | The Invention Science Fund I, Llc | Methods and systems for use of photolyzable nitric oxide donors |
US8877508B2 (en) * | 2007-10-30 | 2014-11-04 | The Invention Science Fund I, Llc | Devices and systems that deliver nitric oxide |
US8349262B2 (en) | 2007-10-30 | 2013-01-08 | The Invention Science Fund I, Llc | Nitric oxide permeable housings |
US10080823B2 (en) | 2007-10-30 | 2018-09-25 | Gearbox Llc | Substrates for nitric oxide releasing devices |
US7897399B2 (en) | 2007-10-30 | 2011-03-01 | The Invention Science Fund I, Llc | Nitric oxide sensors and systems |
US8303995B1 (en) * | 2008-06-13 | 2012-11-06 | Board Of Regents, The University Of Texas System | Nitrite formulations and their use as nitric oxide prodrugs |
CN102209627B (en) * | 2008-10-02 | 2013-11-06 | 迈兰公司 | Method of making a multilayer adhesive laminate |
EP2334279A4 (en) * | 2008-10-16 | 2013-03-20 | Novan Inc | Nitric oxide releasing particles for oral care applications |
GB0901456D0 (en) * | 2009-01-29 | 2009-03-11 | Insense Ltd | Treatment of psoriasis |
EP4249001A3 (en) | 2009-08-21 | 2023-11-29 | Novan, Inc. | Topical gels |
BR112012003804B1 (en) | 2009-08-21 | 2019-02-19 | Novan, Inc. | Wound Dressing, Method to Form an Injury Dressing, and Wound Dressing Kit |
WO2011047013A1 (en) * | 2009-10-13 | 2011-04-21 | Novan, Inc. | Nitric oxide-releasing coatings |
RU2445918C1 (en) * | 2010-07-15 | 2012-03-27 | Федеральное государственное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный университет | Noninvasive diagnostic technique for abnormal lymphatic and venous vessels of lower extremities |
DK2533773T3 (en) | 2010-10-21 | 2015-11-30 | Kipax Ab | TOPICAL DERMAL delivery device for delivering nitric oxide |
US8591876B2 (en) | 2010-12-15 | 2013-11-26 | Novan, Inc. | Methods of decreasing sebum production in the skin |
WO2012118829A2 (en) | 2011-02-28 | 2012-09-07 | Novan, Inc. | Tertiary s-nitrosothiol-modified nitricoxide-releasing xerogels and methods of using the same |
EP2691087A2 (en) | 2011-03-31 | 2014-02-05 | László Gábor Szabó | Pharmaceutical composition containing no, process for the preparation and use thereof |
MX388990B (en) * | 2011-08-17 | 2025-03-20 | Univ Texas | METHOD OF PRODUCING PHYSIOLOGICAL AND THERAPEUTIC LEVELS OF NITRIC OXIDE BY MEANS OF AN ORAL DELIVERY SYSTEM. |
MX365818B (en) | 2011-11-23 | 2019-05-30 | Therapeuticsmd Inc | Natural combination hormone replacement formulations and therapies. |
US9301920B2 (en) | 2012-06-18 | 2016-04-05 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
US10806740B2 (en) | 2012-06-18 | 2020-10-20 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
US20150196640A1 (en) | 2012-06-18 | 2015-07-16 | Therapeuticsmd, Inc. | Progesterone formulations having a desirable pk profile |
US10806697B2 (en) | 2012-12-21 | 2020-10-20 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US20130338122A1 (en) | 2012-06-18 | 2013-12-19 | Therapeuticsmd, Inc. | Transdermal hormone replacement therapies |
US11246875B2 (en) | 2012-12-21 | 2022-02-15 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10471072B2 (en) | 2012-12-21 | 2019-11-12 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US11266661B2 (en) | 2012-12-21 | 2022-03-08 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10537581B2 (en) | 2012-12-21 | 2020-01-21 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US10568891B2 (en) | 2012-12-21 | 2020-02-25 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
US9180091B2 (en) | 2012-12-21 | 2015-11-10 | Therapeuticsmd, Inc. | Soluble estradiol capsule for vaginal insertion |
US10517817B2 (en) * | 2013-05-09 | 2019-12-31 | Syk Technologies, Llc | Deep topical systemic nitric oxide therapy apparatus and method |
