AU2001261689A1 - Electrically conducting nanocomposite materials for biomedical applications - Google Patents
Electrically conducting nanocomposite materials for biomedical applicationsInfo
- Publication number
- AU2001261689A1 AU2001261689A1 AU2001261689A AU6168901A AU2001261689A1 AU 2001261689 A1 AU2001261689 A1 AU 2001261689A1 AU 2001261689 A AU2001261689 A AU 2001261689A AU 6168901 A AU6168901 A AU 6168901A AU 2001261689 A1 AU2001261689 A1 AU 2001261689A1
- Authority
- AU
- Australia
- Prior art keywords
- electrically conducting
- ceramic
- nanocomposite according
- biocompatible
- nanoscale
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002114 nanocomposite Substances 0.000 title claims description 33
- 239000000463 material Substances 0.000 title description 10
- 230000000638 stimulation Effects 0.000 claims description 48
- 210000000963 osteoblast Anatomy 0.000 claims description 46
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 33
- 239000000919 ceramic Substances 0.000 claims description 32
- 239000002041 carbon nanotube Substances 0.000 claims description 27
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 27
- 239000002131 composite material Substances 0.000 claims description 23
- 239000002086 nanomaterial Substances 0.000 claims description 22
- 229920000249 biocompatible polymer Polymers 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 16
- 239000004626 polylactic acid Substances 0.000 claims description 15
- 239000007943 implant Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 230000035755 proliferation Effects 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000002070 nanowire Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 239000002071 nanotube Substances 0.000 claims description 5
- 239000004053 dental implant Substances 0.000 claims description 4
- 230000002708 enhancing effect Effects 0.000 claims description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 3
- 230000005672 electromagnetic field Effects 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 description 23
- 210000004027 cell Anatomy 0.000 description 20
- 229920001577 copolymer Polymers 0.000 description 19
- -1 for example Polymers 0.000 description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 14
- 229910052791 calcium Inorganic materials 0.000 description 14
- 239000011575 calcium Substances 0.000 description 14
- 230000014509 gene expression Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 8
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 8
- 210000002744 extracellular matrix Anatomy 0.000 description 8
- 108090000573 Osteocalcin Proteins 0.000 description 7
- 102000004264 Osteopontin Human genes 0.000 description 7
- 108010081689 Osteopontin Proteins 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 108010022452 Collagen Type I Proteins 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 102000004067 Osteocalcin Human genes 0.000 description 6
- 102000009890 Osteonectin Human genes 0.000 description 6
- 108010077077 Osteonectin Proteins 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004113 cell culture Methods 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 210000002997 osteoclast Anatomy 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 102000012422 Collagen Type I Human genes 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 5
- 102000018251 Hypoxanthine Phosphoribosyltransferase Human genes 0.000 description 5
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 229940096422 collagen type i Drugs 0.000 description 5
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 4
- 108010035042 Osteoprotegerin Proteins 0.000 description 4
- 102000008108 Osteoprotegerin Human genes 0.000 description 4
- 229920000954 Polyglycolide Polymers 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 4
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 4
- 230000011164 ossification Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003827 upregulation Effects 0.000 description 4
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229920001397 Poly-beta-hydroxybutyrate Polymers 0.000 description 3
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 3
- 229920003232 aliphatic polyester Polymers 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920001432 poly(L-lactide) Polymers 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 208000010392 Bone Fractures Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 102000016921 Integrin-Binding Sialoprotein Human genes 0.000 description 2
- 108010028750 Integrin-Binding Sialoprotein Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000002805 bone matrix Anatomy 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000117 poly(dioxanone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920006216 polyvinyl aromatic Polymers 0.000 description 2
- 229920001291 polyvinyl halide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 102100031475 Osteocalcin Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- REKYPYSUBKSCAT-UHFFFAOYSA-N beta-hydroxyvaleric acid Natural products CCC(O)CC(O)=O REKYPYSUBKSCAT-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910001576 calcium mineral Inorganic materials 0.000 description 1
- QXJJQWWVWRCVQT-UHFFFAOYSA-K calcium;sodium;phosphate Chemical compound [Na+].[Ca+2].[O-]P([O-])([O-])=O QXJJQWWVWRCVQT-UHFFFAOYSA-K 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical class OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000033667 organ regeneration Effects 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000001582 osteoblastic effect Effects 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical class OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 230000009772 tissue formation Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0003—Not used, see subgroups
- A61C8/0004—Consolidating natural teeth
- A61C8/0006—Periodontal tissue or bone regeneration
- A61C8/0007—Stimulation of growth around implant by electrical means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/443—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with carbon fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/446—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/3094—Designing or manufacturing processes
- A61F2/30965—Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2821—Bone stimulation by electromagnetic fields or electric current for enhancing ossification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30062—(bio)absorbable, biodegradable, bioerodable, (bio)resorbable, resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00161—Carbon; Graphite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00203—Ceramics or ceramic-like structures based on metal oxides containing alumina or aluminium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00215—Ceramics or ceramic-like structures based on metal oxides containing silica or silicon oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00227—Ceramics or ceramic-like structures based on metal oxides containing titania or titanium oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00185—Ceramics or ceramic-like structures based on metal oxides
- A61F2310/00239—Ceramics or ceramic-like structures based on metal oxides containing zirconia or zirconium oxide ZrO2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00263—Ceramics or ceramic-like structures based on metal borides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00269—Ceramics or ceramic-like structures based on metal carbides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00269—Ceramics or ceramic-like structures based on metal carbides
- A61F2310/00281—Ceramics or ceramic-like structures based on metal carbides containing silicon carbide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00293—Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00299—Ceramics or ceramic-like structures based on metal nitrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00179—Ceramics or ceramic-like structures
- A61F2310/00299—Ceramics or ceramic-like structures based on metal nitrides
- A61F2310/00317—Ceramics or ceramic-like structures based on metal nitrides containing silicon nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Dermatology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Inorganic Chemistry (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Developmental Biology & Embryology (AREA)
- Dentistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Materials For Medical Uses (AREA)
- Conductive Materials (AREA)
Description
ELECTRICALLY CONDUCTING NANOCOMPOSITE MATERIALS FOR BIOMEDICAL APPLICATIONS
BACKGROUND OF THE INVENTION
[0001] Electrical stimulation has been explored as a treatment for damaged bone tissue since shortly after the discovery in the late 1950's of the presence of electrical potentials in mechanically loaded bone. Various animal models have provided evidence that electrical stimulation enhances bone healing. For example, increased new bone formation was reported when electric currents of 5 - 20 μA were applied continuously to osteotomies in animal models for 14 days [Friedenburg et al. "Bone Reaction to Varying Amounts of Direct Current" Gynecological Obstetrics 131. 894-899 (1970)]; however, the mechanisms behind these events are still not fully understood.
