AT403310B - Epicyclic gear, in particular for wind power systems - Google Patents
Epicyclic gear, in particular for wind power systems Download PDFInfo
- Publication number
- AT403310B AT403310B AT0216694A AT216694A AT403310B AT 403310 B AT403310 B AT 403310B AT 0216694 A AT0216694 A AT 0216694A AT 216694 A AT216694 A AT 216694A AT 403310 B AT403310 B AT 403310B
- Authority
- AT
- Austria
- Prior art keywords
- rotor
- shaft
- sep
- drive shaft
- wind power
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/28—Toothed gearings for conveying rotary motion with gears having orbital motion
- F16H1/46—Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
- F03D15/10—Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05B2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Retarders (AREA)
Abstract
An epicyclic gear for wind power systems has a satellite carrier 20 mounted in a gearbox housing 24, 25. A drive shaft, which is connected to a rotor 26 of a wind power system, is integrated in the satellite carrier, so that the rotor 26 and the drive shaft are mounted directly in the gearbox housing via the satellite carrier 20. There is no need for any additional bearing for the drive shaft 20 outside the gearbox housing, as a result of which both the weight and the costs of the system can be reduced. <IMAGE>
Description
<Desc/Clms Page number 1>
Die Erfindung betrifft ein Planetengetriebe, insbesondere für Windkraftanlagen, mit einem in einem Getriebegehäuse gelagerten Planetenträger, der mit einer querkraftbelasteten Antriebswelle verbunden ist, die eine Antriebsquelle tragt.
Meist sind Windkraftanlagen folgendermassen aufgebaut : Eine Rotorwelle ist mittels zweier Lager in einem Lagerbock gelagert. Am einen Ende dieser Rotorwelle ist die Rotornabe mit einer Schraubenverbindung befestigt. Das andere Ende der Rotorwelle weist beispielweise eine Schrumpfverbindung oder eine Keilwellenverbindung zur Drehmomentübertragung zwischen Rotorwelle und Getriebe auf.
Eine andere, bekannte Ausführungsform besteht aus einer sich nicht drehenden Trägerhohlwelle, auf der die Nabe drehbar gelagert ist. Das Antriebsdrehmoment wird durch eine in diesem Fall nicht durch Querkräfte belastete Welle, die koaxial in der Trägerhohlwelle läuft, von der Nabe auf das Getriebe übertragen. Die Wellen/Getriebe-Verbindung ist beispielsweise als Schrumpfverbindung, die Naben/WellenVerbindung beispielsweise als Bolzenkupplung ausgeführt.
Die Anteile der Rotorwelle einschliesslich Lagerung und Lagerbock bzw. Trägerhohlwelle hinsichtlich der Kosten und des Gewichtes sind beträchtlich. Für beide oben beschriebenen Varianten ist der Anteil an den Gesamtkosten der Windkraftanlage jeweils ca. 7%, der Anteil am Gesamtgewicht der Windkraftanlage ohne Turm jeweils ca. 15%.
Der hohe Gewichtsanteil beeinflusst in weiterer Folge auch die Dimensionierung der im Kraftfluss nachgelagerte Teile bis hin zum Turm und zum Fundament negativ.
Aus der US 5 222 924 A ist ein Planetengetriebe für Windkraftanlagen bekannt, bei dem die querkraftbelastete Antriebswelle am Maschinenrahmen gelagert ist.
Die Aufgabe dieser Erfindung ist es sowohl die Kosten als auch das Gewicht der Rotornaben/GetriebeVerbindung zu verringern.
Gelöst wird diese Aufgabe bei einem gattungsgemässen Getriebe dadurch, dass die Antriebswelle über den Planetenträger im Getriebegehäuse gelagert ist.
Die sich dadurch gegenüber dem Stand der Technik ergebenden Vorteile zeigt überschlägig die folgende Tabelle :
EMI1.1
<tb>
<tb> Kostenanteil <SEP> an <SEP> Gesamtkosten <SEP> Gewichtsanteil <SEP> am <SEP> Gesamtgewicht
<tb> der <SEP> Anlage <SEP> [%] <SEP> der <SEP> Anlage <SEP> (ohne <SEP> Turm) <SEP> [%]
<tb> Stand <SEP> der <SEP> Technik <SEP> *) <SEP> 17 <SEP> 30
<tb> Erfindung**) <SEP> 11 <SEP> 15
<tb> Differenz <SEP> 6 <SEP> 15 <SEP>
<tb>
*) Rotorwelle, Lager, Lagerbock, Verbindung Rotornabe/Rotorwelle bzw. Rotorwelle/Getriebe und Getriebe bzw. Rotorwelle, Lager, Trägerhohlwelle, Verbindung Rotornabe/Rotorwelle bzw.