GB201309092D0 (en) * | 2013-05-20 | 2013-07-03 | Edixomed Ltd | Transdermal delivery system |
GB201309091D0 (en) | 2013-05-20 | 2013-07-03 | Edixomed Ltd | Dressing system |
EP3099358B1 (en) * | 2014-01-31 | 2018-12-12 | Galderma S.A. | Lubrication of an injection needle |
EP3145489A1 (en) | 2014-05-22 | 2017-03-29 | TherapeuticsMD, Inc. | Natural combination hormone replacement formulations and therapies |
CN106659675B (en) | 2014-07-11 | 2023-07-04 | 诺万公司 | Topical antiviral compositions and methods of use thereof |
US10322082B2 (en) | 2014-07-11 | 2019-06-18 | Novan, Inc. | Topical antiviral compositions and methods of using the same |
WO2016010988A1 (en) | 2014-07-14 | 2016-01-21 | Novan, Inc. | Nitric oxide releasing nail coating compositions, nitric oxide releasing nail coatings, and methods of using the same |
GB201420761D0 (en) | 2014-11-21 | 2015-01-07 | Edixomed Ltd And First Water Ltd | Dressing system |
US10328087B2 (en) | 2015-07-23 | 2019-06-25 | Therapeuticsmd, Inc. | Formulations for solubilizing hormones |
WO2017019614A1 (en) | 2015-07-28 | 2017-02-02 | Novan, Inc. | Combinations and methods for the treatment and/or prevention of fungal infections |
GB201520990D0 (en) | 2015-11-27 | 2016-01-13 | Edixomed Ltd | Dressing system |
DK3407900T3 (en) | 2016-01-27 | 2024-04-02 | Syk Tech Llc | Apparatus for topical application of nitrous oxide and methods |
WO2017173044A1 (en) | 2016-04-01 | 2017-10-05 | Therapeuticsmd Inc. | Steroid hormone compositions in medium chain oils |
US9931349B2 (en) | 2016-04-01 | 2018-04-03 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical composition |
US10231961B1 (en) | 2017-02-07 | 2019-03-19 | Genus Lifesciences Inc. | Pharmaceutical compositions and methods of using the same |
US10413505B1 (en) | 2017-02-07 | 2019-09-17 | Genus Lifesciences Inc. | Pharmaceutical compositions and methods of using the same |
US10149843B1 (en) | 2017-02-07 | 2018-12-11 | Gneus Lifescineces Inc. | Pharmaceutical compositions and methods of using the same |
BR112021023832A8 (en) * | 2019-06-04 | 2023-02-28 | Thirty Holdings Ltd | METHODS AND COMPOSITIONS FOR THE GENERATION OF NITRIC OXIDE AND USES THEREOF |
CN114126629B (en) | 2019-06-04 | 2024-08-30 | 三十呼吸有限公司 | Methods and compositions for generating nitric oxide and use thereof for delivering nitric oxide via the respiratory tract |
US11633405B2 (en) | 2020-02-07 | 2023-04-25 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical formulations |
BR112022021436A2 (en) | 2020-04-23 | 2023-01-17 | Thirty Respiratory Ltd | METHODS AND COMPOSITIONS FOR TREATMENT AND COMBATING TUBERCULOSIS |
CA3180857A1 (en) | 2020-04-23 | 2021-10-28 | Thirty Respiratory Limited | Nitric oxide or nitric oxide releasing compositions for use in treating sars-cov and sars-cov-2 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58913A (en) * | 1981-06-26 | 1983-01-06 | Nitto Electric Ind Co Ltd | Pharmaceutical preparation for topical application |
RO92445B1 (en) * | 1985-08-12 | 1987-10-01 | Ludovic L. Elthes | Medicinal ointment with antiinflammatory, healing and epithelium-forming effect |
US5719197A (en) * | 1988-03-04 | 1998-02-17 | Noven Pharmaceuticals, Inc. | Compositions and methods for topical administration of pharmaceutically active agents |
JPH07108849B2 (en) | 1991-02-08 | 1995-11-22 | 奈良炭化工業株式会社 | Plant growth agent for foliar application |
US5264219A (en) * | 1992-08-07 | 1993-11-23 | Minnesota Mining And Manufacturing Company | Transdermal drug delivery backing |
US5891846A (en) * | 1994-02-17 | 1999-04-06 | Shiseido Company, Ltd. | Cyclosporin-containing emulsion composition |
GB9804469D0 (en) | 1998-03-02 | 1998-04-29 | Univ Aberdeen | Antiviral composition |