[0002] Typically, electric current (such as the direct current electrical stimulation used in animal studies) has been delivered to bone through metal (specifically, stainless steel, platinum, and titanium) electrodes. At the end of the treatment process, after bone repair had occurred, the implanted metal electrodes were removed from the site of newly healed bone tissue via a surgical procedure. Risk of complications of the surgery, such as infection at the site of implantation and damage to the newly formed bone tissue (especially when the metal electrode had integrated and/or bonded to the apposing bone tissue) is a major disadvantage of this approach. A second disadvantage is the limited extent to which the electrical stimulus could be delivered to damaged bone; new bone formation occurred only near the electrode tip and did not encompass the extent of the damaged and/or fractured bone tissue.
[0003] In addition to implanted metal electrodes, some isolated attempts for delivering electrical stimulation to cultured cells and to animal extremities have been made; however, due to (at best) partial success, these methodologies were neither pursued further nor widely implemented. Capacitively coupled electric fields, while suitable for delivering electrical current to cultured cells, have had limited use in larger animal models due to the high (in excess of 1 ,000 volts) voltages that accompany the increase in plate gap distance required to accommodate the limbs of larger animals. Conversely, direct current electrical stimulation, while adequate for in vivo applications, has shortcomings in vitro arising from accumulation of charged chemical compounds (contained within the supernatant media) on the electrodes used to expose cultured cells to the electrical current; buildup of proteins on the electrodes leads to decreases in the magnitude of the electrical stimulus and, consequently, limits the effectiveness of this method for bone healing purposes.
[0004] For these reasons, use of electrical stimulation to treat bone fractures in clinical applications has been limited. There is, therefore, a need for methodologies utilizing new current-conducting material formulations.
[0005] Careful design of biomaterials is important to improve biomedical implant success rates and biorepair capability. The materials for these implants require special properties that enhance their biocompatibility (specifically, attachment, proliferation and specialized functions of cells), and that also exhibit and/or enhance their desirable mechanical and biophysical (such as electrical, piezoelectric, and magnetic) properties. There is, therefore, a need for new biomaterials that improve cytocompatibility and improve specific cell functions.
SUMMARY OF THE INVENTION
[0006] It has been unexpectedly discovered that electrically conducting nanocomposites according to the present invention can improve cytocompatibility and improve specific cell functions. A nanoscale material is defined herein as any material having at least one dimension in the nanoscale range. The nanoscale range begins at about the diameter of an atom, which is generally greater than 0.1 nm, and ends at about 100 nm. Preferably, the nanoscale range begins at about 0.5-1 nm.
[0007] Accordingly, the present invention relates to an electrically conducting nanocomposite that includes an electrically conducting nanoscale material and a biocompatible polymer and/or a biocompatible ceramic. The electrically conducting nanoscale material may be a carbon nanotube, an inorganic nanotube, a metal nanowire, a ceramic nanowire, a composite nanowire, a metal nanofilament, a ceramic nanofilament, a composite nanofilament or a combination thereof; in particular, it may be a carbon nanotube. Where the electrically conducting nanocomposite includes a nanoscale electrically conducting material and a biocompatible polymer, the polymer may be biodegradable or nonbiodegradable. In some cases, a preferred biocompatible polymer is biodegradable; in particular, the polymer may be polylactic acid. A useful electrically conducting nanocomposite includes carbon nanotubes and polylactic acid. Where the electrically conducting nanocomposite includes a nanoscale electrically conducting material and a biocompatible ceramic, the ceramic may have a grain size of 1-100 nm. In particular, the ceramic may be alumina, titania or hydroxyapatite.
[0008] In another aspect, the invention relates to a method for enhancing osteoblast proliferation on a surface of 2-dimensional substrate or inside a 3-dimensional scaffold of an electrically conducting orthopaedic/dental implant. The method includes contacting the implant with osteoblasts, and passing an electric current through the implant; whereby the osteoblasts are exposed to electrical stimulation. In particular, the electric current may be an alternating current.
DETAILED DESCRIPTION OF THE INVENTION
[0009] An electrically conducting nanocomposite according to the present invention comprises an electrically conducting nanoscale material, and at least one of a biocompatible polymer or a biocompatible ceramic. The electrically conducting nanoscale material may be a carbon nanotube, an inorganic nanotube, a metal nanowire, a ceramic nanowire, a composite nanowire, a metal nanofilament, a ceramic nanofilament, a composite nanofilament or a combination thereof. In particular, the electrically conducting nanoscale material may be a carbon nanotube. The biocompatible polymer may be any cytocompatible, or biocompatible polymer. It is preferably bioabsorbable and/or bioerodable, and is also non-toxic, non-carcinogenic, and causes no adverse immunologic response. Representative useful materials include: polyfumarates; polylactides; polyglycolides; polycaprolactones; polyanhydrides; pyrollidones, for example, methylpyrollidone; cellulosic polymers; for example, carboxymethyl cellulose; methacrylates; collagens, for example, gelatin; glycerin and polylactic acid. Synthetic polymer resins may also be used, including, for example, epoxy resins, polycarbonates, silicones, polyesters, polyethers, polyolefins, synthetic rubbers, polyurethanes, nylons, polyvinylaromatics, acrylics, polyamides, polyimides, phenolics,
polyvinylhalides, polyphenylene oxide, polyketones and copolymers and blends thereof. Copolymers include both random and block copolymers. Polyolefin resins include polybutylene, polypropylene and polyethylene, such as low density polyethylene, medium density polyethylene, high density polyethylene, and ethylene copolymers; polyvinylhalide resins include polyvinyl chloride polymers and copolymers and polyvinylidene chloride polymers and copolymers, fluoropolymers; polyvinylaromatic resins include polystyrene polymers and copolymers and poly - methylstyrene polymers and copolymers; acrylate resins include polymers and copolymers of acrylate and methacrylate esters, polyamide resins include nylon 6, nylon 11 , and nylon 12, as well as polyamide copolymers and blends thereof; polyester resins include polyalkylene terephthalates, such as polyethylene terephthalate and polybutylene terephthalate, as well as polyester copolymers; synthetic rubbers include styrene-butadiene and acrylonitrile-butadiene-styrene copolymers; polyketones include polyetherketones and polyetheretherketones. The polymer is preferably polylactic acid. The biocompatible polymer may be a biodegradable polymer. Suitable biodegradable polymers include, for example, polyglycolide (PGA), including polyglycolic acid, copolymers of glycolide, glycolide/L-lactide copolymers (PGA/PLLA), lactide/trimethylene carbonate copolymers (PLA/TMC), glycolide/trimethylene carbonate copolymers (PGA TMC), polylactides (PLA), including polylactic acid, stereo-copolymers of PLA, poly-L-lactide (PLLA), poly-DL-lactide (PDLLA), L-lactide/DL-lactide copolymers, copolymers of PLA, lactide/tetramethylglycolide copolymers, lactide/ -valerolactone copolymers, lactide/e-caprolactone copolymers, hyaluronic acid and its derivatives, polydepsipeptides, PLA/polyethylene oxide copolymers, unsymmetrical 3,6-substituted poly-1 ,4-dioxane-2,5-diones,
poly-β-hydroxybutyrate (PHBA), HBA/β-hydroxyvalerate copolymers (PHBA/HVA ), poly-p-dioxanone (PDS), poly- -valerolactone, poly-e-caprolactone, methacrylate-N-vinyl-pyrrolidone copolymers, polyesteramides, polyesters of oxalic acid, polydihydropyranes, polyalkyl-2-cyanoacrylates, polyurethanes, polyvinylalcohol, polypeptides, poly-B-malic acid (PMLA), poly-B-alcanoic acids, polybutylene oxalate, polyethylene adipate, polyethylene carbonate, polybutylene carbonate, and other polyesters containing silyl ethers, acetals, or ketals, alginates, and blends or other combinations of the aforementioned polymers. In addition to the aforementioned aliphatic link polymers, other aliphatic polyesters may also be appropriate for producing aromatic/aliphatic polyester copolymers. These include aliphatic polyesters selected from the group of oxalates, malonates, succinates, glutarates, adipates, pimelates, suberates, azelates, sebacates, nonanedioates, glycolates, and mixtures thereof. These materials are useful as biodegradable support membranes in applications requiring temporary support during tissue or organ regeneration. In particular polylactic acid may be used in the composite of the biocompatible polymer and the electrically conducting nanoscale material.