Rotorwelle/Getriebe und Getriebe **) Getriebe gemäss vorliegender Erfindung
Zusammenfassend kann sich durch die vorliegende Erfindung gegenüber dem Stand der Technik eine Verringerung der Kosten für die Gesamtanlage von etwa 6% und des Gewichtes für die Anlage ohne Turm von etwa 50% ergeben.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung unter Bezugnahme auf die Zeichnungen.
Es zeigen die Fig. 1 und 2 Ausführungsformen von Windkraftanlagen gemäss dem Stand der Technik, Fig. 3 eine Ausführungsform eines erfindungsgemässen Planetengetriebes und Fig. 4 teilweise eine Windkraftanlage mit einem Planetengetriebe gemäss der Erfindung.
Fig. 1 zeigt die bei Windkraftanlagen am häufigsten verwendete Ausführungsform. Eine Rotorwelle 1 ist mittels zweier Lager 2,3 in einem Lagerbock 4 gelagert. Am einen Ende dieser Rotorwelle 1 ist die Rotornabe 5 mittels einer Schraubenverbindung befestigt. Das andere Ende der Rotorwelle 1 ist zur Drehmomentübertragung zwischen der Rotorwelle 1 und dem Getriebe 6 mit einer Keilwellenverbindung ausgeführt. Das Getriebe 6 ist ein übliches, zweistufiges Planetengetriebe mit einer doppeltgelagerten Antriebswelle 7, wobei das rotorseitige Lager 8 und die Wellendichtung 9 in den vorderen Getriebedeckel 10 integriert sind.
Fig. 2 zeigt eine andere, bekannte Ausführungsform. Diese besteht aus einer sich nicht drehenden Trägerhohlwelle 11, auf der die Rotornabe 12 mittels zwei Lager 13,14 drehbar gelagert ist. Das
<Desc/Clms Page number 2>
Antriebsdrehmoment wird über eine in diesem Fall nicht durch Querkräfte belastete Welle 15, die koaxial in der Trägerhohlwelle 11 läuft, von der Rotornabe 12 auf das Getriebe 16 übertragen. Die Wellen/GetriebeVerbindung ist hier als Schrumpfverbindung, die Naben/Wetten-Verbindung als Bolzenkupplung ausgeführt.
Das Getriebe 16 ist hier ebenfalls ein übliches, zweistufiges Planetengetriebe mit einer doppeltgelagerten Antriebswelle 17, wobei das rotorseitige Lager 8 und die Wellendichtung 9 in den vorderen Getriebedeckel 10 integriert sind.
Fig. 3 zeigt eine Ausführungsform der Erfindung. Das Getriebe weist zwei Planetenradstufen 18, 19 auf.
Die Antriebswelle 20 ist in den Planetenträger integriert, so dass sie gleichzeitig als Planetenträger der Planetenradstufe 18 dient. Die Antriebswelle 20 ist mittels zweier Lager 21,22 in Gehäuseteilen 24, 25 des Getriebes gelagert. Eine geeignete Dichtung 23 schliesst das Getriebe antriebsseitig ab.
Zur Befestigung des Rotors 26 einer Antriebsquelle an der Antriebswelle 20 weist dieses eine vom Durchmesser des Rotorlagers 21 und der Belastung des Getriebes abhängige Verschraubung 27 (durch strichpunktierte Linien angedeutet) und eine Zentrierung 28 auf.
Fig. 4 zeigt eine Ausführungsform einer Windkraftanlage unter Verwendung eines erfindungsgemässen Getriebes. Die Rotornabe 30, die ein oder mehrere Rotorblätter 31 trägt, ist mit der Antriebswelle 20 des Getriebes 32 verschraubt. Durch diese Anordnung wird das Antriebsdrehmoment des Rotors der Antriebsquelle direkt von der Rotornabe 30 in die Antriebswelle 20 bzw. dem Planetenträger des Getriebes eingeleitet. Das Getriebe 32 ist mit dem Maschinenrahmen 33 verschraubt.
<Desc / Clms Page number 1>
The invention relates to a planetary gear, in particular for wind turbines, with a planet carrier, which is mounted in a gear housing and is connected to a drive shaft loaded with lateral force, which carries a drive source.
Most wind turbines are constructed as follows: A rotor shaft is mounted in a bearing block by means of two bearings. At one end of this rotor shaft, the rotor hub is fastened with a screw connection. The other end of the rotor shaft has, for example, a shrink connection or a spline connection for torque transmission between the rotor shaft and the transmission.