DK0746327T3 (en) | 1994-02-21 | 2004-05-10 | Univ Aberdeen | Acidified nitrite as an antimicrobial agent |
US5648101A (en) | 1994-11-14 | 1997-07-15 | Tawashi; Rashad | Drug delivery of nitric oxide |
SE9700617D0 (en) * | 1997-02-21 | 1997-02-21 | Kjell Alving | New composition |
US5968547A (en) * | 1997-02-24 | 1999-10-19 | Euro-Celtique, S.A. | Method of providing sustained analgesia with buprenorphine |
US5900249A (en) * | 1998-02-09 | 1999-05-04 | Smith; David J. | Multicomponent pain relief topical medication |
US6103275A (en) * | 1998-06-10 | 2000-08-15 | Nitric Oxide Solutions | Systems and methods for topical treatment with nitric oxide |
GB0021317D0 (en) * | 2000-08-30 | 2000-10-18 | Queen Mary & Westfield College | Transdermal pharmaceutical delivery composition |
-
2000
- 2000-08-30 GB GBGB0021317.3A patent/GB0021317D0/en not_active Ceased
-
2001
- 2001-08-30 DE DE60125217T patent/DE60125217T2/en not_active Expired - Lifetime
- 2001-08-30 AU AU2001284191A patent/AU2001284191B2/en not_active Ceased
- 2001-08-30 WO PCT/GB2001/003863 patent/WO2002017881A2/en active IP Right Grant
- 2001-08-30 US US10/363,439 patent/US8128964B2/en not_active Expired - Fee Related
- 2001-08-30 ES ES01963158T patent/ES2275716T3/en not_active Expired - Lifetime
- 2001-08-30 EP EP01963158A patent/EP1328252B1/en not_active Expired - Lifetime
- 2001-08-30 AU AU8419101A patent/AU8419101A/en active Pending
- 2001-08-30 AT AT01963158T patent/ATE347879T1/en not_active IP Right Cessation
- 2001-08-30 JP JP2002522855A patent/JP4869540B2/en not_active Expired - Fee Related
-
2008
- 2008-09-03 US US12/231,555 patent/US8114442B2/en not_active Expired - Fee Related
-
2012
- 2012-01-27 US US13/360,601 patent/US20120183595A1/en not_active Abandoned
-
2013
- 2013-07-03 US US13/935,070 patent/US20140187481A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1328252B1 (en) | Transdermal pharmaceutical delivery composition | |
AU2001284191A1 (en) | Transdermal pharmaceutical delivery composition | |
EP1161248B1 (en) | Pharmaceutical composition containing nitrate source and an acidifying agent for treating open wound and burns | |
US9717680B2 (en) | Topical systems and methods for treating sexual dysfunction | |
US5993836A (en) | Topical anesthetic formulation | |
JP2953625B2 (en) | Method for reducing skin irritation associated with drug / penetration enhancing compositions | |
US7033998B2 (en) | Alcohol-free transdermal insulin composition and processes for manufacture and use thereof | |
JPH02104516A (en) | Method for accelerating penetration ratio of penetration accelerating drug component and active drug penetrating agent | |
US20050142218A1 (en) | Pharmaceutical composition containing nitrate source and an acidifying agent for treating skin ischaemia | |
EP2349337A1 (en) | Formulations for the treatment of acute herpes zoster pain | |
US5889039A (en) | Topical composition for fungal treatment | |
US7291591B2 (en) | Alcohol-free transdermal insulin composition | |
Giordano et al. | Local anesthesia: evidence, strategies, and safety | |
EP1318801B1 (en) | Topical analgesic compositions containing aliphatic polyamines and methods of using same | |
WO2000030630A1 (en) | Combination products of a guanylate cyclase inhibitor and a local anesthetic for pain relief | |
US5622942A (en) | Percutaneous absorptive anesthetic | |
Tucker et al. | Study of a combined percutaneous local anaesthetic and nitric oxide‐generating system for venepuncture | |
JPH0399023A (en) | Transdermal absorption enhancers and transdermal preparations using the same | |
JP2014019697A (en) | Antifungal external composition and application method of antifungal external composition |