[0010] The biocompatible ceramic may be any biocompatible ceramic, including oxides, nitrides, borides and carbides of silicon, zirconium, aluminum, magnesium, and yttrium; complex ceramic compounds such as SiAION. Examples of such ceramic compositions are silicon nitride, silicon carbide, zirconia, alumina, titania, mullite, silica, a spinel, SiAION, and mixtures thereof. In particular, the biocompatible ceramic may be hydroxyapatite, alumina or titania. The biocompatible ceramic may be a nanoscale material in its own right, having a grain size ranging from 1 to 100 nm.
[0011] The amount of electrically conducting nanoscale material in the composite should be sufficiently high to impart electrical conductivity to the composite. Typically, conductivity requires a contiguous, or nearly contiguous, arrangement of the nanotubes, nanofilaments, or nanowires. In particular, the electrically conducting nanoscale material may form an interpenetrating network within a matrix of the biocompatible polymer or the biocompatible ceramic. The amount of electrically conducting nanoscale material then, ranges from 0.1 to 90 parts per volume, and the amount of the biocompatible polymer or the biocompatible ceramic ranges from 10 to 99.9 parts per volume. In particular, the amount of the electrically conducting nanoscale material may range from about 10 to 25 parts by volume and the amount of the biocompatible polymer or biocompatible ceramic may range from about 75 to about 90 parts per volume. In one embodiment an electrically conducting nanocomposite according to the present invention comprises a carbon nanotube and polylactic acid. In this nanocomposite, the amount of the carbon nanotubes may range from about 20 to 25 parts by weight, and the amount of the polylactic acid may range from about 70 to 80 parts by weight.
[0012] In another embodiment, the present invention relates to an electrically conducting nanocomposite comprising a nanoscale material and at least one of a biocompatible polymer or a biocompatible ceramic; at least one of the nanoscale material, polymer and ceramic is electrically conducting. Electrically conducting nanoscale materials are described above. Electrically conducting polymers and ceramics are known, and will not be further described here.
[0013] In yet another embodiment, the present invention relates to a method for enhancing osteoblast proliferation on the surface of an 2- dimensional substrate or a 3-dimensional scaffold of an electrically conducting orthopaedic/dental implant. The method includes contacting the implant with osteoblasts, and passing an electric current through the implant. By this method, the osteoblasts are exposed to electrical stimulation. The electric current may be generated by a pulse/function generator through direct contact with the implant, or induced therein by an pulsed electromagnetic field. The implant may be temporary, short-term or long-term. In addition, bone repair in the area where the osteoblasts are exposed to electrical stimulation may be improved.
[0014] The electrically conducting nanocomposite of the present invention may be used as an in vitro or in vivo tissue engineering scaffold or substrate. Such a substrate or scaffold may be 2- or 3-dimensional, and porous or non-porous. Bony material may be generated on a scaffold under electrical stimulation. This material may used for tissue repair, for example, as a bone filler. An electrically conducting nanocomposite may also be used as part of a system for providing controlled electrical stimulation to a cell, tissue, organ or body part of a human being or an animal. In particular, it may be used as an in vitro or in vivo biosensor for use in a diagnostic procedure. The electrically conducting nanocomposite may also be used in vitro or in vivo for probing, substituting for, repairing or regenerating a cell, tissue, organ, or body part of any human being or an animal. The tissue may be central or peripheral nerve tissue, or it may be bone tissue.
[0015] The electrically conductive nanocomposite may additionally comprise a filler. The filler may be a pigment, an inorganic solid, a metal,
or an organic. Typical pigments include: titanium dioxide, carbon black, and graphite. Other inorganic fillers include talc, calcium carbonate, silica, aluminum oxide, glass spheres (hollow or solid) of various particle sizes, nanometer-sized particles of silica or alumina, mica, corundum, wollastonite, silicon nitride, boron nitride, aluminum nitride, silicon carbide, beryllia, and clays. Metallic fillers include copper, aluminum, stainless steel and iron. Organic fillers include wax and crosslinked rubber particles. Fillers may be chosen based on cost, thermal properties, and mechanical properties desired. Particle size of the filler may range from the nanoscale range, to 0.01 to 100 microns.
EXAMPLES
Example 1 : Polylactic Acid (PLA)/Carbon Nanotube (CNT) Composites
[0016] Multi-walled carbon nanotubes (0.1 gm) produced using the electric arc method [Ajayan "Nanotubes from Carbon" Chemical Reviews 99, 1787-1799 (1999)] were added to an emulsion of PLA (molecular weight 100,000) pellets (0.35 gm) in 4 mL of chloroform. The polymer/carbon nanotube slurry was then sonicated for 15 minutes and air- dried for 48 hours. To ensure full evaporation of the solvent, each PLA/CNT composite was vacuum-dried at room temperature for 24 hours, heated to 130°C, and allowed to cool at room temperature. This process yielded non-porous PLA/CNT disks (each 40 mm in diameter and 1 mm thick).
[0017] Representative cross-sections of PLA/CNT composites were sputter-coated with gold and examined by scanning electron microscopy (JEOL JSM T-300) using standard procedures [Squire et al. "Analysis of
Osteoblast Mineral Deposits on Orthopaedic/Dental Implant Metals" Biomaterials 17, 725-733 (1996)]. Micrographs of representative sample cross-sections were taken from the perspective of fracture surfaces. In addition, the electrical resistance of the PLA/CNT composites was determined using a universal probe (Jandel Engineering) and following manufacturer's instructions.