Another known embodiment consists of a non-rotating hollow carrier shaft on which the hub is rotatably mounted. The drive torque is transmitted from the hub to the gearbox by a shaft, which in this case is not loaded by transverse forces and runs coaxially in the hollow carrier shaft. The shaft / gear connection is, for example, a shrink connection, the hub / shaft connection is, for example, a pin coupling.
The proportions of the rotor shaft including bearing and bearing block or support hollow shaft in terms of cost and weight are considerable. For both variants described above, the share in the total costs of the wind power plant is in each case approximately 7%, the share in the total weight of the wind power plant without a tower is in each case approximately 15%.
The high proportion of weight also has a negative impact on the dimensioning of the parts downstream in the power flow, right down to the tower and the foundation.
From US 5 222 924 A a planetary gear for wind turbines is known, in which the shear-loaded drive shaft is mounted on the machine frame.
The object of this invention is to reduce both the cost and the weight of the rotor hub / gear connection.
This task is solved in a generic gearbox in that the drive shaft is mounted in the gearbox housing via the planet carrier.
The following table roughly shows the advantages compared to the prior art:
EMI1.1
<tb>
<tb> Cost share <SEP> in <SEP> total costs <SEP> Weight share <SEP> in <SEP> total weight
<tb> of the <SEP> plant <SEP> [%] <SEP> of the <SEP> plant <SEP> (without <SEP> tower) <SEP> [%]
<tb> State <SEP> of <SEP> technology <SEP> *) <SEP> 17 <SEP> 30
<tb> Invention **) <SEP> 11 <SEP> 15
<tb> difference <SEP> 6 <SEP> 15 <SEP>
<tb>
*) Rotor shaft, bearing, bearing block, connection rotor hub / rotor shaft or rotor shaft / gearbox and gear or rotor shaft, bearing, hollow carrier shaft, connection rotor hub / rotor shaft or
Rotor shaft / gearbox and gearbox **) gearbox according to the present invention
In summary, the present invention can result in a reduction in the costs for the overall system of approximately 6% and the weight for the system without a tower of approximately 50% compared to the prior art.
Further features and advantages of the invention emerge from the subclaims and the following description of exemplary embodiments of the invention with reference to the drawings.
1 and 2 show embodiments of wind power plants according to the prior art, FIG. 3 shows an embodiment of a planetary gear according to the invention and FIG. 4 partially shows a wind power plant with a planetary gear according to the invention.
1 shows the embodiment most frequently used in wind turbines. A rotor shaft 1 is mounted in a bearing block 4 by means of two bearings 2, 3. The rotor hub 5 is fastened at one end of this rotor shaft 1 by means of a screw connection. The other end of the rotor shaft 1 is designed for torque transmission between the rotor shaft 1 and the gear 6 with a spline connection. The gear 6 is a conventional, two-stage planetary gear with a double-bearing drive shaft 7, the rotor-side bearing 8 and the shaft seal 9 being integrated in the front gear cover 10.
Fig. 2 shows another known embodiment. This consists of a non-rotating carrier hollow shaft 11 on which the rotor hub 12 is rotatably mounted by means of two bearings 13, 14. The
<Desc / Clms Page number 2>
Drive torque is transmitted from the rotor hub 12 to the transmission 16 via a shaft 15 which in this case is not loaded by transverse forces and which runs coaxially in the hollow carrier shaft 11. The shaft / gearbox connection is designed as a shrink connection, the hub / betting connection as a pin coupling.
The gear 16 here is also a conventional, two-stage planetary gear with a double-bearing drive shaft 17, the rotor-side bearing 8 and the shaft seal 9 being integrated in the front gear cover 10.
3 shows an embodiment of the invention. The transmission has two planetary gear stages 18, 19.
The drive shaft 20 is integrated in the planet carrier, so that it simultaneously serves as a planet carrier of the planetary gear stage 18. The drive shaft 20 is mounted by means of two bearings 21, 22 in housing parts 24, 25 of the transmission. A suitable seal 23 closes off the transmission on the drive side.
To fasten the rotor 26 of a drive source to the drive shaft 20, the latter has a screw connection 27 (indicated by dash-dotted lines) which is dependent on the diameter of the rotor bearing 21 and the load on the transmission, and a centering 28.
4 shows an embodiment of a wind power plant using a transmission according to the invention. The rotor hub 30, which carries one or more rotor blades 31, is screwed to the drive shaft 20 of the transmission 32. With this arrangement, the drive torque of the rotor of the drive source is introduced directly from the rotor hub 30 into the drive shaft 20 or the planet carrier of the transmission. The gear 32 is screwed to the machine frame 33.