[0018] The surfaces of the planar PLA/CNT composites used in the present study were found to be homogeneous, smooth, and non-porous. Carbon nanotubes were distributed throughout the polymer phase of the composite substrate.
[0019] The electrical resistance of the substrates used in the present study was measured using a three-point probe. Polylactic acid is an insulator and does not conduct electricity. In contrast, the 80/20 % (w/w) PLA /CNT composite tested in the present study was a conductive material with a finite resistance of 200 ohms.
Examples 2-4: Experimental Procedure
Cell Culture
[0020] Osteoblasts were isolated via sequential collagenase digestions of Sprague-Dawley rat calvaria according to established techniques [Puleo et al. "Osteoblast Responses to Orthopedic Implants" J. Biomed. Mat. Res. 25, 725-733 (1996) and were cultured in Dulbecco's Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum, under standard cell culture conditions (i.e., a sterile, 37 °C, humidified, 5% CO2/95% air environment). The osteoblastic phenotype of
these cells was determined by expression of genes for alkaline phosphatase, osteopontin, osteonectin, osteocalcin, and collagen type I as well as by the presence of calcium mineral in the extracellular matrix.
[0021] Osteoblasts passage number 2 - 3 were used in the experiments of the present study.
Alternating Electric Current System
[0022] In order to culture cells on the surface of each PLA/CNT- composite substrate, a special housing was constructed to hold the necessary cell-culture media and to maintain sterile conditions. Individual hollow polypropylene cylinders (1.5 cm in diameter, 3 cm long, Fisher) were glued onto the top surface of each PLA/CNT composite substrate using a bead of silicone glue along the outside perimeter of each tube. These wells were sterilized in 70% ethanol for 20 minutes and were rinsed in sterile PBS for 5 minutes prior to use in cell experiments.
[0023] Osteoblasts were exposed to electric current stimulation using a custom-built laboratory system. In this system, a stainless steel electrode was immersed into the supernatant media at a distance of 0.5 cm from cells cultured onto the surface of individual current conducting PLA/CNT composite substrates. Alternately, the electric current was passed through the PLA/CNT composite substrate. An HP8110A pulse/function generator provided the electrical stimulus, consisting of an alternating current of 10 μA at a frequency of 10 Hz with a 50% duty cycle.
Example 2: Osteoblast Proliferation
[0024] Osteoblasts suspended in DMEM (containing 10% fetal bovine serum) were seeded sub-confluently at a density of 2,500 cells per square centimeter of PLA/CNT composite substrate surface area and allowed to adhere in a sterile, 37 °C, humidified, 5% CO2/95% air environment for 24 hours. The cells were then exposed to electrical stimulation (10 μA at 10 Hz) for 6 hours daily for 2 consecutive days. Controls were osteoblast proliferation experiments run in parallel and maintained under similar cell culture conditions, but not exposed to any electrical stimulation.
[0025] At the end of the prescribed time period, adherent cells were rinsed with PBS, fixed with 10% formalin, stained with 10" 6 M Hoechst No. 33258, and counted in situ in five random fields per substrate using fluorescent microscopy (365 nm excitation/400 nm emission; Olympus).
[0026] The cell proliferation experiments were run in triplicate and repeated at four separate times.
[0027] Osteoblast proliferation increased significantly (p<0.03) from
15,810±4,813 (mean±SEM) cells on the PLA/CNT composite substrates under control (no electrical stimulation) conditions to 31 ,574±7,076 (mean±SEM) cells after exposure to 10 μA at 10 Hz of electrical stimulation for 6 hours daily for 2 consecutive days. This result represents a 46% increase in osteoblast proliferation after exposure to electrical stimulation.
Example 3: Calcium-Containing Mineral in the Extracellular Matrix
[0028] Osteoblasts suspended in DMEM (supplemented with 10% fetal bovine serum, 50 μg/mL ascorbic acid, and 10 mM β- glycerophosphate) were seeded at a density of 75,000 cells per square centimeter of PLA/CNT-composite substrate surface area. These confluent osteoblasts were cultured in a sterile, 37 °C, humidified, 5 % CO2/95 % air environment for 48 hours before they were exposed to alternating current stimulation for 6 hours daily for 21 consecutive days. Controls were osteoblast maintained under similar cell culture conditions, but not exposed to any electrical stimulation. Supernatant media in all samples were changed every 4 days for the duration of the experiments.
[0029] At the end of the 21 -day time period, cell cultures were rinsed twice with calcium-free/magnesium-free PBS and lysed with 0.5 N HCI by shaking at 4 °C for 6 hours. After centrifugation (500xg for 5 minutes), the calcium concentration in the supematants was determined using Calcium Kit #587 (Sigma) and following manufacturer's instructions. Light absorbance of the calcium-containing samples was determined spectrophotometrically (575 nm). Total calcium (mg/dL) was calculated from standard curves of absorbance versus known concentrations (specifically, 5, 10, and 15 mg/dL) of calcium samples (assayed in parallel with samples from both osteoblasts exposed to electrical stimulation and those maintained under control, that is, no electrical stimulation conditions). The experiments to quantify calcium concentration in the extracellular matrix were run in triplicate and repeated at three separate times.
[0030] Compared to 45±9 (mean±SEM) μg calcium that was synthesized and deposited in the extracellular matrix by osteoblasts cultured on the PLA/CNT composite substrates under control (no electrical stimulation) conditions, the amount of calcium increased significantly (p<0.01 ) to 138±19 (mean±SEM) μg following osteoblast exposure to 10 μA at 10 Hz of electrical stimulation for 6 hours daily for 21 consecutive days; this result represents a 307% increase in calcium content.
Example 4: Reverse Transcription-Polymerase Chain Reaction for Semiquantitation of Select Gene Expression
[0031] Osteoblasts suspended in DMEM (supplemented with 10% fetal bovine serum, 50 μg/mL ascorbic acid, and 10 mM β-glycero- phosphate) were seeded onto the surface of PLA/CNT composite samples at a density of 75,000 cells per square centimeter of substrate surface area. These confluent cells were cultured in a sterile, 37 °C, humidified, 5 % CO2/95 % air environment for 48 hours before they were exposed to alternating current stimulation for 6 hours a day for either 1 or 21 days. Controls were osteoblasts maintained under similar cell culture conditions, without exposure to electrical stimulation.
[0032] At the end of the prescribed time periods, the osteoblasts were rinsed twice with calcium free/magnesium free PBS and total cellular RNA was extracted with Trizol Reagent (Life Technologies) using standard procedures. One microgram of total RNA was reverse transcribed into cDNA using a reverse transcription kit (Life Technologies) and oligo (dT) primers according to published techniques. [Arulanandam et al. "Modulation of Mucosal and Systemic Immunity by Intranasal Interleukin 12 Delivery" Vaccine 17, 252-260 (1999)]. After incubation at 25 °C for 10 minutes and at 42 °C for 60 minutes, the resulting cDNA was amplified
using specific primers for alkaline phosphatase, osteopontin, osteocalcin, collagen type I, osteonectin, osteoprotegerin, and bone sialoprotein with hypoxanthine phosphoribosyl transferase (HPRT) primers as controls. PCR amplification was performed by processing 2 μL of cDNA with a PCR core kit (Life Technologies) and subjecting the resulting mixture to the following amplification profile: denaturing at 95°C for 1 minute (for all primers), annealing at 56°C for 1 minute (for alkaline phosphatase, osteopontin, and HPRT primers) or at 65°C (for osteocalcin and collagen type I primers), and extension at 72°C for 1 minute (for all primers) for a duration of 28 cycles. PCR amplification was followed by a final extension at 72°C for 10 minutes. The PCR products were separated on a 2.5% agarose gel, stained with ethidium bromide, and visualized using UV transillumination.
[0033] Exposure of osteoblasts to 10 μA at 10 Hz of electrical stimulation for 6 hours daily for up to 21 consecutive days differentially affected expression of various genes. Specifically, there was no detectable gene expression for either alkaline phosphatase or bone sialoprotein under any condition or time point tested. Compared to controls, osteopontin was slightly down-regulated in cells exposed to 6 hours of electrical stimulation; after 21 consecutive days, however, expression of osteopontin was similar both in controls and in osteoblasts exposed to electrical stimulation. Osteonectin mRNA was expressed when osteoblasts were maintained under control conditions, but not when these cells were exposed to electrical stimulation for 6 hours; in contrast to controls, expression of osteonectin was upregulated in osteoblasts exposed to electrical stimultion for 6 hours daily for 21 consecutive days.
[0034] There was no detectable gene expression of osteocalcin in osteoblasts either under control conditions or under electrical stimulation for 6 hours. Compared to controls, however, the gene for osteocalcin was upregulated in cells exposed to electrical stimulation for 6 hours daily for 21 consecutive days. There was no detectable collagen type I expression in osteoblasts maintained under control conditions; in contrast, there was significant expression of the collagen type I gene after both 6 hours and after 21 consecutive days of electrical stimulation for 6 hours daily.
[0035] Gene expression for osteoprotegerin was similar in both controls and in cells exposed to electrical stimulation for 6 hours. Gene expression for osteoprotegerin, however, was significantly upregulated when osteoblasts were exposed to electrical stimulation for 21 consecutive days for 6 hours daily.
[0036] HPRT, the housekeeping gene, was equally expressed in osteoblasts maintained under control conditions and in osteoblasts exposed to electrical stimulation for 6 hours daily for 1 and 21 consecutive days. HPRT was used for quality assurance purposes to monitor consistency of the technique.
[0037] In contrast to polylactic acid (and to most other polymers) which is an insulator, the novel 80/20% (w/w) PLA/CNT composite which was prepared in the present study is a conductive material. Availability of these novel material formulations and of well-characterized cellular models made possible a series of studies on the effect of alternating electric current stimulation at the cellular/molecular level. Since bone repair, healing, and regeneration in humans and animals involve major changes in bone tissue formation, the present study focused on aspects pertinent to
new bone formation; for an in vitro model these included osteoblast proliferation as well as synthesis of chemical constituents of the bone matrix.
[0038] Evidence that electrical stimulation enhances osteoblast proliferation has been provided in the literature. See, for example, Brighton et al., "In vitro Bone-cell Response to a Capacitively Coupled Electrical Field," Clin. Ortho. Related. Res. 285, 255-262 (1992). The present study, however, is the first to report 46% increases in proliferation when osteoblasts, cultured on current-conducting PLA/CNT composites, were exposed to alternating electric current stimulation.
[0039] Direct comparison of the results of all these studies is not possible because of differences in delivering the electrical stimulus. For example, compared to conditions reported in the literature, the present study utilized electric currents ten times lower in magnitude, but obtained similar increases in cell proliferation. In contrast, studies performed by other researchers exposed osteoblasts and/or osteoblast-like cells to electrical stimulation over shorter periods of time using capacitively coupled electric fields and direct current electrical stimulation.
[0040] Production and deposition of calcium-containing mineral, the osteoblast function directly responsible for the inorganic phase of bone (which accounts for approximately 65% of total bone mass) was enhanced threefold in osteoblasts exposed to alternating current electrical stimulation. The increased calcium-containing mineral observed in these in vitro studies might provide an explanation for the accelerated healing observed in several animal models of osteotomies and fractures that underwent treatment using electrical stimulation.
[0041] What unequivocally distinguishes the present study from previous reports in the literature is evidence that alternating current electrical stimulation induces molecular responses that affect transcription of genes pertinent to bone-matrix composition and homeostasis. First, and foremost, upregulation of the collagen type I (the major, approximately 90%, constituent of the organic phase of bone) gene was manifested as early as 6 hours and remained upregulated after 21 consecutive days (6 hours daily) of exposure to alternating current electrical stimulation. In addition, genes for two other proteins, specifically osteonectin and osteopontin, which play a role in the mineralization of the extracellular matrix of bone, were also upregulated under the conditions tested in the present study. These results suggest that upregulation of osteonectin, a phosphoprotein which is involved in creating nucleation points for calcium deposition, as well as upregulation of osteocalcin, a γ-carboxyglutamic acid-containing protein which is found exclusively in bone and has been proposed to regulate crystal growth, may be part of the mechanism of extracellular matrix formation and mineralization under alternating current electrical stimulation.
In addition, the present study provided the first molecular-level evidence that alternating current electrical stimulation may affect two osteoblast-produced proteins that have proposed roles in modulating osteoclast functions relevant to bone mineral resorption. Since osteoclast attachment to the extracellular matrix is a prerequisite for their subsequent resorption of calcium-containing mineral, decreased production of osteopontin may have critical implications in inhibiting attachment of osteoclasts to the mineralized extracellular matrix. Moreover, since osteoprotegerin, a member of the tumor necrosis factor family of receptors,
inhibits osteoclast differentiation and activation, the observed gene upregulation in osteoblasts indicates another possible mechanism that may control the bone-resorptive activity of osteoclasts. In this respect, the increased bone formation observed in animal models exposed to electrical stimulation may be the result of enhanced select osteoblast functions and concomitant controlled select functions of osteoclasts.
Claims
1. An electrically conducting nanocomposite comprising an electrically conducting nanoscale material and at least one of a biocompatible polymer or a biocompatible ceramic.
2. An electrically conducting nanocomposite according to claim 1 wherein the electrically conducting nanoscale material comprises a carbon nanotube, an inorganic nanotube, a metal nanowire, a ceramic nanowire, a composite nanowire, a metal nanofilament, a ceramic nanofilament, a composite nanofilament and combinations thereof.