Claims (4)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0216694A AT403310B (en) | 1994-11-23 | 1994-11-23 | Epicyclic gear, in particular for wind power systems |
EP95933222A EP0792415B2 (en) | 1994-10-07 | 1995-10-05 | Planetary gear for wind turbines |
ES95933222T ES2166832T5 (en) | 1994-10-07 | 1995-10-05 | PLANETARY GEAR FOR A WIND TURBINE. |
AT95933222T ATE209753T1 (en) | 1994-10-07 | 1995-10-05 | PLANETARY GEAR FOR WIND TURBINE |
DE59509888T DE59509888D1 (en) | 1994-10-07 | 1995-10-05 | PLANETARY GEARBOX FOR WIND TURBINE |
AU35970/95A AU3597095A (en) | 1994-10-07 | 1995-10-05 | Planetary gear for wind turbines |
PCT/AT1995/000193 WO1996011338A1 (en) | 1994-10-07 | 1995-10-05 | Planetary gear for wind turbines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0216694A AT403310B (en) | 1994-11-23 | 1994-11-23 | Epicyclic gear, in particular for wind power systems |
Publications (2)
Publication Number | Publication Date |
---|---|
ATA216694A ATA216694A (en) | 1997-05-15 |
AT403310B true AT403310B (en) | 1998-01-26 |
Family
ID=3529162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT0216694A AT403310B (en) | 1994-10-07 | 1994-11-23 | Epicyclic gear, in particular for wind power systems |
Country Status (1)
Country | Link |
---|---|
AT (1) | AT403310B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003031811A2 (en) * | 2001-10-05 | 2003-04-17 | Hansen Transmissions International Nv | Modular wind turbine gearbox |
EP1538332A2 (en) * | 2003-12-03 | 2005-06-08 | REpower Systems AG | Wind turbine |
WO2009052826A2 (en) * | 2007-10-23 | 2009-04-30 | Vestas Wind Systems A/S | A gearbox for a wind turbine, a method of converting wind energy and use of a gearbox |
US8672797B2 (en) | 2008-09-10 | 2014-03-18 | The Timken Company | Power train for wind turbine |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1249299A (en) * | 1959-11-09 | 1960-12-30 | Engrenages Et Machines Maag Sa | Mechanism usable as a high ratio reduction gear or multiplier |
DE1914897A1 (en) * | 1968-04-18 | 1969-11-06 | Stal Laval Turbin Ab | Two-stage gear with two planetary gears connected in series |
DE1650635A1 (en) * | 1967-08-18 | 1970-02-05 | Bhs Bayerische Berg | Double-stage planetary gear transmission |
FR1601670A (en) * | 1968-12-27 | 1970-09-07 | ||
DE2841331B2 (en) * | 1978-09-21 | 1980-07-17 | Mannesmann Ag, 4000 Duesseldorf | Planetary gear with power split |
EP0022124A1 (en) * | 1979-06-18 | 1981-01-07 | VOEST-ALPINE Aktiengesellschaft | Multi-stage planetary reduction gear |
US4452102A (en) * | 1981-04-23 | 1984-06-05 | New Age Industries, Inc. | Epicycloidal gearing |
US4610182A (en) * | 1983-03-28 | 1986-09-09 | Bhs-Bayerische Berg-Hutten -Und Salzwerk Ag | Planetary gear arranged in a gear housing between a jet engine and an electrical engine |
FR2609136A1 (en) * | 1986-12-31 | 1988-07-01 | Camara Alpha | TORQUE EQUALIZER FOR CONTRAROTATIVE TREES |
JPH0579449A (en) * | 1991-09-20 | 1993-03-30 | Mitsubishi Heavy Ind Ltd | Wind mill |
US5222924A (en) * | 1990-01-31 | 1993-06-29 | Chan Shin | Over-drive gear device |
-
1994
- 1994-11-23 AT AT0216694A patent/AT403310B/en not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1249299A (en) * | 1959-11-09 | 1960-12-30 | Engrenages Et Machines Maag Sa | Mechanism usable as a high ratio reduction gear or multiplier |
DE1650635A1 (en) * | 1967-08-18 | 1970-02-05 | Bhs Bayerische Berg | Double-stage planetary gear transmission |
DE1914897A1 (en) * | 1968-04-18 | 1969-11-06 | Stal Laval Turbin Ab | Two-stage gear with two planetary gears connected in series |
FR1601670A (en) * | 1968-12-27 | 1970-09-07 | ||
DE2841331B2 (en) * | 1978-09-21 | 1980-07-17 | Mannesmann Ag, 4000 Duesseldorf | Planetary gear with power split |
EP0022124A1 (en) * | 1979-06-18 | 1981-01-07 | VOEST-ALPINE Aktiengesellschaft | Multi-stage planetary reduction gear |