3. An electrically conducting nanocomposite according to claim 1 wherein the nanoscale material is a carbon nanotube.
4. An electrically conducting nanocomposite according to claim 1 comprising a nanoscale electrically conducting material and a biocompatible polymer.
5. An electrically conducting nanocomposite according to claim 4, wherein the biocompatible polymer is biodegradable.
6. An electrically conducting nanocomposite according to claim 5, wherein the biocompatible polymer is polylactic acid.
7. An electrically conducting nanocomposite according to claim 1 comprising carbon nanotubes and polylactic acid.
8. An electrically conducting nanocomposite according to claim 1 comprising a nanoscale electrically conducting material and a biocompatible ceramic.
9. An electrically conducting nanocomposite according to claim 8, wherein the ceramic has a grain size of 1 -100 nm.
10. An electrically conducting nanocomposite according to claim 8, wherein the ceramic is alumina, titania or hydroxyapatite.
11. An electrically conducting nanocomposite according to claim 1 comprising: about 0.1-90 parts by volume of an electrically conducting nanoscale material ; and about 10-99.9 parts by volume of at least one of a biocompatible polymer or a biocompatible ceramic.
12. An electrically conducting nanocomposite according to claim 11 comprising: about 10-25 parts by volume of an electrically conducting nanoscale material ; and about 75-90 parts by volume of at least one of a biocompatible polymer or a biocompatible ceramic.
13. An electrically conducting nanocomposite according to claim 12, comprising carbon nanotubes, and polylactic acid.
14. The electrically conducting nanocomposite according to claim 13 comprising
20-25 parts by weight carbon nanotubes; and 75-80 parts by weight polylactic acid.
15. A method for enhancing osteoblast proliferation on a surface of 2- dimensional substrate or inside a 3-dimension scaffold of an electrically conducting orthopaedic/dental implant, said method comprising: contacting the implant with osteoblasts; and passing an electric current through the implant; whereby the osteoblasts are exposed to electrical stimulation.
16. A method according to claim 15, wherein the electric current is produced by a pulse/function generator directly connected to the implant.
17. A method according to claim 15, wherein the electric current is induced in the implant by a pulsed electromagnetic field.
18. A method according to claim 15, wherein the electric current is an alternating current.
19. An electrically conducting nanocomposite comprising a nanoscale material and at least one of a biocompatible polymer or a biocompatible ceramic, wherein at least one of said nanoscale material, said polymer and said ceramic is electrically conducting.
20. An electrically conducting nanocomposite according to claim 19, wherein the nanoscale material is electrically conducting.
21. An electrically conducting nanocomposite according to claim 19, wherein the biocompatible polymer is electrically conducting.
22. An electrically conducting nanocomposite according to claim 19, wherein the biocompatible ceramic is electrically conducting.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20441600P | 2000-05-16 | 2000-05-16 | |
US60204416 | 2000-05-16 | ||
PCT/US2001/015910 WO2001087193A1 (en) | 2000-05-16 | 2001-05-16 | Electrically conducting nanocomposite materials for biomedical applications |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2001261689A1 true AU2001261689A1 (en) | 2001-11-26 |
Family
ID=22757779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2001261689A Abandoned AU2001261689A1 (en) | 2000-05-16 | 2001-05-16 | Electrically conducting nanocomposite materials for biomedical applications |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030153965A1 (en) |
EP (1) | EP1289453A1 (en) |
JP (1) | JP2003533276A (en) |
AU (1) | AU2001261689A1 (en) |
CA (1) | CA2408172A1 (en) |
WO (1) | WO2001087193A1 (en) |
Families Citing this family (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6723299B1 (en) | 2001-05-17 | 2004-04-20 | Zyvex Corporation | System and method for manipulating nanotubes |
JP2005503865A (en) * | 2001-09-28 | 2005-02-10 | ボストン サイエンティフィック リミテッド | Medical device comprising nanomaterial and treatment method using the same |
US20040034177A1 (en) | 2002-05-02 | 2004-02-19 | Jian Chen | Polymer and method for using the polymer for solubilizing nanotubes |
US6905667B1 (en) | 2002-05-02 | 2005-06-14 | Zyvex Corporation | Polymer and method for using the polymer for noncovalently functionalizing nanotubes |
US7162308B2 (en) | 2002-11-26 | 2007-01-09 | Wilson Greatbatch Technologies, Inc. | Nanotube coatings for implantable electrodes |
GB2400605A (en) * | 2003-02-18 | 2004-10-20 | Univ Cardiff | Nanocomposites |
US7993412B2 (en) * | 2003-03-27 | 2011-08-09 | Purdue Research Foundation | Nanofibers as a neural biomaterial |
US20050038498A1 (en) * | 2003-04-17 | 2005-02-17 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
US7972616B2 (en) | 2003-04-17 | 2011-07-05 | Nanosys, Inc. | Medical device applications of nanostructured surfaces |
GB2421506B (en) * | 2003-05-22 | 2008-07-09 | Zyvex Corp | Nanocomposites and methods thereto |
US7354988B2 (en) | 2003-08-12 | 2008-04-08 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
US7026432B2 (en) | 2003-08-12 | 2006-04-11 | General Electric Company | Electrically conductive compositions and method of manufacture thereof |
US7309727B2 (en) | 2003-09-29 | 2007-12-18 | General Electric Company | Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions |
US7369900B2 (en) * | 2004-05-08 | 2008-05-06 | Bojan Zdravkovic | Neural bridge devices and methods for restoring and modulating neural activity |
KR101127307B1 (en) * | 2004-05-14 | 2012-03-29 | 소니 도이칠란트 게엠베하 | Composite materials comprising carbon nanotubes and metal carbonates |
EP1789477A2 (en) * | 2004-08-02 | 2007-05-30 | University Of Houston | Carbon nanotube reinforced polymer nanocomposites |
US7296576B2 (en) | 2004-08-18 | 2007-11-20 | Zyvex Performance Materials, Llc | Polymers for enhanced solubility of nanomaterials, compositions and methods therefor |
US20060093642A1 (en) * | 2004-11-03 | 2006-05-04 | Ranade Shrirang V | Method of incorporating carbon nanotubes in a medical appliance, a carbon nanotube medical appliance, and a medical appliance coated using carbon nanotube technology |
JP2006143691A (en) * | 2004-11-24 | 2006-06-08 | Jfe Engineering Kk | Biological tissue-forming material consisting of nanocarbon materials |
EP1829567A4 (en) * | 2004-12-21 | 2010-07-21 | Univ Shinshu | MEDICAL INSTRUMENT |
US20060165926A1 (en) * | 2005-01-27 | 2006-07-27 | Jan Weber | Medical devices including nanocomposites |
US7462656B2 (en) | 2005-02-15 | 2008-12-09 | Sabic Innovative Plastics Ip B.V. | Electrically conductive compositions and method of manufacture thereof |
US8414908B2 (en) * | 2005-04-28 | 2013-04-09 | The Regents Of The University Of California | Compositions comprising nanostructures for cell, tissue and artificial organ growth, and methods for making and using same |
AU2006249942B2 (en) * | 2005-05-26 | 2011-07-07 | Zimmer Dental, Inc. | Prosthetic dental device |
US7439731B2 (en) | 2005-06-24 | 2008-10-21 | Crafts Douglas E | Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures |
US8049333B2 (en) * | 2005-08-12 | 2011-11-01 | Cambrios Technologies Corporation | Transparent conductors comprising metal nanowires |
EP1917386B1 (en) * | 2005-08-24 | 2016-09-14 | University Of Houston | Nanocomposites of polymers with dispersed nanotubes |
US8562346B2 (en) | 2005-08-30 | 2013-10-22 | Zimmer Dental, Inc. | Dental implant for a jaw with reduced bone volume and improved osseointegration features |
US9763788B2 (en) | 2005-09-09 | 2017-09-19 | Board Of Trustees Of The University Of Arkansas | Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same |
US8936805B2 (en) | 2005-09-09 | 2015-01-20 | Board Of Trustees Of The University Of Arkansas | Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same |
EP1931401A2 (en) * | 2005-09-09 | 2008-06-18 | University of Arkansas at Little Rock | System and method for tissue generation and bone regeneration |
US20100023101A1 (en) * | 2006-02-03 | 2010-01-28 | University Of Wollongong | Biocompatible composites |
US7846361B2 (en) | 2006-07-20 | 2010-12-07 | Orbusneich Medical, Inc. | Bioabsorbable polymeric composition for a medical device |
US8354855B2 (en) * | 2006-10-16 | 2013-01-15 | Formfactor, Inc. | Carbon nanotube columns and methods of making and using carbon nanotube columns as probes |
US8130007B2 (en) | 2006-10-16 | 2012-03-06 | Formfactor, Inc. | Probe card assembly with carbon nanotube probes having a spring mechanism therein |
CN103212115B (en) | 2006-10-20 | 2016-09-14 | 奥巴斯尼茨医学公司 | Bioabsorbable polymer composition and armarium |
US7959942B2 (en) | 2006-10-20 | 2011-06-14 | Orbusneich Medical, Inc. | Bioabsorbable medical device with coating |
US7783360B2 (en) | 2006-10-23 | 2010-08-24 | Bojan Zdravkovic | Sensory system |
US7783363B2 (en) | 2006-10-23 | 2010-08-24 | Artis Nanomedica, Inc. | Neural bridge gateway and calibrator |
TWI317016B (en) * | 2006-11-08 | 2009-11-11 | Nat Univ Tsing Hua | Multifunctional nano-probe interface structure for neural prostheses and manufacturing method thereof |
US7777397B2 (en) * | 2007-03-12 | 2010-08-17 | 3M Innovative Properties Company | Multilayer conductive elements |
WO2008118794A2 (en) | 2007-03-23 | 2008-10-02 | Lydall, Inc. | Substrate for carrying catalytic particles |
JP2008289734A (en) * | 2007-05-25 | 2008-12-04 | Yoshida Dental Mfg Co Ltd | Method for producing osteoblast-substrate complex |
CA2694518A1 (en) | 2007-07-12 | 2009-01-15 | Nanovis, Inc. | Method to enhance osteoblast functionality and measure electrochemical properties for a medical implant |
US9149345B2 (en) | 2007-08-30 | 2015-10-06 | Zimmer Dental, Inc. | Multiple root implant |
US8149007B2 (en) * | 2007-10-13 | 2012-04-03 | Formfactor, Inc. | Carbon nanotube spring contact structures with mechanical and electrical components |
JP5451636B2 (en) * | 2007-12-31 | 2014-03-26 | スリーエム イノベイティブ プロパティズ カンパニー | Medical care product having an edge port and method of use |
US8956629B2 (en) * | 2008-05-19 | 2015-02-17 | Vericom Co. Ltd | Dental composition containing organic nanotube |
US8899982B2 (en) | 2008-07-02 | 2014-12-02 | Zimmer Dental, Inc. | Implant with structure for securing a porous portion |
US8562348B2 (en) | 2008-07-02 | 2013-10-22 | Zimmer Dental, Inc. | Modular implant with secured porous portion |
US9095396B2 (en) | 2008-07-02 | 2015-08-04 | Zimmer Dental, Inc. | Porous implant with non-porous threads |
US7935259B2 (en) * | 2008-07-03 | 2011-05-03 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Filtering apparatus and method of use |
US10086079B2 (en) | 2008-08-11 | 2018-10-02 | Fibralign Corporation | Biocomposites and methods of making the same |
US20100114314A1 (en) | 2008-11-06 | 2010-05-06 | Matthew Lomicka | Expandable bone implant |
US20100217339A1 (en) * | 2009-02-23 | 2010-08-26 | Kane Seth A | Carbon nanotube micro-array relay system for providing nerve sitmulation output and sensation input acrodd proximal and distal ends of damaged spinal cord |
US20100252317A1 (en) * | 2009-04-03 | 2010-10-07 | Formfactor, Inc. | Carbon nanotube contact structures for use with semiconductor dies and other electronic devices |
US8272124B2 (en) * | 2009-04-03 | 2012-09-25 | Formfactor, Inc. | Anchoring carbon nanotube columns |
CN102802571B (en) * | 2009-06-16 | 2016-08-03 | 3M创新有限公司 | There is the conformable Medical of self-supporting substrate |
US9707058B2 (en) | 2009-07-10 | 2017-07-18 | Zimmer Dental, Inc. | Patient-specific implants with improved osseointegration |
US20110085968A1 (en) * | 2009-10-13 | 2011-04-14 | The Regents Of The University Of California | Articles comprising nano-materials for geometry-guided stem cell differentiation and enhanced bone growth |
US20110089041A1 (en) * | 2009-10-19 | 2011-04-21 | Biomet Manufacturing Corp. | Methods of depositing discrete hydroxyapatite regions on medical implants |
US8602782B2 (en) | 2009-11-24 | 2013-12-10 | Zimmer Dental, Inc. | Porous implant device with improved core |
US20110143127A1 (en) * | 2009-12-11 | 2011-06-16 | Biomet Manufacturing Corp. | Methods for coating implants |
WO2012009661A2 (en) * | 2010-07-15 | 2012-01-19 | Fibralign Corporation | Conductive biopolymer implant for enhancing tissue repair and regeneration using electromagnetic fields |
EP2613818B1 (en) | 2010-09-10 | 2019-02-13 | Fibralign Corp. | Biodegradable multilayer constructs |
US8872176B2 (en) | 2010-10-06 | 2014-10-28 | Formfactor, Inc. | Elastic encapsulated carbon nanotube based electrical contacts |
WO2012094208A1 (en) * | 2011-01-05 | 2012-07-12 | Children's Medical Center Corporation | Nanowired three dimensional tissue scaffolds |
DE102013201885A1 (en) * | 2013-02-05 | 2014-08-07 | Urs Brodbeck | Ceramic body, in particular for use in a bone implant, in particular as a dental implant |