US4452102A (en) * | 1981-04-23 | 1984-06-05 | New Age Industries, Inc. | Epicycloidal gearing |
US4610182A (en) * | 1983-03-28 | 1986-09-09 | Bhs-Bayerische Berg-Hutten -Und Salzwerk Ag | Planetary gear arranged in a gear housing between a jet engine and an electrical engine |
FR2609136A1 (en) * | 1986-12-31 | 1988-07-01 | Camara Alpha | TORQUE EQUALIZER FOR CONTRAROTATIVE TREES |
US5222924A (en) * | 1990-01-31 | 1993-06-29 | Chan Shin | Over-drive gear device |
JPH0579449A (en) * | 1991-09-20 | 1993-03-30 | Mitsubishi Heavy Ind Ltd | Wind mill |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003031811A2 (en) * | 2001-10-05 | 2003-04-17 | Hansen Transmissions International Nv | Modular wind turbine gearbox |
WO2003031811A3 (en) * | 2001-10-05 | 2003-08-28 | Hansen Transmissions Int | Modular wind turbine gearbox |
EP1538332A2 (en) * | 2003-12-03 | 2005-06-08 | REpower Systems AG | Wind turbine |
EP1538332A3 (en) * | 2003-12-03 | 2011-05-18 | REpower Systems AG | Wind turbine |
WO2009052826A2 (en) * | 2007-10-23 | 2009-04-30 | Vestas Wind Systems A/S | A gearbox for a wind turbine, a method of converting wind energy and use of a gearbox |
WO2009052826A3 (en) * | 2007-10-23 | 2009-08-13 | Vestas Wind Sys As | A gearbox for a wind turbine, a method of converting wind energy and use of a gearbox |
US8137234B2 (en) | 2007-10-23 | 2012-03-20 | Vestas Wind Systems A/S | Gearbox for a wind turbine, a method of converting wind energy and use of a gearbox |
US8393994B2 (en) | 2007-10-23 | 2013-03-12 | Vestas Wind Systems A/S | Gearbox for a wind turbine, a method of converting wind energy and use of a gearbox |
US8672797B2 (en) | 2008-09-10 | 2014-03-18 | The Timken Company | Power train for wind turbine |
Also Published As
Publication number | Publication date |
---|---|
ATA216694A (en) | 1997-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0792415B1 (en) | Planetary gear for wind turbines | |
EP1999369B1 (en) | Drive train between a rotor and a gear unit of a wind power plant | |
EP1867871B1 (en) | Wind generator with a rotor | |
AT401674B (en) | WIND TURBINE | |
DE3124462C2 (en) | Rotor-shaft arrangement for the fan of a gas turbine engine | |
EP2710259B1 (en) | Wind turbine gear mechanism | |
EP2508754A1 (en) | Drive system for a wind turbine | |
DE102006032525A1 (en) | Wind turbine with a drive train | |
EP2541096A1 (en) | Drive system for a wind turbine | |
DE102004046563B4 (en) | Wind energy plant with fully integrated machine set | |
EP1243791A2 (en) | Power transmission for a wind turbine | |
WO2010069449A2 (en) | Generator arrangement for a wind power plant | |
DE19917609C2 (en) | Mill gear | |
AT403310B (en) | Epicyclic gear, in particular for wind power systems | |
AT403189B (en) | Rotor bearing | |
DE10017548B4 (en) | generator gear | |
DE3012069C2 (en) | Storage for the rotor of a wind turbine | |
DE1931832A1 (en) | Gear for changing the pitch of a rotor blade | |
DE102014008966A1 (en) | Drive arrangement for a vertical roller mill | |
DE3529404A1 (en) | Rotor transmission for wind power stations | |
WO2022179870A1 (en) | Central torque support for a planetary transmission test with torque supports | |
DE102010010201A1 (en) | Transmission for use in wind power plant to drive generators to produce electrical current, has input shifted gear coupled to wind power rotor and arranged downstream to transmission-shifted gear i.e. planetary gear, attached to generator | |
AT402132B (en) | ELECTRIC MOTOR | |
DE598194C (en) | Electric motor with built-in reduction gear | |
DE202008010007U1 (en) | Arrangement for mounting an output shaft of an automatic transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EIH | Change in the person of patent owner | ||
ELJ | Ceased due to non-payment of the annual fee |