CN104945281B (en) * | 2014-03-31 | 2017-04-26 | 中国人民解放军军事医学科学院毒物药物研究所 | Flavone acetate derivatives, and pharmaceutical composition, preparation method and application thereof |
JP6454550B2 (en) * | 2015-01-07 | 2019-01-16 | 株式会社日本触媒 | Biocompatible material |
US10018615B2 (en) * | 2016-03-08 | 2018-07-10 | Lawrence Livermore National Security, Llc | Three-dimensional electronic scaffold for cardiac applications |
DE102016107223B4 (en) * | 2016-04-19 | 2018-05-24 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Hybrid implant made of a composite material |
KR101905269B1 (en) * | 2016-11-11 | 2018-10-08 | 서강대학교산학협력단 | Method for Differentiating Neural Stem Cells Using Patterned Hydrogel |
US20200281693A1 (en) | 2017-10-26 | 2020-09-10 | Universidade Do Minho | Dental implant with electrostimulation system and its production method |
US20200306013A1 (en) | 2017-10-26 | 2020-10-01 | Universidade Do Minho | Dental implant made of zirconia or alumina with healing electrical properties and its production method |
US11020603B2 (en) | 2019-05-06 | 2021-06-01 | Kamran Ansari | Systems and methods of modulating electrical impulses in an animal brain using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing |
US11517760B2 (en) | 2019-05-06 | 2022-12-06 | Kamran Ansari | Systems and methods of treating medical conditions using arrays of planar coils configured to generate pulsed electromagnetic fields and integrated into clothing |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62202884A (en) * | 1986-02-28 | 1987-09-07 | 工業技術院長 | Live body substitute ceramic material |
BR9007643A (en) * | 1989-09-15 | 1992-08-18 | Chiron Ophthalmics Inc | METHOD TO ACHIEVE THE EPITELIZATION OF SYNTHETIC LENSES |
WO1995006090A1 (en) * | 1993-08-23 | 1995-03-02 | Alliedsignal Inc. | Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates and organo zirconates dispersed therein and process of preparing same |
US5843741A (en) * | 1994-08-01 | 1998-12-01 | Massachusetts Insitute Of Technology | Method for altering the differentiation of anchorage dependent cells on an electrically conducting polymer |
US5947921A (en) * | 1995-12-18 | 1999-09-07 | Massachusetts Institute Of Technology | Chemical and physical enhancers and ultrasound for transdermal drug delivery |
US6041253A (en) * | 1995-12-18 | 2000-03-21 | Massachusetts Institute Of Technology | Effect of electric field and ultrasound for transdermal drug delivery |
US6013591A (en) * | 1997-01-16 | 2000-01-11 | Massachusetts Institute Of Technology | Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production |
DE19726412A1 (en) * | 1997-06-21 | 1998-12-24 | Merck Patent Gmbh | Implant material with a carrier-drug combination |
US6121027A (en) * | 1997-08-15 | 2000-09-19 | Surmodics, Inc. | Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups |
US6689823B1 (en) * | 1999-03-31 | 2004-02-10 | The Brigham And Women's Hospital, Inc. | Nanocomposite surgical materials and method of producing them |
US6270347B1 (en) * | 1999-06-10 | 2001-08-07 | Rensselaer Polytechnic Institute | Nanostructured ceramics and composite materials for orthopaedic-dental implants |
-
2001
- 2001-05-16 AU AU2001261689A patent/AU2001261689A1/en not_active Abandoned
- 2001-05-16 JP JP2001583664A patent/JP2003533276A/en active Pending
- 2001-05-16 WO PCT/US2001/015910 patent/WO2001087193A1/en not_active Application Discontinuation
- 2001-05-16 EP EP01935610A patent/EP1289453A1/en not_active Withdrawn
- 2001-05-16 CA CA002408172A patent/CA2408172A1/en not_active Abandoned
-
2002
- 2002-11-15 US US10/298,158 patent/US20030153965A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2003533276A (en) | 2003-11-11 |
US20030153965A1 (en) | 2003-08-14 |
WO2001087193A1 (en) | 2001-11-22 |
EP1289453A1 (en) | 2003-03-12 |
CA2408172A1 (en) | 2001-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030153965A1 (en) | Electrically conducting nanocomposite materials for biomedical applications | |
Supronowicz et al. | Novel current‐conducting composite substrates for exposing osteoblasts to alternating current stimulation | |
McManus et al. | Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites | |
Liu et al. | Increased osteoblast functions among nanophase titania/poly (lactide‐co‐glycolide) composites of the highest nanometer surface roughness | |
Diao et al. | 3D‐plotted beta‐tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical‐sized calvarial defect rat model | |
US6270347B1 (en) | Nanostructured ceramics and composite materials for orthopaedic-dental implants | |
Webster et al. | Design and evaluation of nanophase alumina for orthopaedic/dental applications | |
US9186190B2 (en) | Functionalized nanodiamond reinforced biopolymers | |
Ye et al. | Nanomaterial-based scaffolds for bone tissue engineering and regeneration | |
Sirivisoot et al. | Greater osteoblast functions on multiwalled carbon nanotubes grown from anodizednanotubular titanium for orthopedic applications | |
Ma et al. | Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization | |
Streicher et al. | Nanosurfaces and nanostructures for artificial orthopedic implants | |
Chłopek et al. | In vitro studies of carbon nanotubes biocompatibility | |
Liu et al. | Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acidcomposites | |
Lavos‐Valereto et al. | In vitro and in vivo biocompatibility testing of Ti‐6Al‐7Nb alloy with and without plasma‐sprayed hydroxyapatite coating | |
Zhou et al. | Applications of nanostructured calcium phosphate in tissue engineering | |
Tanaka et al. | A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler | |
Hsu et al. | Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface | |
Russo et al. | Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration | |
Misra et al. | Poly (3-hydroxybutyrate)/Bioglass® composite films containing carbon nanotubes | |
Zhao et al. | Potential load-bearing bone substitution material: carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties | |
Cai et al. | The effects of surface bioactivity and sustained-release of genistein from a mesoporous magnesium-calcium-silicate/PK composite stimulating cell responses in vitro, and promoting osteogenesis and enhancing osseointegration in vivo | |
Karanth et al. | Characterization of 3D printed biodegradable piezoelectric scaffolds for bone regeneration | |
Zhang et al. | Osteogenic differentiation of 3D-printed porous tantalum with nano-topographic modification for repairing craniofacial bone defects | |
Liao et al. | Responses of bone to titania–hydroxyapatite composite and nacreous implants: a preliminary comparison by in situ hybridization |